
18 October 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Effective techniques for automatically improving the transition delay fault coverage of Self-Test Libraries / Cantoro,
Riccardo; Garau, Francesco; Girard, Patrick; Kolahimahmoudi, Nima; Sartoni, Sandro; Reorda, Matteo Sonza; Virazel,
Arnaud. - (2022), pp. 1-2. ((Intervento presentato al convegno 2022 IEEE European Test Symposium tenutosi a
Barcelona (SP) nel 23-27 Maggio 2022 [10.1109/ETS54262.2022.9810392].

Original

Effective techniques for automatically improving the transition delay fault coverage of Self-Test Libraries

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ETS54262.2022.9810392

Terms of use:
openAccess

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2969302 since: 2022-07-03T17:10:07Z

IEEE

Effective techniques for automatically improving the
transition delay fault coverage of Self-Test Libraries

Riccardo Cantoro∗, Francesco Garau∗, Patrick Girard†, Nima Kolahimahmoudi∗,
Sandro Sartoni∗, Matteo Sonza Reorda∗ and Arnaud Virazel†

∗Department of Computer and Control Engineering
Politecnico di Torino

†LIRMM
University of Montpellier / CNRS

Turin, Italy Montpellier, France

Abstract—In-field test of integrated circuits using Self-Test
Libraries (STLs) is a widely used technique specifically suited to
guarantee the processor’s correct behavior during the operative
lifetime, as mandated by functional safety standards such as
ISO26262. Developing STLs for stuck-at faults requires signif-
icant manual efforts from test engineers, and targeting delay
faults is even more challenging. In order to support this process,
in this paper we propose a method to automate the creation of
STLs targeting delay faults starting from existing STLs targeting
stuck-at faults. The method is based first on identifying excited
but not-observed transition delay faults and then adding suitable
instructions able to detect them. Experimental results on a RISC-
V processor show that the method can systematically detect
a significant percentage of the target faults with reasonable
computational effort and test code size increase.

Index Terms—software-based self-test, software test libraries,
in-field test, safety, functional test, delay faults

I. INTRODUCTION

New semiconductor technologies are increasingly adopted
in emerging applications. Such technologies, however, are
extremely complex and sophisticated, leading to more frequent
physical defects and reduced operative lifetime. Most of these
defects are tested by targeting delay faults, such as transition
delay faults (TDFs). Functional testing is an effective solution
to tackle such issues. In the form of Software-Based Self-
Test (SBST), functional testing [1] is based on the execution
of STLs by the device under test (DUT). This approach has
been proved effective both when processor cores [2]–[6] and
peripherals [7]–[9] are tested. SBST is a desirable solution for
in-field testing, i.e., when the device’s reliability and safety has
to be guaranteed throughout the operative lifetime, and can be
used whenever compliance to standards such as the ISO26262
standard for automotive systems is required.

Developing STLs from scratch, however, is not trivial, as
it requires a significant amount of manual effort. Moreover,
understanding why certain faults are not detected is not always
easy. The work in [10] moves the first step in classifying not-
observed TDFs, defining some upper boundaries on how much
the final TDF coverage can be increased.

In this paper, we propose an automatic and systematic
methodology to increase the TDF coverage of STLs by de-
tecting faults identified in [10] on complex pipelined processor

cores, starting from a set of test programs devised for stuck-at
faults (SAFs). The reported results show that it is possible to
detect most of the TDFs (increasing the coverage by up to
15%) with a reasonable test time increase (from 15% to 22%)
and computational effort. The article is organized as follows:
in Section II related works are presented, while in Section III
we describe the proposed approach. In Section IV we present
the experimental results and, finally, in Section V we draw the
conclusions.

II. BACKGROUND

[10] introduces a study on TDFs in modern pipelined
CPUs that have not been observed throughout the execution of
STLs targeting SAFs. The article introduces User Accessible
Register faults (UARs), whose effects reached registers that
can be directly observed through instructions from the CPU’s
ISA, and Hidden Register (HRs) faults, whose effects reached
registers non directly controllable. [10] provides some useful
insights on what faults to target to improve the final fault
coverage, and an upper bound on how much the final transition
delay fault coverage can be improved. Strategies to detect
them, however, are not given. Articles like [11], [12] focus
on the improvement of available programs to obtain high
fault coverage figures. These works show that methodologies
for improving test programs can be successfully devised.
Nonetheless, they are developed bearing the classical stuck-
at fault model in mind.

III. PROPOSED APPROACH

This work focuses on the UAR fault category introduced
in [10], defining some internal observation points, that do
not require any hardware modification, to be used during
simulation to further refine the topological analysis about fault
effects.

In order to detect UAR faults, first we analyze the fault
data base produced at the end of the fault simulation where
internal observation points have been added. This is done to
understand what UAR we have to work on, and what portion
of the test program should be improved. In modern in-order
pipelined CPUs there are instructions that take more than one

clock cycle to go through the CPU execution stage (multi-
cycle instructions), and single-cycle instructions that only take
one cycle in the execution stage. The former in particular
should be carefully taken into account, as the fault effect
might be overwritten during the required execution cycles.
When dealing with single-cycle instructions, a store operation
on the register affected by the faulty value after the time at
which said effect reached the register, and before the register
is overwritten by another operation, is sufficient. Multi-cycle
instructions, instead, can be dealt with in two ways: if the
fault effect is still present at the last execution cycle the same
strategy adopted for single-cycle instructions is used, else we
modify the operands of the multi-cycle instructions to ensure
that the faulty value reaches the register towards the end of the
execution stage. As demonstrated by the experimental results,
identifying suitable operands for this purpose is a feasible task,
which can often performed following a try-and-error approach.

