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CHAPTER 1

INTRODUCTION

As technology increases ever forward at an incredible pace it can feel like the science

fiction of yesterday is becoming the science reality of today. What once was thought to

be impossible is now commonplace due to the advent of new technology. In particular,

computers have revolutionized the ways in which we interact with others and our world

in general. Computers have advanced so far that we are even trying to teach them how to

learn.

To teach anything how to learn is very difficult. If you have ever trained an animal

to do a trick or even tried to teach a child a skill, then you know the struggle of teaching.

Maybe you have even tried to learn a difficult skill yourself and have found it far more

intricate than you anticipated. However, you are highly equipped to change your thinking

and learn something new. You are equipped with sensors all throughout your body that

can give you immediate feedback if what you are doing is good or bad. If you stub your

toe by turning a corner too quickly, you receive a feedback of pain. This tells you that

you still need to refine your skills when it comes to moving around obstacles. Maybe

a delicious morsel you cooked titillates your tastebuds and gives you immediate positive

feedback that your cooking skills are at a satisfactory level. You were not taught that pain

is bad or that things taste good. This is because you are not only equipped with the sensors

to receive feedback, but also the ability to interpret their meanings. At a much higher and

more abstract level you know if you are happy or sad. It may not be as clear what inputs

need to change or stay the same to change these feelings, but these feelings are giving you

feedback. What is more, you know just how to interpret them. In contrast, a computer is

not so well equipped.

Computers need to be given sensors, which is a difficult task, but trivial in comparison

to teaching a computer to interpret their feedback. Computers do not have our natural
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ability to receive and interpret feedback about our current state of life. What’s worse, since

we were never taught it, it is exceedingly difficult for us to teach it. If a robot vacuum is

cleaning the rug and bumps into the table how much negative feedback should you give it?

Is it as bad as stubbing your toe or just brushing your shoulder against a wall by mistake?

If you make the feedback extremely negative the robot may decide to never clean around

tables to avoid the whole situation. If you make the feedback too mild then the robot might

bump into things with no care and damage them or itself. Teaching a computer how to

learn is a daunting task, but the rewards are incredible.

As far back as twenty-four years ago a computer was able to beat one of the world’s

best chess players. In 1997 a machine called Deep Blue and developed by IBM defeated

Garry Kasparov, the world champion of chess at the time [3]. However, the field of machine

learning had been in existence for decades before that event. In 1959, Arthur Samuel, an

artificial intelligence expert, coined the term machine learning [8]. He also developed the

Samuel Checkers Playing Program which, as you may have guessed, was a program that

learned how to play checkers. From checkers to backgammon to chess, machine learning

would be employed to master all of these games [10]. That was just the beginning for the

field of machine learning. We have progressed it to new heights. Forget about a robot that

can vacuum your carpet for you, we are all the way to self-driving cars! This technology is

integrated all around us. As this field moves forward it is important that we move forward

with it and help it develop as much as we can. The topic of this thesis will be the specific

branch of machine learning called reinforcement learning and specifically how to optimize

aspects of its learning.

Reinforcement learning deals with programs, robots, agents, etc. who will interact

with an environment around them. Through their interaction, they will gather data through

their experience. With this data they will begin to “learn” and understand what they can

do in this environment, and the relative “goodness” of their actions. These actions must
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be chosen somehow. They could be picked randomly, or through some sort of design.

No matter what the case, there must be a balance between how this agent explores its

environment to “learn” and then exploits its learning to pick “good” actions.

There are many ways to map out actions for the agent, and many potential hindrances

that can arise from action selection. For instance, depending on how the selection is set

up the same action could be picked multiple times in a row. It could take a long time to

see all of the actions if this were allowed, and thus take longer for the agent to learn all

it can do. So devising a good selection method can be tricky. One method is to generate

sequences. Sequences can range vastly in complexity, and there are nearly limitless ways

to produce them. For example, some are generated so that every subsequent point picked

in the sequence differs as much as possible from the previous points picked. We could

say this would be a “Low Discrepancy” sequence. This would be an interesting method to

generate actions with for the agent. This is because as it tries one action, its next action

will be drastically different than the first. Perhaps this would allow an agent to learn more

quickly which actions are “good” by exposing it to more of the options it has to interact

with the environment.

Before we dive into the details of the thesis, it will be important to first understand the

basics of reinforcement learning with more detail than is presented here.
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CHAPTER 2

REINFORCEMENT LEARNING BACKGROUND

2.1 DEFINITIONS

What is reinforcement learning and how does it differ from other forms of machine

learning? To start with, reinforcement learning is distinct from supervised learning. Su-

pervised learning is just as it sounds, the learner has an experienced or knowledgeable

supervisor to guide it as it learns. The supervisor may be meticulously picking examples of

correct behavior that make up a training set. Reinforcement learning does not make use of

direct guidance. Reinforcement learning is also distinct from unsupervised learning which

is more focused on finding structure concealed in non-categorized information. How rein-

forcement learning differs here is that it is not concerned with finding structure, but instead

on maximizing a reward feedback. The development of these concepts will follow that of

[9] for the remainder of the chapter.

Now let us focus on the detail of what defines reinforcement learning and what it can

do for us. First, there are several terms that will be defined right at the start.

• Markov Decision Process - A stochastic selection process that satisfies the Markov

property. We will denote this as MDP.

• Agent – The one that learns and decides what actions to take from state to state.

• Environment – Everything that is outside of the agent which the agent can interact

with.

• State – Any set of criteria that describes a state of being for the agent. We will denote

a specific non-random state as s.

• State Space - The space containing all possible states. We will denote the state space

as S .
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• Action – Any act that the agent is allowed to perform. We will denote a specific

non-random action as a.

• Action Space - the space containing all possible actions. We will denote the action

space as A.

• Reward – The measure of the short-term goodness of behavior of the agent. This is a

random variable whose distribution depends on state, action, and next state. We will

denote a specific non-random reward as r.

• Value – The measure of the long-term goodness of behavior of the agent.

• Exploration – Taking an action that is not necessarily optimal to learn more about the

environment.

• Exploitation – Using past experiences to take an action that is considered optimal.

• Policy – A map from states to action that govern the behavior of the agent.

A MDP is a 3-tuple made up of states, actions, and probabilities. It is a stochastic pro-

cess that provides a framework for a selection process. To understand this more thoroughly

it will be helpful to have a diagram, look at Figure 2.1.

Figure 2.1: [9] Interaction between an agent and environment within a Markov Decision

Process.
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We stated above that the agent is the learner. The agent will be constantly interact-

ing with the environment. As the agent interacts it will receive a reward based on the

action it takes. We will think of these interactions as happening at discrete time steps

t = 0, 1, 2, 3, .... At each time step, t, the agent will receive some representation of the en-

vironments state, St ∈ S . From this the agent will select an action At ∈ A. One time step

later the agent will receive a reward Rt+1 for its action, and will move to state St+1. The

process repeats from state St+1. To simplify the notation, let s be the current state and s′ be

the next state. Let the action we select be a. Then this process is governed by the MDP. The

MDP is a collection of objects, specifically the following objects: {St, At, P (s′, r|s, a)}.

Definition 1. Let s, a, and r be the current state, action and reward respectively and let

s’ be the next state. Then P (s′, r|s, a) = P (St = s′, Rt = r|St−1 = s, At−1 = a) is the

probability of moving to state s′ and receiving reward r given that the agent started in state

s and chose action a.

Let us look more in depth at the agent and environment. Firstly, an agent can be

hardware or software. It can be a physical robot or a computer program or anything that has

the above standards for being a reinforcement learning agent. The line that divides the agent

from the environment should be considered carefully. For example, in an animal, its nerves,

muscles, and bones would be considered part of the agent. However, in reinforcement

learning these will be considered part of the environment. In a robot we will consider

the motors, sensors, and mechanical links to be part of the environment that the agent can

interact with.

