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Abstract

The soaring complexity of computer networks has opened up new opportunities, but
it also raised new problems. For example, edge computing, which extends the cloud
paradigm and moves it closer to the data source (i.e., to the edge of the network),
can pave the way for new interactive applications, which are associated with more
stringent requirements. This new paradigm can be used, for example, in life-saving
applications such as telemedicine and remote surgery, or first responder support after
a natural or human-made disaster scenario. Due to their mission and nature, these
services are often referred to as critical systems. However, since these systems are
not only limited to real-time video streaming but pose requirements for extremely low
round-trip delay, it is desirable that the management and orchestration of networks
would consider new methodologies to address the new data flow.

A recent trend dictating this evolution is constituted by the softwarization and
virtualization of networks, which have drastically simplified the deployment and real-
time reconfiguration of network functions, allowing them to continuously adapt and
to deal with dynamic demands in an automated way. Alongside, recent management
and orchestration approaches for softwarized networks employ Artificial Intelligence
(AI) and Machine Learning (ML) to further reduce reaction time and improve the
accuracy of decisions, where the network operations can be automated to the point
of realizing autonomous driving networks. However, while automating operations
can improve the overall system (it is acknowledged that 70% of network faults are
caused by manual errors), AI/ML methods are not the panaceas, and we are still far
from having a fully operating and efficient automated architecture.

In this thesis, we present a novel class of software network solutions that share the
goal of enabling intelligent and autonomous computer networks, exploring how to
exploit the power of AI/ML to handle the growing complexity of the critical systems.
We start with routing and network planning, proposing two separate solutions,



v

Rope and Mystique. The former steers the traffic over paths that are predicted
to be unloaded in order to mitigate network congestion. The latter is a network
management schema that auto-scales (virtual) network resources to accommodate
the traffic demand and reacts to possible failures. Then, acting on TCP congestion
control, we propose an ML-based solution aiming to solve the problem of an adequate
congestion window update strategy, and that can increase the throughput and fairness
while reducing the number of packets lost and delay.

Finally, we consider a specific edge computing problem, namely task offloading,
in which a task can be fully or partially offloaded to the close multi-access edge
computing in order to speed up the computation. Focusing on task planning manage-
ment for Unmanned Aerial Vehicles (UAVs), we present two ML-based offloading
decision schemes that can be deployed and used depending on the nature of the
constraints of devices under consideration. First, we focus on a collaborative of-
floading decision strategy proposing the use of Multi-Agent Reinforcement Learning
(MARL) to jointly improve the energy efficiency and task completion time of edge
computing-enabled UAVs. Second, we design a solution less hungry for computation
and memory resources, and that, by predicting future device load, supports the UAV
decide whether to offload incoming tasks.

In conclusion, we believe that the proposed solutions, and their combination, can
lay the foundation for automated systems that better suit modern edge environments
and cellular networks by providing unprecedented flexibility and adaptation to even
unseen and unknown network conditions.
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Chapter 1

Introduction

In recent years, communication networks have witnessed a radical evolution towards
more programmability and flexibility. Among the main leading factors for such
evolution, we can cite the so-called “network softwarization". Such paradigm was
enabled by technologies such as Software Defined Networking (SDN), Network
Virtualization (NV), and Network Function Virtualization (NFV), which have also
reached wireless networks with concepts including Software Defined Radio Access
Networks [1].

The separation of control and data plane, as suggested in SDN, has attracted
interest from both academia and industry. In particular, the combination of such
network softwarization and new architectures opened up new opportunities. For
example, edge computing, a novel paradigm in which resources, instead of resid-
ing in the cloud, are moved closer to the sender, i.e., at the edge of the network,
can facilitate the rise of new interactive systems, promising simultaneously (ultra)
low-latency, high-bandwidth, and reliable telecommunications. Together, the edge
computing paradigm and the programmability of the data plane with novel network
programming languages such as P4 [2] or the Deep Programmable Data Plane Kit
(DPDK) [3] are showing promising business use cases, supporting several applica-
tions [4]. Among all examples of these networked systems and applications, in this
thesis the focus is on the so-called “critical systems", deployed for life improvement
and sometimes even life-saving services. Consider, e.g., a remote surgery operation,
where the system should lead to an improvement in the accuracy and dexterity of
a surgeon while minimizing trauma to the patient [5]. Similarly, a telepathology
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session, in which histological imagery is transmitted over delay and bandwidth-
sensitive path to be processed and shared with a remote medical doctor for real-time
diagnosis or pre-computation of digital pathology [6, 7]. As another example of
critical networked application, we considered a response to a natural or human-made
disaster that requires real-time imagery generated by first-responders with the in-
cident commander to recognize faces of disaster victims [8], or the detection of
children in an attempt to reunite them with their families [9, 10].

On the one hand, these novel paradigms are opening new applications and
business opportunities. On the other hand, however, they are opening new network
and application management problems. As highlighted further in each chapter of
this thesis, there is a need for new effective and efficient management of softwarized
networks and services to cope with the unfolding plethora of opportunities provided
by softwarization. Such flexibility does not necessarily have to be addressed by
selecting a configuration once, but systems can be adapted continuously and be able
to deal with dynamic demands in an automated way [11]. In this perspective, we
argue that Artificial Intelligence (AI) and Machine Learning (ML) can play a central
role in managing and orchestrating softwarized networks for the following reasons.

First, the tools that network operators use to gather data from the network have
not changed appreciably in decades, even as both demands on the network and traffic
volumes have increased. The network data collection, the analysis of such data, and
the decision of whether and how to adapt the network’s configuration in response
to changing network conditions (e.g., a shift in traffic demand, an attack), still
remain three decoupled steps. Operators perform network management and network
optimization tasks on several timescales, often relying on operators’ experience and
cumbersome adjustments.

Second, new security and performance requirements create a growing need
for new approaches to real-time network management that exploit the growing
capabilities in programmable networks and systems to support the analysis of real-
time streaming data. Despite recent advances in algorithmic and system aspects
of streaming applications, the set of queries that network management requires is
significantly more extensive than current methods can handle.

Third and lastly, due to the increasing popularity of Internet-connected devices
and the various applications that run over the network, the expectations for network
reliability and performance are greater than ever. To achieve these goals, network
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operators must continuously collect and analyze the various data streams from the
network, possibly with lightweight yet accurate methods.

Therefore, we believe that networks can be equipped with AI/ML to reach
autonomous run-time decision-making capabilities, as also suggested by recent
trends [12–15]. Given the fact that it is almost impossible for human operators
to render network management in real-time, it is likely that future networks will
apply AI/ML to autonomously identify and locate congestion or malfunctions in
the network, and opportunely react. For example, to accurately configure and
manage itself, the network needs to pinpoint the malfunction, collect and analyze
measurements in a stream way. Once metrics are collected, the network reacts to
address the sub-optimal behavior via network programmability.

In addition, there is an application push to make networks more reactive and able
to accommodate the more stringent requirements. While solutions for real-time com-
munications have been proposed for video streaming [16–19], supporting round-trip
time on communication necessary for critical systems remains a major challenge [5].
The challenges introduced by interactive, reliable, and low-latency communications
go beyond the current advances in video streaming and are yet to be solved. Thus,
despite the proliferation of adaptive application-layer algorithms, a proper network
infrastructure handling the traffic of applications with strict requirements cannot be
an afterthought in network management.

Our contribution. In this dissertation, we present a novel class of software network
solutions that share the goal of enabling intelligent and autonomous networks. We
summarize in Fig. 1.1 the broad research area that has driven the research in this
thesis. The research question driving the work can be summarized as: how these
new algorithms (such as machine learning) and the new technologies (such as
edge computing and SDN) can be used to effectively solve (traditional and not)
network management problems. While AI/ML techniques are promising tools to
design methodologies and algorithms for the automation of communication networks,
the increasingly powerful computational capabilities of emerging network devices
are driving AI/ML solutions closer to the edge of the network (as opposed to a
traditionally more computationally powerful network core). Such a shift is promising
to “democratize AI services" enabling a wide variety of new AI usages.

In particular, the research contribution of this thesis covers solutions that exploit
the power of AI/ML to handle the growing complexity of communication networks



4 Introduction

Network Management Machine Learning

Edge Computing

Fig. 1.1 Research Focus. My research is located at the intersection between network man-
agement, edge computing, and machine learning.

in the context of resource-constrained, dynamic, and mission-critical environments
of modern networks. In this dissertation we focus on the design and deployment of
learning algorithms for some specific network operations, ranging from the offloading
of tasks to the close edge cloud to the management of virtualized and softwarized
networks.

1.1 Summary of Contributions

Starting with the definition of a new mechanism to route packets in an SDN-enabled
network, we demonstrated how machine learning-based models, such as time-series
forecast and regressors, can help in dynamically avoiding over-congested paths [20].
Our proposed system, RoPE, contributes to mitigating congestion and steering traffic
over paths that are (predicted to be) less likely to be congested. In that context,
we present and analyze multiple techniques used to enhance routing in SDN edge
networks (Chapter 3).

A similar problem regards the planning of network resources. To optimize
(virtual) network resource allocation, we proposed Mystique, a system that mitigates
congestion and route packets over paths that are predicted to be unloaded, learning
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from the load on links to establish the minimal set of active network resources [21].
Our network management schema, using Multi-Agent Reinforcement Learning
(MARL), aims at auto-scaling the underlying network topology to accommodate
the traffic demand and reacts to possible failures. On the one hand, our solution
unburdens network nodes that are over-congested with traffic, to preserve the high
bandwidth and high availability of the applications. On the other hand, our solution
leverages healing strategies to repair failing nodes and links. As traffic demands
ebb and flow, our adaptive and self-driving solution can scale up and scale down
the virtual network resources (links and nodes) and also react to failures in a fully
automated, flexible, and efficient manner (Chapter 4).

With a similar aim of mitigating network congestion, we worked on Owl, a
new TCP congestion-control algorithm based on the Reinforcement Learning (RL)
framework [22]. Different from the aforementioned work, in this solution the modifi-
cation occurs at the end-hosts rather than on the network infrastructure. At the same
time, in contrast to other Machine Learning-based approaches for transport proto-
cols, we conduct training at the source and decide the next value of the congestion
window, also using an in-network mechanism when such information is accessible
from the sender. Using these metrics, our solution can increase the throughput and
fairness while reducing the number of packets lost and delay in a variety of contexts,
with notable improvements in cellular networks. We also showed how our solution
converges to a fair resource allocation after the learning overhead (Chapter 5).

The last contribution set considers problems originated by the advent of edge
computing and highly dynamic networked systems: computation offloading. In
particular, we propose an edge cloud-assisted architecture for distributed and adaptive
task planning management for Unmanned Aerial Vehicles (UAVs) via task offloading.

First, we consider a set of distributed offloading decision strategies, and we
propose the use of Multi-Agent Reinforcement Learning (MARL) to jointly improve
the energy efficiency and task completion time of edge computing-enabled UAVs
swarms [23]. However, in the case of task offloading, the model also decides the
Radio Access Technology (RAT) to consume, i.e., Wi-Fi or cellular, to transmit
the task from the device to the edge cloud. The optimization problem can run in
real-time by combining information coming from other devices and enables the
training of the model in a collaborative way (Chapter 6).



6 Introduction

Table 1.1 Summary of contributions and thesis organization.

Networking Problem Chapter ML Method

Routing Ch. 3 Time-series, ML regressors
Auto-scaling Ch. 4 MARL
TCP Congestion Control Ch. 5 RL
Task Offloading Ch. 6, Ch. 7 MARL, Time-series, ML regressors

Second, we presented a solution that is less hungry for computation and memory
resources, and that supports the UAV during the decision of offloading incoming
tasks. Such a decision is taken on the basis of the predicted behavior of the agent,
suggesting whether edge cloud is beneficial or not to the incoming tasks. Two
alternative methods are designed to perform such a prediction about future device
load: a model belonging to time-series class and a model belonging to the class of
ML regressors. In such a way, not only the agent learns how to forecast future values
of enqueued tasks, but it can also learn online what type of model is more accurate,
leading to a self-learning approach. In particular, having chosen two different ways
in treating the input metrics, this approach also provides flexibility and adaptability,
resulting in a learning agent that can select which predictor best fits a particular
environment [24]. While other RL-based models can be computationally expensive
to run onboard of constrained resources devices, this formulation simplifies the
decision process and makes the solution suited for constrained scenarios (Chapter 7).
Studying both RL-based (Chapter 6) and regression models (Chapter 7), we showed
how the offloading decisions could be taken at run-time, adapting the network
conditions.

We summarize the contributions in Table 1.1, where for each specific addressed
problem, we report the ML method used and the corresponding chapter in this
manuscript. We argue that these solutions, and their combination, can lay the
foundation for automated systems that better suit modern edge environments and
cellular networks.



Chapter 2

Motivating Applications

The advent of new technologies, e.g., SDN, 5G, and edge computing, has been
designed to support the development of applications with very strict requirements,
e.g., very low latency and high throughput [25]. Among them, (i) Industry 4.0,
in which robotic machinery is controlled remotely, (ii) the Tactile Internet which
can enable haptic interaction with visual feedback, providing the illusion of remote
touch, (iii) VR/AR and Holographic-Type Communications (HTC) in which the
application is supposed to rapidly adapt streamed contents based on changes in
user position or viewing angle, (iv) telemedicine, where medical devices, or simply
medical information, are accessed remotely during a teleoperated session, (v) assisted
or connected vehicles, such as drones and cars, which involve communication and
data exchange between vehicles and traffic infrastructure are pivotal to realize the
vision of smart cities and intelligent transportation.

In this chapter, we specifically focus on three applications that would require
network management optimizations and that have been considered in the presented
solutions. We start from a medical scenario, namely telepathology, in which it is com-
mon to transfer (very large) medical images for real-time diagnosis. Guaranteeing
both high throughput and low latency is the mission of new networking systems.

We then continue with recent applications employing Unmanned Aerial Vehicles
(UAVs) to assist humans in accomplishing tasks that would be impossible without
them. UAV-based systems have experienced a constantly increasing popularity in the
last years, mainly thanks to their maneuverability, flexibility, and limited deployment
costs. However, since the challenge of keeping an acceptable quality of service with
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stringent delay constraints for these UAVs networks grows with the drone-based
applications, the design of efficient techniques to re-assign tasks is key.

Lastly, the literature refers to the new internet network that combines ultra-low
latency with extremely high availability, reliability, and security as Tactile Inter-
net [26]. To achieve this promise, there is a need to combine multiple technologies at
the network and application level, and utilize the edge computing paradigm to move
data closer to the user.

2.1 Real-Time Telepathology

The field of medical pathology is concerned with the causal study of disease, whether
caused by pathogens or non-infectious physiological disorders. A significant part
of the job of pathologists is characterized by visualizing histological images via
a multi-lens microscope. Often they analyze histological images on a glass slide
when the patient is still under a tumor removal surgery. In such situations, a quick
and correct pathology assessment is crucial as it defines vital next steps for the
surgeon team and the right follow-up treatment for the patient. In the vast majority
of non-trivial pathology cases, to minimize the time to response to the surgeon team
and the probability of incorrect assessments, pathologists ask for second opinions to
nearby experts (if available) by physically carrying privacy protected glass specimens.
When not enough local experts are available, a telepathology system can be used to
transmit high-resolution images of specimens to remote doctors.

