
Georgia Southern University Georgia Southern University

Digital Commons@Georgia Southern Digital Commons@Georgia Southern

Honors College Theses

2022

Development and Optimization of Classification Neural Networks Development and Optimization of Classification Neural Networks

for Disaster-Assessment Using Unmanned Aerial Vehicle Systems for Disaster-Assessment Using Unmanned Aerial Vehicle Systems

Maria Isabel Gonzalez Bocanegra

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/honors-theses

 Part of the Other Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Gonzalez Bocanegra, Maria Isabel, "Development and Optimization of Classification Neural Networks for
Disaster-Assessment Using Unmanned Aerial Vehicle Systems" (2022). Honors College Theses. 776.
https://digitalcommons.georgiasouthern.edu/honors-theses/776

This thesis (open access) is brought to you for free and open access by Digital Commons@Georgia Southern. It
has been accepted for inclusion in Honors College Theses by an authorized administrator of Digital
Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/honors-theses
https://digitalcommons.georgiasouthern.edu/honors-theses?utm_source=digitalcommons.georgiasouthern.edu%2Fhonors-theses%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.georgiasouthern.edu%2Fhonors-theses%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/honors-theses/776?utm_source=digitalcommons.georgiasouthern.edu%2Fhonors-theses%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

Development and Optimization of Classification Neural Networks for Disaster-
Assessment Using Unmanned Aerial Vehicle Systems

An Honors Thesis submitted in partial fulfillment of the requirements for Honors in
Department Name.

By
Maria Isabel Gonzalez Bocanegra

Under the mentorship of Rami J. Haddad

ABSTRACT

This research focuses on increasing the classification accuracy of convolutional neural
networks in an autonomous network of unmanned aerial vehicles for transportation
disaster management. The autonomous network of UAVs will allow first responders to
optimize their rescue plans by providing relevant information on inaccessible roads. The
research seeks to explore different methods to optimize the architecture of convolutional
networks for the multiclass classification of disaster-damaged roads.

Thesis Mentor:________________________

Dr. Rami J. Haddad

Honors Director:_______________________

Dr. Steven Engel

April 2022
Department Electrical and Computer Engineering

Honors College
Georgia Southern University

1

Development and Optimization of Classification Neural Networks for Disaster-
Assessment Using Unmanned Aerial Vehicle Systems

By

Maria Isabel Gonzalez Bocanegra

2

Table of Contents
List of Figures ..4

Acknowledgements ..6

Chapter 1: Introduction.……..7

Chapter 2: Background ...9

2.1 Convolutional Neural Networks ...9

2.2 Pre-trained Convolutional Neural Networks .. 12

2.3 Transfer Learning …...14

2.4 K-Fold Cross-Validation …………………………………………………………15

2.5 Network Performance Assessments ………………………………………………16

2.5 ArcGIS Online Mapping Software ………………………………………….……18

Chapter 3: Methodology ...20

3.1 Image Library ………...20

3.2 Convolutional Neural Network Training, Testing, Optimization22

3.3 Graphic User Interface...24

Chapter 4: Results ...35

4.1 Convolutional Neural Networks’ Results ..35

Chapter 5: Conclusions ...41

5.1 Conclusion ..41

5.2 Future Work ..42

References …………...………………………………………………………………….43

Appendix A: Convolutional Neural Network Training MATLAB Code (AlexNet) ...46

Appendix B: Convolutional Neural Network Testing MATLAB Code60

Appendix C: Geolocation Data Retrieving MATLAB Code ..62

3

Appendix D: K-Fold Cross-Validation Dataset Segmentation MATLAB code ….....65

Appendix E: Image Resizing for Neural Network Training Script MATLAB Code

…………………………………………………………………………………………....71

Appendix F: Graphical User Interface Python Code ………………………………...72

4

List of Figures

Figure 1. Details for Receptive Field Computation..10

Figure 2. Spatial Subsampling Example ..11

Figure 3. Illustration of Convolutional Neural Network Architecture 12

Figure 4. Architecture Representation of AlexNet CNN …...13

Figure 5. Architecture Representation of GoogLeNet CNN ... 14

Figure 6. Architecture Representation of ResNet50 CNN .. 14

Figure 7. General Demonstration of Transfer Learning …...15

Figure 8. General Demonstration of K-Fold Cross-Validation …….….…………………16

Figure 9. ArcGIS web map with tagged disaster-damaged roads …….…..………………18

Figure 10. Information tag for each disaster-damaged road on the web map19

Figure 11. Disaster Damaged Road - Library Sample Image ...21

Figure 12. Clear Road - Library Sample Image ………………………..............................22

Figure 13. Disaster Blocked Road - Library Sample Image …...22

Figure 14. Boat in a Road - Library Sample Image …..22

Figure 15. Fallen Power Lines - Library Sample Image ...23

Figure 16. Flooded Road - Library Sample Image ...23

Figure 17. Complete GUI System Diagram ...26

Figure 18. GUI Login Window ……..27

Figure 19. GUI Prompt Window for ArcGIS Account Username ...……………………...27

Figure 20. GUI Prompt Window for ArcGIS Account Password ………......................... .28

Figure 21. Application Main Window …………………………...................................... 28

Figure 22. All ArcGIS Account Content Windowpane …………………………….….....30

Figure 23. Copy ItemID to Clipboard from ArcGIS Account Content Window ………....30

5

Figure 24. Paste ItemID from Clipboard to Map ID Prompt Window …………….……...31

Figure 25. ArcGIS Web map Opened using the “Open Web map with ItemID” Button …31

Figure 26. Data Classification and Mapping Window …………………………………...32

Figure 27. Data Selection for Classification ……………………………………………..33

Figure 28. Folder Selection to Save Classification Output and Results …………………..34

Figure 29. Successful Classification Windowpane ………………………………………35

Figure 30. AlexNet Confusion Matrix …………………………………………………...39

Figure 31. GoogLeNet Confusion Matrix ………………………………...……………...39

Figure 32. ResNet50 Confusion Matrix ………………………………………………….40

Figure 33. Two Category Neural Network Classification Output of Disaster Damaged

Roads …………………………………………………………………………………….41

Figure 34. Complete System Flowchart ………………………………………………….40

6

Acknowledgements

I wanted to use this section to thank my mom, Marisol Bocanegra, who has been

right next to me every step of the way (even though she lives 2805.2 miles away). Thank

you for giving me the space, opportunity, and understanding to become the person I am

now. I would also like to thank Dr. Rami J. Haddad for his mentorship and advise

throughout my four years at Georgia Southern University. I am extremely thankful to him

for all his help and advice, without him this project would not have been possible. I also

want to thank the people who have never left my side during my last few years at Southern,

especially Zach Hamilton, Irene Bueso, Analucia Yanar, Ana Abadie, and Ana Oviedo.

You guys inspired me to become the best version of myself and enjoy the journey while

doing so.

7

Chapter 1: Introduction

The occurrence of natural disasters has increased with the accelerated rate of

climate change in the United States and the world. These natural disasters can have deep

consequences in communities and can drastically affect human infrastructure, such as

roads. There exists a need for effective means to assess natural disaster damages and aid

first responders in their recovery efforts. The costs brought up after such events is

influenced by damage assessment and cleanup efforts. These assessments are handled by

state and federal ground teams, which require great manpower. With this in mind, the

project seeks to develop an automated damage assessment process to streamline disaster

preparedness, response, and recovery operations. The implementation of such systems

would allow for disaster management teams to optimize their recovery efforts by providing

to real-time transportation network status information. This information can be leveraged

by federal agencies, such as FEMA, to provide aid to natural disaster affected communities

and infrastructure.

The main characteristic of this system is that it utilizes image processing and deep

learning techniques to assess damages to transportation systems (roads). Once the neural

network positively identifies damages, it automatically retrieves the image’s geo-tag

metadata to an ArcGIS map. These online geo-tagged maps can then be accessed by

response and recovery teams to facilitate their recovery efforts. The system is

predominantly useful for the restoration of the state transportation system after natural

disasters. The system provides the damage assessment team with a list summarizing all

8

damages that were assessed and their geographical locations and live streaming of the

UAV’s video feed to an RTMP server, enabling the first responders to assess damages.

The project also developed a Graphic User Interface application using Python and

the MATLAB software to automate and centralize the operation of this system. The

application included managing, sampling, classifying, and ArcGIS map tagging of the

UAV-generated video streams. This application also provided some flexibility to

customize the operating settings of this system.

A library of bird’s view disaster damaged road images was compiled through

extensive research on natural disasters. The library was divided into six different classes of

natural disaster damaged roads that are commonly observed. Additionally, a total of three

different Convolutional Neural Networks were researched and tested after implementing

accuracy optimization techniques. Information for network performance was obtained

through different metric assessments. The best network accuracy for multiclass

classification achieved 74.1% accuracy while the binary classification achieved 99%

accuracy.

9

Chapter 2: Background

This chapter serves as an introduction to the theory behind Convolutional Neural

Networks, Pretrained Convolutional Neural Networks, Transfer Learning, K-Fold Cross

Validation, and Network Performance Assessments.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of Artificial Neural Networks

that help analyze images through image processing. Such networks have a flexible network

configuration that allows for image data mapping. These networks were proposed in the

1995 paper by Yann Lecun [6]. The overall architecture of the CNN consists of three parts

that help classify raw data. The first part is called the local receptive fields, which have

artificial neurons. These artificial neurons consist of mathematical functions that calculate

the weighted sum of multiple inputs and outputs. The artificial neuron in a receptive field

of a Convolutional Neural Network deals with sections of high-dimensional inputs (e.g.,

images). Connecting the artificial neurons will result in the creation of the receptive field.

This process creates a feature map that can be used as the starting point to guide the output.

Figure 1 showcases a visual example of the reception field computation. The receptive field

in each convolutional layer can be calculated by using the following equation:

𝑛𝑜𝑢𝑡 =
𝑛𝑖𝑛 +2𝑝−𝑘

𝑠
+ 1 (1)

𝑛𝑖𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑛𝑜𝑢𝑡 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑘 = convolution kernel size

10

𝑝 = convolution padding size

𝑠 = convolution stride size

Figure 1. Details for Receptive Field Computation [36]

The next important concept of a Convolutional Neural Network is spatial

subsampling. The spatial subsampling, or pooling layer, is applied to reduce the resolution

of feature maps and their sensitivity to outputs produced by their current convolutional

layer [6]. The convolutional layer in the network creates a general feature map with the

essential features from the raw data. The spatial subsampling down samples the output of

11

the convolutional layer in the height and width spatial dimension. This feature reduces the

reliance of precise positioning of features and retains important feature map information.

Figure 2 showcases the subsampling, or pooling, layer which groups the feature maps and

extracts their most important feature.

Figure 2. Spatial Subsampling Example [37]

The last important aspect of the Convolutional Neural Networks is weight sharing.

Weight sharing is the use of a reception field across the visual field, in this case images.

This allows for the creation of different feature maps that can extract a reception field

specific feature from an image.

Figure 3 exemplifies the complete architecture of a Convolutional Neural Network

where convolutional layers can be observed, creating feature maps that are then input to a

12

spatial subsampling layer. The process continues until a matrix of feature layers is achieved

and then fed to fully connecting layers that combine these feature maps into a model [7].

The output model is then classified by an activation function, in most cases the SoftMax

function.

Figure 3. Illustration of Convolutional Neural Network Architecture [8]

2.2 Pre-Trained Convolutional Neural Networks

Pre-trained convolutional neural networks have revolutionized the industry due to

their capability of using image processing to leverage object classification. The project uses

this capability to its advantage for the recognition of disaster damaged roads. Each network

has been already pretrained on the ImageNet dataset, a 15 million high-resolution image

dataset. By implementing pretrained neural network, the computational complexity and

time in the project’s training process is significantly reduced by implementing transfer

learning. The three networks tested are AlexNet, GoogLeNet, and ResNet50, which are

some of the most successful networks today.

The AlexNet CNN is a 22 layers deep network that helped classify 1.2 million high-

resolution images into 1000 different classes in the ImageNet Large-Scale Visual

13

Recognition Challenge (LSVRC) 2010 contest [8]. The architecture consists of five

convolutional layers, three max-pooling layers, two normalization layers, two fully

connected layers, and one SoftMax layer. GoogLeNet is 22 layers deep and was trained on

the same dataset as AlexNet. Additionally, GoogLeNet is able to reduce the input image

while maintaining important spatial information across its convolutional layers. This

technique allows for the network to obtain more details from the reduced image . on the

other hand, ResNet50 is a 50 layers deep CNN trained on over a million images that

implement residual learning. ResNet50 skips connections instead of layering convolutional

layers to address vanishing gradient descent.

Figure 4. Architecture Representation of AlexNet CNN [10]

14

Figure 5. Architecture Representation of GoogLeNet CNN [8]

Figure 6. Architecture Representation of ResNet50 CNN [11]

2.3 Transfer Learning

Transfer learning is a technique that leverages pre-trained Convolutional Neural

Networks. Through this process the user selectively changes the output categories of a pre-

trained classification network. The original network model is built to classify specific tasks,

but with transfer learning the network is repurposed the to classify the required task by the

user. A network trained on a large dataset to classify 1000+ objects can be repurposed to

classify a smaller dataset. The network’s learned parameters obtained by being pre-trained

with a large dataset are kept unchanged, except for the final few layers. The last few layers

15

of the network are repurposed for specific dataset classification. The application of transfer

learning addresses the time constraints of building large data sets and performing

supervised learning. Transfer learning also avoids the use of costly hardware, such as a

GPU, required to conduct mathematically intense computational analysis with large

datasets. Figure 7 showcases the overall theory of transfer learning.