States make up all of the information one would need to know to completely define

what is happening to an agent regarding a task. States can be a physical description of

where the agent is or an indication from sensors that the agent possesses. Think of a grid

maze, where every grid represents a space where an agent could stand. To help, observe

Figure 2.2.
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Figure 2.2: Grid Maze

The state would simply be what grid the agent is in the maze. In a finite example like

this, we could label every grid with a number and that number could represent the position

of the agent. Let us say there are N grids in this case and label the first as 1. Then the state

could be completely described if we know what grid it is on.

S = {1, 2, 3, ..., N}

For this example, an action would be moving up, down, left, or right. Then the action space

could be described as follows.

A = {↑, ↓,←,→}

An agent will have all of the actions available to choose from per state, unless the state

restricts the actions. In the maze if the agent is in a state where certain actions will push it

into a wall, those actions may be restricted in those states.

The agent will receive a reward for each action taken. These rewards are immediate
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feedback for the agent after it takes an action. We can compute the expected reward for a

state-action pair with the following function:

Proposition 2.1. The expected reward for a state s and action a can be found by summing

over the possible rewards and future states. This can be expressed as follows

r(s, a) = E[Rt|St−1 = s, At−1 = a] =
∑
r∈R

r
∑
s′∈S

p(s, r|s, a).

This does not tell us the long-term reward of taking an action, only the short-term

goodness of selecting that action. The lower the reward compared to the other rewards

received the worse that action is assumed to be by the agent. A relatively smaller reward

implies that the action associated to this reward should be viewed as one to avoid. It is very

important to incentivize actions correctly. It is possible to incentivize sub-tasks that you

believe will help the agent complete the overarching task. However, if done improperly

this can result in the agent only completing the sub-tasks and never actually completing the

main task. Additionally, depending on how actions are rewarded the actual goal of learning

may never be achieved. Before we talk about that let us discuss value. If you string together

many rewards you arrive at the following:

Definition 2. Let Rt+i represent the reward at i steps in the future. Let γ ∈ [0, 1] be a

parameter called the discount rate. Then the total discounted reward Gt at time t is

Gt = Rt+1 + γRt+2 + γ2Rt+3... =
∞∑
k=0

γkRt+k+1.

This can be taken a few steps further letting the total discounted future reward depend

on the next reward plus the future total discounted reward after that. This breaks down as

follows:

Proposition 2.2. Let γ ∈ [0, 1] be the discount factor. The return at time t can be expressed

as immediate reward plus discounted return at the following time,

Gt = Rt+1+γRt+2+γ
2Rt+3+γ

3Rt+4+... = Rt+1+γ(Rt+2+γRt+3+γ
2Rt+4+...) = Rt+1+γGt+1.
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Now that we have an idea of how the states, actions, and rewards interact within the

MDP, the next question is to ask how are the actions selected? This is where the policy

comes into play.

Definition 3. The policy, denoted π is a mapping of the state-action space to the interval

[0, 1].

π : S × A→ [0, 1]

this gives the probability of selecting actions.

If all of the probabilities are either zero or one the policy can be seen as a mapping of

states to the probability of selecting an action. If an agent is following policy π at time t

then the probability At = a and St = s is π(a|s). Now that we have the idea of a policy we

can discuss value.

Value is very closely related to rewards; the difference is that this will represent long-

term goodness instead of short-term. This is not the immediate worth of taking an action,

but instead what benefits that action will lead to far in the future. The value is what the

agent will try to optimize. Since value is determined by reward, and rewards are gained

after taking an action, and actions are taken according to a policy, then value depends on

the policy being used. It can be expressed as follows.

Definition 4. Let π be a policy. The value of a state s under π is

vπ(s) = Eπ[Gt | St = s] = Eπ[Rt+1 + γGt+1 | St = s].

If we take this one step further we arrive at the Bellman equation.

Proposition 2.3. (Bellman’s Equation) [4] Let π be a policy, then

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] for all s ∈ S.



18

This equation is important because it expresses a relationship between the value of a

state and the values of its successor states. However we view it, we can see that value is our

expected total return of discounted rewards under policy π given we start in state S. In a

discrete state and action space we can calculate and optimize this value function. However,

in a continuous state and action space optimizing this can become very challenging. In the

simplest sense, since the value depends on the policy, finding an optimal policy will result

in a superior value function. Our overall goal is to optimize this value function. If an agent

has optimized this function than it is always choosing the action that gives it the greatest

long term reward.

2.2 EXAMPLES AND INTUITION

States can be more complicated than what we discussed above. For example, consider

a self-parking car. One thing that we need to know for the state is its speed. Now the

speed can be zero and that is completely acceptable, but we will need to know its speed for

every state. We will also need to know its acceleration and what direction it is moving. We

need to know the current position which can tell us where the car is relative to the parking

space. We should also have sensors that tell us how far away any nearby obstacle that the

car can hit is from any side of the car. So now any given state for this agent is comprised

of multiple information.

S = [position, speed, acceleration, direction, distance to obstacles]

All of these variables combined make up one state for this agent. If any one of them change

then the agent is now in a new state and the action it takes should be adjusted accordingly.

An action for this example could be moving the steering wheel or accelerating the car

backwards or forwards.

Even though there are many different problems with unique states and actions; there
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are basic policies that can be used for exploration, exploitation, or a mixture of both. A

classic example of a policy is the greedy policy. This policy always has the agent select

an action that it currently knows gives it the highest value. This is a simple policy that has

advantages and disadvantages. At first the policy will assume every action has a value of

zero. In other words it values all actions the same at the start. To demonstrate let us create

an action space with three actions and let us say we know the true values of each. We will

let A be our actions with values being V respectively.

A = {1, 2, 3}

V = {−5, 2, 20}

At first the policy will assume every action has a value of zero. In other words it values all

actions the same at the start. So it has a guess of the values, let that be denoted Vguess.

Vguess = {0, 0, 0}

Let us say the agent picks the first action and receives a reward of −4. Now the values

update.

Vguess = {−4, 0, 0}

Under this policy now the agent will not pick the first action because it has a lower value

than the other options. So let us say the agent picks again and between the second and third

action randomly picks the second, and receives a reward of 2. The values update again.

Vguess = {−4, 2, 0}

Now under the policy it must pick the second action, because it is the best action according

to the values. As long as the value of the second action stays larger than zero the agent will

never try the third action. This is an issue because the third action has the best true value,

but the agent may never realize this due to the policy it is using. That is one drawback
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to using the greedy policy. The agent may get stuck in a loop once it has found a good

action to take, but it may not be the best action. There are many approaches to remedy this

problem, we will discuss one later called the epsilon greedy policy.

A policy will have to choose what is optimal between two things at any given time,

exploration or exploitation. These are as straightforward as they sound. If an agent is

exploring it is not necessarily picking the action it believes to be optimal, but instead it

is trying to explore its environment more. The hope is that through exploration the agent

can find an optimal action for a given state. If an agent decides instead to exploit then it

uses what experience it has already gained to take what it ranks as the most optimal action.

There is an intricate and delicate balance between these two. An agent who never explores

is very unlikely to find the true best action for its state. However, an agent who never ex-

ploits will likely find the action, but is unlikely to select it. The balance is in doing enough

exploration that its exploitation of the experience is effective.

Now we should distinguish between a on-policy and off-policy approach. An on-

policy approach means that the agent’s behavior is determined by the policy. As it learns

more it updates its policy to try to obtain an optimal policy. An off-policy approach still

uses a policy, but the agents actions are not solely dictated by the policy. Let’s say that it

has a greedy policy, and is watching what happens when it follows this policy. It updates

the value of states based on what it is seeing. If it believes a move is more valuable even

if the policy states it should pick the greedy move, and off-policy agent can make actions

that do not follow the policy. Off-policy methods tend to make the agent more flexible, as

it can adapt more quickly than following a rigid policy.
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2.3 CONTINUOUS CASES

Here we will distinguish between continuous states and actions, and discrete states

and actions or any combination thereof. Let us look at the example of the car, and say the

action for moving the car can be described with three discrete numbers in the following

way.

A = {−1, 0, 1}

Let’s say that negative one means the car will reverse at maximum speed, zero means it will

not move, and one means it will go forward at maximum speed. This would be discrete.

Now let us describe it in this continuous way.