Telepathology is the practice of digitizing histological or macroscopic tissue
images based on a glass slide for transmission along telecommunication pathways
for diagnosis, consultation, or medical education. Pathologists seek second opinions
from local experts either intraoperatively (rapid frozen section assessment of margins
during tumor excision, for example) or during routine sign-out of difficult or unusual
entities; in most settings, this involves the transport of physical glass slides. Hence,
every pathologist should ideally be able to consult an expert via telepathology, either
intraoperatively or for routine sign-out.

Today, however, telepathology is often grouped in expensive software packages
that most local hospitals cannot afford, and it is practically unused for the applications
that would need it the most: fast and reliable consultations, as well as multi-student,
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live teaching sessions; pathology is nowadays mostly taught via offline methods or
via one-to-one mentor-student specimen analysis.

Our work has been focused on enhancing the currently booming field of Digital
Pathology (DP), which can be seen as an attempt to adopt digital technologies to
reduce the time and improve the accuracy of a diagnosis, for example by reducing
the number of physical slide requests [27, 28]. However, developing technologies
to efficiently digitalize image samples and building solutions that pathologists can
easily access is a challenge.

Pathologists often analyze histological samples on a glass slide while the patient
is still in the operating room. Without a telepathology solution, pathologists usually
ask for second opinions from nearby experts (if available) by physically carrying
glass slides, in order to minimize the time to diagnosis and report to the surgeon.
When not enough local experts are available, the presence of a telepathology system
could be a critical factor in providing the best care for the patient. Moreover, a
telepathology system can be used to transmit high-resolution images of specimens
to connected experts in order to speed up the diagnosis of more routine cases in
more rural treatment locations. Finally, it might also mitigate discordance between
pathologists [29]. In summary, telepathology has the potential to have a positive
impact on the delivery of expert care patients regardless of the location of their
surgical treatments.

Telepathology solutions can be used not only to connect rare experts with patients,
but also for the rapid diagnosis of standard cases in locations that have patients with-
out having schools of medicine. Telepathology is often enclosed in the telemedicine
field, but it differs both in the subject and the aim of such practice. This difference
leads to different requirements that the underlying network has to guarantee [30].

However, current telepathology solutions are limited by the technology, the
scale, and the (best-effort) performance of the underlying telecommunication media
on which they rely on, i.e., the Internet or, at best, a virtual private network for
in-hospital offline, i.e., non-real-time, consultations.

An attempt to further reduce latency and enable a fast image processing, has been
presented in [31], where a novel telepathology system has been designed to employ
a close edge computing for partial or full processing offloading. This collaborative
image analyzer supports high-speed data transfer with low-latencies, but aims to
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provide services for real-time consultations in both education and surgery scenarios
using edge computing.

While it is clear that emerging technologies can drastically improve service
interactivity, these solutions still require excessive overhead in essential network
operations. Learning-based approaches can help towards automating actions, but it
is not sufficient. Moreover, although the utilization of an edge cloud can lead to low
latency, other application-layer and/or network-layer optimizations are advised.

2.2 Edge-Assisted Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs) are often used for collecting data and send-
ing them to the edge/fog, e.g., for data-intensive visual computing. At network
edges, indeed, there may be present more resources that can speed-up the process-
ing. In particular, data-intensive visual computing requires seamless processing of
imagery/video at the network-edge and resilient performance to guarantee adequate
user Quality of Experience (QoE) expectations. This is particularly critical, e.g., in
(natural or human-made) disaster scenarios, due to the poor bandwidth availability
and the highly variable conditions. These applications should be able to provide
rapid awareness through videos or audios collected at salient incident scenes in order
to plan a proper response that can minimize disaster impact and/or save lives [32].

To meet such network-edge data-intensive computations and local storage re-
quirements, edge computing is a valuable solution [33], by providing on-demand
network, storage, and computational resources that compensate (scaling up and
scaling down on demand) the insufficient local processing capabilities within a
geographical area of interest. Edge computing extends the notion of cloud, but it is
placed closer to the location of users and data sensors, reducing latency and enabling
real-time decision making. A few examples of how edge computing could be of help
in the above described scenarios are reported in the following.

Reconnaissance to save lives. A (very) large fleet of camera-equipped UAVs collect
visible (or infrared) imagery, e.g., to recognize body temperatures or identify bodies
under ruins or massive avalanches. In such environments, image processing is key, to
first enhance the image, e.g., dehaze, stabilize, compress inputs for lower level image
processing, and then apply computationally intensive computer vision algorithms.
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Transmitting such data to a remote cloud is thus unfeasible, given the poor connection
bandwidth which dramatically increases the data transfer time.

Reuniting lost citizens and families. Online face recognition software runs at
the edge and acts on imagery snapped from cameras onboard the UAVs. Face
image feature extraction processing performed at the network edge would attempt to
match against a database of missing people without encountering poor network or
processing performance. The face detection and identification can gain great benefit
from utilizing deep neural networks-based models, that are rapidly improving their
performance in this field.

Property Surveillance. Alarms or other actuators may be triggered if the continu-
ous monitoring performed by UAVs detects activities of concern, such as a fire, a
human intrusion, or a broken window. A first video analytic pre-scanning phase is
recommended to run at the edge, and only upon the completion data could be sent
to the cloud core, where a more in-depth analysis can occur and the video can be
shared with law enforcement for further investigation.

to enable immediate feedback in these scenarios, crucial especially for sur-
vivors’ rescue, IoT devices today could benefit from the mobile edge computing
paradigm [34]. In particular, one of the most important mechanisms in edge com-
puting is cyber foraging: processes from mobile resources delegate computations or
code to execute to servers within the edge computing infrastructure [35]. A partic-
ular case of cyber foraging is also known as offloading, where the cyber foraging
mechanism is orchestrated by mobile devices. A solution optimizing the offloading
decisions, i.e., what and when to offload, would speed up the transfer of media-rich
visual information.

Moreover, since traffic needs to be handled dynamically and with low-latency
constraints, also routing is a crucial infrastructure management orchestration mech-
anism. Although geographic routing-based approaches are generally suitable for
these applications, there is a lack of providing sustainable high-speed data delivery
to the edge cloud gateway [36].
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2.3 Tactile Internet

The Tactile Internet is the evolution of the mobile Internet and enables real-time
control of the Internet of Things (IoT) for very latency-sensitive applications. It adds
a new dimension to human-to-machine interaction by enabling tactile and sensations,
and at the same time revolutionizes the interaction of machines. The Tactile Internet
enables haptic interaction with visual feedback. The term haptic relates to the sense
of touch, in particular, the perception and manipulation of objects using touch. The
visual feedback will encompass not just audiovisual interaction, but also robotic
systems that can be controlled in real-time as well as actuating robots, i.e., those that
can activate a motion.

Nowadays, data rates increased in the orders of magnitude, as well as the data
capacity [5], but there is another frontier to be considered: the reduction in the
end-to-end latency of interaction has not dropped below the requirement for tele-
phony. Long-term evolution (LTE) achieves a typical end-to-end latency close to
100ms [37], exceeding the order of 1-ms requirement needed to enable Tactile Inter-
net applications [5]. At the same time, fifth generation (5G) mobile communications
systems underpin this emerging Internet at the wireless edge [38]. A recent trend
is the use of Mobile Edge Computing (MEC) as a solution to reduce the delay and
provide a way for offloading computation from the cellular network [39]. However,
the latency reduction is still an open problem due to an intrinsic lack of the available
infrastructures. The SDN paradigm is shown to be helpful for these applications [40],
but real support for very low latency communications is an urgent need to enable the
still unexpressed haptic applications.

Starting from next chapter, we consider these applications for the design of the
solutions and for evaluation.



Chapter 3

Data-Driven Routing

Traditional solutions operate on the routing or flow path decisions, by typically
using source routing and policy-based routing for the path control. However, to
adapt these decisions to the current network load, the algorithm must be able to
collect information about network traffic, which can be achieved via NetFlow [41],
SNMP, or custom protocols. A common scenario, due to the ease of use of SDN
in prototyping, considers OVS switches [42] featuring OpenFlow in combination
with an SDN controller to meet the above requirements. These features are key for
dynamic and performance-aware routing solutions.

3.1 Introduction

Delivering simultaneously low-latency and high-bandwidth reliable telecommunica-
tions is a challenge, especially when the underlying infrastructure is unstable and
applications impose tight constraints. Solutions for real-time communications have
been proposed when the application is bound to video streaming [43, 44, 16, 45, 46].

Many of them are based on sound design and target bit rate adaptation. Aside
from ignoring other end-to-end performance improvement techniques such as traffic
compression, these solutions perform poorly within edge computing use cases,
where the underlying network needs also to be optimized, in response to offloading
requests [47, 33, 48].

The work presented in this chapter has been partially published in [20].
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Most of these solutions, however, train their learning system on specific datasets,
without the ability to adapt. While complicated machine learning techniques such
as transfer learning exist [14], such techniques could be applied to overcome the
dataset-tailored limitation. In this solution, we take a more humble approach and
we show its effectiveness. In particular, we introduce RoPE, a Software-Defined
Networking (SDN)-based architecture whose goal is to select the best (physical
or virtual) route by applying the most appropriate bandwidth prediction algorithm,
chosen adaptively, on the basis of the amount of data collected and the response time
deadline. RoPE leverages the availability of multiple paths and relies on the idea that
the bottleneck for delay-sensitive applications is at the edge [49, 50].

Our design is based on the observation that, in recent years, the field of prediction
has achieved excellent results when enough data are available. When insufficient data
are available instead, other classes of prediction algorithms may be a better fit. In this
context, many forecast-based or data-driven solutions have been proposed [14]. The
question we propose to answer instead in this work is: which bandwidth prediction
algorithm works best, based on the variance of our network measurements and on
application constraints?

To address this question, we prototype and evaluate RoPE with both numerical,
event-driven simulations, and with scalability tests over the large-scale GENI testbed.
In particular, we make the following contributions.

We design and implement a novel architecture that integrates QoE estimation
and bandwidth prediction directly into an edge-based application. The prediction
phase is used for selecting the best routes on the basis of global traffic condition
information gathered from an SDN controller. Hence, we defined a new strategy
for the route selection while the prediction continues during system operation, with
consequent possible traffic re-routing.

To adapt to different edge-based applications and evaluate its performance, we
define a new cost function that embraces the most common evaluation parameters.The
collection of our results evaluating three separate uses cases are a mixture of expected
and surprising results.

RoPE stands for Routing Prediction at the Edge.
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3.2 Related Work

Our approach is based on the prediction of traffic conditions to modify routing for
edge-based applications. In this section, we analyze the literature related to the main
components of the solution: (i) the recent prediction algorithms for networking, and
(ii) the existing routing solutions that rely on machine learning methods to improve
traditional strategies.

3.2.1 Network Traffic Prediction

The prediction of traffic conditions is crucial in network operations and management
for today’s increasingly complex and diverse networks. It entails forecasting future
traffic and traditionally it has been addressed via Time Series (TS) algorithms. The
main goal in TS is to construct a regression model capable of drawing an accurate
correlation between future traffic volume and previously observed traffic volumes.
Existing TS models can be broadly decomposed into statistical analysis models
and supervised ML models. Statistical analysis models are typically built upon the
generalized Autoregressive Integrated Moving Average (ARIMA) method, while the
majority of learning for traffic prediction is achieved via supervised Neural Networks
(NNs). However, with the rapid growth of networks and the increasing complexity
of network traffic, traditional statistical models are seemingly compromised, giving
rise to more advanced ML models [14]. More recently, efforts have been made to
reduce overhead introduced by the prediction process or improve accuracy in traffic
prediction by employing features from flows, other than traffic volume. Prior work
focused on NNs and showed how this approach outperforms TS [51]. However, the
use of NNs implies an offline training phase and a huge quantity of training data [52],
which is unfeasible for some applications where traffic demand is volatile, as in a
disaster response scenario. In our scenario we do not have such a quantity of data,
therefore we focus on lighter approaches that enable an online training phase. These
models are then compared against Machine Learning methods where the training is
performed offline. Furthermore, for edge-based applications, there are no databases
available online as for traffic traces provided by ISPs or inter and intra DCs [53].

For this reason, in our work we focus on other ML algorithms that also do not
necessitate a long training phase. Many techniques have been developed to measure
path properties as summarized by CAIDA [54]. In particular, several studies [55–57]
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focused on the measurement of the available bandwidth, needed for data collection
in our predictor. By available bandwidth, we mean the minimum unused capacity
on a given end-to-end path. These measurements are usually collected with probe
packets. In this work, we do not actively probe but we rely on packets sent from
switches to the controller. In this way, packets containing network statistics do not
affect the user traffic, since the communication with the controller is separated from
the data plane [58, 59].

Finally, machine learning techniques have been widely applied to network mea-
surement. As suggested by [60] intradomain traffic engineering can benefit from the
application of ML algorithms or a a Reinforcement Learning (RL)-based approach.
For example, there are applications in the network intrusion detection field (e.g.,
[61]) and for round-trip time prediction [62]. In contrast to NNs-based algorithms,
Support Vector Machine (SVM) has low computational overhead and is more robust
to parameter variations, e.g., time scale, number of samples. However, this approach
is usually applied to classification rather than regression. Bermolen et al. [63] applied
SVR (the regression variant of SVM) for link load forecasting. Furthermore, He et
al. [64] extensively studied history-based predictors using three different time series
forecasts. Other approaches for TCP throughput prediction employ “bandwidth
probes”, small TCP file transfers, e.g., 64kB, to collect the measures [65, 66].

3.2.2 Adaptive Routing and Traffic Engineering

Even though much work has been conducted to improve the quality of prediction
over network traffic, only a few solutions exploited these results to develop new
routing strategies [67, 68].

Instead, other prediction-driven routing approaches have been based on Re-
inforcement Learning (RL), with the aim of coping and scaling to complex and
dynamic network topologies [69, 70]. Even though RL would be a viable solution,
we used a time-series approach as it offers the possibility of predicting a specific
parameter. Such a parameter can then in turn be used to assess if a given traffic flow
fits a physical path. If the flow does not fit the path, a better route is chosen looking
at other available paths.

The same problem can be clearly addressed by means of traffic engineering
solutions, e.g., [71–73]. In particular, COYOTE [73] aims to minimize link over-
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Fig. 3.1 Architecture and main RoPE’s functionalities.

utilization by engineering the traffic generated with optimal traffic splitting ratios.
Given the limited knowledge of traffic demands, this method strategically advertises
fake links and nodes to adjust the splitting ratios resulting from the traditional ECMP
mechanism. We share with this solution the idea of adapting the routing to address
a link utilization problem; however, our focus is to better support for edge-based
applications without reserving resources for tasks that could be rarely executed.

3.3 Rope Overview

Our proposal is to use bandwidth prediction on links to drive routing operations so
that the best available path is selected. Given a large number of available prediction
algorithms and the differences in requirements to satisfy each application, we also
introduce a cost function that captures the policy programmability of the proper algo-
rithm for each specific context. The design goal of such policy knobs is to extract the
invariances in the routing prediction mechanism. Network management application
programmers then may tune this utility based on their needs and constraints.

Our architecture implementation includes a Ryu SDN controller that collects data
from the switches and communicates them to the RoPE agent (Figure 3.1) running on
it. This component allows the necessary information sharing between the controller
and RoPE. In RoPE, the most important component is responsible for predicting on
the basis of the data received and prior information. The data-driven engine selects
the best path combining user requirements and the future available bandwidth on
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a link. To select the best path, knowledge about the topology of the network is
necessary, and this information is obtained and transmitted by the controller. The
routing process combines the output of the prediction with the topology information
and changes the flow rules of the switches to select the path consistently among all
the devices.