Figure 7. General Demonstration of Transfer Learning [38]

2.4 K-Fold Cross-Validation

K-Fold Cross-Validation is a technique used to partition a dataset into K number of

sections. Each section will at one point of the experiment be used to test the Convolutional

Neural Network after the training phase is completed. This technique is used to evaluate

the performance of the network on data it has not be trained on to obtain true system

accuracy. The implementation of K-Fold Cross-Validation is a powerful tool to avoiding

data overfitting issues that rise from training and testing on a limited dataset of disaster-

16

damaged roads. In the case of this work, the dataset was divided into four folds (K = 4).

Three folds are used as a training dataset while the remaining fold is used as the testing

dataset. Each fold will eventually be used as a testing dataset thus there are four testing and

training trials. This methodology allows for a less biased model and faster generalization.

Figure 8. General Demonstration of K-Fold Cross-Validation

https://androidkt.com/pytorch-k-fold-cross-validation-using-dataloader-and-sklearn/

2.5 Network Performance Assessments

The network’s classification performance can be measure in multiple ways, in this

section we explore the metric used to assess network’s performance. The classification

output can be characterized by one of the following four categories: true positive (TP),

false positive (FP), true negative (TN), and false-negative (FN). These categories will help

in the calculations of the metrics to assess the network’s performance.

17

2.5.1 Recall Metric

Recall, also known as sensitivity, refers to the ratio between the number of correct

positive classified images (true positives) to that of the total number of possible positive

classified images (true positive + false negative). This metric allows for the understanding

of how well the network recognizes positive cases.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

2.5.2 Precision Metric

The precision metric refers to the ratio of correct positive classified images (true

positive) to the number of all positive classified images (true positive + false positive) , as

shown in Eq.3. This measure demonstrates the model’s classification accuracy of positive

cases.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

(3)

2.5.3 F1 Score Metric

The harmonic mean between statistical precision and recall is called the F1 score, shown

in Eq. 4. This measurement is preferred when there exists some degree of class

imbalance in the dataset. The F1 score is suited for measuring incorrectly classified cases

by a network and is represented by a number between 0 and 1.

𝐹1 =
𝑇𝑃

𝑇𝑃+0.5(𝐹𝑃+𝐹𝑁)

(4)

18

2.6 ArcGIS Online Mapping Software

ArcGIS is a cloud based geographical information software used to map, visualize,

and analyze geospatial information. The software delivers fast solutions to the development

of apps, maps, and data. This project leverages the ArcGIS Online tool for complex map

creation and development through its Python API. ArcGIS is implemented to create maps

with exact pinpoints of the locations where the UAVs identified disaster-damaged roads,

as illustrated in Figure 9. The software can expand into more complex workflows and is

suitable for this project due to its API design flexibility.

Figure 9. ArcGIS web map with tagged disaster-damaged roads

Each pinpoint in the web map represents a disaster damaged road. The pinpoint

contains the image’s metadata information of the disaster damaged road. This metadata

includes latitude, longitude, and type of damage associated with a specific location as well

as original file location in Google Drive. Figure 10 provides an example of the information

each pin holds. The ArcGIS API also supports the automation of map development on their

19

online platform. The API serves as the foundation for the creation of the graphic user

interface (GUI) to automate workflows and speed up data retrieval.

Figure 10. Information tag for each disaster-damaged road on the web map

20

Chapter 3: Methodology

3.1 Image Library

Convolutional Neural Network development requires a dataset from which the

network will be trained and tested on. This research requires a large set of images

representing the different categories on which the network will be tasked to classify

images. This research developed a library of disaster-damaged road images due to the lack

of natural disaster damaged road datasets. The created library contains six different classes

of damages encountered by the Georgia Department of Transportation across the state

during and after natural disasters. The library is partitioned into the following classes:

Damaged Roads, Clear Roads, Blocked Roads, Boat in Roads, Fallen Power Lines, and

Flooded Roads. A specific characteristic of this dataset is that the images are exclusively

taken at a bird’s eye view or high camera angle to resemble what a flying UAV would

capture in real-time. This project also took into consideration the requirement of evenly

distributed classes to avoid feature unbalance during training and testing of the network.

Figures 11-17 showcase image samples that are part of the image library.

Figure 11. Disaster Damaged Road - Library Sample Image [29]

21

Figure 12. Clear Road - Library Sample Image [30]

Figure 13. Disaster Blocked Road - Library Sample Image [31]

Figure 14. Boat in a Road - Library Sample Image [32]

22

Figure 15. Fallen Power Lines - Library Sample Image [33]

Figure 16. Flooded Road - Library Sample Image [34]

3.2 Convolutional Neural Network Training, Testing, Optimization

For the purposes of this research project, three different but highly successful

Convolutional Neural Networks were tested. As previously mentioned, the main networks

investigated are AlexNet, GoogLeNet, and ResNet50. These networks were chosen given

their architectural prowess for learning and generalizing to properly conduct classification.

The MATLAB software was used to create the networks through the Deep Learning

Toolbox. Moreover, parameters such as mini-batch size, max epochs, and learning rate,

23

were set to their default values for each network. The networks were tested with a mini-

batch size of 64, 15 epochs, and a learning rate of 10-4 with an image input of 224⨯224⨯3.

A MATLAB script was written to accommodate for different image sizes in the dataset

and convert them into 224⨯224⨯3.

The project implemented transfer learning at this stage to avoid network retraining

and exploit the pretrained networks as well as to optimize the networks. This technique

allows for domain adaptation by using the learned features from the trained network and

moving them into the target network. Furthermore, the last few layers of the network are

retrained to avoid data overfitting, which can happen due to the small size of the dataset.

The last layers also obtain more specific features from the smaller dataset. Transfer

learning helps avoid time constraints of gathering images to create large datasets and

lowers hardware costs, e.g., GPU, required to conduct big mathematical computational

analyses with big datasets.

The network is ready to train after completing the transfer learning. The original

dataset is partitioned through K-Fold cross validation. To train the network, a 4-fold cross-

validation is implemented, meaning the dataset is partitioned in four groups. Cross-

validation is a validation technique implemented to assess the Convolutional Neural

Network’s performance under different training and testing mixed folds. Similarly, to

transfer learning, K-Fold Cross-Validation is also a method that helps avoid overfitting

issues caused by training and testing on a small dataset of disaster-damaged roads.

24

For this project, the dataset was divided into four-fold from which three folds are

selected for training and the other fold is used as the testing dataset. Through this

methodology each fold will be used as a testing dataset, achieving four different training

phases and thus four different iterations of the network. After each training phase the model

parameters are saved for testing. All the metrics are averaged to estimate the model’s

performance more accurately.

3.3 Graphical User Interface

A Graphical User Interface (GUI) is a subset of the User Interface (UI) group which

allows for the users to interact with electronic devices. For this project, and to provide a

system that can assess disaster-damaged roads, there exists a need to centralize all the

components. The centralization system will take the form of a Graphical User Interface

developed through Python 3. In addition to Python 3, the GUI also incorporated ArcGIS

API to help with the automation of web map development of disaster-damaged roads. The

GUI provides a wide variation of web map creation and modification as well as data

handling and Neural Network reconfiguration. Figure 17 provides the complete GUI

system diagram and its functionality. The user can access their online ArcGIS account from

the GUI by using their credentials. Figures 18-20 show the main page where the login

process starts.

25

Figure 17. Complete GUI System Diagram

.

26

Figure 18. GUI Login Window

Figure 19. GUI Prompt Window for ArcGIS Account Username

27

Figure 20. GUI Prompt Window for ArcGIS Account Password

Figure 21. Application Main Window

28

The GUI implements many options for the user to develop disaster-damaged roads

web maps neural network classification outputs. The GUI can access the data from the

user’s online account to showcase previously stored projects and information that is

pertinent to the disaster-management system as in Figure 22. Users are also able to open

online web maps from the GUI to visualize the maps, exemplified in Figures 23-25. The

GUI can also initiate data classification with the Convolutional Neural Network without

the user having to open MATLAB and work with multi-software. These are examples of

the possible options the developed GUI provides to centralize the use of data classification

with MATLAB and web map creation with ArcGIS. The centralization is a perk to the

project since it has the potential to streamline natural disaster management time from first

responders.

29

Figure 22. All ArcGIS Account Content Windowpane

Figure 23. Copy ItemID to Clipboard from ArcGIS Account Content Window

30

Figure 24. Paste ItemID from Clipboard to Map ID Prompt Window

Figure 25. ArcGIS Web map Opened using the “Open Web map with ItemID” Button

31

Figure 26. Data Classification and Mapping Window

32

Figure 27. Data Selection for Classification

33

Figure 28. Folder Selection to Save Classification Output and Results

34

Figure 29. Successful Classification Windowpane

35

Chapter 4: Results

4.1 Convolutional Neural Networks’ Results

The results presented in this section were obtained after training and testing three

different Convolutional Neural Networks. To measure the network’s performance the F1

score, precision, and recall metrics are leveraged. These metrics help understand where the

model could have weaknesses. The metrics together will present a full picture of the

networks’ status and performance. It is worth noting that these metrics are commonly used

and referenced across literature, which allows replicability and comparability.

4.1.1. Six Classes Classification

The classification accuracy is one of the main performance metrics to obtain from

a network. After each network was trained and tested through K-Fold Cross-Validation,

the mean of all folds per network was calculated. A total of three different CNNs (AlexNet,

GoogLeNet, ResNet50) were investigated as previously established. The best network in

terms of accuracy was AlexNet50 with 74.1% accuracy. The ResNet50 and GoogLeNet

obtained an accuracy of 70.4% and 68.5%, respectively. Furthermore, the mean F1 score,

recall, specificity, and precision were calculated as well. The classification metrics’ results

for each network are presented in Tables 1, 2, and 3.

Table 1. AlexNet Classification Results

Network Accuracy: 74.1%

Classes Precision Recall F1

Blocked Rd 0.375 0.300 0.333

36

Boat in Rd 1 1 1

Clear Rd 1 1 1

Damaged Rd 0.800 0.400 0.533

Flooded Rd 0.818 1 0.899

Power Lines 0.600 0.900 0.720

Table 2. GoogLeNet Classification Results

Network Accuracy: 68.5%

Classes Precision Recall F1

Blocked Rd 0.359 0..225 0.277

Boat in Rd 0.935 0.975 0.955

Clear Rd 0.845 1 0.916

Damaged Rd 0.609 0.500 0.549

Flooded Rd 0.731 0.527 0.613

Power Lines 0.568 0.925 0.704

Table 5-3. ResNet50 Classification Results

Network Accuracy: 70.4%

Classes Precision Recall F1

Blocked Rd 0.338 0.125 0.182

Boat in Rd 0.955 1 0.977

Clear Rd 0.803 1 0.891

Damaged Rd 0.733 0.550 0.628

Flooded Rd 0.866 0.723 0.788

Power Lines 0.534 0.975 0.690

37

Besides having the best accuracy, AlexNet was also the fastest network to train,

thus requiring less computational power and time. The other deeper and more complex

architectures were not able to produce better results. On the other hand, ResNet50 is

capable of classifying with a better accuracy with larger testing and training datasets [35].

The size of the image library and the multiclass parameter limited the ability of these neural

networks to converge and generalize.

 When observing the Recall metric on each table, it is evident that the Neural

Network was getting confused between the Blocked Road and Damaged Road categories.

The low ratio suggests that the data the neural networks used to train is not enough. The

expansion of the dataset could allow for networks to learn more features by having more

examples.

The Precision metric across the networks also showed that the Blocked Roads and

Damaged Roads have low ratios across the networks. This reinstates the fact that the

networks need more training with more images for these classes to learn more features and

correctly differentiate between them. Figures 31-33 showcase the confusion matrix for the

first fold for each Convolutional Neural Network. Next. The Blocked Road category

emerged as a weakness for the network and that to improve accuracy the dataset needs to

be expanded.

38

Figure 30. AlexNet Confusion Matrix

Figure 31. GoogLeNet Confusion Matrix

39

Figure 32. ResNet50 Confusion Matrix

4.1.2 Two Categories Classification

The network can also be trained to recognize if there is any type of damage or not.

The dataset is split into Damaged Roads and Clean Roads. The first class, Damaged Roads,

includes the previous five classes in it. While Clean Roads obtains more images into its

group to balance the classes out and avoid imbalance. The classification accuracy for

AlexNet with just two classes resulted in 99% accuracy. This results further prove the

viability of leveraging pre-trained neural networks with Transfer Learning and K-Fold

Cross-Validation. Figure 34 showcases and example of the classification results using this

two-category classifier.

40

Figure 33. Two Category Neural Network Classification Output of Disaster Damaged

Roads

Figure 34. Complete System Flowchart

41

Chapter 5: Conclusion

5.1 Conclusion

This thesis sought to develop an unmanned aerial vehicle-based automated disaster

assessment system with Convolutional Neural Networks to assess damages on roads

caused by natural disasters. The DJI Matrice 300 RTK is leveraged to capture bird’s eye

view videos of roads after a natural disaster. The information is sent back to ground station,

where the developed assessment system can be launched from the Graphical User Interface.