A = (−1, 1)

Now the action can be any number between negative one and one. A positive number will

move the car forwards, but a smaller positive number will do this with less speed than a

greater one. Likewise with negative numbers, but for reverse. The closer to zero the num-

ber is the less force is applied to the car. In contrast to the discrete approach which has three

actions, the continuous approach has infinite actions. States can be described the same way,

either being continuous or discrete.

It is of great importance to note that an MDP with discrete spaces can be solved in

a tabular method. A table of all possible combinations can be made, for the agent to map

out and optimize. Although this can be very complicated for some problems, this is still

a method that will lead to its solution. On the other hand a continuous problem cannot

be solved in this manner. These problems must be approached with function approxima-

tors. These will approximate the policy and value function for the problem. Then as this

function is optimized, the policy and value should be optimized. A common way to approx-

imate policy and value is with a neural network. This is a complicated and sophisticated

method that works similar to the human brain. This is far more complicated than a discrete
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approach, and does not describe the problem as perfectly. However, if the function approx-

imates well, then given enough time the agent should be able to find nearly optimal values

and policies.

2.4 EFFICIENT EXPLORATION

Now that the basics are covered, let us touch on optimization. As you may have

guessed there could be countless policies, and some may be superior to others. In fact,

there is always an optimal policy and there is a method to obtain it only in the discrete case.

Let it be sufficient for our purposes to know that there is an optimal policy and that we can

find it. However, it can be a major drain to efficiency to find the best policy. For this thesis

we will use staple policies, like the epsilon-greedy policy.

This policy is similar to the greedy policy, with a small adjustment. We pick a number

ε and determine if we will explore or exploit based off of this number. If ε is .1 we will ex-

plore ten percent of the time. If we set it to be higher than we will incur more exploration.

We can set it to start at a high rate like .9 and decay over time. So that in the beginning the

agent will explore its environment far more than it exploits. However, as time goes on ε

decays and the agent explores less and less. Because of all the exploring it did at the start,

when it starts to exploit it should be using optimal or near optimal actions.

Traditionally, when the agent explores with this policy it randomly picks an action,

typically with independent uniform selection of the available actions. You could think of

this as a “with replacement” selection process. Each new selection is independent of the

previous selections. However, perhaps even at this stage the learning could be improved if

the exploration method was altered. What if instead of randomly picking, it remembered

the last selections it made when exploring and selected an action that differed from previ-

ous selections. Something more akin to “without replacement” selection, where the new

selection was dependent on the previous selections in some way. Would this allow its ex-
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ploration, and therefore overall learning, to be more productive? Can we devise a way to

select actions that differ from previously selected ones? Perhaps most importantly can we

find a way to measure if the actions we are selecting are different from previous ones? Let

us explore this idea in more depth later on in the thesis.
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CHAPTER 3

LOW DISCREPANCY SEQUENCES

3.1 DISCREPANCY

At the end of the previous chapter we discussed the idea of actions that differ from

ones that have been previously selected. To discuss this we will need to understand the idea

of discrepancy. Discrepancy will be formally defined as the measure of deviation from an

ideal uniform distribution. This will be a way to measure how well data has been generated

from a sequence when compared to a uniform distribution. In an equation discrepancy can

be viewed as the following.

Definition 5. [5] Let {xn}Nn=1 be a sequence taking values in the interval [0, 1]. Let A()

count the number of terms xn where α < xn < β, then:

DN = DN(x1, ..., xN) = sup
0≤α<β≤1

∣∣∣∣ A([α, β);N)

N
− (β − α)

∣∣∣∣
This is a formula for a one-dimensional representation. We will generalize it to mul-

tiple dimensions soon, but before we do let us explain the concept for one and two dimen-

sions with graphs. First, we will look at two number lines with points representing the

data.

Figure 3.1: 1-dimensional Uniform spread
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Figure 3.2: 1-dimensional Non-Uniform spread

Clearly, the Figure 3.1 is more uniform than Figure 3.2. Now let’s say that we have

α = 0 and β = .2. Then a component that will factor into the discrepancy calculation

inside the supremum for the first sequence is |2
9
–(.2 − 0)| = .0222. A component that

will factor into the discrepancy calculation inside the supremum for the second sequence is

|4
9
–(.2− 0)| = .2444.

It is important to know that the discrepancy formula requires a supremum. It is there-

fore useful theoretically, but not practical for determining the discrepancy of a given se-

quence. Therefore to estimate the discrepancy, we will repeat the above process thousands

of times with random α′s and β′s and take a maximum. Any segment of the sequence that

has a high cluster of points that is too dense or is missing too many points will show a

large discrepancy. So long as enough segments of the sequence are taken the discrepancy

test should catch any parts that do not align with a uniform distribution. This will be our

practical approach to estimating discrepancy. Let us look at the multi-dimensional formula

for discrepancy.

Definition 6. [5] Let J run through all sub-intervals of Ik of the form

J = (x1, ..., xk) ∈ Ik : αi ≤ xi < βi for 1 ≤ xi ≤ k

and let λ represent the k-dimensional Lebesgue measure, then:

DN = DN(x1, ..., xN) = sup
J

∣∣∣∣ A([J);N)

N
− λ(J)

∣∣∣∣
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One difficulty in estimating discrepancy of a sequence is generating the α and β for

the segments to be checked. A natural idea is to let X and Y be uniformly distributed in

the unit interval, and then define α to be the smaller of the two and let β be the larger. This

procedure is biased. The segments will favor the middle of the graph, but will very rarely

if ever sample the extreme values at either end. To demonstrate this formally, let us state a

proposition.

Proposition 3.1. Let X and Y be independently and identically distributed uniform ran-

dom variables between zero and one. LetA = [min(X, Y ),max(X, Y )] Then for x ∈ [0, 1]

we have

P (x ∈ A) = 2x(1− x).

That is, the inclusion probability is not constant with respect to x.

Proof. Begin by partitioning according to whether X or Y is larger.

P (x ∈ A) = P ((x ∈ A) ∩ (X < Y )) + P ((x ∈ A) ∩ (X > Y )).

Figure 3.4 shows a graph of the above expression with x = .5.
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Figure 3.3: Diagram for P ((x ∈ A) ∩ (X < Y )) + P ((x ∈ A) ∩ (X > Y )) for x = .5

The green shaded region in the top left corresponds to P ((x ∈ A) ∩ (X < Y )) and

the blue shaded region in the bottom right corresponds to P ((x ∈ A) ∩ (X > Y )). We

can see that each shaded region has an area of x(1 − x). We can also see the regions are

symmetric, and the whole area does equate to 2x(1− x), which finishes the proof.

Even from this we can start to see a bias. Notice what happens if we have the same

graph but x = .3.
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Figure 3.4: Diagram for P ((x ∈ A) ∩ (X < Y )) + P ((x ∈ A) ∩ (X > Y )) for x = .3

When x = .5 we have a total area of .5, but when x = .3 we have a total area of .42.

As x moves closer to the upper or lower boundary the area will decrease.

Returning to our main problem this all leads to

P (x ∈ A) = 2x− 2x2

which is maximized at x = 1
2
.

Where is this equation maximized? We could take first derivative and set it equal to

zero to arrive at the answer 1
2
. It will be simpler to look at the graph of the function, observe

Figure 3.5.
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Figure 3.5: Graph of P (x ∈ A) = 2x− 2x2

It is clear that the area, and thus probability is maximized in the middle of this graph.

This demonstrates a bias in this approach, and confirms that this set up favors values in the

middle over extreme values.

To achieve a method that has a constant probability with respect to x throughout the

whole region we propose this theorem.

Theorem 3.2. Let X and Y be independent and identically distributed uniform random

variable from zero to one. Set L = X , U = X + Y and define

A =


[L,U ] U ≤ 1

[0, U − 1] ∪ [L, 1] U > 1.

Then we have the following.
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a) For x ∈ [0, 1], P (x ∈ A) = 1
2
, a constant that does not depend on x.

b) If in d dimensions, let Xi, Yi, Li Ui, and Ai, for i = 1, 2, ..., d, be defined as before

but independently for each value of i. Define A = ∩di=1Ai. Then for x ∈ [0, 1]d, P (x ∈

A) = (1
2
)d.