RoPE saves the collected data as recent history, which is in turn used by the
prediction algorithms. Notice that not all the algorithms need online training (see
Section 3.4). For some algorithms, the training phase must be performed offline
because it requires a long time, as illustrated in Section 3.6.1. For these algorithms,
the SDN Controller can make use of the saved model to predict the next bandwidth
value. In essence, the prediction might be based on models saved and past values, as
shown in Figure 3.1. The selection of all the parameters is based on the data analysis
performed beforehand and described in the following sections.

3.3.1 Measurements Collection

Each managed switch is connected to the Ryu controller, which periodically collects
information on their state. In particular, we collect network state statistics of ports
(incoming or outgoing packets), flows, and the switch connectivity status.

Since paths do not change very frequently, it is unnecessary to acquire statistics
from switches with very high granularity. In our implementation, we use a collection
period of 5-seconds, as in [43]. This value is result of a preliminary empirical
analysis. In the rest of the chapter, we refer to such interval as an epoch.

Data acquired are grouped per switch ID and in chronological order. This is
implemented on the controller by logging the received information in a file for every
switch. Each row in this file corresponds to an observation per epoch and is formatted
as follow:

[timestamp,bandwidth,bytes, packets, packets_port],

where timestamp denotes the time at which the record is obtained, bandwidth is
the the measured bandwidth, bytes refers to the number of bytes sent and received by
the switch, packets expresses the total number of packets sent and received by the
switch, and, lastly packets_port indicates the amount of packets sent and received
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in the selected port. Note how the timestamp is essential to apply TS analysis, while
it is not used by ML algorithms. RoPE uses the statistics collected to fit the model.
With a period r of 20 s (selected to avoid network instability) we predict the future
available bandwidth and decide when to steer the route.
Algorithm 1 Prediction-based routing

1: Let t be the epoch, and r the prediction period
2: Let A and B be the target source and destination
3: P← all the paths between A and B
4: Ps← the best s paths in P
5: U← best path
6: for every epoch t do
7: Monitor the paths in Ps
8: if r has elapsed since last prediction then
9: FLs← future predicted load on the s paths in Ps

10: FLU ← future predicted load on U
11: if FLU > T hreshold then
12: U ← P[min(FLs)].
13: close;

Overall Procedure. The objective of the algorithm is to optimize the available
bandwidth between the source A and the destination B, which affects the application
transmission time. In the telemedicine example described before (Section 2), A is
the machine connected to the microscope, while B is the edge server. The controller
first detects all the paths available for the pair (A, B) and stores them into the set P.
Then, it selects the best s paths according to the current load on all links composing
the path. The parameter s is used to avoid looking for all the paths if this number is
significant. Every epoch, the controller obtains the statistics and saves them for the
prediction, which occurs every period r. In this phase, we estimate the future value
of traffic load for the paths in Ps, and the path whose prediction is the minimum, i.e.,
“argmin”, is set as the default one.

3.3.2 Cost Function

RoPE predicts the bandwidth on links and selects the best path on the basis of
this value. However, different applications have different requirements in terms of
throughput, latency, jitter, and different prediction algorithms may have different
effects on these parameters.
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To evaluate the fitness of such an algorithm to the use case, we define a cost
function CK,I(D) that takes into account the above aspects of communication. While
the metric is inspired by similar studies [74] in our case we are not limited to video
streaming scenarios. The cost function CK,I(D) of a sent file which requires D bytes,
I packets and K time intervals, is made up of the following terms:

1. Average Throughput: the average throughput per time interval k: 1
K ∑

K
k=1 Tk,

where Tk denotes the throughput at interval k

2. Average latency: the average latency per packet i:1
I ∑

I
i=1 Li, where Li is the

latency for packet i

3. Average jitter: the average jitter between two consecutive packets: 1
I−1 ∑

I
i=2 |Li−

Li−1|= 1
I−1 ∑

I
i=2 Ji, where Ji indicates the jitter for packet i

4. Average jitter variation: the average difference of jitter among two consecutive
jitter measurements 1

I−2 ∑
I
i=3 |Ji− Ji−1|= 1

I−2 ∑
I
i=3 ∆Ji where ∆Ji refers to the

jitter variation for packet i

Notice that, besides the standard performance metrics of throughput, latency, and
jitter, it is worth also considering the jitter variation since for interactive systems, this
element affects the user experience, as demonstrated in [75, 76]. Users and applica-
tion programmers may have different preferences on which of the four components
is more important, so we define a tunable objective function as a weighted sum of
the aforementioned components:

CK,I(D) = αD
K

∑
K
k=1 Tk

+µ
1
I

I

∑
i=1

Li +λ
1

I−1

I

∑
i=2

Ji + γ
1

I−2

I

∑
i=3

∆Ji (3.1)

Here α,µ,λ ,γ are non-negative weighting parameters corresponding to average
throughput, average latency, average jitter and average jitter variation respectively. A
relatively small α indicates that the user is not particularly concerned about a very
high bitrate; the large γ is, the more effort is made to achieve smoother changes of
video quality. A large µ , relatively to the other parameters, indicates that a user is
deeply concerned about low latency communication.

In summary, this definition of CK,I(D) is quite general as it allows us to model
varying user preferences on different contributing factors. The goal of our routing



3.4 Prediction Algorithms Analysis 21

strategy is to minimize (3.1) in order to guarantee the optimal user experience. In
fact, a higher throughput, along with lower values of latency and jitter, leads to a
lower value for the function. Therefore, we need to select the proper prediction
method in order to obtain the best routing strategy that minimizes (3.1).

3.4 Prediction Algorithms Analysis

The task of bandwidth prediction can be formulated as a regression problem, i.e.,
predicting a real-valued number based on single or multiple real-valued input features.
For the sake of clarity we classify the applied algorithms in 2 categories, (i) Time-
Series (TS) algorithms, (ii) Machine Learning (ML) algorithms. The following
subsections reflect this classification and each one describes in-depth the structure of
our algorithms.

The idea is to predict the bandwidth, in such a way the controller can check
whether the desired application fits the network load. For instance, if the application
is sending a video streaming of 300kb/s and the predicted available bandwidth of the
current path is 500kb/s, this means the path complies with the requirements. If the
available bandwidth is 200kb/s, the controller enforces a new path.

3.4.1 Time-Series Models

These solutions are based on traditional regression algorithms that predict the future
values using the history and the evolution of such value in the past. The history used
is made up of past values associated with the timestamp. The presence of the tuple
< timestamp,value > leads to the name Time-Series.

Simple Exponential Smoothing. Simple Exponential Smoothing (SES) is a good
choice for data with no clear trend or seasonality. Let yt be the bandwidth on a link
at time t. We compute a k-steps ahead prediction. Formally, we forecast the value of
the bandwidth at time t + k, yt+k, where k is also called horizon.

yt+k = αyt +α(1−α)yt−1 +α(1−α)2yt−2 + ..., (3.2)
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where α is the smoothing parameter for 0 ≤ α ≤ 1. If α is large (close to 1),
more weight is given to more recent observations. The quantity yt+k represents the
predicted value and is used to decide whether or not a congestion will occur.

Holt-Winters. The prediction is composed of three submodels that fit a time series:
an average value, a slope (or trend) over time and a cyclical repeating pattern
(seasonality) [77]. These three aspects of the time series behavior are expressed as
three types of exponential smoothing. The model requires several parameters: one
for each smoothing (α , β , γ), the length of a prediction season, and the number of
periods in a season. Here below we report how the Holt-Winters seasonal method
includes the forecast equation and three smoothing equations: one for the level
Lt, one for the trend bt and one for the seasonal component denoted by St, with
smoothing parameters α , β and γ:

level Lt = α(yt −St−s)+(1−α)(Lt−1 +bt−1),

trend bt = β (Lt −LLt−1)+(1−β )bt−1,

seasonal St = γ(yt −Lt)+(1− γ)St−s,

f orecast yt+k = Lt + kbt +St+k−s,

where s is the length of the seasonal cycle, for 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1.

ARIMA. ARIMA is a class of models typically used for analyzing and forecasting
time series (e.g., financial market data). A standard notation for this method is
ARIMA(p,d,q), where the parameters account for seasonality, trend, and noise in
datasets. In particular, p captures the auto-regressive component i.e., the number of
lag observations included in the model, also called the “lag order”; d captures the
integrated part of the model, it is the number of times that the raw observations are
differenced, also called the degree of differencing; q captures the moving average
part of the model and represents the size of the moving average window, also called
the order of moving average. The ARIMA overall model is given by the following
equation: (

1−
p

∑
i=1

αiLi

)(
1−L

)dyt =

(
1+

q

∑
i=1

θiLi

)
εt , (3.3)

where L is the lag operator — the number of past samples considered during the
prediction — and αi are the parameters of the autoregressive part of the model; the
θi are the parameters of the moving average while εt are error terms. Such error
terms εt are generally assumed to be independent and identically distributed (i.i.d.)
variables sampled from a normal distribution with zero mean, which is what we did.
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SARIMA. To deal with seasonal effects, we make use of the seasonal ARIMA
(SARIMA), which is denoted as ARIMA(p,d,q)(P,D,Q)s. Here, (p,d,q) are the
non-seasonal parameters described above, while (P,D,Q) follow the same definition
but correspond to the seasonal components of the time series. The term s is the
periodicity of the model (4 for quarterly periods, 12 for yearly periods, etc.).

The Ryu controller is in charge of collecting all bandwidth values and save them
in a time series Y = {yt ,yt−1, ..}. The sequence is then used to fit the model and find
the aforementioned parameters. Once the model is built, it is used to forecast the
yt+k value, which is then used to avoid congested paths in a telepathology session.

3.4.2 Machine Learning Algorithms

Machine Learning has received great attention in recent years, due to the ease of use
and the wide range of applications that can benefits. In this section we define a model
for the most popular algorithms, providing a brief explanation of the advantages and
disadvantages of applying for each of them. In our model the set of features used is
represented by [timestamp, bandwidth, bytes, packets, packets_port], however, for
ML methods only a subset is considered:

1. ∆ Packets: the number of packets received and transmitted by the switch in
the time interval;

2. ∆ Bytes: the number of bytes received and transmitted by the switch in the
time interval;

3. ∆ Packets port: the number of packets received and transmitted by the switch
on a certain port in the time interval.

Our problem lies in the Regression procedure since the aim is to predict a
continuous value, as opposed to other well-known problems such as classification and
clustering. A real number is more effective than a class value as in the Classification
problem because it can be used to check if a streaming video will be delayed or not,
as described in Section 3.6. By computing the available bandwidth on a path, we
are able to verify whether the bit-rate of communication fits the path or not, and in
case move to another path. Hence, the output variable is the bandwidth of the links
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connected to the switch. The predicted value is the same as the TS models, while in
ML models the input set is based on more features than just the past bandwidth.

Linear. The simplest machine learning model is to build a linear regression model,
where there is a linear relationship between the dependent (y) variable and the set of
independent (x) variables.

Polynomial. Polynomial regression is a special case of linear regression. But in
this case, higher order powers (2nd, 3rd or higher) of an independent variable are
included.

Support Vector Regression. Support Vector Machines (SVMs) are supervised
learning models [78], that aim to analyze data and recognize patterns, used for
classification tasks. Support Vector Regression (SVR), is the regression version
of the popular SVM and a state-of-the-art machine learning tool for multivariate
regression.

Gradient Boosting Regression. Gradient boosting is a machine learning technique
used both for regression and classification problems. Like other boosting methods,
it builds the model in a stage-wise fashion, and it generalizes them by allowing
optimization of an arbitrary differentiable loss function. The intuition behind the
gradient boosting algorithm is to repetitively leverage the patterns in residuals and
strengthen a model with weak predictions and improve it. Once a stage that do
not have any pattern that could be modeled is reached, residuals modeling can be
stopped (otherwise it might lead to overfitting). In other words, for Gradient Boosting
Regression (GBR) a regression tree is fit on the negative gradient of the given loss
function.

Partial Least Squares Regression. Partial least squares regression (PLSR) is a
statistical method similar to other regressors; instead of finding hyperplanes of
maximum variance between the dependent and independent variables, it finds a
linear regression model by projecting the predicted variables and the input variables
to a new space [79]. PLSR is used to find the fundamental relations between the two
matrices X and Y, i.e. a latent variable approach to model the covariance structures
in these two spaces. PLSR is particularly suited when there is multicollinearity
among X values. Conversely, standard regression will fail in these cases (unless it is
regularized).
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Decision Tree Regression. A decision tree has a flow-chart-like structure, where
each internal (non-leaf) node denotes a test on an attribute. Each branch represents
the outcome of a test, and each leaf node holds a class label. The topmost node in
a tree is the root node. The general approach of deriving predictions from a few
simple if-then conditions can be applied to regression problems as well. Unlike linear
models, Decision Tree Regression (DTR) is able to capture non-linear interaction
between the features and the output value [80].

Random Forest Regression. The random forest model for regression (RFR) is a
type of additive model that predicts by combining decisions from a sequence of base
models. More formally this class of models can be written as:

g(x) = f0(x)+ f1(x)+ f2(x)+ ...,

where the final model g is the sum of simple base models fi. Here, each base
classifier fi is a simple decision tree. This broad technique of using multiple models
to obtain better predictive performance is also known as model ensembling. In RFR,
all the base models are constructed independently using a different subsample of the
data.

As a matter of fact, classical and ML methods are not that different from each other
but distinguished by whether the models are more simple and interpretable or more
complex and flexible. Hence, classical statistical algorithms tend to be much quicker
and easier-to-use.

3.5 Prediction Algorithms Evaluation

This section exposes the logic of the methods and the errors in the prediction of the
future available bandwidth on a single path. The path consists of a certain number
of link, where the assumption is that the SDN controller knows the topology of the
network. Collected data are split into three sets: Training set, Validation set, and Test
Set. Training Set is used to decide the parameters of the algorithm and Validation Set
to compare the performance of a single family of algorithms with different settings.
Finally, we use the Test Set to assess the quality of implemented algorithms.

In this section, the algorithms are compared on the basis of the accuracy of pre-
dicting. Even though ML algorithms rely on features to predict, while TS algorithms
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on history, we can compare the quality using standard error measures. We compute
the Mean Absolute Percentage Error (MAPE) which is given by:

MAPE =
1
n

n

∑
t=1

100×
∣∣∣∣yt− yt

yt

∣∣∣∣ , (3.4)

where yt and yt are the real and the predicted observations.

Furthermore, for each model we compute the Root Mean Square Error (RMSE)
and the Maximum Prediction Error (MAXE) to obtain information about the mean
and the maximum error of the prediction. A direct comparison of the benefits for
the user by applying each of these algorithms is performed in Sec.3.6, where we
compute the cost function defined (Eq. 3.1). In this section, a comparison among the
algorithms on the basis of the standard errors is shown.

3.5.1 Data set

The data used in this section are collected via the Mininet network emulator. In
particular, a communication between a device and a server occurs in the emulated
environment to reproduce the critical traffic in the edge network. To realistically
represent the emulated loads over physical links, we set our parameters using real
publicly available Internet traces [81]. Using the TCP iperf3 tool, we replicate
the link load over the paths while the source and destination run the interested
application. The Mininet topology we adopted consists of 10 switches and 20 hosts
where we randomly created links between two switches with the probability of
0.3 [82]. Despite the limitations of an emulated testbed as Mininet, such a trace-
based approach allows us to reproduce a quite realistic environment.