The system implements a customized GUI application developed using Python 3 and

MATLAB software. The GUI helps automate and centralize the operation of the

classification of disaster damaged roads and the managing, sampling, and ArcGIS map

tagging of the UAV-generated information.

The system was extensively simulated and tested to assess its effectiveness. The

Classification Neural Networks tested were AlexNet, GoogLeNet, ResNet50. These

networks were investigated after applying transfer learning and utilizing four-fold cross-

validation for maximum learning efficiency. AlexNet achieved the highest accuracy of

74.1%. Moreover, the reduction of classification classes to just two improved the network’s

accuracy to 99%. The metrics used to analyze the network’s performance also provided

insight into the weaknesses the network had. The most explicit one being the classification

confusion it showcases with

42

5.2 Recommendations

Some areas of consideration for future work are the improvement of the image

library. The library size had a deep impact in the learning capacities of the Convolutional

Neural Network. The library also contains varying degrees of image quality which can also

affect the learning capacities of the Neural Network. Possible avenues to improve the

multiclass accuracy include the expansion of the library as well as maintaining a stable

balance across the classes.

43

References

[1] NOAA, National Centers for Environmental Information (NCEI) U.S. Billion-Dollar

Weather and Climate Disasters (2021). https://www.ncdc.noaa.gov/billions , DOI:

10.25921/stkw-7w73.

[2] IFRC. (n.d.). World disasters report 2020: Come heat or high water - tackling the

HUMANITARIAN impacts of the climate Crisis Together [en/ar] - World. ReliefWeb.

Retrieved September 17, 2021, from https://reliefweb.int/report/world/world-disasters-

report-2020-come-heat-or-high-water-tackling-humanitarian-impacts.

[3] Tetila, E. C., Machado, B. B., Menezes, G. K., Oliveira, A. D. S., Alvarez, M., Amorim,

W. P., ... & Pistori, H. (2019). Automatic recognition of soybean leaf diseases using

UAV images and deep convolutional neural networks. IEEE Geoscience and Remote

Sensing Letters, 17(5), 903-907.

[4] Comfort, L. K., Ko, K., & Zagorecki, A. (2004). Coordination in rapidly evolving

disaster response systems: The role of information. American behavioral scientist, 48(3),

295-313.

[5] Zhu, Y. J., Hu, Y., & Collins, J. M. (2020). Estimating road network accessibility during

a hurricane evacuation: A case study of hurricane Irma in Florida. Transportation

research part D: transport and environment, 83, 102334.

[6] LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time

series. The handbook of brain theory and neural networks, 3361(10), 1995.

[7] Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding

convolutional networks. In European conference on computer vision (pp. 818-833).

Springer, Cham.

[8] Prabhu. (2018, March 15). CNN architectures - LeNet, Alexnet, VGG, GoogLeNet AND

RESNET. Medium. Retrieved September 16, 2021, from

https://medium.com/@RaghavPrabhu/cnn-architectures-lenet-alexnet-vgg-googlenet-and-

resnet-7c81c017b848.

[9] Whatmough, P. N., Zhou, C., Hansen, P., Venkataramanaiah, S. K., Seo, J. S., & Mattina,

M. (2019). Fixynn: Efficient hardware for mobile computer vision via transfer learning.

arXiv preprint arXiv:1902.11128.

[10] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep

convolutional neural networks. Communication of ACM Vol. 60, Issue 6 (June 2017),

84–90.

[11] Dwivedi, P. (2019, March 27). Understanding and coding a ResNet in Keras. Medium.

Retrieved September 16, 2021, from https://towardsdatascience.com/understanding-and-

coding-a-resnet-in-keras-446d7ff84d33.

[12] NCDOT, 2018, PROJECT: Improved Approaches to Environmental Compliance During

Highway Construction, TRID Database retrieved Sept. 1, 2021.

44

[13] CTECH, 2018, PROJECT: Tracking Shoreline Conditions to Protect, TRID Database as

retrieved Sept. 1, 2021.

[14] MPC, 2017, PROJECT: Development of Unmanned Aerial Vehicle (UAV) Bridge

Inspection Procedures, TRID Database as retrieved Sept. 1, 2021.

[15] TCSCS, 2017, PROJECT: Bridge Inspecting with Unmanned Aerial Vehicles R&D,

TRID Database as retrieved Sept. 1, 2021.

[16] TRB, 2016, PROJECT: Railroad Bridge Inspections for Maintenance and Replacement

Prioritization Using Unmanned Aerial (UAVs) with Laser Scanning Capabilities, TRID

Database as retrieved Sept. 1, 2021.

[17] Bupe, P., Haddad, R. J., Rios, F., (2015). Relief and Emergency Communication

Network Based on an Autonomous Decentralized UAV Clustering Network, IEEE

SoutheastCon 2015.

[18] Ro, A., Oh, J., Dong, L. (2007). Lessons Learned: Application of Small UAV for Urban

Highway Traffic Monitoring, 45th AIAA Aerospace Sciences Meeting, and Exhibit,

Aerospace Sciences Meetings 2007.

[19] “Eyes of the Army” U.S. Army Roadmap for UAS 2010-2035.

https://irp.fas.org/program/collect/uas-army.pdf.

[20] Stewart, S.R., Berg, R., (2019) National hurricane center tropical cyclone report

Hurricane Florence (Al062018) Nat. Hurricane Cent. (2019), p. 9.

[21] Zenmuse H20 Series – unleash the power of one. DJI. (n.d.). Retrieved Sept 2, 2021, from

https://www.dji.com/zenmuse-h20-series.

[22] MATRICE 600 Pro - DJI. DJI Official. (n.d.). Retrieved Sept. 2, 2021, from

https://www.dji.com/matrice600-pro.

[23] MATRICE 300 RTK - DJI. DJI Official. (n.d.). Retrieved Sept. 2, 2021, from

https://www.dji.com/matrice-300.

[24] PHANTOM 4 RTK - DJI. DJI Official. (n.d.). Retrieved Sept. 2, 2021, from

https://www.dji.com/phantom-4-rtk.

[25] Yuneec H520 RTK - YUNEEC Official. (n.d.). Retrieved Sept. 2, 2021, from

https://us.yuneec.com/h520-series/.

[26] Freefly Alta 8 Pro - ALTA Official. (n.d.). Retrieved Sept. 2, 2021, from

https://freeflysystems.com/alta-8.

[27] Mavic 2 Pro - DJI. DJI Official. (n.d.). Retrieved Sept. 2, 2021, from

https://www.dji.com/mavic-2

[28] MATRICE 210 V2 RTK - DJI. DJI Official. (n.d.). Retrieved Sept. 2, 2021, from

https://www.dji.com/matrice-200-series-v2

[29] Mariluz, O. (2019, May 27). Earthquake in Loreto | What roads in the country are

blocked or restricted after the earthquake? RPP. Retrieved Sept. 8, 2021, from https://

45

https://rpp.pe/peru/loreto/terremoto-en-loreto-que-carreteras-del-pais-estan-bloqueadas-o-

con-paso-restringido-tras-el-sismo-noticia-1199255.

[30] Sisson, P. (2020, January 22). How the country's deadliest city for pedestrians plans to

save lives with safer streets. Curbed. Retrieved Sept. 8, 2021, from

https://archive.curbed.com/2020/1/22/21064325/orlando-crash-cycling-pedestrian-traffic-

safety.

[31] Shelton, C. (2021, August 30). Waverly crews rushing to remove debris, Distribute

TARPS ahead of IDA REMNANTS REACHING TN. WZTV. Retrieved Sept. 8, 2021,

from https://fox17.com/news/local/waverly-crews-rushing-to-remove-debris-distribute-

tarps-ahead-of-ida-remnants-reaching-tn.

[32] Telegraph Media Group. (2011, March 18). Japan earthquake: 30 pictures of boats and

ships swept ashore by the tsunami. The Telegraph. Retrieved Sept. 18, 2021, from

https://www.telegraph.co.uk/news/picturegalleries/worldnews/8390718/Japan-

earthquake-30-pictures-of-boats-and-ships-swept-ashore-by-the-

tsunami.html?image=14.

[33] Everton Bailey Jr. | The Oregonian/OregonLive. (2012, November 20). Heavy rain,

winds leave thousands of Oregonians without power. Oregonlive. Retrieved Sept 18,

2021, from https://www.oregonlive.com/pacific-northwest-

news/2012/11/heavy_rain_winds_leave_thousan.html.

[34] Staff, N. B. C. (n.d.). Flooding shuts down Darlington Bridge until Early SAT., closes

SCHOOLS. https://www.nbc15.com. Retrieved Sept. 18, 2021, from

https://www.nbc15.com/content/news/Flooding-closes-Main-Street-bridge-schools-in-

Darlington-562054731.html.

[35] Bocanegra, M. G., and Haddad, R. J., (2021) Convolutional Neural Network-Based

Disaster Assessment Using Unmanned Aerial Vehicles, SoutheastCon 2021, pp. 1-6.

[36] Synced, Synced, About Synced Machine Intelligence | Technology & Industry |

Information & Analysis, Synced, A., Machine Intelligence | Technology & Industry |

Information & Analysis, & Name. (2017, May 9). A guide to receptive field arithmetic

for Convolutional Neural Networks. Synced. Retrieved April 30, 2022, from

https://syncedreview.com/2017/05/11/a-guide-to-receptive-field-arithmetic-for-

convolutional-neural-networks/

[37] S. M. A. Navid, S. H. Priya, N. H. Khandakar, Z. Ferdous and A. B. Haque, "Signature

Verification Using Convolutional Neural Network," 2019 IEEE International Conference

on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON),

2019, pp. 35-39, doi: 10.1109/RAAICON48939.2019.19.

[38] Quantum Transfer Learning. PennyLane. (n.d.). Retrieved April 30, 2022, from

https://pennylane.ai/qml/demos/tutorial_quantum_transfer_learning.html

https://syncedreview.com/2017/05/11/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks/
https://syncedreview.com/2017/05/11/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks/

46

Appendix A: Convolutional Neural Network Training MATLAB

Code (AlexNet)

Retrain.m

function [rslt] = retrain(url1,url2)

%% Load Data

% This allows me to create labels for the

different roads.

allImages = imageDatastore(url1,

'IncludeSubfolders', true,...

 'LabelSource', 'foldernames')

%%

% Split data into training and test sets

[trainingImages, testImages] =

splitEachLabel(allImages, 0.7, 'randomize'); %

was 0.8

%% Load Pretrained Network (transfer learning)

% Load Pre-trained Network (GoogLeNet)

net = alexnet;

%%

answer = questdlg('Would you like to see the

training process?', ...

 'Training Process', ...

 'Yes','No','No');

switch answer

 case 'Yes'

 %% Use analyzeNetwork to display an

interactive visualization of the network

architecture and detailed information about the

network layers.

 analyzeNetwork(net)

 net.Layers(1) % check input layer

 inputSize = net.Layers(1).InputSize;

 %% Replace Final Layers

47

 % The convolutional layers of the

network extract image features that the last

learnable layer and the final classification

 % layer use to classify the input

image. These two layers, 'loss3-classifier' and

'output' in GoogLeNet, contain information

 % on how to combine the features that

the network extracts into class probabilities

 % Extract the layer graph from the

trained network. If the network is a

SeriesNetwork object, such as AlexNet, VGG-16,

or

 % VGG-19, then convert the list of

layers in net.Layers to a layer graph.

 if isa(net,'SeriesNetwork')

 lgraph = layerGraph(net.Layers);

 else

 lgraph = layerGraph(net);

 end

 %% Replace last layers

 % Find the names of the two layers to

replace. You can do this manually or you can

use the supporting function findLayersToReplace

 % to find these layers automatically

 [learnableLayer,classLayer] =

findLayersToReplace(lgraph);

 [learnableLayer,classLayer]

 %% Classes

 % In most networks, the last layer with

learnable weights is a fully connected layer.

Replace this fully connected layer with

 % a new fully connected layer with the

number of outputs equal to the number of

classes in the new data set

48

 numClasses =

numel(categories(trainingImages.Labels));

 if

isa(learnableLayer,'nnet.cnn.layer.FullyConnect

edLayer')

 newLearnableLayer =

fullyConnectedLayer(numClasses, ...

 'Name','new_fc', ...

 'WeightLearnRateFactor',10, ...

 'BiasLearnRateFactor',10);

 elseif

isa(learnableLayer,'nnet.cnn.layer.Convolution2

DLayer')

 newLearnableLayer =

convolution2dLayer(1,numClasses, ...

 'Name','new_conv', ...

 'WeightLearnRateFactor',10, ...

 'BiasLearnRateFactor',10);

 end

 lgraph =

replaceLayer(lgraph,learnableLayer.Name,newLear

nableLayer);

 %% Replace classification layers

 % The classification layer specifies

the output classes of the network. Replace the

classification layer

 % with a new one without class labels.

trainNetwork automatically sets the output

classes of the layer at

 % training time.

 newClassLayer =

classificationLayer('Name','new_classoutput');

49

 lgraph =

replaceLayer(lgraph,classLayer.Name,newClassLay

er);

 %% Check class layer connection

figure('Units','normalized','Position',[0.3 0.3

0.4 0.4]);

 plot(lgraph)

 ylim([0,10])

 %% Extract the layers and connections

of the layer graph and select which layers to

freeze.