Proof. First we will prove part a and when we move up a dimension for part b, we can

view the next dimension as independent from the last dimension. In this way we only need

to prove this method is correct in one dimension, then we can repeat the process as many

times as the number of dimensions we have. Now note, L ∈ (0, 1) and U ∈ (0, 2). In A let

the event that U ≤ 1 be called B and the event U > 1 be Bc. Now we have the following.

P (x ∈ A) = P ((x ∈ A) ∩B) + P ((x ∈ A) ∩Bc)

Begin by evaluating P ((x ∈ A) ∩B).

P ((x ∈ A) ∩B) = P ((x ∈ [L,U ]) ∩B) = P ((L < x) ∩ (x < U) ∩B)

= P ((X < x) ∩ (x < X + Y ) ∩ (X + Y < 1))

Figure 3.6 shows a graph of this expression.
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Figure 3.6: Graph of P ((X < x) ∩ (x < X + Y ) ∩ (X + Y < 1))

This Figure 3.6 depicts theX and Y axis with the green shaded region depicting where

x lies within our given intersections. Now note, the height of the shaded region is clearly

1 − x and the base is x. The height times the base is equal to the area of a parallelogram.

Therefore the shaded region is (1− x)x. Thus,

P ((x ∈ A) ∩B) = (1− x)x.

Now for the more complicated probability we will evaluate the expression P ((x ∈

A) ∩Bc).

P ((x ∈ A) ∩Bc) = P (x ∈ ([0, U − 1] ∪ [L, 1]) ∩Bc)

= P (x ∈ ([0, X + Y − 1] ∪ [X, 1]) ∩ (X + Y > 1))

= P (x < (X + Y − 1) ∪ (X < x) ∩ (X + Y > 1)).
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The above expressions graph is depicted in Figure 3.7.

Figure 3.7: Graph of P (x < (X + Y − 1) ∪ (X < x) ∩ (X + Y > 1))

The grey shaded region describes the probability that we are interested in for our

problem. Now note this is made of two triangles. The large triangle has a height of (1− x)

and a base of (1− x). Therefore, it has a area of 1
2
(1− x)2. Now the smaller triangle has a

height of x and a base of x. Therefore, it has a total area of 1
2
x2. So the total area for both

shaded regions is 1
2
(1− x)2 + 1

2
x2.

Now let us total the full probability that we are interested in

P (x ∈ A) = x(1− x) + 1

2
x2 +

1

2
(1− x)2

= x− x2 + 1

2
x2 +

1

2
− x− 1

2
x2 =

1

2
.
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This is the proof that we needed. For if our action selection has no bias we need this

probability to be equal to a constant. That means that no matter where x is it will have the

same chance of being selected, and therefore we favor no part of the region over another.

In our case the probability that x was in A is equal to 1
2

in the first dimension. In general

for any dimension d the probability would be 1
2

d.

Now that we have an unbiased manner of selecting points for estimating discrepancy

let us see the details of this method. In one dimension this method can be visualized with a

line segment. For the event B where U < 1 we have Figure 3.8.

Figure 3.8: 1-dim discrepancy estimation method under event B.

The brackets section off the interval from L to U and all the points inside this interval

would be used to calculate a component of the discrepancy estimation. Under event B this

looks like a normal uniform selection. Now let us see what happens under event Bc where

U > 1 in Figure 3.9.
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Figure 3.9: 1-dim discrepancy estimation before method application under event Bc.

NowU , our upper limit, extends past the upper boundary of our segment. All of the red

shaded region is not a valid section to select points from. This is where our method comes

into play. It will now create two valid intervals from which to select points, specifically

[0, U − 1] and [L, 1]. We can see this represented in Figure 3.10.

Figure 3.10: 1-dim discrepancy estimation method under event Bc.

What the method has done is created an interval from [L, 1] and taken the red shaded

region from Figure 3.9 and started it at 0 creating the interval [0, U − 1]. This method takes

any part of our generated interval that extends beyond a boundary and wraps it around to

the start of the segment. With this method we will not under represent any of the extreme

data points.

For two dimensions or higher, instead of taking segments of a line and finding the
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points it contains, we take the number of data points within a randomly generated hyper-

rectangle. The hyper-rectangle’s size and position are generated randomly just like α and

β were, and again this will help catch any discrepancy in the graph.

The method we propose allows any hyper-rectangle that would hit a boundary to act

as if it could teleport to the opposite side of the graph and continued from there. Now we

can sample any extreme values that we were missing in the previous bias method regardless

of dimensions. To demonstrate, look at Figure 3.11.

Figure 3.11: Hyper-rectangles that are allowed to wrap around the graph for discrepancy

estimation.
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Notice all of the hyper-rectangles are randomly sized and placed. Also, that the red

and blue larger hyper-rectangles would have hit the edge so they appeared at the opposite

side of the graph and continued. This method of selecting data by allowing the selection

region to extend when it hits a boundary by continuing to select from the opposite boundary

(or wrapping around) creates no bias in selection as detailed in the proof.

3.2 LOW DISCREPANCY SEQUENCE EXAMPLES

There are many sequences that fit the criteria of low discrepancy. One such example

would be the Van der Corput sequence. It is constructed by reversing the sequence of

natural numbers of a certain base across the decimal place. For example in base ten, 1

would be flipped along the decimal place to become .1. Likewise, 10 would become .01.

For the classic example we will use base two, and flip binary numbers along the decimal.

Let’s look at the first seven binary numbers, with leading zeros to emphasize the place

values after reversing about the decimal.

[001, 010, 011, 100, 101, 110, 111]

Now reverse about the decimal to get the following:

[.100, .010, .110, .001, .101, .011, .111]

Converting these numbers to base ten to make the meaning of the sequence we are gener-

ating more obvious. [
1

2
,
1

4
,
3

4
,
1

8
,
5

8
,
3

8
,
7

8

]
It is clear that these are filling in the unit interval in a very uniform, or in our terminology,

low discrepancy manner. The data generated is not favoring any area of the graph.

Another famous example of low discrepancy sequence, is the Halton sequence. This

sequence is connected to the Van der Corput sequence, but it pairs co-prime numbers to-

gether to generate the sequence. To see the details of this let us look at an example. First
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generate the Van der Corput sequence for base two and three. We have already seen the

beginning of this for base two, for base three after we convert back to base ten we would

have the following: [
1

3
,
2

3
,
1

9
,
4

9
,
7

9
,
2

9
,
5

9

]
Now let us make ordered pairs from the two sequences using only the co-prime among

them. Here would be the first seven pairs.[
(
1

2
,
1

3
), (

1

4
,
2

3
), (

3

4
,
1

9
), (

1

8
,
4

9
), (

5

8
,
7

9
), (

3

8
,
2

9
), (

7

8
,
5

9
)

]
To show visually how the shape of the sequence generated by paring numbers this way,

please look at Figure 3.12.

Figure 3.12: Halton Sequence generated by using the co-primes of 2 and 3
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Figure 3.13: Pseudo-random Sequence

Figure 3.12 is generated with a Halton sequence whereas Figure 3.13 is made using a

uniform sequence. It is clear that the top graph has lower discrepancy than the bottom.

As you can see there are many approaches for generating low discrepancy sequences, but

they assume that all dimensions are free. This does not readily apply to reinforcement

learning.

3.3 LOW DISCREPANCY ACTION SELECTION

To apply these sequences to selecting actions for reinforcement learning, we have to

understand a state’s relationship to actions. The state an agent is in cannot be selected by the

agent. It can only select its actions, and it enters new states or states it has previously been

in through those action. Therefore, if we look at the graph for the Halton sequence, and

base two data represent the state space and the base three data represent the action space,

the base two data cannot be picked. The base two data (the states) will not be chosen, but
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based on that the base three data (the actions) will be selected.