We collected a dataset made of more than 50,000 historical samples. We then
split it into training (80%), validation (10%) and test (10%) set, and the error is
computed on the test only. The bottom line, however, is that we cannot know for
sure which approach results in the best QoE and so it becomes necessary to compare
model performance and extensively study methods properties. The framework
choose which model to use in light of these findings.
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Table 3.1 Time-Series results when the function is fitted for each new observation.

Algorithm MAPE RMSE MAXE

SES 3.12 36.45 678.69
Holt-Winters 2.87 33.17 110.41

ARIMA 2.67 30.73 597.05
SARIMA 3.70 42.83 626.22

LS 3.69 43.39 937.84

Table 3.2 Hyperparameters set in our methods.

Method Hyperparameters

Linear –
SVR cost=1.0, kernel=rbf, epsilon=0.1

Polynomial degree=4
GBR n_estimators=500, max_depth=4, learning_rate=0.01
PLSR n_components=1
DTR random_state = 1
RFR n_estimators=70, random_state=2

3.5.2 Algorithms Analysis

We implemented the algorithms exposed in the previous section (Section 3.4) and
assess the performance for each one of them. A good predictor should at least
outperform a simple algorithm in which the next value is a replica of the Last Sample
(LS). This is not considered as a statistical algorithm due to the simplicity of the
method, but it is a recommended baseline to compare the quality of the implemented
method.

We compare the most popular algorithms in the Machine Learning field, where
all experiments are performed using Python implementations of the presented algo-
rithms [83]. In addition, regarding the forecasting horizon, every model has been
designed for forecasting with this horizon, since the most common usage scenario is
the one-step-ahead prediction.

We define the parameters grid for each method to be searched. At the end of the
process, the algorithm is tuned using the optimal set of parameters returned by this
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optimization process. For RFR, we define the number of estimators = [10, 50, 70,
100, 200] and random state = [0, 1, 2, None]. The same set of random states is used
for DTR as well. Regarding PLSR, the number of components is set to 1, after a
study performed on [0, 1, 2, 5] set. For the Polynomial model, the degree refers to
the maximum exponents in the function, and we evaluated all the numbers between 2
and 7. The SVR algorithm has more parameters to be set, and we chose cost between
0.7 and 1.0, and epsilon = [0.01, 0.1, 0.5, 1.0]. The kernel value is a string, evaluated
among = [rbf, poly, linear]. Finally,for GBR we set the n_estimators the same as for
RFR, and learning_rate = [0.01, 0.05, 0.1, 0.5] and max_depth = [2, 3, 4, 5].

To choose the most suitable parameter combination for each method, we perform
an initial study of the performance on a validation set. For each method, the parameter
combination yielding the higher accuracy is chosen. The resulting parameters for
ML algorithms are summarized in Table 3.2.

To choose the best methods to address the user specification, the framework
relies on the data shown in Table 3.3 and Table 3.1. The tables summarize the main
details about errors and performance. MAPE is used to select the best algorithms,
while MAXE to compare the maximum error, useful to understand the routing
achievements in Section 3.6. Algorithms like Holt-Winters and DTR do not have
the lowest error (MAPE and RMSE) but have a low MAXE. This means they are on
average correct and are not far off the real value, even though the predicted value is
not too close to the actual one. Routing based on this class of algorithms can achieve
excellent results because they can reduce the number of false positive (wrong peak),
but it can be hard to detect a true positive (real peak).

Table 3.3 Comparison of error for ML algorithms.

Predictor MAPE RMSE MAXE

LINEAR 2.70 31.15 599.55
POLYNOMIAL 2.66 30.96 590.51

SVR 2.65 30.54 585.61
GBR 2.66 30.68 586.98
PLSR 3.14 37.40 885.59
DTR 3.36 41.16 539.34
RFR 2.91 33.50 580.91
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Fig. 3.2 Training time and error (MAPE) for different training set sizes.

Another aspect to be considered is the available time to predict and to train,
therefore we study the behavior of the methods for different training set sizes.
Figures 3.2a-b show the training time for ML and TS algorithms respectively. As
can be noticed, excepted Holt-Winters, TS algorithms take less time to train data.
Furthermore, ML training time increases for large datasets of big sizes, with the
expectation of the SVR model, whose behaviour is of a considerable training time
also for small dataset sizes.

At the same time, training time must be combined with error in the prediction for
a comprehensive analysis of the algorithms. Figures 3.2c-d shows MAPE for both
the TS and ML models. Clearly the more trained data the lower error, however, it is
worth noting that for TS methods the error after a minimum around the size of 1,000,
tends to slightly increase. This result suggests using a small training set for this class.
On the other hand, for ML algorithms a general decreasing in the error holds.

These results confirm our hypothesis of training offline ML algorithms on a large
data set, and train the TS methods online Holt-Winters is trained online on a small
data-set, with no reduction in the error as proved in Figure 3.2d.
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For this reason, in RoPE the ML models are trained off-line and then used on-line
for predicting. The classical model does not need to be trained off-line, and it is
better to use more recent data to predict. In this case, there are two major approaches:
the sliding window and the expanding window. In the sliding window approach, one
uses a fixed size window for training. On the other hand, the expanding window
uses more and more training data, while keeping the testing window size fixed. This
approach is particularly useful if there is a limited amount of data to work with. Our
choice regarding TS is to marry the two methods: start with the expanding window
method and, when the window grows sufficiently large, switch to the sliding window
method.

3.6 Routing Evaluation

The goal, as mentioned, is to adapt the routing behavior to better cope with the
predicted links conditions. Nowadays many SDN controllers, e.g., Onos, Ryu,
OpenDayLight, can obtain a logical view of the network topology. In our testbed
Ryu is chosen as SDN controller technology due to its usability and a lighter approach
as a python framework for SDN application development: thus, a faster response
on flow installation was expected, as confirmed in previous work [84]. In addition,
since it is developed in Python, it has many predictors and machine learning libraries
readily available.

Firstly, we need to enumerate the cost function weights used in Eq. 3.1 to take
into account specific requirements of different scenarios. Considering in particular
our three use cases mentioned in Chapter 2, we can observe how throughput is
really crucial for a Telepathology session, while it is not so relevant for a Disaster
response. For Tactile Internet instead, the latency is the predominant factor. For
this reason, for the Telepathology application we used (α = 106, µ = 5× 10−5,
λ = 10−3, γ = 2× 10−9), in the Disaster-response use case we used (α = 106,
µ = 10−6, λ = 10−5, γ = 10−12), and to emulate Tactile Internet scenarios we used
(α = 103, µ = 10−4, λ = 10−3, γ = 10−10). For the disaster response scenario, we
limit the link probability of our Mininet topology to 0.2. In these three applications
the client and server run the corresponding programs.

In order to evaluate the feasibility of applications deployed during a disaster, we
implemented a program that continuously sends the recorded audio to a server that
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processes it and provides useful information such as the presence of humans and the
corresponding location.

For the Telepathology use case, where we focus on the achieved bitrate and
latency, we deployed an application that sends the video captured by the emulated
microscope and sends it to a program responsible for performing video process-
ing [31]. The client sends the video at a maximum bitrate through ffmpeg, and we
measure whether or not the network can provide the adequate throughput.

Finally, for Tactile applications, we modified the telepathology solution and
allowed remote haptic control of machinery instead of the microscope. This robotic
plugin is emulated programmatically.

3.6.1 Automate the choice of predictor

As demonstrated, a prediction method can provide optimal results in a number of
cases, but might not work properly in other situations. For this reason, we try to
automatically choose the algorithm to apply, in order to guarantee the best possible
performance. Choosing the right forecasting method for a given use case is a
function of many factors, starting from how much historical data are available, and
if exogenous variables (e.g., weather, concerts) play a big role. Moreover, we can
consider business needs, whether or not the model needs to be understandable. We
imagine this is not always necessary, but we may use a classical method to achieve
this requirement.

In the context of our Telepathology use case, the choice of the predictors affects
the routing performance (Figure 3.3). In particular, the TS and ML methods are
considered in Figure 3.3a and Figure 3.3b, respectively. Our results show that RFR
achieves a cost of 5.93, the minimum for the MLs, and Holt-Winters a cost of 5.51,
the best for both classes. While our results show that the online training phase has a
lower cost than the offline counterpart, this is valid for the considered use case but,
in other circumstances, the training offline may result as a valuable strategy.

Figure 3.4 demonstrates how the approach is general and can handle different use
cases and increasing sizes of the network. In particular, Figure 3.4a shows the cost
function value for the three use cases, considering the best TS and ML algorithms
for each one. We can see how in a disaster response network, a prediction made
by TS algorithms achieves a better transmission quality. This holds because in this
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Fig. 3.3 The cost function for the tested algorithms. RFR is the best for ML algorithm, while
Holt for TS methods.

scenario fresh data (even if in a small quantity) are more reliable than a huge dataset
trained offline, as in ML methods. Conversely, the offline training phase is desirable
for tactile Internet applications, where patterns can be discovered in advance and
exploited to predict future traffic. This means that, according to user requirements,
a class of methods can be preferred to tackle the problem. RoPE is able to detect
which class of algorithms to apply and switch among them according to user needs.

In order to generalize our findings, we deployed a more random topology where
links among switches and hosts are randomly generated. The number of links
between the switches is a parameter in the generation phase and it affects the density
of the network. We define the network density, a, as:

a =
num_links

N×(N−1)
2

, (3.5)

where the denominator represents the number of potential links, N is the number
of switches and num_links is the actual number of links. This value is changed
to evaluate scalability and test the performance of the framework. Results in the
Telepathology case are depicted in Figure 3.4b, for a different number of links in the
network.

On the basis of these findings, the choice of the predictor comprises many factors:
use case, expressed as preferences by the user, seasonality of data, frequency in
the adaptation of routing, and, consequently, frequency of data collection. Our
framework can adequately choose which algorithm to apply, based on the user
preferences, for an autonomous network management system. In detail, the choice of
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Fig. 3.4 (a) Comparison of different classes of algorithms for different use cases and (b)
algorithms performance among different topologies with increasing connectivity.

the best predictor first selects the class (ML or TS) by evaluating the user needs. TS
is used by default for its ability to be trained online and providing an understandable
model. Instead, in case the application exhibits patterns that a schema can discover
offline, ML is preferred. For example, among the three use cases that we evaluated,
ML class provides the best results for Tactile Internet, while TS for Telepathology
and Disaster Response. However, other cases can be considered as well. Thanks
to the generality of the approach, they can be studied by leveraging the general
cost function in order to better identify the proper class. The further comparison is
distinct for the two classes as follows. (i) For the TS methods: on one hand, if marked
seasonality is denoted, the system selects ARIMA for the best MAPE (Table 3.1).
In fact, ARIMA provides a lower MAPE compared to SARIMA and a comparable
training time. For both the algorithms we set the training window to 5,000 values,
since MAPE achieves the minimum at this size for the two methods (Figure 3.2d).
On the other hand, if there is no seasonality, we then investigate the value of r,
and if greater than the default value (20s), we select Holt-Winters with the training
set size of 1,000 samples as default predictor. In such a way, we select the more
accurate method w.r.t SES, but we limit the training set to reduce the training time to
a reasonable value (Figure 3.2b) that can also achieve the best MAPE for this method
(Figure 3.2d). When r is lower than the default, we set SES as the preferred option
for its lower training time (Figure 3.2b) in order to satisfy the more frequent routing
updates. (ii) For the ML methods: our system sets SVR as the predefined predictor
method for its lowest MAPE (Figure 3.2c and Table 3.3). In this case, the size of
training data partially affects the accuracy, and, for this reason, we use as much data
as available, since SVR minimizes the MAPE on almost any size of the training set.
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Fig. 3.5 Comparison for different routing strategies. (a) Trade-off between latency and
throughput. Our solution provides an higher throughput and a lower latency. (b)-(c)-(d) The
effectiveness of the three routing strategies among the three use cases, Disaster, Telepathology
and Tactile respectively.

3.6.2 Routing Performance Improvement

In this experimental setup we evaluate the quality improvement by comparing our
solution against other currently deployed algorithms (Figure 3.5).

In particular, we compare RoPE against the Equal-Cost-Multi-Path (ECMP),
Online Flow Size Prediction (OFSP) [67] and agasint MetricMap [68]. ECMP, a
well-known algorithm, is used a the baseline. In OFSP, authors detect elephant flows
by means of the GPR algorithm; hence, the least congested path to route such flows
is selected while the ECMP protocol is used to route mice flows. MetricMap uses the
Very Fast Decision Tree (VFDT) online algorithm [85] to learn and classify traffic.
The routing protocol is atop MintRoute and specified for Wireless Networks, but can
be generalized.

First, we compare the achieved latency and throughput by using the RFR pre-
diction algorithm for RoPE in Figure 3.5a. From this result, we can state that RoPE
reduces the latency while increasing the application throughput, with respect to
the other solutions. The result also points out the flaws of a simple yet deployed
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Fig. 3.6 Comparison for different routing strategies over the GENI testbed. Our solution
outperforms the related work, as confirmed by (a)-(b)-(c), where the cost function with the
proper coefficients is computed for the three use cases, Disaster Scenario, Telepathology and
Tactile Internet, respectively.

approach ECMP, highlighting the benefits brought by an adaptive routing combined
with SDN.

Although throughput and latency can be considered as the most major metrics
to evaluate, we rely on the cost function (Eq. 3.1) for a more general evaluation.
Figures 3.5b-c-d depict the function value for the three exposed use cases. As can be
seen, RoPE significantly outperforms all the other methods. The resulting routing
policy reduced the latency while keeping a stable jitter and high throughput among
the three use cases. We can state that our approach yields the best results for the
considered applications. We may observe how, while OFSP optimizes the routing
for elephant flow that is not long in time, our approach can modify the path even in a
second phase, useful for long transmission. Similarly for MetricMap, where online
training does not lead to a significantly improved quality.

3.6.3 Real-case Environment on GENI

To establish the practicality of our approach, we test its scalability over the GENI
testbed [86], which provides physical machines and physical links for testing pur-
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Table 3.4 Performance evaluation in the context of the Disaster Response application running
on the GENI virtual network testbed. Even in these real settings RoPE outperforms related
solutions.

Solutions Thr. [kbps] Lat. [µs] Jit. [ms] ∆ Jit. [ns] CK,I(D)

RoPE 3929.7 10.48 0.83 9.53 10.58
OSFP 4107.1 12.07 1.00 7.22 12.16

MetricMap 4077.1 13.39 1.02 9.03 13.48
ECMP 3702.2 17.43 0.96 4.68 17.52

poses. In particular, we deployed the three applications and the models are re-trained
over real-world data following the same procedure exposed in Section 3.5, but the
emulated network of Mininet is replaced with physical and virtual links. Based on
the previous findings, we select the optimal predictors for each use case and the
results are compared against the above state-of-the-art algorithms, as detailed in
Figure 3.6. A comparison between Fig. 3.5 and 3.6 shows that conclusions about
RoPE in Mininet hold in GENI as well, even though a higher latency and throughput
is obtained in real networks. The RoPE cost function is adequately smaller than the
state-of-the-art. Moreover, Table 3.4 provides details on each component of the cost
function for a Disaster Response scenario. As can be seen, no algorithm outperforms
the others in all the adopted metrics, but RoPE achieves excellent results in both the
latency and the jitter, which leads to an overall better outcome.