 % The new layer graph contains the same

layers, but with the learning rates of the

earlier layers set to zero.

 layers = lgraph.Layers;

 connections = lgraph.Connections;

 layers(1:10) =

freezeWeights(layers(1:10));

 lgraph =

createLgraphUsingConnections(layers,connections

);

 %% Train Network

 % The network requires input images of

size 224-by-224-by-3, but the images in the

image datastore have different

 % sizes. Use an augmented image

datastore to automatically resize the training

images. Specify additional

 % augmentation operations to perform on

the training images: randomly flip the training

images along the

 % vertical axis and randomly translate

them up to 30 pixels and scale them up to 10%

horizontally and vertically.

50

 % Data augmentation helps prevent the

network from overfitting and memorizing the

exact details of the training

 % images.

 pixelRange = [-30 30];

 scaleRange = [0.9 1.1];

 imageAugmenter = imageDataAugmenter(

...

 'RandXReflection',true, ...

 'RandXTranslation',pixelRange, ...

 'RandYTranslation',pixelRange, ...

 'RandXScale',scaleRange, ...

 'RandYScale',scaleRange);

 augimdsTrain =

augmentedImageDatastore(inputSize(1:2),training

Images, ...

 'DataAugmentation',imageAugmenter);

 %% Validation set datastore size

processing

 % To automatically resize the

validation images without performing further

data augmentation,

 % use an augmented image datastore

without specifying any additional preprocessing

operations.

 augimdsValidation =

augmentedImageDatastore(inputSize(1:2),testImag

es);

 %% Specify the training options.

 % Set InitialLearnRate to a small value

to slow down learning in the transferred layers

that

 % are not already frozen. In the

previous step, you increased the learning rate

factors for the

51

 % last learnable layer to speed up

learning in the new final layers. This

combination of learning

 % rate settings results in fast

learning in the new layers, slower learning in

the middle layers,

 % and no learning in the earlier,

frozen layers.

 % Specify the number of epochs to train

for. When performing transfer learning, you do

not need to

 % train for as many epochs. An epoch is

a full training cycle on the entire training

data set.

 % Specify the mini-batch size and

validation data. Compute the validation

accuracy once per epoch.

 % Max Epoch was 6

 miniBatchSize = 10;

 valFrequency =

floor(numel(augimdsTrain.Files)/miniBatchSize);

 options = trainingOptions('sgdm', ...

 'MiniBatchSize',miniBatchSize, ...

 'MaxEpochs',10, ...

 'InitialLearnRate',3e-4, ...

 'Shuffle','every-epoch', ...

 'ValidationData',augimdsValidation,

...

 'ValidationFrequency',valFrequency,

...

 'Verbose',false, ...

 'Plots','training-progress');

 %% Train Network Command

 % Train the network using the training

data. By default, trainNetwork uses a GPU if

one is available

52

 % (requires Parallel Computing Toolbox™

and a CUDA® enabled GPU with compute capability

3.0 or higher).

 % Otherwise, trainNetwork uses a CPU.

You can also specify the execution environment

by using the

 % 'ExecutionEnvironment' name-value

pair argument of trainingOptions. Because the

data set is so small,

 % training is fast.

 net =

trainNetwork(augimdsTrain,lgraph,options);

 %% Classify Validation Images

 % Classify the validation images using

the fine-tuned network, and calculate the

classification accuracy.

 [YPred,probs] =

classify(net,augimdsValidation);

 accuracy = mean(YPred ==

testImages.Labels)

 %% Save the train network to a .mat

file

 cd(url2);

 FileName=['retrain_',datestr(now, 'dd-

mmm-yyyy-HH:MM')]

 save(FileName,'net');

 %% Display Sample Validation Images

 % Display four sample validation images

with predicted labels and the predicted

probabilities of the images

 % having those labels.

 idx =

randperm(numel(testImages.Files),4);

 figure

 for i = 1:4

53

 subplot(2,2,i)

 I = readimage(testImages,idx(i));

 imshow(I)

 label = YPred(idx(i));

 title(string(label) + ", " +

num2str(100*max(probs(idx(i),:)),3) + "%");

 end

 rslt = 'MATLAB Script Finished'

 case 'No'

 %% Use analyzeNetwork to display an

interactive visualization of the network

architecture and detailed information about the

network layers.

% analyzeNetwork(net)

 net.Layers(1) % check input layer

 inputSize = net.Layers(1).InputSize;

 %% Replace Final Layers

 % The convolutional layers of the

network extract image features that the last

learnable layer and the final classification

 % layer use to classify the input

image. These two layers, 'loss3-classifier' and

'output' in GoogLeNet, contain information

 % on how to combine the features that

the network extracts into class probabilities

 % Extract the layer graph from the

trained network. If the network is a

SeriesNetwork object, such as AlexNet, VGG-16,

or

 % VGG-19, then convert the list of

layers in net.Layers to a layer graph.

 if isa(net,'SeriesNetwork')

 lgraph = layerGraph(net.Layers);

 else

 lgraph = layerGraph(net);

54

 end

 %% Replace last layers

 % Find the names of the two layers to

replace. You can do this manually or you can

use the supporting function findLayersToReplace

 % to find these layers automatically

 [learnableLayer,classLayer] =

findLayersToReplace(lgraph);

 [learnableLayer,classLayer]

 %% Classes

 % In most networks, the last layer with

learnable weights is a fully connected layer.

Replace this fully connected layer with

 % a new fully connected layer with the

number of outputs equal to the number of

classes in the new data set

 numClasses =

numel(categories(trainingImages.Labels));

 if

isa(learnableLayer,'nnet.cnn.layer.FullyConnect

edLayer')

 newLearnableLayer =

fullyConnectedLayer(numClasses, ...

 'Name','new_fc', ...

 'WeightLearnRateFactor',10, ...

 'BiasLearnRateFactor',10);

 elseif

isa(learnableLayer,'nnet.cnn.layer.Convolution2

DLayer')

 newLearnableLayer =

convolution2dLayer(1,numClasses, ...

 'Name','new_conv', ...

 'WeightLearnRateFactor',10, ...

 'BiasLearnRateFactor',10);

55

 end

 lgraph =

replaceLayer(lgraph,learnableLayer.Name,newLear

nableLayer);

 %% Replace classification layers

 % The classification layer specifies

the output classes of the network. Replace the

classification layer

 % with a new one without class labels.

trainNetwork automatically sets the output

classes of the layer at

 % training time.

 newClassLayer =

classificationLayer('Name','new_classoutput');

 lgraph =

replaceLayer(lgraph,classLayer.Name,newClassLay

er);

 %% Check class layer connection

%figure('Units','normalized','Position',[0.3

0.3 0.4 0.4]);

 %plot(lgraph)

 %ylim([0,10])

 %% Extract the layers and connections

of the layer graph and select which layers to

freeze.

 % The new layer graph contains the same

layers, but with the learning rates of the

earlier layers set to zero.

 layers = lgraph.Layers;

 connections = lgraph.Connections;

 layers(1:10) =

freezeWeights(layers(1:10));

56

 lgraph =

createLgraphUsingConnections(layers,connections

);

 %% Train Network

 % The network requires input images of

size 224-by-224-by-3, but the images in the

image datastore have different

 % sizes. Use an augmented image

datastore to automatically resize the training

images. Specify additional

 % augmentation operations to perform on

the training images: randomly flip the training

images along the

 % vertical axis and randomly translate

them up to 30 pixels and scale them up to 10%

horizontally and vertically.

 % Data augmentation helps prevent the

network from overfitting and memorizing the

exact details of the training

 % images.

 pixelRange = [-30 30];

 scaleRange = [0.9 1.1];

 imageAugmenter = imageDataAugmenter(

...

 'RandXReflection',true, ...

 'RandXTranslation',pixelRange, ...

 'RandYTranslation',pixelRange, ...

 'RandXScale',scaleRange, ...

 'RandYScale',scaleRange);

 augimdsTrain =

augmentedImageDatastore(inputSize(1:2),training

Images, ...

 'DataAugmentation',imageAugmenter);

 %% Validation set datastore size

processing

57

 % To automatically resize the

validation images without performing further

data augmentation,

 % use an augmented image datastore

without specifying any additional preprocessing

operations.

 augimdsValidation =

augmentedImageDatastore(inputSize(1:2),testImag

es);

 %% Specify the training options.

 % Set InitialLearnRate to a small value

to slow down learning in the transferred layers

that

 % are not already frozen. In the

previous step, you increased the learning rate

factors for the

 % last learnable layer to speed up

learning in the new final layers. This

combination of learning

 % rate settings results in fast

learning in the new layers, slower learning in

the middle layers,

 % and no learning in the earlier,

frozen layers.

 % Specify the number of epochs to train

for. When performing transfer learning, you do

not need to

 % train for as many epochs. An epoch is

a full training cycle on the entire training

data set.

 % Specify the mini-batch size and

validation data. Compute the validation

accuracy once per epoch.

 % Max Epoch was 6

 miniBatchSize = 10;

58

 valFrequency =

floor(numel(augimdsTrain.Files)/miniBatchSize);

 options = trainingOptions('sgdm', ...

 'MiniBatchSize',miniBatchSize, ...

 'MaxEpochs',10, ...

 'InitialLearnRate',3e-4, ...

 'Shuffle','every-epoch', ...

 'ValidationData',augimdsValidation,

...

 'ValidationFrequency',valFrequency,

...

 'Verbose',false, ...

 'Plots','none');

 %% Train Network Command

 % Train the network using the training

data. By default, trainNetwork uses a GPU if

one is available

 % (requires Parallel Computing Toolbox™

and a CUDA® enabled GPU with compute capability

3.0 or higher).

 % Otherwise, trainNetwork uses a CPU.

You can also specify the execution environment

by using the

 % 'ExecutionEnvironment' name-value

pair argument of trainingOptions. Because the

data set is so small,

 % training is fast.

 net =

trainNetwork(augimdsTrain,lgraph,options);

 %% Classify Validation Images

 % Classify the validation images using

the fine-tuned network, and calculate the

classification accuracy.

 [YPred,probs] =

classify(net,augimdsValidation);

59

 accuracy = mean(YPred ==

testImages.Labels)

 %% Save the train network to a .mat

file

 cd(url2);

 FileName=['retrain_',datestr(now, 'dd-

mmm-yyyy-HH:MM')]

 save(FileName,'net');

 rslt = 'MATLAB Script Finished'

end

end

60

Appendix B: Convolutional Neural Network Testing MATLAB Code

(AlexNet)

TestAI_AlexNet.m

% Load Training Images

% In order for imageDataStore to parse the

folder names as category labels,

% you would have to store image categories in

corresponding sub-folders.

allImages = imageDatastore('TrainingData2',

'IncludeSubfolders', true,...

 'LabelSource', 'foldernames');

% Split data into training and test sets

[trainingImages, testImages] =

splitEachLabel(allImages, 0.7, 'randomize');

%%

% Load Trained AI

load('disasterReliefAI_AlexNet.mat');

%%

% Test Network Performance

% test the performance of our new "snack

recognizer" on the test set.

testImages.ReadFcn = @readFunctionTrain2;

predictedLabels = classify(net, testImages);

accuracy = mean(predictedLabels ==

testImages.Labels)

% convert categorical labels to cell arrays so

that they can be displayed

% in title

displayPredicted = cellstr(predictedLabels);

displayActual = cellstr(testImages.Labels);

% strcat concatenates strings so that the

titles do not have to be typed

61

% manually. See Matlab Documentation for more

information

% dislay the Results in a single Figure Window.

figure(1)

for i = 1:(length(displayActual)) %% take off

/5 for smaller dataset

 subplot(ceil(length(displayActual)/80), 2,

i) %% was 3

 imshow(testImages.Files{i})

 title(strcat("predicted label: ",

displayPredicted{i}, " | Actual Label: ",...

 displayActual{i}))

end

62

Appendix C: Geolocation Data Retrieving MATLAB Code

Get_geotags.m

function [f] = getGeoTags(url,

pdest,displayPredicted, k)

%% Read how many files in a folder

% cd to inside the file where the images are

cd(url);

files = dir('*.jpg') ;

number = length(files); % how many files in the

folder

% [m,n] = size(files); %% get number of images

in the dir

%% Establish an data extracted array and loop

for each file

% T(1,:) = {'Name','Date-

Time','Latitude','Longitude'}; **issue with

cell

% to table T1,T2,T3,T4

for i = 1:number

 disp(files(i).name); % displays image/file

name

 imgName = files(i).name; % variable to

store image name

 info = imfinfo(imgName); % retrieves all

info of the images

 info.GPSInfo; % retrieves the GPS info from

the images

 latitude = info.GPSInfo.GPSLatitude; %

array of 3 float numbers

 longitude = info.GPSInfo.GPSLongitude; %

array of 3 float numbers

63

 Final_lat = latitude(1) + latitude(2)/60 +

latitude(3)/3600; % provides numerical value

for latitude

 Final_long = longitude(1) + longitude(2)/60

+ longitude(3)/3600; % provides numerical value

for longitude

 if info.GPSInfo.GPSLatitudeRef == 'S' %

makes the Final_lat negative if the picture is

located in the South

 Final_lat = Final_lat * (-1);

 end

 if info.GPSInfo.GPSLongitudeRef == 'W' %

makes the Final_long negative if the picture is

located in the West

 Final_long = Final_long * (-1);

 end

 %imgDate = info.DateTime;

 %fprintf('latitude = %f longitude =

%f\n', Final_lat, Final_long);

 %add if you want to showcase the latitudes

and longitudes

 T(i,:) = {imgName, Final_lat, Final_long,

displayPredicted{i}, k{i}}; %T(i,:) = {imgName,

imgDate, Final_lat, Final_long}; % i+1 when

line eight executed

end

x = cell2table(T;

%% Gives the date and time of the creation of

the file and attaches it to the file name

Filename = sprintf('GDOT-location_%s.xlsx',

datestr(now,'mm_dd_yyyy_HH_MM'));

%% Save the file in google drive folder you

want

cd(pdest);

writetable(x,sprintf('%s.csv',Filename)); %%

creates csv file in the location of the google

drive

64

zip(sprintf('location_%s',

datestr(now,'mm_dd_yyyy_HH_MM')),'*.jpg', url);

%'C:\Users\User\Documents\COLLEGE

CLASSES\Research\UAV\TestImageOutput');

% zip(sprintf('newtry'),'*.jpg', url); % just

for newtry

x.Properties.VariableNames = {'Image Name'

'Latitude' 'Longitude', 'Classifiation',

'Path'};%x.Properties.VariableNames = {'Image

Name' 'Date and Time' 'Latitude' 'Longitude'};

f = x;

end

65

Appendix D: K-Fold Cross-Validation Dataset Segmentation

MATLAB Code

NeuralNet_CrossVal.m

% Copyright 2017 The MathWorks, Inc.