Finally, it is noted that a set of instructions added to the
original STL may be capable of detecting more than one TDF
at the same time, thus achieving better fault coverages with a
smaller test program. This is only possible for all those TDFs
whose effects propagate to the same register at the same time.

IV. EXPERIMENTAL RESULTS

A. Case study

This work has been validated on PULPino [13], a 32-bit
RISC-V-based SoC platform developed by ETH Zurich and
Università di Bologna. We adopted three different STLs that
were originally intended to test SAFs on the PULPino core.
In order to ensure a diverse and realistic testbench, the three
test programs we selected have been developed following
different implementation strategies. Fault simulations have
been carried out using Synopsys Z01X, a commercial tool
devised specifically for functional safety. The full flow of STL
improvement and fault simulation for TDFs took no longer
than 4 days on an Intel Xeon CPU E5-2680 v3 server with a
clock frequency up to 3.3GHz.

B. Achieved results

Table I shows data on the UAR faults that were detected as
a result of the proposed methodology.

TABLE I
ANALYSIS ON DETECTED UAR FAULTS

STL1 STL2 STL3

Detected UARs 6, 578 23, 912 2, 864
Total UARs 6, 591 23, 922 2, 900

%Detected UARs 99.80 99.96 98.76

Code size [kB] 6.34 4.17 3.53

Looking at the table, our approach is capable of detecting
almost every fault out of those that are excited but not detected
by the existing STL, with the worst case scenario being
STL3 with a 98.76% of UAR faults being detected. Given
a total amount of 159, 326 transition delay faults, through

our methodology we can increase the final fault coverage by
4.13% for STL1, 15.01% for STL2, and 1.80% for STL3,
respectively. This improvement comes with an increase of the
final code size, which amounts to an additional 22.21% for
STL1, 14.97% for STL2, and 21.16% for STL3. This proves
that our strategy is able to systematically test not-observed
transition delay faults whose effects reached user accessible
registers.

V. CONCLUSIONS

This work introduces an automated and systematic method-
ology to detect TDFs whose effects have been excited but
not observed by already available STLs. Starting from a
library of STLs developed for SAFs, our approach defines
strategies to detect transition delay faults belonging to the class
of UAR faults. Experimental results gathered on a RISC-V
test case show that we are able to detect almost every fault
affecting UARs. Such increase in fault coverage comes with
a reasonably small increase of the code size, with the worst
case scenario consisting in about 22% added code size. Future
works will include the definition of effective strategies to test
HR faults, in order to match as closely as possible the upper
bounds in recoverable fault coverage presented in [10].

REFERENCES

[1] M. Psarakis et al., “Microprocessor Software-Based Self-Testing,” IEEE
Design & Test of Computers, vol. 27, no. 3, pp. 4–19, 2010.

[2] K. Christou et al., “A Novel SBST Generation Technique for Path-Delay
Faults in Microprocessors Exploiting Gate- and RT-Level Descriptions,”
in IEEE VTS, April 2008, pp. 389–394.

[3] V. Singh et al., “Instruction-Based Self-Testing of Delay Faults in
Pipelined Processors,” IEEE Transactions on VLSI Systems, vol. 14,
no. 11, pp. 1203–1215, Nov 2006.

[4] P. Bernardi et al., “Development Flow for On-Line Core Self-Test
of Automotive Microcontrollers,” IEEE Transactions on Computers,
vol. 65, no. 3, pp. 744–754, 2016.

[5] Wei-Cheng Lai et al., “Test program synthesis for path delay faults in
microprocessor cores,” in IEEE ITC, 2000, pp. 1080–1089.

[6] P. Bernardi et al., “A Deterministic Methodology for Identifying Func-
tionally Untestable Path-Delay Faults in Microprocessor Cores,” in
International Workshop on MTV, Dec 2008, pp. 103–108.

[7] M. Grosso et al., “Software-Based Self-Test for Transition Faults: a Case
Study,” in IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), 2019, pp. 76–81.

[8] R. Cantoro et al., “In-field functional test of can bus controllers,” in
IEEE VTS, 2020, pp. 1–6.

[9] A. Apostolakis et al., “Test Program Generation for Communication
Peripherals in Processor-Based SoC Devices,” IEEE Design & Test of
Computers, vol. 26, no. 2, pp. 52–63, 2009.

[10] R. Cantoro et al., “Self-test libraries analysis for pipelined processors
transition fault coverage improvement,” in 2021 IEEE 27th International
Symposium on On-Line Testing and Robust System Design (IOLTS),
2021, pp. 1–4.

[11] A. Ruospo et al., “On-line Testing for Autonomous Systems driven
by RISC-V Processor Design Verification,” in IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2019, pp. 1–6.

[12] A. Jasnetski et al., “Automated software-based self-test generation for
microprocessors,” in International Conference MIXDES, 2017, pp. 453–
458.

[13] ETH Zurich and Università di Bologna, “PULPino microcontroller
system.” [Online]. Available: https://github.com/pulp-platform/pulpino