In addition to the evaluation by means of Eq. 3.1, we also consider the require-
ments of the applications and we check whether or not these are satisfied by RoPE.
In Table 3.5 we compare the specific requirements against results achieved by using
RoPE on the GENI testbed. We can notice how RoPE brings benefit even from a user
perspective, fulfilling the demands of the applications and enabling the deployment
of such services.

Tactile applications entail at least 1-ms latency to work appropriately, hence
we select an algorithm that best suits such circumstances, with the help of the cost
function. In particular, by using SVR as a predictive algorithm, we can satisfy the
requirement and guarantee an adequate service.

Similarly, we select Holt-Winters for the Telepathology use case, where we focus
on the achieved bitrate and latency. We desire the latency to be lower than 100 ms to
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Table 3.5 Application requirements and the satisfiability achieved by using RoPE.

Use Case Measurement Required Value Obtained Value

Tactile Latency 1 ms 532.274 µs
Telepathology Video Bitrate 900 kbps 902.45 kbps

Latency 100 ms 22.76 ms
Disaster Jitter 1 ms 0.832 ms

App. Throughput 3 Mbps 3.929 Mbps

assure the real-time control of the microscope. Holt-Winters was chosen based on
previous experiments, and it provides excellent results, as proved in Table 3.5.

Finally, we select ARIMA for the Disaster Response use case. The requirements
are selected so that Google libraries used to process audios work best and to enable
a fast response. The results (Table 3.5) reveal that the use of RoPE ensures the
application to function properly.

3.7 Conclusion

This chapter presents RoPE, a new solution to speed up the transfer of critical data.
Its main novelty resides in its traffic engineering logic: it predicts the future load
on links of a path and then chooses the best one according to data computed. This
algorithm allows avoiding congested paths and reduces delay in the transmission,
providing a more effective way of routing critical information with respect to other
algorithms existing in the literature. The results confirm the impossibility of one
prediction algorithm to fit all the use cases. Apparently, Machine Learning provides
excellent results, which reduces the latency in critical communications. However,
Time Series (TSs) can be used for their fast training phase and the straightforward
model. In fact, the results suggest that for Disaster response applications TSs are
more appropriate.

RoPE leverages SDN features, e.g., centralized controller and the context-based
control path, to collect information about the traffic load on the links and takes a new
road in case of predicted congestion. Leveraging SDN switches programmability,
the framework can quickly react to excessive predicted load on links and adapts the
routing to address the congestion. This framework is intended to overcome well-
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known problems related to edge-based applications, such as latency and throughput
requirements. Due to the diversity of applications and data generated, RoPE ad-
dresses the user needs by autonomously detecting the data properties, selecting the
proper model and applying prediction values to the routing.

Moreover, the chapter presents a comprehensive analysis of regression algorithms
to evaluate the advantages and disadvantages of the class of methods and depicts
the logic behind the presented framework. Possible future work might focus on
investigating whether new models can be used in addition to the ones implemented.



Chapter 4

Automatic Network Planning
Decisions

4.1 Introduction

As users and traffic demands grow, the need to optimize our communication networks
magnifies, denoting the evidence that networks dictate our technological world.
Recent advantages in artificial intelligence (AI) and machine learning (ML) are
paving the path to autonomous networks: networks that measure, analyze and control
themselves autonomously [12]. Network automation has been desired in the last
years, since it is almost impossible for human operators to render real-time network
management [87, 35].

Our focus in this system is on network reliability and network elasticity, i.e.,
the subproblem of autonomous networks that deals with the ability to auto-scale
resources up and down, in harmony with changes in the environment, e.g., traffic
demand. The advantages brought by the auto-scaling techniques are multiple. They
reduce the cost of resource management, by deactivating resources that may increase
unnecessary (energy) costs. At the same time, the network can provide redundant
facilities to reroute traffic when workload peaks to unexpected levels.

The work presented in this chapter has been partially published in [21].
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As networks are becoming more programmable and virtualized, their complexity
also increases, with the consequence that exploiting the offered programmability to
guarantee high availability is a non-trivial task.

As networks are becoming more programmable and virtualized, their complexity
also increases, with the consequence that exploiting the offered programmability
to guarantee high availability is a non-trivial task. Traditional threshold-based
and recent ML-based auto-scaling policies are often unable to address the high
complexity of networks and consequently to satisfy carrier-grade requirements such
as reliability and stability. Furthermore, state-of-the-art solutions hardly combine
these features altogether, such as [88] whose primary goal is the energy efficiency,
or [89], which automatically scales Virtual Network Function instances via an ML
classifier. Although reinforcement learning is emerging as a valuable technique to
solve many networking problems, as in [90, 91], there is no solution incorporating
network information to automatically and efficiently orchestrate network resources
in a decentralized manner.

To this end, we propose Mystique, a network management schema that, using
Multi-Agent Reinforcement Learning (MARL), auto-scales to accommodate the
traffic demand and reacts to possible failures. On the one hand, Mystique unburdens
network nodes that are over-congested with traffic, to preserve the high bandwidth
and high availability of the applications. On the other hand, it leverages healing
strategies [92] to repair failing nodes and links.

Each MARL agent, a process running within a network controller, can learn
an auto-scaling policy from experience, without any a priori knowledge or human
intervention. By continuously monitoring the state of the network, the agent can
make sharp decisions on how to optimize network performance and users’ experience,
exploiting SDN to promptly change the configuration. Moreover, the distributed
nature of MARL makes it possible to exploit a (possibly) large number of SDN
switches spread across the topology as probes. The system automatically re-balances
both existing and new flows across nodes, while the agents communicate among
them to obtain information about the other sub-network.

At the same time, it is well-known that from the operator’s point of view, Quality
of Experience (QoE) is an important aspect in keeping customers satisfied, and thus
decreasing churn [93]. To this end, the decisions taken by Mystique aim to maximize
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overall QoE across multiple users and achieve a desired level of QoE fairness, while
reducing the energy costs for active links and nodes.

Results validate our decentralized control plane, showing how Mystique can
promptly adapt and modify its behavior to handle variations in workloads. Compared
to other benchmark solutions, our algorithm can jointly improve the user satisfaction
and more wisely utilize the network resources.

4.2 Related Work

Managing network or application resources elasticity implies a first mapping per-
formance requirements to the underlying available resources. Such a process of
adapting resources to the on-demand requirements of an application, called scaling,
can be very challenging. Resource under-provisioning will inevitably hurt perfor-
mance and generates QoS violations, while resource over-provisioning can result in
idle instances, thereby incurring unnecessary costs. Auto-scaling techniques, i.e.,
resource allocation strategies that automatically scale resources according to demand,
are more than a need and can be differentiated into two classes: reactive and proac-
tive. While the former class refers to algorithms reacting to system changes, but not
anticipating them, the latter stands for strategies that predict and anticipate the future
needs and consequently acquire or release resources in advance, to have them ready
when they are needed. In the literature, auto-scaling solutions have been extensively
discussed from several points of view, especially for cloud computing [94–96].

Reactive and proactive techniques. Threshold-based policy is a common example
belonging to the reactive category, whereas time-series analysis, reinforcement
learning, queuing theory, and control theory can be examples of proactive approaches.
Queuing theory, given its ability of estimating performance metrics such as the queue
length or the average waiting time for requests, has been largely applied to model
applications, e.g., general Internet or cloud infrastructure applications [90, 97, 98].
For example, [97] solves an optimization problem by distributing servers among
different applications, while maximizing the revenue. The authors characterize the
arrival process of requests to an application using a real trace of an e-commerce
system, where the arrival process is adequately described by a Poisson process.
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Control theory has been applied to automate the management of web server
systems, data centers/server clusters, storage systems, cloud computing platforms,
and other systems, showing interesting results across this variety of systems. Many
papers have discussed adaptive control techniques, by adjusting the controller tuning
parameters online [99–102]. For instance, [101] combines two proactive adaptive
controllers for scaling down with dynamic gain parameters based on the input
workload, and a reactive approach for scaling up.

Time-series are massively used in finance and economic domains to represent
the change of a measurement over time. Recently, this technique has also gained
attention in engineering and workload or resource usage prediction problems [20].
At the very basic, a time-series is a sequence of data points, e.g., number of requests
that reaches an application, measured at successive time instants spaced at uniform
time intervals, e.g., one-minute intervals. The time-series analysis is able to find
repeating patterns in the input workload and to forecast future values. The auto-
regression method has been largely used [103–107] and time-series forecasting can
be combined with reactive techniques [108]. For example, [106] proposed a hybrid
scaling technique that, based on CPU usage, utilizes reactive rules for scaling up and
a regression-based approach for scaling down.

Lastly, reinforcement learning (RL) approaches for dynamic resource allocation
problems were successfully applied in the literature. RL can well fit auto-scaling
problems by online capturing the performance model of a target application and its
policy without any a priori knowledge. However, these methods have mainly focused
on allocating tasks, services, and Virtual Machines (VMs), especially to face the
greater or smaller demand, where [109, 90, 110] are examples of a profitable usage
of RL. As such, little work has been proposed to address the problem of network
resources.

Dynamic Resource Creation of Network Agents. Recent studies have explored
scaling softwerized or virtualized network functions in telco and cloud networks.
Among them, [89] proposes a proactive ML-based approach to perform auto-scaling
of VNFs in response to dynamic traffic changes. The classifier learns from historic
auto-scaling decisions and measured network loads, and outputs the number of VNF
instances required to serve future traffic without violating Quality of Service (QoS)
requirements and deploying unnecessary VNF instances. [88] describes ElasticTree,
a network-wide energy optimizer that continuously monitors data center traffic
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conditions and chooses the set of network elements that must stay active to meet
performance and fault tolerance goal. To decide which subset of links and switches
to use, a fast heuristic is used. The primary goal of ElasticTree is the savage of
energy in data centers containing thousands of nodes. Although we share the general
approach with these solutions, we propose a self-learning model that embraces more
the QoS aspects.

A reinforcement learning approach is described in [91], where the authors present
SRSA, a resource-efficient approach to auto-scale telco-cloud. The decision of
allocating or de-allocating VMs is performed to guarantee the QoS and to reduce
the cloud cost. Our solution is also built upon an RL framework, but differs in the
modeling aspects and enables us to scale to more complex networks by learning in a
distributed fashion.

4.3 System Design

In this section, we first identify the softwarized infrastructure and the advantages
of auto-scaling solutions, like Mystique, in this scenario. Then, we present the
mechanisms underpinning the overall system with particular focus on the offered
features. In particular, we start analyzing a single entity, and we continue highlighting
the elements employed to realize the parallelization of the model.

4.3.1 Edge Network Scenario

Although our proposed model is general enough to suit several network deployments,
in this manuscript we target edge networks built from software-defined networking
(SDN) architectures, due to their flexibility and possible customization. While
the model is general and does not require specific functionalities offered by the
underlying technology, to achieve automatic responses to network traffic, softwarized
or virtualized networks are needed.

By edge network, we refer to a network located on the periphery of a centralized
network. It sits entirely between the services and the endpoint devices using them,
as well as between all the edge servers themselves.
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In this context, network operations can take advantage of data-driven, machine-
learning-based models to achieve more high-level goals and a holistic view of the
underlying network. Our solution constitutes an attempt towards a fully automated
network, often referred to as self-driving network. Self-driving networks can mea-
sure, analyze, and control themselves in an automated manner, reacting to changes
in the environment, e.g., demand, while adjusting and optimizing themselves as
needed [12]. This idea has been around in a variety of shapes, such as self-organized
networks [111], cognitive networking [112], knowledge-defined networks [113] and
data-driven networking [114], and lastly, self-driving networks [115].

Fig. 4.1 represents a common scenario that needs auto-scaling components. At
first, the traffic demand increases reaching a non-tolerable level of congestion, and
the system decides the consequent creation of resources to satisfy the traffic demand
alongside re-routing for the interested flows. In a second time, the exigency of
additional resources vanishes gradually as the traffic decreases, and the system reacts
by removing the unnecessary devices. This simple example illustrates the feature
and benefits of auto-scaling networks.

In this regard, recent advances in machine learning (ML), e.g., deep learning,
and networking, e.g., SDN, programmable data planes, and edge computing, have
fostered the development of these networks. However, a desirable and still missing
feature is represented by the distributed detection of congestion with no centralized
congestion recognition and control. Furthermore, to improve system performance,
bottlenecks need to be identified, and efforts should be invested in alleviating these
bottlenecks.

4.3.2 System Components

The main functions of Mystique are to auto-scale according to the traffic demand
and react to failures when they occur. We developed and implemented these features
in a system depicted in Fig. 4.2. In this context, the controller monitors the state of
each switch in its sub-network to detect if one of the following events occurs: the
switch is overloaded (congestion), the switch in under-utilized and can be deleted
(cost-saving), the switch fails and the connectivity can be no longer guaranteed
(failure). However, the network implements the control plane with several distributed
controllers. Each of them controls a subset of switches and communicates with the
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Edge Network

t=0

t=2

t=1

t=3

Fig. 4.1 The goal of our Mystique system is to learn via reinforcement learning how to adapt
to network demand fluctuations by creating new virtual switches and split traffic (from t=0
to t=1), and to scale-down nodes and network resources when demands decrease (from t=2
to t=3).

other controllers, via the Info exchange process, to obtain a consistent network view.
For any change in the controlled network region, e.g., new link, the controller notifies
its peers. They also exchange the information required for computing the QoE for
connected users.

The reinforcement learning (RL) module selects the best action, i.e., active
network resources, but interacts with other processes to collect the information
required for the decision and to notify about the outcome. In fact, we avail multiple
processes to better separate concerns, but they cooperate to achieve our stated goal.
The main functionalities are summarized thereafter.

Routing. Each agent dynamically creates and destroys virtual switches and virtual
links in response to network fault or substantial network traffic changes. This means
that, in these events, the agent is also responsible for re-steering the traffic and
deciding what flows to move in response to these actions.

At the beginning, the route for each flow is selected by the controller based on the
shortest path algorithm. In the case of multiple available paths between source and
destination, a load balancing strategy is applied, i.e., flows are equally distributed
among the multiple paths. In the following, we separate the events to face during the
execution with the aim of a more clear presentation.
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Metrics Collector

Measurements Actions

Actuator

RL Optimizer

Auto-Scaling Logic

Routing

Historical Data

Failure Reaction

Info Exchange

Fig. 4.2 System overview. The Software-Defined Network controller receives as input traffic
statistics and outputs new flow routes and power on/off commands.

In the case of a link or node failure, the same resource is re-created. For a link
failure, a new edge is created connecting the same source node and destination node.
The neighbor of the switch modifies the forwarding rules reflecting the new port ids.
For a switch failure, a new one is generated with the same links that the faulty switch
had. This implies that all the flows previously installed on the old switch are moved
to the new one, and the neighbor nodes that were connected need to be re-instructed
with the new ports.

When a new link or switch is created, the topology is analyzed, and the flows that
can take advantage of the new path(s) are identified. Among them, a subset of flows,
i.e., in order to select half of the identified traffic, is transferred to the new alternative
path. However, we remark that the number of flows to move is a consequence of a
load balancing strategy that attempts to equally redistribute flows.

Finally, when a link or switch is deactivated due to energy saving considerations,
all the flows traversing the deactivated item are considered, and a new path for each
of them is set via the shortest path strategy.