% Deep Learning: Transfer Learning in 10 Lines

of MATLAB Code

% Transfer learning is a very practical way to

use deep learning by

% modifying an existing deep network(usually

trained by an expert) to work

% with your data.

% Problem statement

% The problem we tried to solve with transfer

learning is to distinguish

% between 5 categories of food - cupcakes,

burgers, apple pie, hot dogs and

% ice cream. To get started you need two

things:

%

% # Training images of the different object

classes

% # A pre-trained deep neural network (AlexNet)

% You can substitute these categories for any

of your own based on what

% image data you have avaliable.

% Load Training Images

% In order for imageDataStore to parse the

folder names as category labels,

% you would have to store image categories in

corresponding sub-folders.

cd('C:\Users\User\Documents\COLLEGE

CLASSES\Research\UAV\Code');

allImages = imageDatastore('TrainingData2',

'IncludeSubfolders', true,...

66

 'LabelSource', 'foldernames');

%% Cross Validation Datastores for Blocked

Roads

[datastore_BLK1, datastoreDummy75] =

splitEachLabel(allImages, 0.25, 'Include',

'Blocked Road');

[datastore_BLK2, datastoreDummy50] =

splitEachLabel(datastoreDummy75, 0.335,

'Include', 'Blocked Road');

[datastore_BLK3, datastore_BLK4] =

splitEachLabel(datastoreDummy50, 0.5,

'Include', 'Blocked Road');

blk_arr = {datastore_BLK1 datastore_BLK2

datastore_BLK3 datastore_BLK4};

%% Cross Validation Datastores for Flooded

Roads

[datastore_FL1, datastoreDummy75] =

splitEachLabel(allImages, 0.25, 'Include',

'Flooded Road');

[datastore_FL2, datastoreDummy50] =

splitEachLabel(datastoreDummy75, 0.335,

'Include', 'Flooded Road');

[datastore_FL3, datastore_FL4] =

splitEachLabel(datastoreDummy50, 0.5,

'Include', 'Flooded Road');

fl_arr = {datastore_FL1 datastore_FL2

datastore_FL3 datastore_FL4};

%% Cross Validation Datastores for Clear Roads

[datastore_Clear1, datastoreDummy75] =

splitEachLabel(allImages, 0.25, 'Include',

'Clear Road');

[datastore_Clear2, datastoreDummy50] =

splitEachLabel(datastoreDummy75, 0.335,

'Include', 'Clear Road');

[datastore_Clear3, datastore_Clear4] =

splitEachLabel(datastoreDummy50, 0.5,

'Include', 'Clear Road');

67

cl_arr = {datastore_Clear1 datastore_Clear2

datastore_Clear3 datastore_Clear4};

%% Cross Validation Datastores for Power Line

Roads

[datastore_PLR1, datastoreDummy75] =

splitEachLabel(allImages, 0.25, 'Include',

'Power Lines');

[datastore_PLR2, datastoreDummy50] =

splitEachLabel(datastoreDummy75, 0.335,

'Include', 'Power Lines');

[datastore_PLR3, datastore_PLR4] =

splitEachLabel(datastoreDummy50, 0.5,

'Include', 'Power Lines');

plr_arr = {datastore_PLR1 datastore_PLR2

datastore_PLR3 datastore_PLR4};

%% Cross Validation Datastores for Damaged

Roads

[datastore_DR1, datastoreDummy75] =

splitEachLabel(allImages, 0.25, 'Include',

'Damaged Road');

[datastore_DR2, datastoreDummy50] =

splitEachLabel(datastoreDummy75, 0.335,

'Include', 'Damaged Road');

[datastore_DR3, datastore_DR4] =

splitEachLabel(datastoreDummy50, 0.5,

'Include', 'Damaged Road');

dr_arr = {datastore_DR1 datastore_DR2

datastore_DR3 datastore_DR4};

%% Cross Validation Datastores for Boat Roads

[datastore_BR1, datastoreDummy75] =

splitEachLabel(allImages, 0.25, 'Include',

'Boat Road');

[datastore_BR2, datastoreDummy50] =

splitEachLabel(datastoreDummy75, 0.335,

'Include', 'Boat Road');

[datastore_BR3, datastore_BR4] =

splitEachLabel(datastoreDummy50, 0.5,

'Include', 'Boat Road');

68

br_arr = {datastore_BR1 datastore_BR2

datastore_BR3 datastore_BR4};

%% Split Data

for i = 1:1:4 %% for loop chooses the 'i' batch

of test images from each Label

 testImages =

imageDatastore(cat(1,blk_arr{i}.Files,

plr_arr{i}.Files, dr_arr{i}.Files,

br_arr{i}.Files, cl_arr{i}.Files,

fl_arr{i}.Files));

 testImages.Labels =

cat(1,blk_arr{i}.Labels, plr_arr{i}.Labels,

dr_arr{i}.Labels, br_arr{i}.Labels,

cl_arr{i}.Labels, fl_arr{i}.Labels);

 x = 1; % dummy variable to create a

training images datastore cell based on the

batches not used in each label

 ti_arr = {}; % unused images in each label

cell (stores 3 datastores)

 for j = 1:1:4 % for loop to grab the

batches that are not the test images

 if j ~= i % makes sure we do not

include the test images

 ti_arr{x} =

imageDatastore(cat(1,blk_arr{j}.Files,

plr_arr{j}.Files, dr_arr{j}.Files,

br_arr{j}.Files, cl_arr{j}.Files,

fl_arr{j}.Files));

 ti_arr{x}.Labels =

cat(1,blk_arr{j}.Labels, plr_arr{j}.Labels,

dr_arr{j}.Labels, br_arr{j}.Labels,

cl_arr{j}.Labels, fl_arr{j}.Labels);

 x = x+1;

 end

 end

 % joins the 3 unused image batches as a

datastore

69

 trainingImages = imageDatastore(cat(1,

ti_arr{1}.Files, ti_arr{2}.Files,

ti_arr{3}.Files));

 trainingImages.Labels = cat(1,

ti_arr{1}.Labels, ti_arr{2}.Labels,

ti_arr{3}.Labels);

 %% End for now

 % Load Pre-trained Network (AlexNet)

 % AlexNet is a pre-trained network trained

on 1000 object categories.

 % AlexNet is avaliable as a support package

on FileExchange.

 alex = alexnet;

 % Review Network Architecture

 layers = alex.Layers

 % Modify Pre-trained Network

 % AlexNet was trained to recognize 1000

classes, we need to modify it to

 % recognize just 5 classes.

 layers(23) = fullyConnectedLayer(6); %

change this based on # of classes

 layers(25) = classificationLayer

 % Perform Transfer Learning

 % For transfer learning we want to change

the weights of the network ever so slightly.

How

 % much a network is changed during training

is controlled by the learning

 % rates.

 opts = trainingOptions('sgdm',

'InitialLearnRate', 0.0001,...

 'MaxEpochs', 15, 'MiniBatchSize', 32);

 % learning rate 0.001

 % mini batch size 64

70

 % Set custom read function

 % One of the great things about

imageDataStore it lets you specify a

 % "custom" read function, in this case it

is simply resizing the input

 % images to 227x227 pixels which is what

AlexNet expects. You can do this by

 % specifying a function handle of a

function with code to read and

 % pre-process the image.

 trainingImages.ReadFcn =

@readFunctionTrain3;

 % Train the Network

 % This process usually takes about 5-20

minutes on a desktop GPU.

 myNet = trainNetwork(trainingImages,

layers, opts);

 % Test Network Performance

 % Now let's the test the performance on the

test set.

 testImages.ReadFcn = @readFunctionTrain3;

 predictedLabels = classify(myNet,

testImages);

 accuracy = mean(predictedLabels ==

testImages.Labels)

 % Save the Trained AI to a .mat file

save(sprintf('AlexNetdisasterReliefAI_%d',i),'m

yNet');

%plotconfusion(testImages.Labels,predictedLabel

s)

end

71

Appendix E: Image Resizing for Neural Network Training MATLAB

CODE

readFunctionTrain2.m

% This function simply resizes the images to

fit in AlexNet

% Copyright 2017 The MathWorks, Inc.

function I = readFunctionTrain2(filename)

% Resize the images to the size required by the

network.

I = imread(filename);

I = imresize(I, [224 224]);

end

72

Appendix F: Graphical User Interface Python Code

GUI_1.py

from GPSPhoto import gpsphoto

import pyperclip as pycl

import sys

import arcgis

import webbrowser

import json

import matlab

import matlab.engine

import os

import cv2

import pandas as pd

from datetime import datetime

from arcgis.gis import GIS

from arcgis.features import FeatureLayerCollection

from arcgis.mapping import WebMap, WebScene

from PyQt5.QtWidgets import *

from PyQt5.QtGui import QPixmap

from PyQt5 import QtGui, QtCore

from PyQt5.QtGui import QCursor

from PyQt5.QtCore import QDir

from tkinter import Tk # from tkinter import Tk for

Python 3.x

from tkinter.filedialog import *

from os import path

from pathlib import Path

import youtube_dl

from googleapiclient.discovery import build

widgets = {

 "listWidget": [],

 "logo": [],

 "button": [],

 "question": [],

 "Return": [],

 "Classify Data": [],

 "View ArcGIS Data": [],

 "uname": [],

 "psw": [],

 "the_list": [],

 "All Content": [],

73

 "Search by Keyword": [],

 "Search by Title": [],

 "Select Data to Classify": [],

 "Open a Map with ItemID": [],

 "Create New Map":[],

 "Append Data to a Map":[],

 "Log out":[],

 "Overwrite a Map": [],

 "Copy ItemID": [],

 "Download and Sample Video":[],

 "Change Selected Map": [],

 "Download": [],

 "Use Previous Classified Data to Modify Maps": [],

 "Retrain Network": []

 }

app = QApplication(sys.argv)

window = QWidget() #window widget

window.setWindowTitle("Georgia Department of Transportation

Damage Assessment App")

window.setFixedWidth(1000)

#window.move(2700, 200)

window.setStyleSheet("background-color: black;")

grid = QGridLayout()

global my_contt

################## Threads ###########################

import threading

from threading import Thread

from time import sleep

################# END THREADS ########################

def connectMatlab(url1, url2):

 try:

 eng = matlab.engine.start_matlab()

 x = eng.kk(url1, url2)

 print(x)

 sleep(1)

 showDialog("Successful Classification.")

 except:

74

 showDialog("Unsuccessful Classification. Try

again.")

 #sys.exit() # kill thread once function is done to

preserve computational power

def connectMatlab2(url1,url2):

 try:

 eng = matlab.engine.start_matlab()

 x = eng.retrain(url1,url2)

 print(x)

 sleep(1)

 showDialog("Successful Network Retraining.")

 except:

 showDialog("Unsucessfult Network Retraining. Try

again.")

 #sys.exit() # kill thread once function is done to

preserve computational power

def retrainChooseD():

 rfolder = QFileDialog.getExistingDirectory(window,

"Select Data To Retrain Network")

 sfolder = QFileDialog.getExistingDirectory(window,

"Select Where To Save Retrained Network")

 print(rfolder)

 print(sfolder)

 if (rfolder):

 if(sfolder):

 try:

 t = threading.Thread(target =

connectMatlab2, args =(rfolder))

 t.start()

 show_frame3("Retraining in Progress",

show_frame5, "Return")

 except:

 show_frame3("Unsuccessful Network

Retraining. Try again.", show_frame5, "Return")

 else:

75

 show_frame3("Unsuccessful Network Retraining. Try

again.", show_frame5, "Return")

def chooseData():

 global folder

 global folder2

 #Tk().withdraw() # we don't want a full GUI, so keep

the root window from appearing

 folder = QFileDialog.getExistingDirectory(window,

"Select Data To Classify")

 print(folder)

 # Request for directory where to save images

 folder2 = QFileDialog.getExistingDirectory(window,

"Select Directory To Save Images")

 print(folder2)

 # Matlab Addition to run script / with data input

argument -- run classification

 if (folder):

 if (folder2):

 try:

 ### AQUIIIII

 t = threading.Thread(target =

connectMatlab, args =(folder,folder2))

 t.start()

 # while(t.is_alive() == True):

 # show_frame3("Classification in

Process", useless, "Wait")

 show_frame3("Classification in Progress",

show_frame5, "Return")

 except:

 show_frame3("Unsuccessful Classification.