Unfortunately, this makes these sequences not readily applicable to this problem. In

addition, there is no guarantee that the state space and action space will be equal. You

could have a 100-dimensional state space and a 1-dimensional action space. That means

one-hundred of those are not free to pick from. They are not able to be selected and are

determined from the actions taken. Therefore, for any arbitrary dimension of states and

actions we will need to devise a way to create a low discrepancy method for selecting

actions.
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CHAPTER 4

LOW DISCREPANCY ACTION SELECTION

4.1 SET-UP

The intention of this thesis is to discover if a new action selection method can improve

exploration in reinforcement learning and in what contexts it will succeed. If it is possible to

find a method that creates a more efficient exploration stage for the agent in certain contexts,

then in these contexts this should enhance any agent’s success. Our main innovation will

be to select actions by using some low discrepancy action selection (LDAS) method. We

will have to develop a suitable method and when we do we will apply this selection process

to classic benchmark reinforcement problems and policies. We will then compare it to

existing standard exploration strategies and see if it is superior. Initially we will work in

two-dimensional spaces so that we can investigate discrepancy visually.

As we develop a method we will want it to satisfy desirable properties. In our case, We

will prioritize the following three properties of action selection.

• Choose actions so that the current state-action pair is as dissimilar from previous

ones as possible.

• Boundaries of the space have non-zero selection probabilities.

• Action selection is reasonably computationally efficient.

When we have a method that meets these qualifications to our satisfaction we will

need to test it compared to other methods. This will allow us to determine the relative ef-

fectiveness of our method for the specific problems we give it. One method of selection we

will compare against is the uniform selection method.
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4.2 UNIFORM SELECTION

A baseline to compare against is to uniformly and independently pick actions for each

state for the agent. As a visual aid consider a two-dimensional state-action space. The

horizontal axis will represent the state space and the vertical axis will represent the action

space. Since this is the case, we will use s for the values on the horizontal axis and a for

the values on the vertical axis. The s’s are picked randomly, mimicking an environment

that transitions to states uniformly, and from that we pick an a uniformly from the action

space. This means once we have a s value we count that as fixed, and are only allowed to

change the a value. For simplicity, we will restrict attention to the unit square.

An independent uniform selection method simply picks a random action from all avail-

able. It does not depend on previous actions selected. This makes the method very efficient,

but can have some drawbacks. For one, you could select similar actions to those previously

selected, and thereby take a longer time to learn how all of the actions interact with the

environment. Another drawback is that a uniform selection method has a zero probability

to select an extreme value and it compounds in higher dimensions. Think of a unit interval

and you have a standard uniform distribution. Although 0 and 1 are in this interval the uni-

form pick has a zero probability of selecting them. Now go to the second dimension. You

can think of this as two uniform picks (one for each dimension). The odds that both picks

will be extreme values, i.e. (0, 0), (1, 0), (0, 1), (1, 1) has a zero probability. This means

that as the dimensions increase the actions that are represented by the corners of those di-

mensions will not be selected with a uniform selection process. In contrast, the method we

create will have a non-zero selection probability for extreme values.

In discrete settings, LDAS can be based on the principle of not picking the same value

twice until all values had been picked once. In continuous setting, the analogous principle

is to prioritize values that are dissimilar from previous ones. To demonstrate how this is

more desirable than a uniform action selection method, please look at Figure 4.1.
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It is possible that an action similar to that of the previous time step is chosen. This results

Figure 4.1: Uniform action selection method to demonstrate the principle of selecting cur-

rent actions that are dissimilar to previously selected actions

in two similar state-action pairs, which is undesirable for the purpose of exploring the entire

state-action space efficiently. Incentivizing a different action, such as in Example 2, could

give new information about the transition dynamics and result in better overall learning. A

plot of uniform selection process can be seen in Figure 4.2

Figure 4.2: Plot of points generated by a uniform selection process.
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4.3 LDAS CANDIDATE 1

This method will be considered a brute force method. It takes any new point that is

placed and moves it (only along the ‘a’ axis) to the point furthest from all previous points.

To do this it needs to calculate a huge matrix that tracks the position and from that the

distance between all points. This search is along a fine grid. This is why we call this the

brute force method. Although the results of this method are very good in achieving low

discrepancy, it is computationally inefficient. Please observe Figure 4.3 below and note

the following; the spread of the points is very uniformly even. Our discrepancy is near

zero for this method and both the extreme and middle values are picked evenly. However,

there is a major downside. The processing power required to complete this method is

significantly more than required for the previous method. It takes several seconds more to

run this program than the previous and this is only the most basic case in two dimensions.

To employ this method in higher dimensions would be very time consuming. Therefore,

although the uniformity is better, we were still not satisfied with the efficiency of this

method and decided to try a new method. Please observe Figure 4.3 to see the result of this

selection process.
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Figure 4.3: Increased uniformity but decreased efficiency due to using the “Brute Force”

action selection method.

Algorithm 1 is an example of the algorithm for the above method.
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Algorithm 1 Brute Force
1: Input: num iterations, divisions (parameter for number of segments in grid)

2: Output: sa hist (a state-action history matrix)

3: procedure MAIN

4: for i in 1 to num iterations do

5: Generate random si

6: best objective← 0

7: abest ← NULL

8: for j in 0 to divisions do

9: atest ← j
divisions

10: Sweep sa hist and find min dist between (si, abest) and (sj, aj) for j < i

11: if min dist < best objective then

12: abest ← atest

13: best objective← min dist

14: end if

15: end for

16: Store (si, abest)

17: end for

18: end procedure

4.4 LDAS CANDIDATE 2

First, we tried to achieve dissimilarity to previous state-actions by treating the points

like electrons in a field. Again the state dimension is considered fixed, but we allow the

actions to move. Each previous point would repel the current point. Only the newly placed

point would be allowed to move, the others were fixed, and if the new point moved past a

boundary, it was stopped there and given the boundary value as its value. The new point
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would calculate the forces from the previous action point using an inverse square method.

This is the same as the real eclectic force formula. That means points closer had a much

bigger force than those far away. Also, the new point would only move once after all of

these forces were calculated. Wherever it landed would be its new permanent position.

This method started out promising, but we soon learned that it was very difficult to find

ideal values for the forces to be imparted on the new actions. This led to oversampling

of the boundary/extreme values. The middle values would be under-represented. It is

sometimes beneficial to over-sample extreme values, due to the fact that they may be ideal

in a particular environment. However, this method over represented them to an undesirable

degree. Even after many iterations the new actions were still forced to the boundaries and

did not settle on the non-extreme values. Please observe Figure 4.4.

Figure 4.4: Over-represented extreme values due to using the “electrons in a field” action

selection method.

Since this was happening, we decided to change the program and account for the

fact that there were no actions pushing back from beyond the boundaries. Thus, we



47

programmed in “shadow points” just beyond the maximum and minimum action values.

Therefore, when the new actions were moving toward the boundary, they would have a

force countering them from reaching the boundary. In addition, we allowed our new point

to move multiple times until it found a point that was balanced by all of the other forces.

Since it might not find a balance, we added in a friction term to the field. This became

stronger as the point moved. Every move would add more friction until the point would

become stuck. This prevented the program from endlessly bouncing the point up and down

and never finding a balance. Now we had many things to calculate. This was less compu-

tationally efficient, but perhaps it would give better results.