Failure Reaction. We desire to react accordingly to the degree of the issue and take
a proportional action. For this reason, the utilization of the switch (and connected
links) is handled by the RL model, while a separate module manages the failure
detection and reaction. Inspired by previous work [116, 117], we consider 5 possible
faults that can take place in our scenario: (1) communication with the controller
ended, (2) timeout of the response expired, (3) port fault, (4) flows of a particular
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host have blocked unexpectedly by the switch, (5) unexpected behavior of the switch.
As the controller continuously monitors the state of the switches, it can replace the
switch in case of (1)-(2) (three consecutive timeout expirations)-(5). Instead, in case
of (3)-(4), the link originating from the fault port is re-created.

The mechanism of fault reaction is in addition to the fast failover provided by
new versions of OpenFlow [118]. In this procedure, it is possible to install rules
whose forwarding behavior depends on the local state of the switch. Hence, it allows
fast failure recovery, as long as the SDN controller is able to anticipate every possible
failure and precompute appropriate backup paths. However, OpenFlow fast failover
is just to react to link failures, and no other events are taken into account, for example,
switch failure. Even though this is equivalent to a failure of all the adjacent links, we
argue that the controller can benefit from our model and adapt the routing and the
application logic dynamically, as the network evolves. The fast failover is orthogonal
to a reactive solution, as our model is. For this reason, both strategies are utilized for
an improved fault reaction.

RL Optimizer. The optimizer’s role is to find the network subset that satisfies
current traffic conditions while avoiding the waste of resources. As input, it receives
the topology, the power model of switches, and the current traffic conditions. These
measurements are collected by the switches and reported periodically to the network
controller, where resides the metric collector component. The collected data then
feed the model on the agent, that outputs the best decision for the network itself,
exploiting historical data to learn the goodness of a particular action upon the
occurrence of similar conditions. When the decision is made, the actuator receives
the output consisting of the set of active components and performs the appropriate
commands. Moreover, the actuator also pushes the new routes into the network.

4.4 Auto-Scaling System Model

The ultimate goal of Mystique is to deploy the network resources in order to balance
the management costs and goodness in application performance. In this section,
we first describe the variables used in the following to specify the model; then, we
formalize our problem.
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4.4.1 Network Model and Preliminary Definitions

We define our model in two phases: the overseeing phase, the healing phase. In the
overseeing phase, a network controller monitors the system to check for failures or
congestion conditions. Specifically, it communicates with the nodes of the network
to obtain information about the load on links attached. Given the context of an
SDN topology, a network node commonly denotes a switch. However, our model
is independent of the layer the device operates and can work when the nodes act as
either routers or switches.

When a link (and implicitly its connecting nodes) becomes or is going to be too
congested, the controller intervenes to mitigate the congestion. In the healing phase,
we determine the quantity of new resources to create, given the intolerable network
congestion. Hence, enough nodes and links are created, and traffic is redirected to
them to ensure that the fairness index is close to 1 in the network system.

Aside from the congestion detection, another goal of our system is to react to the
failure of a network resource (node or link). In such a case, the response is similar,
with the creation of one or more replacements. Moreover, a re-routing process occurs
to notify the nodes of the existence of the new resources. After the actuation, a
failure and congestion avoidance phase starts again, and the controller will continue
to monitor the system to guarantee that traffic is returned to normal operation.

We formalize such phases using the following notation. Let the network be
modeled by means of a graph G = (V,E), where V is the set of vertices (nodes of
the network), and E is the set of edges, standing for the links. Similarly to the multi-
commodity flow problem, we assume that in the system there are k commodities
K1,K2, . . . ,Kk, defined by Ki = (si,di), where si and di are the commodity i source
and destination. The flow of commodity i has an end-to-end throughput defined as
fi. Moreover, the throughput of flow i along the link (u,v) is fi(u,v) where each link
of the network has a fixed capacity c(u,v).

Let Lu,v be the load on the link (u,v), computed as follows:

Lu,v =
∑

k
i fi(u,v)
c(u,v)

, (4.1)

considering that fi(u,v) = 0 when flow i does not traverse the link (u,v).
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QoE. As other user-centric services and application management [119], we focus on
the quality of experience (QoE) perceived by the end-user. It is generally accepted
that the degree or annoyance of a user of a networked service depends, in a non-
trivial and often non-linear way, on the network’s QoS [93]. Furthermore, the QoE
is service-specific and is often different given the same network conditions, i.e., the
way in which QoS can be mapped to QoE depends on the service offered.

For this reason, we define a general mapping function B to compute the QoE
value yi for the user i, given the QoS parameters in the set xi:

B : xi 7→ yi = B(xi) ∈ [L;H], (4.2)

where L is the lower bound and H the upper bound of the QoE value. The function
B is required to map QoS parameters into the QoE domain [L;H] and map QoS to
QoE uniquely. Thus, it does not need to be monotonic. We leave the choice of the
mapping function out of the scope of this chapter, since the QoE models are often
derived by subjective user studies. In our formalization we only require the value
yi = B(xi) to be normalized in [0;1]. If B does not naturally return values in the range
[0;1], this can be achieved normalizing the QoE values y∗i =

yi−L
H−L .

QoE Fairness. Recent results [120] have argued for a more informative notion of
fairness, not limited to flows as classically studied in TCP, but more holistically over
a set of metrics defining the QoE. We adopt the same definition of QoE fairness
index F as follows:

F = 1− σ

σmax
= 1− 2σ

H−L
, (4.3)

where σ is the standard deviation of the QoE values and quantifies the dispersion of
the users’ QoE in a system. The fairness index F is a linear transformation of the
standard deviation σ of yi to [0;1], where F = 1 indicates perfect fairness and hold
for minimum standard deviation (σ = 0). Conversely, F = 0 denotes the minimum
fairness and is found when the standard deviation is at its maximum. The observed
σ is normalized with the maximal standard deviation σmax and specifies the degree
of unfairness. Further, the maximum standard deviation is σmax =

1
2(H−L), and we

can observe that in our case where yi ∈ [0;1], σmax = 0.5. In conclusion, a system is
absolutely QoE fair when all users receive the same QoE value.

This definition of fairness appears to be intuitive, i.e., high value if fair and low
value if unfair, and compared to the most frequently used metric of Jain’s fairness
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index [121] provides some additional properties. First, the index F is independent
of QoE level (QoE level independence), and second, only depends on the absolute
value of the deviation from the mean value, not whether it is positive or negative
(deviation symmetric). The Jain’s fairness index, instead, is sensitive to the used
rating scale. These features ensure our model to be general enough and valid for
multi-applications. We can also note that, as the F index is defined, QoE fairness
says nothing about how good the system is and thus needs to be considered together
with the achieved QoE in system design.

4.4.2 Optimizing Quality of Experience, Costs, and Fairness

Based on the aforementioned network model, we now describe the problem as an
optimization problem aiming to simultaneously reduce management costs, alleviate
congestion effects providing an adequate service, and ensure fairness among users.

First, we formalize the power consumption of network topology as:

C = ∑
(u,v)∈E

cl(u,v)φu,v + ∑
u∈V

cs(u)τu, (4.4)

where φu,v is a binary decision indicating the power status of link (u,v), i.e., φu,v = 0
refers to power off and φu,v = 1 to power on. The same for the power status of a
switch, where τu is a binary variable indicating if switch u is powered on. Besides,
cl(u,v) and cs(u) are the power cost for link (u,v) and switch u respectively.

To optimize the power consumption, we act on these binary variables for every
link and switch, and we constrain traffic to only active links and switches. We can
now present the overall problem as follows:
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maximize
X ,Y

µ
1
k

k

∑
i=1

B(xi)+λF−ωCnorm (4.5)

s.t.
k

∑
i=1

fi(u,v)≤ c(u,v)φu,v;∀(u,v) ∈ E (4.6)

τu ≤ ∑
r∈Ru

φu,r;∀u ∈V (4.7)

φu,r ≤ τu;∀u ∈V,∀r ∈ Ru (4.8)

∑
r∈Ru

Zi(u,r)≤ 2;∀u ∈V,∀r ∈ Ru (4.9)

φu,v = φv,u;∀(u,v) ∈ E, (4.10)

where Cnorm is the normalized cost, i.e., 0 ≤Cnorm ≤ 1, to make it comparable to
the other variables. Line (4.5) specifies the objective function, which attempts to
maximize the average QoE and the fairness index F perceived by the end-user while
reducing the total network power consumption. µ , λ , and ω are three parameters
that balance the importance of power consumption with respect to the QoE and
fairness index. By tuning these coefficients, the model can be tailored to specific
requirements.

The constraints from (4.6) to (4.10) include some requirements to satisfy. In
particular, (4.6) ensures that deactivated links have no traffic. Each flow is indeed
restricted to the links powered on, i.e., for which φu,v = 1. Therefore, for all links
(u,v) used by commodity i, fi(u,v) = 0 when φu,v = 0. The objective of cost
minimization enforces also the opposite: links with no traffic can be turned off.
This line also imposes capacity constraints, as the total flow along each link must
not exceed the link capacity. Further, (4.7) and (4.8) set a correlation between the
link and the switch decision variable. Specifically, (4.7) imposes that when all links
connected to a switch are off, the switch can be powered off. Similarly, when a switch
is powered off, all the links connected to such a switch are also powered off, as stated
by (4.8). Although splitting the flow across multiple links in the topology might
reduce power by improving link utilization overall, it is known that this may cause
undesirable packet reordering effects that negatively impact TCP performance [122].
For this reason, we prevent flow from getting split in the above problem by enforcing
(4.9). This constraint ensures that the switch receives flow i from the incoming link
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and forward it to only one outgoing link, and the flow uses a total of at most two
links attached to the switch u. Finally, in (4.10) we define that the link power status
is bidirectional, and there is no concept of half-on Ethernet link. Thus, the full power
cost for an Ethernet link is incurred when traffic flows in either direction.

Our optimal solution must select which resources to turn on and off, while satisfy-
ing the traffic constraints. The presence of binary variables makes the stated problem
a mixed-integer linear program, which is NP-complete. Given the computation
complexity, which can hardly scale to networks with a large number of nodes, in the
following we attempt to solve the problem via a reinforcement learning approach.

4.5 The Mystique Solution

The learning process at the basis of the system is built upon the reinforcement
learning concepts for a continuous acquisition of knowledge of the network. In the
following, we define the main elements which characterize our reinforcement learn-
ing problem. Since our MARL model can be viewed as an extension of centralized
model, in the following, we describe the procedure as in a single agent variant in
order to clearly describe the learning process.

Reinforcement learning is a well-known on-line technique that approximates the
conventional optimal control technique known as dynamic programming [123]. The
external world is commonly modeled as a discrete-time, finite-state, Markov Decision
Process (MDP). The agent interacts with the external world and performs actions,
where each action is associated with a reward. The objective of reinforcement
learning is to maximize the long-term discounted reward per action. In our solution,
each reinforcement learning agent uses the one-step Q-learning algorithm [124]. In
this context, the learned decision policy depends on the state-action value function
Q, which estimates long-term discounted rewards for each state-action pair. Given a
current state x and the possible available actions ai, the agent selects each action with
a softmax policy, which consists of a softmax function [125] that converts output to
a distribution of probabilities.

Hence, the RL agent receives the inputs and selects the best action, then updates
the state of the table and proceed with this process continuously.
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4.5.1 Reinforcement Learning States

Decisions taken by the agent should consider the network status and react properly
to events that occur. Hence, the state of our RL model is composed of the load on
links, Lu,v, for each link in the network. This metric is employed in the learning
process to choose the best action and evaluate the performed action.

4.5.2 Actions

The RL algorithm defines the mapping between the inputs of the reaction logic, i.e.,
the network state, and the actions to be performed to address the issues coming
from the ongoing traffic. The action selection is the key to the proposed algorithm
to be effective. As in the other RL approaches, the control decisions are learned
from experience, eliminating the burden of a more rigorous model. In line with the
optimization problem defined, the RL agent computes a scaling action au,v

t ∈A =

{1,0}, for the link (u,v) ∈ E at time step t. As mentioned above, au,v
t = 1 represents

the link in the state on, and au,v
t = 0 represents the link in the state off. When the

decision for the link differs from the current link state, the controller sends specific
commands to change the state and actuate the output of the RL process.

In conformity with the cost optimization and the considerations previously ex-
plained (Section 4.4.2), when all the links of a switch are down, the switch can be
turned down as well. For this reason, in spite of the fact that the actions only refer to
links, they also impact the switch state.

4.5.3 Reward

In accordance with the reinforcement learning approach, the agent finds the best
resource allocation that maximizes the network-aware reward. In fact, the reward of
the RL formulation specifies the appropriateness of the action taken in a particular
state. The utility function instead specifies the objective of our algorithm by looking
at the environment response. The aim is to find the decision policy of resource
allocation with the maximum utility function for the network agent. Since the utility
function is the real objective that we try to optimize, we directly use it as a reward for
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the learning process. Thus, we define a reward function, r, similar to the optimization
function of the aforementioned formal problem:

r = µ
1
k

k

∑
i=1

B(xi)+λF−ωCnorm, (4.11)

where µ , λ and ω are coefficients that control the importance of the average
B(x), which defines the QoE and the customer satisfaction, F , for the fairness of the
QoE, and Cnorm, that assess the network cost management. The function aims to
minimize the over-provisioned resources while also minimizing the switches load in
order to improve QoS parameters.

4.5.4 Multi-Agent Reinforcement Learning Framework

To scale-up and distribute the burden among separate agents, we leverage multiple
controllers, where each of them is responsible for a sub-network. Along with
improvements in terms of scalability, distributing the burdens among more agents
brings resiliency to the event of failure of one controller. When one agent fails,
the switches under its control are temporarily migrated under the supervision of a
near controller. As such, our solutions can handle both failures at the data-plane
(switches) and at the control-plane (controllers).

More formally, in a multi-agent setting, each agent maintains an individual policy
πi for the specific state space Si and action space Ai. The state space is, thus, limited
to the sub-network managed, and includes a diverse set of switches and links. In the
same way, the action set reflects the diverse set and is restricted to only the managed
links.

Despite the difference in the RL model, the agents interact among them to obtain
information about the global topology, as the routing decisions should consider a
global view. A model is trained for each node, but they communicates possible
metrics needed to compute the user QoE.
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4.5.5 Mystique Overall Algorithm

In the light of all these elements, we propose a decentralized RL-based procedure to
address the congestion problem in the network.

Algorithm 2 Resource optimization using RL
1: Let P be metrics collection interval, and I the learning step
2: Let Q be the network approximating the Q-values
3: Let T N be the target network
4: Initialize Q(s,a) = 0,T1 = 0,T2 = 0
5: for each episode do
6: if t−T1 > P then
7: Collect the state s at time t
8: Verify the presence of failures, and in case react
9: Choose a using policy derived from Q

10: Take action a by activating/deactivating selected resources
11: Adjust routing accordingly
12: Observe r, s′ and update the Q network
13: if t−T2 > I then
14: T N← Q
15: T2← t
16: T1← t
17: Notify updates to other controllers

In Algorithm 2 we summarize the main steps underpinning our self-learning
process aboard of each controller. For one thing, we initialize the Q-values table,
Q(s,a) and other hyper-parameters. Next the continuous learning procedure starts
(line 5). With a period P, the controller gets information about the congestion of
the links, represented by the value Lu,v. Hence, the agent observes the current state,
s, and verifies the absence of failures. In case of link or node failure the proper
reaction is enacted. Either way, an action a is chosen for that state based on one of
the action selection policies explained previously. Taking the action may involve
creation or removal of links or nodes. In these circumstances, re-routing must take
place, and the controller instructs the switches with the new flow rules to engineer
the traffic. Once the adjustment is completed, the agent observes the reward, r, as
well as the new state, s′, and updates Q-value for the state s using r and the maximum
reward possible for s′. The updating is done according to the formula and parameters
described of Q-learning. Afterwards, it is checked if I seconds are elapsed since last
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update, if so the Q network is copied to the target network T N. Finally, the agent set
the state to the new state, and repeats the process until a terminal state is reached.