Try again.", show_frame5, "Return")

 else:

 show_frame3("Unsuccessful Classification. Try

again.", show_frame5, "Return")

def useless():

 mj = 100010000

def showDialog(c):

 msgBox = QMessageBox()

 msgBox.setIcon(QMessageBox.Information)

 msgBox.setText(c)

76

 msgBox.setWindowTitle("Process Result")

 msgBox.setStandardButtons(QMessageBox.Ok)

 ret = msgBox.exec()

def chooseData2():

 global folder3

 global folder4

 #Tk().withdraw() # we don't want a full GUI, so keep

the root window from appearing

 folder3 = QFileDialog.getExistingDirectory(window,

"Select Data To Classify")

 print(folder3)

 # Request for directory where to save images

 folder4 = QFileDialog.getExistingDirectory(window,

"Select Directory To Save Images")

 print(folder4)

 # Matlab Addition to run script / with data input

argument -- run classification

 if (folder3):

 if (folder4):

 try:

 t = threading.Thread(target =

connectMatlab, args =(folder3,folder4))

 t.start()

 # while(t.is_alive() == True):

 # show_frame3("Classification in

Process", useless, "Wait")

 show_frame3("Classification in progress.

Please wait until it is finished.", show_frame7, "Next")

 except:

 show_frame3("Unsuccessful Classification.

Try again.", show_frame5, "Return")

 else:

 show_frame3("Unsuccessful Classification. Try

again.", show_frame5, "Return")

def chooseData3():

 global fname

 fname = QFileDialog.getOpenFileName(window, 'Choose CSV

File')

 print(fname)

 createFLayer(fname[0])

77

def chooseData4(wb_id):

 global fname

 fname = QFileDialog.getOpenFileName(window, 'Choose CSV

File')

 print(fname)

 try:

 t = threading.Thread(target = createFLayer2, args

=(fname[0], wb_id))

 t.start()

 # while(t.is_alive() == True):

 # show_frame3("Classification in Process",

useless, "Wait")

 show_frame3("Webmap Creation in progress. Please

wait until it is finished.", show_frame7, "Next")

 except:

 how_frame3("Unsuccessful Webmap Creation. Try

again.", show_frame5, "Return")

def chooseData5(wb_id):

 global fname

 fname = QFileDialog.getOpenFileName(window, 'Choose CSV

File')

 print(fname)

 try:

 t = threading.Thread(target = createFLayer3, args

=(fname[0], wb_id))

 t.start()

 # while(t.is_alive() == True):

 # show_frame3("Classification in Process",

useless, "Wait")

 show_frame3("Webmap Creation in progress. Please

wait until it is finished.", show_frame7, "Next")

 except:

 how_frame3("Unsuccessful Webmap Creation. Try

again.", show_frame5, "Return")

def mapData(x):

 global my_contt

 my_contt = gis.content.search(query="owner:" +

gis.users.me.username, item_type="Web Map")

 show_frame6(my_contt, x)

def my_title(title, x):

78

 global my_contt

 my_contt = gis.content.search(query="title:%s" %title,

item_type="Web Map")

 show_frame6(my_contt, x)

def my_keyword(keyword, x):

 global my_contt

 my_contt = gis.content.search(query="title:%s*"

%keyword, item_type="Web Map")

 show_frame6(my_contt, x)

def key_dial(x):

 text, ok = QInputDialog.getText(None, 'Keyword Search',

'Keyword')

 if ok == True:

 my_keyword(text, x)

 print(text)

def title_dial(x):

 text, ok = QInputDialog.getText(None, 'Title Search',

'Title')

 if ok == True:

 my_title(text, x)

 print(text)

def theDial():

 text, ok = QInputDialog.getText(None, 'Name',

'Username')

 text2, ok2 = QInputDialog.getText(None, 'Password',

'Password', QLineEdit.Password)

 if ok and ok2 == True:

 loginHandler(text, text2)

 else:

 clear_widgets()

 frame3()

def copyMyID(x):

 y = listWidget.currentRow()

 if x == 1:

 pycl.copy(my_contt[y].id)

 elif x == 2:

 chooseData4(my_contt[y].id)

79

 else:

 chooseData5(my_contt[y].id)

def copyMyID2(x):

 y = listWidget2.currentRow()

 show_frame11(x[y])

def MapIdEnter():

 text, ok = QInputDialog.getText(None, 'Map ID',

'ItemID')

 if ok == True:

 gis = GIS('https://www.arcgis.com', username,

password)

 #

https://mg07926.maps.arcgis.com/apps/mapviewer/index.html?w

ebmap=783a11500212434992e97b1e48e8e7f5#

webbrowser.open("https://"+username+".maps.arcgis.com/apps/

mapviewer/index.html?webmap="+text)

def dwld(text, play_id):

 now = os.getcwd()

 y = listWidget3.currentRow()

 # Request for directory where to save images

 new = QFileDialog.getExistingDirectory(window, "Select

Directory To Save Video")

 print(new)

 os.chdir(new)

 ydl_opts = {}

 with youtube_dl.YoutubeDL(ydl_opts) as ydl:

 ydl.download([text[y].strip()])

 print('done')

 os.chdir(now)

 show_frame3("Successful Download", lambda:

show_frame11(play_id), "Return")

def fetch(itemId):

 gis = GIS('https://mg07926.maps.arcgis.com', 'mg07926',

'Familia2016!') #username, password)

def get_pl():

 api_key = 'AIzaSyAgmPBCu4iUVg5t3vdQZCHSsCwu1AH0124'

 channel_id = 'UCCKprTOrntmBOhPr_boGxYw'

80

 # api_key =

os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="/path/to/file

.json"

 youtube = build('youtube', 'v3', developerKey=api_key)

 request = youtube.channels().list(

 part='statistics',

 id = channel_id

)

 response = request.execute()

 print(response)

 ####################################### PLAYLISTS

 youtube = build("youtube", "v3", developerKey =

api_key)

 request = youtube.playlists().list(

 part = "snippet",

 channelId = channel_id,

 maxResults = 150

)

 response = request.execute()

 playlists = []

 playlists_id = []

 playlists_name = []

 playlists_snippet = []

 while request is not None:

 response = request.execute()

 playlists += response["items"]

 a_key = 'id'

 b_key = 'snippet'

 c_key = 'title'

 playlists_id = [a_dict[a_key] for a_dict in

playlists]

 playlists_snippet = [b_dict[b_key] for b_dict in

playlists]

 playlists_name = [c_dict[c_key] for c_dict in

playlists_snippet]

 request = youtube.playlists().list_next(request,

response)

 print(f"total: {len(playlists)}")

 print(playlists_id)

81

 print(playlists_name)

 return playlists_id, playlists_name

def get_pl2():

 api_key = 'AIzaSyAgmPBCu4iUVg5t3vdQZCHSsCwu1AH0124'

 channel_id = 'UCCKprTOrntmBOhPr_boGxYw'

 # api_key =

os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="/path/to/file

.json"

 youtube = build('youtube', 'v3', developerKey=api_key)

 request = youtube.channels().list(

 part='statistics',

 id = channel_id

)

 response = request.execute()

 print(response)

 ####################################### PLAYLISTS

 youtube = build("youtube", "v3", developerKey =

api_key)

 request = youtube.playlists().list(

 part = "snippet",

 channelId = channel_id,

 maxResults = 150

)

 response = request.execute()

 playlists = []

 playlists_id = []

 playlists_name = []

 playlists_snippet = []

 while request is not None:

 response = request.execute()

 playlists += response["items"]

 a_key = 'id'

 b_key = 'snippet'

 c_key = 'title'

 playlists_id = [a_dict[a_key] for a_dict in

playlists]

 playlists_snippet = [b_dict[b_key] for b_dict in

playlists]

82

 playlists_name = [c_dict[c_key] for c_dict in

playlists_snippet]

 request = youtube.playlists().list_next(request,

response)

 print(f"total: {len(playlists)}")

 print(playlists_id)

 print(playlists_name)

 return playlists_id, playlists_name

def loginHandler(user, psw):

 # Log In ArcGIS

 try:

 global username

 global password

 username = user

 password = psw

 global gis

 gis = GIS('https://www.arcgis.com', username,

password)

 print(3)

 un = gis.properties.user.username

 print('Logged in as: {}'.format(un))

 show_frame2()

 except:

 show_frame3("Unable to login. Try again.",

show_frame1, "Return")

 print('why')

def smpl2():

 srt = QFileDialog.getOpenFileName(window, 'Choose SRT

File')

 outfile = open(srt[0],"r")

 data = outfile.readlines()

 gps_line = []

 for line in data:

 if 'latitude' in line:

 gps_line.append(line)

 latitude = []

 longitude = []

83

 for i in range(len(gps_line)):

 words = gps_line[i].split()

 latitude.append(words[23][:-1])

 longitude.append(words[26][:-1])

 time_f = []

 for line2 in data:

 if '-->' in line2:

 time_f.append(line2)

 final_t = []

 for i in range(len(time_f)):

 timing = time_f[i].split()

 final_t.append(timing[2])

 # Opens the Video file

 vid = QFileDialog.getOpenFileName(window, 'Choose Video

File')

 new = QFileDialog.getExistingDirectory(window, "Select

Directory To Save Frames")

 cap= cv2.VideoCapture(vid[0])

 i=0

 while(cap.isOpened()):

 ret, frame = cap.read()

 if ret == False:

 break

 if i % 1800 == 0: # this is the line I added to

make it only save one frame every 1800 frames = 30 fps of

the camera/ 1 frame every min

 cv2.imwrite(new + '/kang'+str(i)+'.jpg',frame)

 f2 = new + '/kang'+str(i)+'.jpg'

 photo = gpsphoto.GPSPhoto(f2)

 info = gpsphoto.GPSInfo((float(latitude[i]),

float(longitude[i])))

 photo.modGPSData(info, new +

'/kang'+str(i)+'.jpg')

 i+=1

 cap.release()

 cv2.destroyAllWindows()

 show_frame3("Successful Sampling", lambda:

show_frame2(), "Return")

84

def createFLayer(csv_Pfile): # need file path + name

 # Log In ArcGIS

 gis = GIS('https://www.arcgis.com', username, password)

 csv_df = pd.read_csv(csv_Pfile)

 csv_df = csv_df.rename(columns={'T1':'name', 'T2':

'Latitude', 'T3': 'Longitude', 'T4':

 'Classification', 'T5':

'Original Image Path'}, errors = "raise")

 # import as feature

 csv_featcol = gis.content.import_data(csv_df,

location_type = 'coordinates', latitude_field = 'Latitude',

 longitude_field =

'Longitude')

 # import json and convert the feature collection to a

JSON and

 # add it as a text based item to the GIS. The feature

collection

 # properties provides the layer definition and feature

set for a layer

 csv_featcol_dict = dict(csv_featcol.properties)

 csv_json = json.dumps({"featureCollection": {"layers":

[csv_featcol_dict]}})

 # add the featcol

 csv_item_properties = {'title': 'Feature Collection

Layer Trial 1 '+str(datetime.now()),

 'description':'Example demonstrating conversion of

pandas for GDOT Project' + \

 'dataframe object to a GIS item',

 'tags': 'arcgis python api, pandas, csv',

 'text':csv_json,

 'type':'Feature Collection'}

 csv_item = gis.content.add(csv_item_properties)

 butts = csv_item.publish()

 createWebMap(butts.id)

def createFLayer2(csv_Pfile, webmap_ID):

 # Log In ArcGIS

 gis = GIS('https://www.arcgis.com', username, password)

85

 csv_df = pd.read_csv(csv_Pfile)

 csv_df = csv_df.rename(columns={'T1':'name', 'T2':

'Latitude', 'T3': 'Longitude'}, errors = "raise")

 # import as feature

 csv_featcol = gis.content.import_data(csv_df,

location_type = 'coordinates', latitude_field = 'Latitude',

 longitude_field =

'Longitude')

 # import json and convert the feature collection to a

JSON and

 # add it as a text based item to the GIS. The feature

collection

 # properties provides the layer definition and feature

set for a layer

 csv_featcol_dict = dict(csv_featcol.properties)

 csv_json = json.dumps({"featureCollection": {"layers":

[csv_featcol_dict]}})

 # add the featcol

 csv_item_properties = {'title': 'Feature Collection

Layer Trial 1 '+str(datetime.now()),

 'description':'Example demonstrating conversion of

pandas for GDOT Project' + \

 'dataframe object to a GIS item',

 'tags': 'arcgis python api, pandas, csv',

 'text':csv_json,

 'type':'Feature Collection'}

 csv_item = gis.content.add(csv_item_properties)

 butts = csv_item.publish()

 wm_item = gis.content.get(webmap_ID)