This seemed promising, but just like before it was very difficult finding an ideal value

for the force of shadow points to balance the new actions. Now we ended up with the

reverse problem. Instead of over representing the boundary values we were under repre-

senting them. Please observe Figure 4.5.
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Figure 4.5: Under-represented extreme values due to using the updated “electrons in a

field” action selection method

Algorithm 2 gives pseudo code for this method.
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Algorithm 2 Electrons in a Field
1: Input: num iterations

2: Output: sa hist (a state-action history matrix)

3: procedure MAIN

4: Initialize first state and action s0, a0 in sa hist

5: for i from 1 to num iterations do

6: Create si and ai

7: Set friction = 0

8: Set movement =∞

9: while movement > ε do

10: Sweep sa hist, find distances between (si, ai) and each (sj, aj) for j < i

11: Calculate force as proportional to inverse of square distance

12: Apply friction

13: Normalize the force

14: movement← normalized force

15: Project onto the action dimension

16: ai ← ai +movement

17: Increase friction

18: if ai is on boundary then

19: break

20: end if

21: end while

22: Store si and ai in sa hist

23: end for

24: end procedure
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4.5 LDAS CANDIDATE 3

Our next method employs gradient descent. A gradient is the direction of steepest

ascent or steepest increase. We can find or approximate the gradient and then move in the

opposite direction. Then we will find the steepest descent, thus a gradient descent. We can

set up equations of distance between the previous points. Then we can move towards the

optimal placement of our new action so that it is as far away from all other points as possi-

ble. If we let x be the distance from the current action to the closest previous action, then

we want to maximize x. This is equivalent to minimizing 1
x
. We can apply the gradient de-

scent method to 1
x
. Since the gradient descent method employs a derivative of the objective

function we should have −1
x2

in our calculations. Upon reviewing the code on a later date

we noticed that we have −1
x

where we should have −1
x2

. To the best of our knowledge this

is an error. However, the direction and final position of the actions will be comparable, but

the magnitude of the movement will be slightly different. The overall effect of the method

will be similar. As the new action moves due to the method, the previous action that was

closest before the move may not be after. If we move too far and go past the optimal point

that is all taken into account in the gradient descent method and it will move our action

back towards the optimal position. This method requires a step-size and a decay rate. If the

step-size becomes smaller than some chosen number, say ε, then we stop the process and

say we are close enough to the optimal position. To prevent an infinite loop from occurring

where the new action bounces above and below the ideal position with movement greater

than ε, we have a decay rate. The decay rate ensures that the magnitude of the movements

are decreasing.

Although finding the right parameters for decay and step-size can be difficult, the

rewards of using the method are worth it. Gradient descent allows us to find an approx-

imately minimal distance between the point without requiring intense processing power.

This produces Figure 4.6.
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Figure 4.6: Result of using “Gradient Descent” action selection method with step-size = .1,

decay rate = .7, and ε = .001

Although, this is not quite as accurate as the brute force method in terms of discrep-

ancy it is significantly more efficient in terms of time and processing power. This method

was what we decided would be the one we would pursue as the most efficient and accurate.

Algorithm 3 is an example of the pseudo code for the gradient decent method.
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Algorithm 3 Gradient Descent
1: Input: ε, num iterations, gradient stepsize, decay rate

2: Output: sa hist (a state-action history matrix)

3: procedure MAIN

4: Initialize random (s0, a0)

5: for i in 1 to num iterations do

6: stop flag ← True

7: Generate random (si, ai)

8: current stepsize← gradient stepsize

9: while stop flag do

10: Sweep sa hist, find distances between (si, ai) and each (sj, aj) for j < i

11: Find min distance

12: Calculate gradient of 1
min distance

13: ai ← ai − gradient ∗ current stepsize

14: if ai is on boundary then stop flag = False

15: end if

16: if gradient ∗ current stepsize < epsilon then stop flag = False

17: end if

18: current stepsize← current stepsize ∗ decay rate

19: end while

20: Store (si, ai) in sa hist

21: end for

22: end procedure

The discrepancy for the methods are described in Table 4.1. Each method generated

500 points within one state dimension and one action dimension, and then the discrepancy

was measured using 500 rectangles of random size. This process was repeated 250 times
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and the mean was taken of all the discrepancy estimates for each method.

Method Discrepancy

1 Electrons in a Field 0.08323688

2 Brute Force 0.0490949

3 Gradient Decent 0.07164366

4 Uniform 0.05692339

Table 4.1: Discrepancy estimates for the four methods described

Although the Brute Force method has a lower discrepancy, the processing time lost to

achieve this is not worth the decrease in discrepancy when compared to the gradient descent

method. In addition, gradient descent favoring the boundaries, but not over-representing

them to an extreme amount is an advantage in certain contexts. We will discuss this more

with specific examples in chapter 5. For the remainder of the thesis when we refer to LDAS

it will be assumed that it is operating off of the gradient descent method of selecting the

actions.

4.6 ORNSTEIN-UHLENBECK SELECTION

In addition to uniform selection, the other selection method that we will compare

LDAS to is the Ornstein-Uhlenbeck selection method [11]. This method was originally

conceived in a physics context as a stochastic differential equation and is equivalent, in dis-

crete time, to a time series model. This method intentionally correlates actions in time. In

some ways, this is an opposite selection method to LDAS. Correlated actions will be sim-

ilar to ones previously selected. This can be a desirable method in the context of robotics.

Since it correlates actions, it can reduce the wear on mechanical parts. Ornstein-Uhlenbeck

can be thought of as an auto-regressive (AR(1)) process. Mathematically it could be repre-

sented as follows.
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at+1 = at(1− θ) + Z

Where θ represents the process parameter and is strictly greater than zero, and Z rep-

resents standard normal noise. Note that as θ is closer to zero then the auto correlation is

stronger, but as θ gets closer to one the effect is weaker. If θ = 1 then action selection is

independent. This method has some drawbacks in that if it finds a poor action it will take

it awhile to move away from that action in future picks. This is because it correlates the

actions so that they are only slightly dissimilar to previous selections. As stated before, this

is close to the opposite of the LDAS method and will make a great comparison method for

testing. Now that the premise is understood we will go through the different approaches

we tried to achieve an effective LDAS algorithm.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 TECHNICAL SET-UP

There are different aspects of the LDAS method that we want to compare to more

standard methods. We start by devising experiments that will solely test the relative ef-

fectiveness of the methods during the exploration stage. We pick a few different, basic

reinforcement learning problems to test on. Before going into the details of the problems

let us discuss the set-up.

Experiments were run in Python version 3.6.12, making use of Spyder 5.05 as a de-

velopment environment. For reinforcement learning environments, we used the Gym li-

brary [2], version .17.2. For exploration strategies, we used the Garage library [1], version

2021.3.0. Both Gym and Garage are intended to be run on a Linux operating system.

Because both student and advisor use Windows machines, we employed Docker [6], a vir-

tualization software, to run Ubuntu 18.04 in a container. This library contains a class for

implementing Ornstein-Uhlenbeck action selection. To implement LDAS, we started with

the built-in EpsilonGreedyPolicy and modified it to carry out Algorithm 3.

5.2 EXPLORATION EXPERIMENTS MOUNTAIN CAR

Now that we have the set-up, the first problem to test is the MountainCarContinuous-

v0 problem. This is based off of Andrew Moore’s dissertation. where he creates the details

of this problem, but has since become a classic reinforcement learning benchmark envi-

ronment [7]. This problem consists of a car starting at the bottom of a valley between two

hills, with a goal being at the top of the hill on the right. The car can move to the right and

to the left, alternating between forward and reverse. If the car only accelerates to the right

it will not make it to the top of the hill. It needs to rock back and forth until it builds just
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enough speed to overcome the hill. It can be a difficult problem since it starts in a state

of failure and needs to complete a very specific sequence of events to reach the goal. To

visualize this problem observe Figure 5.1

Figure 5.1: Visual representation of the mountain car problem

The details of this problem are as follows. The action space is one-dimensional be-

tween [−1, 1]. A negative number will accelerate the car to the left and a positive will

accelerate it to the right. The state space is two-dimensional, and takes into account the

car’s position and its velocity. The reward for reaching the top of the right hill is 100.

Reaching the top will end the episode, but it will then subtract the squared sum of actions

from start to goal. This incentivizes the car to not make many actions carelessly, but that

may mistakenly lead the agent to think that it is better to not move at all.

We did not train an agent to learn how to solve this problem. We instead focused on

exploration to determine if action selection based on LDAS would be superior to a uniform

action selection. We let the problem run for a maximum of 10,000 steps for 300 episodes.

We would then measure the number of steps per episode for the LDAS method and com-

pare this to the uniform and Ornstein-Uhlenbeck method. The lower the amount of steps
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needed to reach the goal the better the exploration would be considered. The results can be

visualized in Figure 5.2.

Figure 5.2: Comparison of the amount of steps taken to reach the goal of the mountain car

problem between the three action selection methods Uniform, LDAS, Ornstein-Uhlenbeck.