4.6 Experimental Settings

In this section, we first describe the testbed configuration and the settings common
throughout our experimental campaign. Further, we identify a representative network
scenario for the evaluation and the algorithms to compare Mystique against.

4.6.1 Implementation

To demonstrate the practicality of our approach, we have implemented the proposed
scheme in an emulated scenario. Mystique needs to receive the current utilization
and to operate on the flow paths decisions. These network capabilities can be
achieved via NetFlow [41] and SNMP for the traffic data, while source routing
and policy-based routing allow the path control. The network switches can be
implemented via different technologies, such as Quagga, FRRouting, OVS, Bind, P4.
However, due to the ease of use of SDN in prototyping, we use OVS switches [42]
featuring OpenFlow, combined with an SDN-controller to obtain the above requisites.
OpenFlow, providing a flow table abstraction, is used to push the computed set of
application-level routes to each switch. Besides the flow installation component, it
provides the flow-specific counters that can be accessed by external entities via open
API, and enables the port power control.

Every switch communicates with an SDN controller, which is implemented with
Ryu [126]. Ryu is a component-based software-defined networking framework that
provides network visibility and control atop a network of OpenFlow switches. In
particular, the Ryu controller communicates with the switches to collect the metrics,
and pushes the adjusted flow routes. The controller behavior can be customized
via the REST APIs that the controller is equipped with. Finally, in the centralized
version, the number of Ryu controllers is limited to one, whereas in the distributed
version, the number can increase to guarantee fault tolerance of the controller agent.
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4.6.2 Experimental Setup

We deployed several environments to assess the performance of Mystique. However,
herein we summarize some common settings and remarks valid throughout the
performed experiments. For the sake of simplicity, we limited the QoS parameters
xi of user i to the end-to-end throughput, and the mapping function B is an identity
function. By doing so, we limit our focus to metrics that can be collected smoothly,
and we leave the study of a system based on more indicators (to be summarized for
example using a neural network) as future work.

Evaluation settings. The topology and the switches are emulated over Mininet [127].
Mininet is a network emulator that creates a realistic virtual network, running real
kernel, switch and application code, on a single machine. This networking tool makes
use of namespaces, a feature of the Linux kernel that partitions kernel resources. In
current setup, switches and ports are not powered off, but are only deactivated, since
the switches are virtual switches. Nonetheless, in a real deployment, it is possible
to exploit existing mechanisms to control the power, such as SNMP, command line
interface, or recent mechanisms of power control over OpenFlow.

Traffic workload. The energy, performance, and robustness of the system heavily
depend on the traffic pattern. In the following, we explore how a variety of com-
munication patterns affect system behavior. Specifically, we evaluate a uniform
demand, where every host sends one flow to another host of the network. We use
two more types of traffic patterns to evaluate performance, moderate increase and
sharp increase. During the former, the hosts linearly increase the traffic sent to
double it within 20 seconds. In the latter, instead, traffic is doubled in 5 seconds.
Finally, due to the lack of public traces specific for this problem, we generate traffic
synthetically, where each sender-receiver pair runs TCP iperf3 for 100 seconds,
alternating between different rates.

Hyper-parameter settings. We developed the agent’s neural network with Keras [128],
a high-level neural networks API written in Python. The neural network is com-
posed of the input layer with three hidden layers with respectively 256, 128 and 64
neurons. The input layer number of neurons corresponds to the number of links in
the managed network, whereas the number of output layer neurons is the amount
of links of action set, Ea. Such a neural network runs over Tensorflow [129], an
end-to-end open-source platform for machine learning. For hyper-parameter setting,
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Virtual Switch

Virtual Host

Fig. 4.3 A sample of emulated network topology used during the experiment campaign. The
design reflects the desire of allowing a variety of test conditions and a multitude of available
paths.

we set the discount factor λ = 0.99 and the learning rate α = 0.9. The batch size is
256 to enable a high learning rate. If not otherwise specified, cost saving, application
performance, and fairness are equally important, i.e., µ = λ = ω = 0.3. We set the
default interval for collecting statistics P = 0.5 s, and the action decision interval to
I = 1 s. Nonetheless, in what follows, we also evaluate the consequence of alternative
intervals over the system performance.

Network use case. The network topology considered throughout experiments should
offer sufficient path redundancy, enough hosts to deploy the desired traffic patterns,
and be reasonably suitable for an edge network. Taking all these considerations in
mind, we converged on a network use case shown in Fig. 4.3. This topology is the
default environment utilized, but also other settings with different link densities are
considered. OVS switches are utilized for the measurement of the throughput per
each ongoing flow, in turn, mapped to a single QoE value, following considerations
of Section 4.6.2.

Benchmark algorithms. To validate our solution we compare against three state-of-
the-art solutions adequately adapted to our use case: an ML classifier-based method
to perform auto-scaling, [89], SRSA [91], and ElasticTree [88]. In [89], an ML-based
method converts the auto-scaling decision to an ML classification problem, so that
it can learn from the insights and temporal patterns hidden inside measured data
from the network. As shown in their study, Random Forest (RF) is the algorithm
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performing better; thus, we apply this method, and, for simplicity, we refer to this
solution as Auto-RF. Conversely, SRSA is a reinforcement learning approach to
auto-scaling VMs in a telco cloud platform [91]. Even though our solution shares
the RL formalization, substantial differences involve the model, the objective (and
reward), the use case, actions associated, and a single agent vs. multi-agent version.
Finally, ElasticTree attempts to solve a power optimization problem and compares
multiple solutions strategies. A greedy bin-packing heuristic has been advocated as
an adequate solution, and for this reason, we employ the version of ElasticTree using
such a heuristic. However, it is relevant to note that our difference with the state-
of-the art not only resides in a multi-agents configuration, but also in an optimized
algorithm which can handle more complexity for more conscious decisions, as seen
in Section 4.7.

4.7 Performance Evaluation

In the following, we compare the goodness of our data-based approach with respect to
model-based solutions, usually solved via heuristics, and other data-based techniques.
After a brief explanation of the considered metrics, we measure the impact of
a MARL approach over network performance. Then, we extensively compare
Mystique versus related solutions in several network conditions. Lastly, we also run
sensitivity experiments by varying some algorithm parameters.

4.7.1 Evaluation Metrics

In this section, we make use of metrics and quantity defined in Section 4.4 and 4.5,
such as the QoE fairness and reward function.

Besides them, one of the primary metrics we inspect is the percentage of power
savings, computed as:

% power savings = 100−% original power =

100− power consumed by solution×100
power consumed in original network

, (4.12)
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Fig. 4.4 Reward function for different traffic patterns: (a) uniform, (b) moderate increase, (c)
sharp increase, (d) synthetic generation. Four available strategies are compared, highlighting
differences between centralized versus decentralized (MARL) model.

which gives an accurate idea of the overall power saved by turning off switches and
links. The original power, indeed, represents the consumption for the always-on
baseline.

Clearly, the savings depend heavily on the network utilization, u, defined as the
average of the load on the link, Lu,v, over all links weighted by their capacity. In
practice, this is the sum of the link flows over the entire network divided by the sum
of link capacities, formally:

u =
∑(u,v)∈E ∑

k
i fi(u,v)

∑(u,v)∈E c(u,v)
. (4.13)

4.7.2 Centralized versus Multi-Agent Reinforcement Learning

Firstly, we compare the performance of our distributed solution based on multiple
agents with a centralized version build upon the same model (Section 4.4). For the
sake of completeness, to understand the advantages of self-learning capabilities, we



4.7 Performance Evaluation 61

also compare them against always-on and minimal orchestration baseline algorithms.
In the former setting, all the switches and links are maintained during the experiment.
This policy ensures the best applicative performance but high energy consumption.
On the other hand, in a minimal orchestration, no redundancy is exploited, and only
the minimal subset to let the network works is kept. This configuration leads to a
minimum in management cost, but a degradation in the performance.

Figure 4.4 compares the reward function defined in (4.11), for the four algorithms:
always-on and minimal orchestration as baseline algorithms, and the centralized and
decentralized version of the RL process, i.e., MARL. In the centralized, a single
controller handles the switches of the network, while for the decentralized setting,
three controllers are in charge of managing the network and instruct the switches.
Evaluating their strengths and weakness implies appraising the behavior for different
traffic demands. For this reason, we analyze the reward function across four traffic
patterns: uniform, moderate increase, a sharp increase, and synthetic generation for
a more realistic use case. We can observe how the distribution of the concerns across
multiple agents, as in the decentralized version, produces higher rewards in almost
every context. The only exception resides in the sharp increase of the traffic demand,
given the limited knowledge of the network status.

4.7.3 State-of-the-art Comparison

After a first assessment of Mystique performance, we evaluate our solution against
the benchmark algorithms stated above. In a similar way to the previous evaluation,
we report in Fig. 4.5 the (a) energy efficiency, (b) application throughput, (c) QoE
fairness, and (d) reward function, for the considered methods. By considering the
plots, we can notice how our system outperforms the related algorithms in all the
examined metrics. In particular, fairness is distinctly one of the most improved
quantities in Mystique, as one of the desiderata. Furthermore, none of the other
algorithms can efficiently optimize more metrics simultaneously, but they can suc-
cessfully improve only some of them. Conversely, Mystique stably outperforms
other solutions, demonstrating its ability to optimize management costs and QoS
parameters altogether in multiple network scenarios.
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Fig. 4.5 Performance comparison with other benchmark algorithms in terms of (a) energy
saved with respect to original setting, (b) mean application throughput achieved, (c) fairness
index for the flows, (d) system reward.

4.8 Conclusion

This chapter presented Mystique, a system that allows scaling network resources
up and down to track network utilization. The network controller can dynamically
activate or deactivate links and nodes in an “as needed” fashion with the aim of
minimizing the energy consumption and improving QoE and fairness among users.
Furthermore, the system can promptly react to network failures as these happen. In
this context, the chapter highlights the benefits of splitting the decision logic across
multiple controllers, for a distributed and fault tolerant architecture. We show how
this approach can improve the management when the quantity of information needed
for the model becomes large and can lead to more accurate actions.



Chapter 5

High-Performance Transport Protocol

A performing congestion control protocol is fundamental for proper network opera-
tion as it ensures telecommunication stability, fairness in computer network resource
utilization, high throughput, and a low switch queuing delay. Although many solu-
tions have been proposed in the last decade, Transport Control Protocol (TCP) still
constitutes the overwhelming majority of current Internet and Long Term Evolution
(LTE) communications, and the vast majority of congestion control mechanisms are
implemented on TCP [130].

Despite the wide deployment of TCP, various studies have shown how it performs
poorly in scenarios that require adaptability or that departs from the original network
conditions on which it was designed in the ’70s [131–135]. In particular, problems
may occur in cellular and wireless networks, where TCP misinterprets the stochastic
packet losses as congestion, hence leading to performance degradation [135]. This is-
sue has motivated many authors to propose innovative congestion control approaches
that follow a domain-specific design philosophy, in which the design is limited to
a specific network scenario and it leverages its specific characteristics to boost the
performance. Examples are in data centers [136, 137] and edge networks [134, 135].

The challenge of adequately updating the congestion window (cwnd) in resource-
constrained networks, such as wireless networks and IoT, is exacerbated by inherent
problems arising from their limited bandwidth, processing, and battery power, as well
as from their dynamic conditions [138, 20]. The deterministic nature of TCP is indeed
more prone to cause cwnd synchronization problems and higher contention losses,

The work presented in this chapter has been partially published in [22].
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due to node mobility that continuously modifies wireless multi-hop paths [139, 140].
Several TCP variations (e.g., PCC [141] and Copa [142], to mention a few) have
been recently proposed to overcome these shortcomings. Nevertheless, the fixed
rule strategies used by these solutions are often inadequate to adapt to the rapidly
changing environment.

To solve the problem of an adequate congestion window update strategy, we
have developed Owl, a novel transport protocol based on reinforcement learning
(RL). Although many transport protocols have been designed, with reinforcement
learning [143, 144] or without for a network-aware solution [145, 136, 146], the
most recent solutions using RL do not exploit network intelligence fully.

Our transport protocol Owl is able to increase the throughput and fairness while
reducing the number of packets lost and delay by learning from several end-to-end
and in-network metrics. In particular, our contributions are summarized as follows.
We designed and implemented as a kernel module Owl, a new congestion control
protocol that leverages partial network knowledge to train a reinforcement learning
model based on Deep Q-Learning [147], improving the network performance with
respect to recent work [148]. The outcome of Owl model is the next congestion
window value, a crucial and volatile parameter for any reliable telecommunication.
We then evaluate our solution extensively: first, we compare Owl with other sixteen
transport implementations. Some of these solutions were designed for wireless
networks, such as Sprout [134] or the more recent ABC [145], while others [149–
152] were chosen since they are widely deployed in several Linux distributions.

Our performance results (obtained using emulations with real available traces
from Verizon and T-Mobile and a deployment over the GENI testbed [86]) show that
Owl has consistently bandwidth and delay improvements across several scenarios.
We also evaluate the parameters of our deep neural network used in our reinforcement
learning and tested Owl’s fairness performance, finding that our transport protocol
behaves less aggressively than others.

As owls that (are wise and) can see with poor light conditions, our protocol operates with partially
visible networks.
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5.1 Related Work

Congestion control and avoidance problems have been widely discussed in the litera-
ture due to the great importance in reliable data transmissions. To solve the optimal
congestion window inference problem, recent machine learning-based algorithms
have been proposed with promising results in different network scenarios. In this
section, we focus on highlighting how these solutions differ from our protocol.

Congestion Control is a fundamental service offered by TCP, so much so that
significant improvements and variations have been proposed over the years. A
few examples are TCP Vegas [151], Compound [153], Fast [154], BBR [152],
and Data Center TCP (DCTCP) [136]. Rather than relying on indications of lost
packets to adjust the cwnd as traditionally happens, BBR considers RTT and average
delivery rate measurements to decide how fast to send data over the network. This
enables BBR to be resilient to the bufferbloat problem, but it frequently exceeds
the link capacity, causing excessive queuing delays [145]. Other protocols, e.g.,
Compound [153] and Fast [154], instead attempt to optimize losses, but they rely on
some predefined functions or rules to handle network conditions.

In summary, all these solutions share the limitation of fixed-rule strategies,
that is, their performance is challenged in networks that require rapid adaptations.
Our solution, instead, uses a (reinforcement) learning approach to overcome this
limitation and predicts the best cwnd update at each transmission event.