 # create a WebMap object from the existing web map item

 wm = WebMap(wm_item)

 csv_layer = gis.content.get(''+str(butts.id))

 wm.add_layer(csv_layer,

options={'title':'CSV_Layer'+str(datetime.now())})

 # Publish the web map as an item to the portal

 web_map_properties = {'title':''+wm_item.title+' New

Data Appended',

86

 'snippet':'This map service is

for GDOT GUI',

 'tags':'ArcGIS Python API'}

 # Call the save() with web map item's properties.

 wm.save(item_properties=web_map_properties)

 # showDialog('Webmap Created.')

def createFLayer3(csv_Pfile, webmap_ID):

 # Log In ArcGIS

 gis = GIS('https://www.arcgis.com', username, password)

 csv_df = pd.read_csv(csv_Pfile)

 csv_df = csv_df.rename(columns={'T1':'name', 'T2':

'Latitude', 'T3': 'Longitude'}, errors = "raise")

 # import as feature

 csv_featcol = gis.content.import_data(csv_df,

location_type = 'coordinates', latitude_field = 'Latitude',

 longitude_field =

'Longitude')

 # import json and convert the feature collection to a

JSON and

 # add it as a text based item to the GIS. The feature

collection

 # properties provides the layer definition and feature

set for a layer

 csv_featcol_dict = dict(csv_featcol.properties)

 csv_json = json.dumps({"featureCollection": {"layers":

[csv_featcol_dict]}})

 # add the featcol

 csv_item_properties = {'title': 'Feature Collection

Layer Trial 1 '+str(datetime.now()),

 'description':'Example demonstrating conversion of

pandas for GDOT Project' + \

 'dataframe object to a GIS item',

 'tags': 'arcgis python api, pandas, csv',

 'text':csv_json,

 'type':'Feature Collection'}

 csv_item = gis.content.add(csv_item_properties)

87

 butts = csv_item.publish()

 wm_item = gis.content.get(webmap_ID)

 # create a WebMap object from the existing web map item

 wm = WebMap(wm_item)

 csv_layer = gis.content.get(''+str(butts.id))

 wm.remove_layer(wm.layers[0])

 wm.add_layer(csv_layer,

options={'title':'CSV_Layer'+str(datetime.now())})

 # Publish the web map as an item to the portal

 web_map_properties = {'title':''+wm_item.title+' Data

Overwritten',

 'snippet':'This map service is

for GDOT GUI',

 'tags':'ArcGIS Python API'}

 # Call the save() with web map item's properties.

 wm.save(item_properties=web_map_properties)

 # showDialog('Webmap Created.')

def createWebMap(csv_item_id):

 # Log In ArcGIS

 gis = GIS('https://www.arcgis.com', username, password)

 # Create an empty web map with a default basemap

 wm = WebMap()

 # Look for map street base layer

 search_result = gis.content.search("title:Street AND

owner:esri",

 item_type = "Map

Service", outside_org = True)

 # Choose first result (the one we are using) / apply it

to our base webmap "wm"

 street_layer = search_result[0]

 for lyr in street_layer.layers:

 wm.add_layer(lyr)

 csv_layer = gis.content.get(''+str(csv_item_id))

 wm.add_layer(csv_layer,

options={'title':'CSV_Layer'+str(datetime.now())})

 # Publish the web map as an item to the portal

 web_map_properties = {'title':'New Webmap: Street Layer

for GDOT GUI '+str(datetime.now()),

88

 'snippet':'This map service is

for GDOT GUI',

 'tags':'ArcGIS Python API'}

 # Call the save() with web map item's properties.

 wm.save(item_properties=web_map_properties)

 show_frame3('Web Map Created', show_frame7, "Return")

def overwrite_gis(itemId):

 gis = GIS('https://mg07926.maps.arcgis.com', username,

password)

 try:

 dataitem = gis.content.get(itemId)

 flayercol =

FeatureLayerCollection.fromitem(dataitem)

 #flayercol.manager.overwrite(newname) # name of the

file uploaded

 #flayercol.manager.overwrite(newname)

 except Exception as error:

 print(error)

def show_frame1():

 clear_widgets()

 frame1()

def show_frame2():

 clear_widgets()

 frame2()

def show_frame3(Question, showFrame, Action):

 clear_widgets()

 frame3(Question, showFrame, Action)

def show_frame4(x):

 clear_widgets()

 frame4(x)

def show_frame5():

 clear_widgets()

 frame5()

def show_frame6(my_contt, x):

 clear_widgets()

 frame6(my_contt, x)

def show_frame7():

89

 clear_widgets()

 frame7()

def show_frame8():

 clear_widgets()

 frame8()

def show_frame9():

 clear_widgets()

 frame9()

def show_frame10():

 clear_widgets()

 frame10()

def show_frame11(x):

 clear_widgets()

 frame11(x)

def clear_widgets():

 for widget in widgets:

 if widgets[widget] != []:

 widgets[widget][-1].hide()

 for i in range(0, len(widgets[widget])):

 widgets[widget].pop()

def create_buttons(answer):

 # button functions

 button = QPushButton(answer)

button.setCursor(QCursor(QtCore.Qt.PointingHandCursor))

 button.setFixedWidth(485)

 button.setStyleSheet("*{border: 4px solid 'white';"

+

 "border-radius: 25px;" +

 "font-family: 'shanti';"

 "font-size: 16px;" +

 "color: 'white';" +

 "padding: 15px 0;" +

 "margin: 20px;}" +

 "*:hover{background: 'green';}")

 return button

def frame1():

 # Display Logo

 image = QPixmap("gdot.png")

 logo = QLabel()

90

 logo.setPixmap(image)

 logo.setAlignment(QtCore.Qt.AlignCenter) # aligns text

inside the widget

 logo.setStyleSheet("margin-top: 100px;")

 widgets["logo"].append(logo)

 # button widget

 button = QPushButton("Login")

 button.setCursor(QCursor(QtCore.Qt.PointingHandCursor))

 button.setStyleSheet("*{border: 4px solid 'white';" +

 "border-radius: 45px;" +

 "font-size: 35px;" +

 "color: 'white';" +

 "padding: 25px 0;" +

 "margin: 50px 100px;}" +

 "*:hover{background: 'green';}"

)

 button.clicked.connect(theDial)

 widgets["button"].append(button)

 # place widget on the grid

 grid.addWidget(widgets["logo"][-1], 0, 0, 1, 2)

 grid.addWidget(widgets["button"][-1], 3, 0, 1, 2)

def frame2():

 # Display Logo

 image = QPixmap("gdot.png")

 logo = QLabel()

 logo.setPixmap(image)

 logo.setAlignment(QtCore.Qt.AlignCenter)

 logo.setStyleSheet("margin-top: 100px;")

 widgets["logo"].append(logo)

 #question widget

 question = QLabel("Select an action: ")

 question.setAlignment(QtCore.Qt.AlignCenter)

 question.setWordWrap(True)

 question.setStyleSheet(

 '''

 font-family: Shanti;

 font-size: 25px;

 color: 'white';

 padding: 75px;

 '''

)

91

 widgets["question"].append(question)

 # buttons

 button1 = create_buttons("Log Out")

 button2 = create_buttons("Classify Data")

 button3 = create_buttons("View ArcGIS Data")

 button4 = create_buttons("Open a WebMap with ItemID")

 button5 = create_buttons("Download Youtube Video")

 button6 = create_buttons("Sample Video")

 button1.clicked.connect(show_frame1)

 button2.clicked.connect(show_frame5)

 button3.clicked.connect(lambda: show_frame4(1))

 button4.clicked.connect(MapIdEnter)

 button5.clicked.connect(show_frame9)

 button6.clicked.connect(smpl2)

 # Append Buttons

 widgets["Return"].append(button1)

 widgets["Classify Data"].append(button2)

 widgets["View ArcGIS Data"].append(button3)

 widgets["Open a Map with ItemID"].append(button4)

 widgets["Download and Sample Video"].append(button5)

 widgets["uname"].append(button6)

 # place widget on the grid

 grid.addWidget(widgets["question"][-1], 1, 0, 1, 2)

 grid.addWidget(widgets["logo"][-1], 0, 0, 1, 2)

 grid.addWidget(widgets["Return"][-1], 2, 0)

 grid.addWidget(widgets["Classify Data"][-1], 2, 1)

 grid.addWidget(widgets["View ArcGIS Data"][-1], 3, 0)

 grid.addWidget(widgets["Open a Map with ItemID"][-1],

3, 1)

 grid.addWidget(widgets["Download and Sample Video"][-

1], 4, 0)

 grid.addWidget(widgets["uname"][-1], 4, 1)

def frame3(Question, showFrame, Action):

 image = QPixmap("gdot.png")

 logo = QLabel()

 logo.setPixmap(image)

 logo.setAlignment(QtCore.Qt.AlignCenter)

 logo.setStyleSheet("margin-top: 100px;")

 widgets["logo"].append(logo)

92

 #question widget

 question = QLabel(Question)

 question.setAlignment(QtCore.Qt.AlignCenter)

 question.setWordWrap(True)

 question.setStyleSheet(

 '''

 font-family: Shanti;

 font-size: 25px;

 color: 'white';

 padding: 75px;

 '''

)

 widgets["question"].append(question)

 # buttons

 button = QPushButton(Action)

 button.setCursor(QCursor(QtCore.Qt.PointingHandCursor))

 button.setStyleSheet("*{border: 4px solid 'white';" +

 "border-radius: 45px;" +

 "font-size: 35px;" +

 "color: 'white';" +

 "padding: 25px 0;" +

 "margin: 50px 100px;}" +

 "*:hover{background: 'green';}"

)

 button.clicked.connect(showFrame)

 # Append Buttons

 widgets["Return"].append(button)

 # place widget on the grid

 grid.addWidget(widgets["question"][-1], 1, 0, 1, 2)

 grid.addWidget(widgets["logo"][-1], 0, 0, 1, 2)

 grid.addWidget(widgets["Return"][-1], 3, 0, 1, 2)

def frame4(x):

 # Display Logo

 image = QPixmap("gdot.png")

 logo = QLabel()

 logo.setPixmap(image)

 logo.setAlignment(QtCore.Qt.AlignCenter)

 logo.setStyleSheet("margin-top: 100px;")

 widgets["logo"].append(logo)

 #question widget

93

 question = QLabel("Select Search Method: ")

 question.setAlignment(QtCore.Qt.AlignCenter)

 question.setWordWrap(True)

 question.setStyleSheet(

 '''

 font-family: Shanti;

 font-size: 25px;

 color: 'white';

 padding: 75px;

 '''

)

 widgets["question"].append(question)

 # buttons

 button1 = create_buttons("Return")

 button2 = create_buttons("All Content")

 button3 = create_buttons("Search by Keyword")

 button4 = create_buttons("Search by Title")

 if x == 1:

 button1.clicked.connect(show_frame2)

 else:

 button1.clicked.connect(show_frame7)

 button2.clicked.connect(lambda: mapData(x))

 button3.clicked.connect(lambda: key_dial(x))

 button4.clicked.connect(lambda: title_dial(x))

 # Append Buttons

 widgets["Return"].append(button1)

 widgets["All Content"].append(button2)

 widgets["Search by Keyword"].append(button3)

 widgets["Search by Title"].append(button4)

 # place widget on the grid

 grid.addWidget(widgets["question"][-1], 1, 0, 1, 2)

 grid.addWidget(widgets["logo"][-1], 0, 0, 1, 2)

 grid.addWidget(widgets["Return"][-1], 2, 0)

 grid.addWidget(widgets["All Content"][-1], 2, 1)

 grid.addWidget(widgets["Search by Keyword"][-1], 3,

0)

 grid.addWidget(widgets["Search by Title"][-1], 3,

1)

94

def frame5():

 # Display Logo

 image = QPixmap("gdot.png")

 logo = QLabel()

 logo.setPixmap(image)

 logo.setAlignment(QtCore.Qt.AlignCenter)

 logo.setStyleSheet("margin-top: 100px;")

 widgets["logo"].append(logo)

 #question widget

 question = QLabel("Classification Data Options: ")

 question.setAlignment(QtCore.Qt.AlignCenter)

 question.setWordWrap(True)

 question.setStyleSheet(

 '''

 font-family: Shanti;

 font-size: 25px;

 color: 'white';

 padding: 75px;

 '''

)

 widgets["question"].append(question)

 # buttons

 button1 = create_buttons("Return")

 button2 = create_buttons("Classify Data Only")

 button3 = create_buttons("Classify Data and Modify

Maps")

 button4 = create_buttons("Use Previous Classified Data

to Modify Maps")

 button5 = create_buttons("Retrain Network")

 button1.clicked.connect(show_frame2)

 button2.clicked.connect(chooseData)

#button2.clicked.connect(threading.Thread(target =

chooseData).start()) #

 button3.clicked.connect(chooseData2)

 button4.clicked.connect(show_frame7)

 button5.clicked.connect(retrainChooseD)

 # Append Buttons

 widgets["Return"].append(button1)

 widgets["Select Data to Classify"].append(button2)

#change name later

95

 widgets["Open a Map with ItemID"].append(button3) #

change name later

 widgets["Use Previous Classified Data to Modify

Maps"].append(button4)

 widgets["Retrain Network"].append(button5)