Lower values are better.

Starting from the far left of the graph we have the LDAS method ranging in step-size

from 0.2 to 2. As we increase our step size the strength of the LDAS effect increases. It is

clear that the number of steps to reach the goal goes down the more LDAS is employed for

the selection process. Near the middle of the graph starts the Ornstein-Uhlenbeck method

with a step size ranging from 0.2 to 0.8. The lower the step size is for this method the

stronger the Ornstein-Uhlenbeck effect is, and the best performance this gives is at an auto

correlation parameter of 0.2. Even at this parameter this method does not out-perform the
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LDAS method. Lastly, the far right box plot in the image is uniform selection. It has no

parameter which is why there is an “NA” below that particular box plot. It also has high

values compared to the other methods, meaning it has a worse performance.

In addition to performance, we should also take into account the time needed to com-

plete each episode. The detail of those results can be seen in Figure 5.3.

Figure 5.3: Comparison of the amount of time taken in seconds per step for the moun-

tain car problem between the three action selection methods Uniform, LDAS, Ornstein-

Uhlenbeck.

Here we can see that the uniform and Ornstein-Uhlenbeck methods are quicker, how-

ever the knowledge gained during that time is not as valuable as the LDAS method. The

additional time required to run LDAS does detract from its overall performance, but de-

pending on the context, selecting better actions even though it takes longer may be pre-

ferred. If data is expensive to collect, for example collecting data from a physical robot, a
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few extra seconds of computation time to plan the next action might be more desirable.

The following two tables will be the numeric summary of these experiments. Table

5.1 shows the summary for the steps each method took. Table 5.2 shows the summary of

the time each method took. Of special interest compare the first and last row in the mean

column for this data. The uniform has a mean time of 2.59 seconds, but also has a mean

of 8923.05 steps. The Ornstein-Uhlenbeck method has the best mean of 4861.38 at a step

size of 0.8, and a corresponding time of 0.74. The LDAS method has the best mean at a

step size of 1.8. The mean for this step size is 3086.35, and the corresponding time of 1.25

seconds. Although LDAS is a more complicated method and takes longer to run since it is

running for fewer steps each episode the time for LDAS is superior to the uniform method,

but inferior to the Ornstein-Uhlenbeck. In comparison to Ornstein-Uhlenbeck the extra

time is spent finding more valuable actions to pick, since the LDAS method takes less steps

to complete the task.
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Exploration Type Parameter mean median sd IQR

1 LDAS 0.2 7980.81 10000.00 2791.12 4316.75

2 LDAS 0.4 7003.04 7765.00 3152.93 5836.25

3 LDAS 0.6 5495.69 4834.00 3226.01 6429.50

4 LDAS 0.8 4556.06 3823.00 2914.55 4498.00

5 LDAS 1 3877.61 3155.00 2645.28 3318.50

6 LDAS 1.2 3664.10 2939.00 2648.15 3426.25

7 LDAS 1.4 3120.65 2603.50 2174.24 2724.75

8 LDAS 1.6 3308.55 2399.00 2522.59 3194.75

9 LDAS 1.8 3086.65 2372.50 2336.04 2662.75

10 LDAS 2 3214.87 2478.50 2412.42 2986.50

11 Ornstein 0.2 4592.41 3842.00 2834.90 3923.00

12 Ornstein 0.4 4529.50 3959.50 2740.51 4123.50

13 Ornstein 0.6 5094.83 4463.50 2983.82 5082.50

14 Ornstein 0.8 4861.38 3951.50 2891.70 4718.25

15 Uniform NA 8923.05 10000.00 2101.04 968.25

Table 5.1: Numerical results for the amount of steps taken to reach the goal for the moun-

tain car problem between the three action selection methods, Uniform, LDAS, Ornstein-

Uhlenbeck.



61

Exploration Type Parameter mean sd IQR

1 LDAS 0.2 11.09 4.57 7.23

2 LDAS 0.4 10.76 5.74 11.08

3 LDAS 0.6 7.71 5.52 11.24

4 LDAS 0.8 5.23 4.17 6.25

5 LDAS 1 3.45 2.99 3.50

6 LDAS 1.2 2.57 2.35 2.66

7 LDAS 1.4 1.68 1.49 1.61

8 LDAS 1.6 1.54 1.47 1.59

9 LDAS 1.8 1.25 1.18 1.12

10 LDAS 2 1.06 0.96 1.01

11 Ornstein 0.2 0.70 0.43 0.60

12 Ornstein 0.4 0.69 0.42 0.63

13 Ornstein 0.6 0.78 0.45 0.79

14 Ornstein 0.8 0.74 0.44 0.71

15 Uniform NA 2.59 0.67 0.30

Table 5.2: Numerical results for the amount of time taken in seconds per episode for

the mountain car problem between the three action selection methods, Uniform, LDAS,

Ornstein-Uhlenbeck.

5.3 EXPLORATION EXPERIMENTS RACING CAR

The next experiment we conducted was with an environment called CarRacing-v0.

This is a top-down racing environment where a track is randomly generated and the agent

gains rewards as it moves forward and discovers more track. As a visual representation

look at Figure 5.4.
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Figure 5.4: Visual representation of the race car problem.

The action space is three-dimensional and consists of the steering between [−1, 1], gas

between [0, 1], and the brake between [0, 1]. A negative value for steering turns the agent

left and a positive turns it to the right, while a value of zero keeps it going straight. For gas

and brake the closer the value is to one the stronger the gas or brake is applied respectively.

The state space is very large, because it is the pixel representation of the screen. That is

the state space is 96 x 96 x 3. The 96 x 96 represents the amount of pixels on the screen,

and we multiply that product by three to get the RGB representation of each pixel. The

reward is 1000 divided by the total number of tiles in the track minus 0.1 for every frame.

For example, if you finish in 500 frames, your reward is 1000 - 0.1*500 = 950 points.

Instead of measuring steps for this problem we measured the return of reward per

episode for each exploration method. Again we will have a visual and numerical breakdown

of the results. Now in this case the higher the box plot is the better because it indicates a

higher reward.
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Figure 5.5: Comparison of the amount reward received per episode for the race car problem

between the three action selection methods Uniform, LDAS, Ornstein-Uhlenbeck.
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Figure 5.6: Comparison of the amount time taken in seconds per episode for the race car

problem between the three action selection methods Uniform, LDAS, Ornstein-Uhlenbeck.

Looking at Figure 5.5 and Figure 5.6 we see these results are far closer than the pre-

vious test. There is not a significant advantage to using one method over the other in this

case. If we look at the numerical results they confirm this.

Table 5.3 covers the numeric results of the reward seen per episode, and Table 5.4

details the time taken per episode.
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Exploration Type Parameter mean median sd IQR

1 LDAS 0.2 -31.76 -32.14 5.78 7.24

2 LDAS 0.4 -31.96 -32.20 5.39 6.54

3 LDAS 0.6 -31.90 -32.32 5.33 6.58

4 LDAS 0.8 -31.83 -31.86 5.80 8.44

5 LDAS 1 -31.78 -31.74 5.25 6.83

6 Ornstein 0.2 -38.20 -36.06 17.08 21.03

7 Ornstein 0.4 -34.24 -32.57 13.17 13.16

8 Ornstein 0.6 -32.99 -32.69 10.32 11.71

9 Ornstein 0.8 -32.50 -31.48 9.17 11.08

10 Uniform NA -31.62 -32.20 5.79 7.45

Table 5.3: Numerical results for the amount of reward received per episode for the race car

problem between the three action selection methods, Uniform, LDAS, Ornstein-Uhlenbeck.

Exploration Type Parameter mean sd IQR

1 LDAS 0.2 0.19 0.02 0.02

2 LDAS 0.4 0.18 0.00 0.00

3 LDAS 0.6 0.18 0.00 0.00

4 LDAS 0.8 0.18 0.00 0.00

5 LDAS 1 0.18 0.00 0.01

6 Ornstein 0.2 0.04 0.00 0.00

7 Ornstein 0.4 0.05 0.00 0.00

8 Ornstein 0.6 0.05 0.00 0.00

9 Ornstein 0.8 0.05 0.00 0.00

10 Uniform NA 0.18 0.00 0.00

Table 5.4: Numerical results for the amount of time taken per episode for the race car

problem between the three action selection methods, Uniform, LDAS, Ornstein-Uhlenbeck.
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These results are very close, and evaluating the problem reveals an explanation. The

uniform method picks randomly with no favor to any action. This moves the car around the

track slowly, but uniformly. The Ornstein-Uhlenbeckk method uses correlated data to pick

actions that are similar to previous actions. When it has the car move forward it receives

a large reward because it continues to move forward and see more of the track. However,

if it selects an action to hit the brake or turn the car, it will continue to do actions similar

to this for awhile and receive a very low reward. This is why the variance is much higher

for this method. Depending on the first action selected it either does very well with many

similar actions, or very poorly. The LDAS method takes actions that are as dissimilar as

possible from previous actions to learn its environment. So if LDAS accelerates the car

forward and gains a large reward from that, it is likely its next action will be to slam on

the brakes and gain no reward next. This is because it is only exploring, it is not trying to

learn to maximize its reward. Overall for exploration, both methods are very comparable

in efficiency.

5.4 EXPLORATION EXPERIMENTS LUNAR LANDER

The next problem we decided to test against was the LunarLanderContinuous-v2 prob-

lem. This is a more complicated problem. It starts with a lander machine that needs to land

on the moon between two goal posts. Observe Figure 5.7.
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Figure 5.7: Visual representation of the lunar lander problem.

It has an engine that pushes the machine straight up, and an engine that can move

the machine left and right. There is not enough energy in the engine to actually lift the

machine, but only slow its decent to a pace that is safe for landing. The reward structure

of this problem is that it gets a large positive reward of 100 if it lands gracefully anywhere

without crashing. It will receive an additional 100-140 reward if it lands between the goal

posts. However, if it crashes it can lose up to 200 reward depending on how rough the crash

is.

The state space for this problem is eight-dimensional. It consists of horizontal and

vertical position as well as horizontal and vertical velocity. It takes into account the angle

that the lander has from an upright position and the angular velocity. Lastly, it sees if the

right and left leg of the lander are touching the ground.

The action space is two-dimensional. It consists of the side engine moving the lander
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right and left, and the main engine lifting the lander up.

The reward structure is as follows. It will lose .03 per frame for using the side engine

and loses .3 per frame for using the main engine. This incentivizes the agent to conserve

fuel. If the lander crashes it loses 100 reward, but if it lands without a crash it gains 100.

If it lands between the goal posts it gains 100 to 140 reward, and loses reward for moving

away from the goal posts. Finally, for each leg touching the ground when the lander lands

it gains 10 reward.

Again we focused on the exploration portion of this problem, pitting LDAS against the

Uniform and Ornstein-Uhlenbeck exploration methods to see which would perform best.

Here we are seeing how many episodes it took to obtain a good reward. In our case, a

reward of positive five. Therefore, the lower the box plot is the better it is, and we can see

the result in Figure 5.8.
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Figure 5.8: Comparison of the amount episodes taken to receive a reward of 5 for the lu-

nar lander problem between the three action selection methods Uniform, LDAS, Ornstein-

Uhlenbeck.

There is not a large difference between the results, but it does not look like LDAS

is superior. We can see that with a step-size of 0.2, LDAS and uniform’s performance is

almost the same, and both are comparable to Ornstein-Uhlenbeck with a step size of 0.8.

Why would LDAS be worse here when it seems more clearly superior in the mountain car

problem? This is likely due to the fact that LDAS samples from the extreme values at a

higher rate then the uniform method. In a problem like mountain car this is an advantage

as selecting the extreme values tend to get the car to the top of the hill. However, in

the lunar lander problem where precise actions are needed to control the throttle this is a

disadvantage. Let us also check the time required for these methods with Figure 5.9.
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Figure 5.9: Comparison of the amount of time taken per episode for the lunar lander prob-

lem between the three action selection methods Uniform, LDAS, Ornstein-Uhlenbeck.

Now we see an issue with LDAS. Although the results for reward are similar be-

tween the methods the time taken is significantly different. Perhaps, in the learning phase

the LDAS method would provide more meaningful learning, but strictly looking at explo-

ration it seems to be inferior to the other methods. The numerical results for the amount of

episodes taken to see a reward of 5 are summarized in Table 5.5, and the numeric results

for the time taken per episode are summarized in Table 5.6.
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Exploration Type Parameter mean median sd IQR

1 LDAS 0.2 142.96 102.50 137.66 146.25

2 LDAS 0.4 157.97 116.50 148.66 148.75

3 LDAS 0.6 183.68 118.00 182.31 196.25

4 LDAS 0.8 226.90 160.00 218.72 261.50

5 LDAS 1 235.99 174.50 224.81 252.50

6 LDAS 1.2 283.30 190.50 286.68 314.50

7 LDAS 1.4 270.52 199.50 259.16 284.50

8 LDAS 1.6 310.38 195.50 332.91 339.00

9 LDAS 1.8 248.58 160.50 246.71 288.25

10 LDAS 2 245.13 178.50 212.64 259.00

11 Ornstein 0.2 297.94 211.50 309.76 293.00

12 Ornstein 0.4 226.82 135.50 233.75 270.00

13 Ornstein 0.6 216.99 153.00 208.25 229.00

14 Ornstein 0.8 198.58 123.50 219.42 219.50

15 Uniform NA 156.09 101.50 170.04 146.00

Table 5.5: Numerical results for the amount of episodes taken to receive a reward of 5

for the lunar lander problem between the three action selection methods, Uniform, LDAS,

Ornstein-Uhlenbeck.
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Exploration Type Parameter mean sd IQR

1 LDAS 0.2 0.47 0.13 0.14

2 LDAS 0.4 0.56 0.15 0.14

3 LDAS 0.6 0.60 0.17 0.16

4 LDAS 0.8 0.64 0.19 0.14

5 LDAS 1 0.61 0.15 0.12

6 LDAS 1.2 0.57 0.14 0.12

7 LDAS 1.4 0.52 0.10 0.09

8 LDAS 1.6 0.46 0.11 0.08

9 LDAS 1.8 0.40 0.09 0.09

10 LDAS 2 0.35 0.07 0.07

11 Ornstein 0.2 0.04 0.02 0.00

12 Ornstein 0.4 0.04 0.01 0.00

13 Ornstein 0.6 0.04 0.01 0.00

14 Ornstein 0.8 0.04 0.01 0.00

15 Uniform NA 0.08 0.05 0.02

Table 5.6: Numerical results for the amount of time taken per episode for the lunar lander

problem between the three action selection methods, Uniform, LDAS, Ornstein-Uhlenbeck.

The mean time for the uniform method was .08, and the best mean time for the

Ornstein-Uhlenbeck method was .04. However, the fastest time for the LDAS was .35.

Although we wanted LDAS to be superior in all aspects, it was not the case for the explo-

ration tests we did. However, that does not mean that the results will necessarily hold for

the learning experiments.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In conclusion to the results of the experiments run for this thesis, we have determined

that the best action selection method depends greatly on the particular environment the

agent is trying to learn in. On one hand, using a low discrepancy action selection process

produces superior results in the exploration stage when extreme values are more desirable

and optimal actions will alternate, like the mountain car problem. On the other hand, if

precise control is needed and extreme actions are undesirable, such as in the lunar lander

problem, LDAS may be inferior. Finally, in an environment in which maintaining momen-

tum in the action dimension is helpful, such as the racing car problem, Ornstein-Uhlenbeck

is likely to perform best.

Although this thesis did not conduct any learning experiments, it is possible that LDAS

would produce improved learning for the agent. The knowledge of the actions gained dur-

ing the exploration stage under LDAS is extensive compared to the other methods. It will

see a wider range of its actions more quickly and this could lead to a more optimized learn-

ing for the agent. Future work will be to determine how LDAS performs during the learning

phase for an agent compared to other methods.
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