 # place widget on the grid

 grid.addWidget(widgets["question"][-1], 1, 0, 1, 2)

 grid.addWidget(widgets["logo"][-1], 0, 0, 1, 2)

 grid.addWidget(widgets["Return"][-1], 4, 0)

 grid.addWidget(widgets["Select Data to Classify"][-1],

2, 1) #change name later

 grid.addWidget(widgets["Open a Map with ItemID"][-1],

3, 0) #change name later

 grid.addWidget(widgets["Use Previous Classified Data to

Modify Maps"][-1], 3, 1)

 grid.addWidget(widgets["Retrain Network"][-1], 2, 0)

def frame6(my_contt, x):

 # Display Logo

 image = QPixmap("gdot.png")

 logo = QLabel()

 logo.setPixmap(image)

 logo.setAlignment(QtCore.Qt.AlignCenter)

 logo.setStyleSheet("margin-top: 100px;")

 widgets["logo"].append(logo)

 global listWidget

 i=0

 listWidget = QListWidget()

 listWidget.setGeometry(50, 70, 150, 80)

 listWidget.setStyleSheet("QListWidget"

 "{"

 "border : 2px solid

black;"

 "background : white;"

 "}"

 "QListWidget QScrollBar"

 "{"

 "background : lightgrey;"

 "}"

"QListView::item:selected"

 "{"

 "border : 2px solid

black;"

96

 #"font-color: black;"

 "background : lightgrey;"

 "}"

)

listWidget.setCursor(QtGui.QCursor(QtCore.Qt.IBeamCursor))

#listWidget.setTextInteractionFlags(Qt.TextSelectableByMous

e)

 while i < len(my_contt):

 listWidget.addItem(""+str(i+1)+") Title: "+

str(my_contt[i].title) + "\n Item ID: "+my_contt[i].id+

 "\n Type: "+

str(my_contt[i].type) + "\n Owner: " +

str(my_contt[i].owner))

 i = 1 + i

 # Append Qlist

 widgets["listWidget"].append(listWidget)

 if x == 1:

 #Button

 button1 = create_buttons("Return")

 button2 = create_buttons("Copy ItemID to

Clipboard")

 button1.clicked.connect(lambda: show_frame4(x))

change this later

 button2.clicked.connect(lambda: copyMyID(x))

 widgets["Return"].append(button1)

 widgets["Copy ItemID"].append(button2)

 # place widget on the grid

 grid.addWidget(widgets["listWidget"][-1], 1, 0, 1,

2)

 grid.addWidget(widgets["logo"][-1], 0, 0, 1, 2)

 grid.addWidget(widgets["Return"][-1], 2, 0)

 grid.addWidget(widgets["Copy ItemID"][-1], 2, 1)

 else:

 #Button

 button1 = create_buttons("Return")

 button2 = create_buttons("Change Selected Map")

 button1.clicked.connect(lambda: show_frame4(x))

 button2.clicked.connect(lambda: copyMyID(x))

 widgets["Return"].append(button1)

97

 widgets["Change Selected Map"].append(button2)

 # place widget on the grid

 grid.addWidget(widgets["listWidget"][-1], 1, 0, 1,

2)

 grid.addWidget(widgets["logo"][-1], 0, 0, 1, 2)

 grid.addWidget(widgets["Return"][-1], 2, 0)

 grid.addWidget(widgets["Change Selected Map"][-1],

2, 1)

def frame7():

 # Display Logo

 image = QPixmap("gdot.png")

 logo = QLabel()

 logo.setPixmap(image)

 logo.setAlignment(QtCore.Qt.AlignCenter)

 logo.setStyleSheet("margin-top: 100px;")

 widgets["logo"].append(logo)

 #question widget

 question = QLabel("Select Data Modification: ")

 question.setAlignment(QtCore.Qt.AlignCenter)

 question.setWordWrap(True)

 question.setStyleSheet(

 '''

 font-family: Shanti;

 font-size: 25px;

 color: 'white';

 padding: 75px;

 '''

)

 widgets["question"].append(question)

 # buttons

 button1 = create_buttons("Return")

 button2 = create_buttons("Overwrite a Map")

 button3 = create_buttons("Create New Map")

 button4 = create_buttons("Append Data to a Map")

 button1.clicked.connect(show_frame5)

 button2.clicked.connect(lambda: show_frame4(3)) #

chooseData5

 button3.clicked.connect(chooseData3)

 button4.clicked.connect(lambda: show_frame4(2)) #

chooseData4

98

 # Append Buttons

 widgets["Return"].append(button1)

 widgets["Overwrite a Map"].append(button2)

 widgets["Create New Map"].append(button3)

 widgets["Append Data to a Map"].append(button4)

 # place widget on the grid

 grid.addWidget(widgets["question"][-1], 1, 0, 1, 2)

 grid.addWidget(widgets["logo"][-1], 0, 0, 1, 2)

 grid.addWidget(widgets["Return"][-1], 2, 0)

 grid.addWidget(widgets["Overwrite a Map"][-1], 2,

1)

 grid.addWidget(widgets["Create New Map"][-1], 3, 0)

 grid.addWidget(widgets["Append Data to a Map"][-1],

3, 1)

def frame8 ():

 image = QPixmap("gdot.png")

 logo = QLabel()

 logo.setPixmap(image)

 logo.setAlignment(QtCore.Qt.AlignCenter)

 logo.setStyleSheet("margin-top: 100px;")

 widgets["logo"].append(logo)

 #question widget

 question = QLabel('Download Youtube Video')

 question.setAlignment(QtCore.Qt.AlignCenter)

 question.setWordWrap(True)

 question.setStyleSheet(

 '''

 font-family: Shanti;

 font-size: 25px;

 color: 'white';

 padding: 75px;

 '''

)

 widgets["question"].append(question)

 # buttons

 button = QPushButton('Download')

 button.setCursor(QCursor(QtCore.Qt.PointingHandCursor))

 button.setStyleSheet("*{border: 4px solid 'white';" +

 "border-radius: 45px;" +

 "font-size: 35px;" +

99

 "color: 'white';" +

 "padding: 25px 0;" +

 "margin: 50px 100px;}" +

 "*:hover{background: 'green';}"

)

 button.clicked.connect(yt_downl)

 button1 = QPushButton('Return')

button1.setCursor(QCursor(QtCore.Qt.PointingHandCursor))

 button1.setStyleSheet("*{border: 4px solid 'white';" +

 "border-radius: 45px;" +

 "font-size: 35px;" +

 "color: 'white';" +

 "padding: 25px 0;" +

 "margin: 50px 100px;}" +

 "*:hover{background: 'green';}"

)

 button.clicked.connect(yt_downl) #######

 button1.clicked.connect(show_frame2)

 # Append Buttons

 widgets["Download"].append(button)

 widgets["Return"].append(button1)

 # place widget on the grid

 grid.addWidget(widgets["question"][-1], 1, 0, 1, 2)

 grid.addWidget(widgets["logo"][-1], 0, 0, 1, 2)

 grid.addWidget(widgets["Return"][-1], 2, 1)

 grid.addWidget(widgets["Download"][-1], 2, 0)

def frame9():

 # Display Logo

 image = QPixmap("gdot.png")

 logo = QLabel()

 logo.setPixmap(image)

 logo.setAlignment(QtCore.Qt.AlignCenter)

 logo.setStyleSheet("margin-top: 100px;")

 widgets["logo"].append(logo)

 #question widget

 question = QLabel("Select aa playlist: ")

 question.setAlignment(QtCore.Qt.AlignCenter)

 question.setWordWrap(True)

100

 question.setStyleSheet(

 '''

 font-family: Shanti;

 font-size: 25px;

 color: 'white';

 padding: 75px;

 '''

)

 widgets["question"].append(question)

 k = get_pl()

 my_pl = k[1]

 my_pl_ID = k[0]

 # List

 global listWidget2

 i=0

 listWidget2 = QListWidget()

 listWidget2.setGeometry(50, 70, 150, 80)

 listWidget2.setStyleSheet("QListWidget"

 "{"

 "border : 2px solid

black;"

 "background : white;"

 "}"

 "QListWidget QScrollBar"

 "{"

 "background : lightgrey;"

 "}"

"QListView::item:selected"

 "{"

 "border : 2px solid

black;"

 #"font-color: black;"

 "background : lightgrey;"

 "}"

)

listWidget2.setCursor(QtGui.QCursor(QtCore.Qt.IBeamCursor))

#listWidget.setTextInteractionFlags(Qt.TextSelectableByMous

e)

 while i < len(my_pl):

 listWidget2.addItem(""+str(i+1)+") Playlist Title:

"+ my_pl[i] + "\n Playlist ID: "+my_pl_ID[i])

101

 i = 1 + i

 # Append Qlist

 widgets["listWidget"].append(listWidget2)

 # buttons

 button1 = create_buttons("Return")

 button2 = create_buttons("Next")

 button1.clicked.connect(show_frame2)

 button2.clicked.connect(lambda: copyMyID2(my_pl_ID))

 # Append Buttons

 widgets["Return"].append(button1)

 widgets["Classify Data"].append(button2)

 # place widget on the grid

 grid.addWidget(widgets["listWidget"][-1], 1, 0, 1, 2)

 grid.addWidget(widgets["logo"][-1], 0, 0, 1, 2)

 grid.addWidget(widgets["Return"][-1], 2, 0)

 grid.addWidget(widgets["Classify Data"][-1], 2, 1)

def frame10():

 print(10)

def vid_url(playlist_id):

 videos = []

 api_key = 'AIzaSyAgmPBCu4iUVg5t3vdQZCHSsCwu1AH0124'

 channel_id = 'UCCKprTOrntmBOhPr_boGxYw'

 # api_key =

os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="/path/to/file

.json"

 youtube = build('youtube', 'v3', developerKey=api_key)

 nextPageToken = None

 while True:

 pl_request = youtube.playlistItems().list(

 part='contentDetails',

 playlistId=playlist_id,

 maxResults=50,

 pageToken=nextPageToken

)

102

 pl_response = pl_request.execute()

 pl_request2 = youtube.playlistItems().list(

 part='snippet',

 playlistId=playlist_id,

 maxResults=50,

 pageToken=nextPageToken

)

 pl_response2 = pl_request2.execute()

 items = pl_response2['items']

 vid_names = []

 vid_names =[lol['snippet']['title'] for lol in

items]

 vid_ids = []

 for item in pl_response['items']:

vid_ids.append(item['contentDetails']['videoId'])

 vid_request = youtube.videos().list(

 part="statistics",

 id=','.join(vid_ids)

)

 vid_response = vid_request.execute()

 for item in vid_response['items']:

 vid_id = item['id']

 yt_link = f'https://youtu.be/{vid_id}'

 videos.append(yt_link)

 nextPageToken = pl_response.get('nextPageToken')

 if not nextPageToken:

 break

 return videos, vid_names

def frame11(play_id):

 # Display Logo

 image = QPixmap("gdot.png")

 logo = QLabel()

 logo.setPixmap(image)

103

 logo.setAlignment(QtCore.Qt.AlignCenter)

 logo.setStyleSheet("margin-top: 100px;")

 widgets["logo"].append(logo)

 #question widget

 question = QLabel("Select a video: ")

 question.setAlignment(QtCore.Qt.AlignCenter)

 question.setWordWrap(True)

 question.setStyleSheet(

 '''

 font-family: Shanti;

 font-size: 25px;

 color: 'white';

 padding: 75px;

 '''

)

 widgets["question"].append(question)

 # List

 global listWidget3

 i=0

 listWidget3 = QListWidget()

 listWidget3.setGeometry(50, 70, 150, 80)

 listWidget3.setStyleSheet("QListWidget"

 "{"

 "border : 2px solid

black;"

 "background : white;"

 "}"

 "QListWidget QScrollBar"

 "{"

 "background : lightgrey;"

 "}"

"QListView::item:selected"

 "{"

 "border : 2px solid

black;"

 #"font-color: black;"

 "background : lightgrey;"

 "}"

)

listWidget3.setCursor(QtGui.QCursor(QtCore.Qt.IBeamCursor))

104

#listWidget.setTextInteractionFlags(Qt.TextSelectableByMous

e)

 mh = vid_url(play_id)

 my_vid_url = mh[0]

 my_vid_name = mh[1]

 while i < len(mh[0]):

 listWidget3.addItem(""+str(i+1)+") Video Title: "+

my_vid_name[i] + "\n Video URL: "+my_vid_url[i])

 i = 1 + i

 # Append Qlist

 widgets["listWidget"].append(listWidget3)

 # buttons

 button1 = create_buttons("Return")

 button2 = create_buttons("Download Video")

 button1.clicked.connect(show_frame2)

 button2.clicked.connect(lambda: dwld(my_vid_url,

play_id))

 # Append Buttons

 widgets["Return"].append(button1)

 widgets["Classify Data"].append(button2)

 # place widget on the grid

 grid.addWidget(widgets["listWidget"][-1], 1, 0, 1, 2)

 grid.addWidget(widgets["logo"][-1], 0, 0, 1, 2)

 grid.addWidget(widgets["Return"][-1], 2, 0)

 grid.addWidget(widgets["Classify Data"][-1], 2, 1)

frame1()

window.setLayout(grid)

window.show()

sys.exit(app.exec())

	Development and Optimization of Classification Neural Networks for Disaster-Assessment Using Unmanned Aerial Vehicle Systems
	Recommended Citation

	tmp.1651371427.pdf.YFEVR