Recent end-to-end congestion control solutions, such as Remy [133], PCC [141],
PCC-Vivace [155], define an objective function to optimize the process of online
actions definition, e.g., on every ACK or periodically. Remy [133], for example,
offline trains every possible network condition to find the optimal mapping with the
sender’s behavior. These mappings are stored a-priori in a lookup table, and rely on
what has been seen and hence can accommodate new network conditions only by
recomputing the lookup table. On the other hand, PCC [141] and PCC-Vivace [155]
perform online optimizations. For instance, PCC can rapidly adapt to the varying
conditions in the network by aggressively searching for more accurate actions to
change the sending rate. However, these online rules are often complex and require
considerable lags in estimating all the parameters to be accurate.
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Our protocol also uses a utility-bases approach, but exploiting a deep neural
network to better adapt to a specific network, leaving the utility customization as a
policy that can be tailored to more specific requirements.

Learning for Congestion Control. As a recent trend, Machine Learning (ML)
has been widely applied to various problems arising in network operation and
management [14]. We use ML to adapt the cwnd estimation. The majority of
alternative approaches are specifically designed to cope with a resource-constrained
network, including IoT [138] and WANETs [140, 151, 139]; others instead address
a wider range of network architectures [156, 141, 133]. Recently, RL has permeated
many congestion control mechanisms, such as Orca [157] and Aurora [148], where
in Aurora, the previous Performance-oriented Congestion Control (PCC) protocol
was extended with a Deep-RL approach. Our RL approach differs from others for the
agent state: we effectively combine features from both the transport and the network
layers, without significant burdens to the Linux kernel module.

In-Network versus End-to-End Congestion Control. Several protocols leverage
the Explicit Congestion Notification (ECN) to provide network-level feedback to
end hosts. For example, DCTCP [136] modifies the Red Early Drop thresholds
of ECN to achieve high throughput, high burst tolerance, while keeping queues
empty hence experiencing low latency. ABC [145] instead improves on ECN by
sending accelerate and brake signals instead of merely random early drop signals,
and hence more accurately adjusts the source sending rate. As ABC, Owl also
uses network-level information as well (when available), however, our feedback
comes from a network controller, e.g., a measurement agent or an SDN controller,
that computes statistics about device utilization. Also, Owl does not need any
modifications to packets headers or custom routing devices logic, which leads to
challenging deployments. In fact, Owl only relies upon client-side changes and a
network statistics collector, a standard operation across multiple network scenarios.
On the one hand, our network-level feedback carries more information than a simple
bit in the TCP header. On the other hand, Owl functions properly also without
network knowledge, while ABC and other ECN-based approaches require network
knowledge to work.
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5.2 Congestion Control via Reinforcement Learning

We now overview our primary components in the RL method, starting with our
considered state set, then with the set of actions on the congestion windows, and
finally, with the utility that drives the choice of the next protocol action.

Table 5.1 The network statistics gathered for estimating the upcoming performance.

Features of the Owl congestion window predictor

1 Time-stamp [jiffies]
2 Congestion Window Size (cwnd) [packets]
3 Round Trip Time (RTT) [ms]
4 RTT variation between two consecutive samples [ms]
5 Maximum Segment Size (MSS) [bytes]
6 Number of delivered packets
7 Packets lost during a transport session
8 Current packets in-flight
9 Number of retransmissions [packets]
10 Partial Network Knowledge (PNK) [packets]
11 Percentage of known network [%]

State Space. Table 5.1 summarizes the features that we selected to build our model
state space. We consider both end-to-end statistics (features 1 to 8) and network-level
statistics (features 10 and 11). Thus, the former set of features is collected at the
sender side at each time interval, any jiffy, where jiffy is the finest time granularity on
Linux systems. Instead, the last two features represent the partial information coming
from the network (feature 10), and a parameter stating the quantity of knowledge, as
a percentage of the whole network (feature 11), respectively. For each switch under
control, let Pin be the total number of packets received in a given time interval (one
second in our implementation), and Pout the total number of outgoing packets. We
then define diff as |Pin−Pout |. Our Partial Network Knowledge (PNK) represents
an indicator of the known level of congestion within the network. In particular, given
a source receiving statistics or updates from z switches on the path between a source
and a destination, PNK is computed using the following equation:

PNK = max(di f f1,di f f2, ...,di f fz). (5.1)
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PNK informs about the current congestion level, and consequently, the loss rate
occurring in the network. We choose PNK as it is easy to compute and accessible
by a vast number of protocols and network measurement applications, such as
OpenFlow or NetFlow. Nonetheless, we remark that Owl can also be configured as
an end-to-end protocol, in case the network knowledge is hidden or impractical to
obtain.

In defining our states, we also consider a history window of k values for each
chosen feature as our state. This approach helps our algorithm to predict the network
conditions adequately and to adjust the congestion window accordingly. The neural
network of our deep reinforcement learning algorithm receives a matrix N by k,
where k are the historical values for each of the N features. In our experiments, k
has been set to 5. We augment our state space with a history of generic length k to
help the agent’s learning. However, we do not set this hyperparameter to a large
value since that prevents the state from growing unreasonably, and because forgetting
history faster is beneficial.

Actions. The congestion window (cwnd) is one of the per-connection state variables
that is used by TCP to limit the amount of data a sender can transmit before receiving
an ACK. Since TCP was designed based on specific network conditions and handles
all packet losses as network congestion, in wireless lossy links it unnecessarily
lowers its rate by reducing the cwnd at each packet loss, negatively affecting the
end-to-end performance. Hence, we exploit an online training algorithm based on
RL to update the cwnd properly.

The selection of actions is the key to the proposed algorithm’s effectiveness. The
list of actions specifies how Owl should change the cwnd in response to every packet
acknowledge. The set of acceptable congestion window values is large and tied to the
reward of the RL system. Hence, there is no unique solution across every network
condition. After an empirical evaluation, we converged on the set that has given us
the highest utility, that is:

A = {−10,−3,−1,+0,+1,+3,+10}. (5.2)

We allow the agent to change the cwnd in any direction with different intensities. The
first three options reduce the size of the congestion window with a distinct extent,
whereas the last three increase it by three different values. The last action does
nothing to the size of the cwnd, letting it remains the same as before. We want to
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encourage the agent to explore diverse ways to influence the connection by assigning
different magnitudes to the performed change. Indeed, not only the learning agent
should predict when increasing or decreasing the cwnd, but also to what extent. For
example, our algorithm must learn when the network state suggests that a large part
of the bandwidth is unused to aggressively increment the window size, while it must
only slightly increase it when the network approaches any congestion. Our network
module starts with an initial cwnd of 10.

Due to the opted approach, the protocol learns how to make control decisions
from experience and, thus, eliminates the need for necessary pre-coded rules to adapt
to the variety of network environments. Finally, we converged to the action set in
Eq. 5.2 after having performed a substantial number of empirical trials. Nevertheless,
the action set A is a policy that can be tailored to specific use cases, by either
modifying values of the congestion window size (as we did) or acting upon other
TCP parameters, e.g., timeout estimation or slow-start threshold.

Utility function (RL reward). The selection of the congestion control schema relies
on a utility function that models the application-level goal of “high throughput and
few losses”. In particular, the utility U of sender i is a function of throughput λ and
packet loss rate p, as follows:

Ui = λi−δiλi

(
1

1− pi

)
, (5.3)

where p ∈ [0,1) and δ is an adjustable coefficient determining the importance of the
components. For example, a larger δ implies that lower packet delays are preferable.
The goal of each sender i is to maximize its utility function Ui.

In the following we focus on the utility’s motivation. In particular, we show that
processes running our protocol converge to a stable rate assignment.

5.2.1 Stability Analysis

We will demonstrate how no sender has the incentive to deviate its sending rate
from the strategy defined by our Owl protocol objective function, hence reaching a
Nash equilibrium. At the equilibrium condition, we have the n-tuple of sending rates
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defined as (λ1, ...,λn). Formally we have that:

Ui(λ1, ...,λi, ...,λn)>Ui(λ1, ...,x, ...,λn), (5.4)

for any sender i and any non-negative sending rate x, and so the following theorem
holds.

Theorem 5.2.1. (Stability). Consider n senders sharing a bottleneck link, and λi

to be the rate of sender i; if for every sender i the objective function is defined by
Equation 5.3, the sending rates converge to a stable equilibrium. Moreover for every
sender i, we have:

λi =
C
(

n
δi
− ẑ
)

n+1
, (5.5)

where ẑ = ∑ j ̸=i
1
δ j

.

Proof. We need to show the existence of a Nash equilibrium, i.e., no sender can
increase its objective function value by unilaterally changing its rate. We consider a
network model with n competing senders sharing a bottleneck link of capacity C and
a FIFO-queue. Assuming a tail drop queue eviction policy, the loss rate function can
be described as:

pi =

1− C
∑i λi

if ∑i λi >C

0 otherwise
(5.6)

Let us denote the arrival rate in the queue by S = ∑i λi. Since the term 1− C
S =

S−C
S is independent of i and it is equal for all senders, all senders should experience

the same loss rate, we denote pi simply by p. By substituting these new terms into
Equation 5.3, we obtain:

Ui = λi−δiλi
S
C
.

First we compute the partial derivative, ∂Ui
∂λi

, and we split S into the two addends
S = λi +∑ j ̸=i λ j. Thus, for each i yields:

∂Ui

∂λi
= 1−2

δi

C
λi−

δi

C ∑
j ̸=i

λ j.
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Fig. 5.1 Owl Overview: reinforcement learning sender’s agent interaction with the network.

We then compute the second derivative of Ui, with respect to the rate, and we obtain
the negative quantity −2δi

C . Hence, the utility is concave and the Nash equilibrium
is achieved if, and only if, ∂Ui

∂λi
= 0. Next, to find the rate at which the equilibrium

condition is achieved, we introduce ẑ defined as ẑ = ∑ j ̸=i
1
δ j

. Hence we have:

1−2
δi

C
λi−

δi

C ∑
j ̸=i

λ j = 0

2λi +∑
j ̸=i

λ j =
C
δi

The solution to the stated system of linear equations is:

λi =
C
(

n
δi
− ẑ
)

n+1
,

which is the desired sending rate of sender i.

5.2.2 Owl Protocol Design

In Figure 5.1, we detail the main actions performed by the sender. The collected
metrics are fed to the Neural Network, and the protocol starts (Algorithm 3).
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Algorithm 3 Owl cwnd update
1: Let S and D be the target source and destination
2: F← flow connecting S and D
3: Collect state vector s at time t for flow F
4: cwnd⋆(t)← cwnd_Prediction(s, t)
5: Set cwnd to cwnd⋆(t)

Specifically, we collect the state of the end-to-end communication, e.g., RTT and
throughput, exploiting the TCP Linux API. Concerning the network feedback, the
network measurement agent computes PNK by controlling the underneath topology,
and notifies it to the sender. We argue it is not always possible to obtain the entire path
between the source and the destination. However, even when the network feedback is
incomplete or unavailable (the neural network does not use the in-network features),
our protocol still provides valuable results.

Once Owl has collected such values, it selects the next cwnd by choosing the
“action” according to the Q-table. The algorithm to predict the next cwnd value is
detailed in Algorithm 4. In particular, the algorithm avails the states, actions, and

Algorithm 4 cwnd_Prediction(s: state, t: time)

1: At time t = 0 initialize Q(s,a) = 0 and set reward r as in Eq. (5.3)
2: At time t :
3: Observe r as a consequence of the last action
4: Update Q(s,a) function according to Q(s,a) = Q(s,a) +

α (r+ γ maxa′Q(s′,a′)−Q(s,a))
5: cwnd⋆(t)← softmax(a,s,t)
6: return cwnd⋆(t)

reward to select the best value and update the Q-table. It selects the next cwnd using
the softmax criteria, which allows to rank and weight the actions according to the
estimated utility. Such a decision occurs every time a packet is acknowledged to
guarantee an adequate refresh of the cwnd used in the congestion avoidance phase.
The state set is then updated to assure k historical values for each metric at any
interval.
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5.3 Owl Prototype Implementation

Network Scenario. In designing our protocol, we considered practical scenarios in
which networks are partially unknown. Wide-area networks may require (undesir-
able) cooperation and coordination of multiple (federated) gateways, and unstable
network conditions may hide information. Part of our evaluation in Section 5.4
focuses on the performance analysis of our protocol with such partial network knowl-
edge, showing that the in-network information may add value if available, but it is
not required as in other in-network congestion control mechanisms.

To analyze and respect this partial unavailability constraint, we designed and
implemented a system in which a software-defined network (SDN) controller acts as
a measurement collector and manages only some of the deployed (virtual) switches.
While we use an SDN controller in our implementation, our approach is not limited
to this specific technology. The controller interacts periodically with the switches
to collect statistics about the number of packets transmitted and received. Such
statistics are then used by our implementation to learn and predict the end-to-end
action to take given the level of congestion. In our implementation, the controller
receives packets’ statistics from all switches with a (re-configurable) sampling rate
of one-second, a good trade-off between overload and freshness of information. The
controller also runs a simplistic web server and exposes REST API to obtain these
values, which are part of the input of our RL algorithm.

Kernel Module. The Owl module is responsible for setting the optimal congestion
window. To operate, it obtains network states by communicating with a measurement
agent, for example, an SDN controller. Our prototype is composed of two main
processes: one running in the kernel and one in user-space. The kernel module
exploits functions included in the classical tcp_cong.c to have access to the under-
lying congestion control functionalities of TCP. Like any other module, our kernel
implementation can be mounted as a pluggable congestion control algorithm. It can
set and get end-to-end transport states such as Sequence Number, ACKed Packets,
RTT, and efficiently compute the throughput.

The application process running in user-space collects information about the
current TCP socket and uses them to build the input matrix of a Deep Neural Network
running the reinforcement learning algorithm. The module takes actions in line with
the RL feedback and modifies the cwnd as a reaction to events (Section 5.2).
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Storing the required states to run a reinforcement learning algorithm and to keep
communications with the network controller can be costly at the kernel level. On the
other hand, a user-space application can leverage a more extensive set of libraries
to fit the learning algorithm’s needs. Besides, the transmission of packets to/from
the network controller could arise issues and requires proper management without
having to switch from user-space to kernel-space. For this reason, we implemented
the network management components of our congestion control algorithm at the
user-space and marshall current TCP socket states between user-space and kernel
via the Netlink service, commonly used for this purpose.

The reinforcement learning-based congestion controller accumulates network
statistics from ACKs over a fixed period and sends the action asynchronously in a
separate thread. The speed in retrieving data from the kernel is indeed higher than
the rapidity of the reinforcement learning processing.

5.4 Protocol Evaluation

To evaluate our proposal, we tested Owl against sixteen other transport protocols. We
built the services using a virtual network testbed and the Mahimahi emulator [158],
a recent cellular link emulator that allows testing with real cellular traces from two
of the largest US telecommunication providers, Verizon and T-Mobile. The network
is emulated through namespaces, via Mininet [127]. The transmission goes through
a Software-Defined Network (SDN), where switches interact with a centralized
controller (in our implementation, we used Ryu). We also evaluate the performance
over real hosts, and we deployed Owl over the GENI testbed [86]. Throughout our
experimental campaign, we use the utility function described in Eq. 5.3, where δ

has a value of 0.7. If not otherwise specified, we set a default percentage of known
paths to be 80%. To evaluate each protocol, we average 35 experiments in which
each sender-receiver pair runs TCP iperf3 for 100 seconds.

5.4.1 Trace-Driven Emulation Results

To understand how Owl performs compared to other solutions, we deployed our
protocol over an emulated network created with Pantheon [159], a well-known fairly
recent testbed developed to evaluate congestion control schemes. In particular, we
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Fig. 5.2 (a)-(b) LTE Trace-driven emulation. Owl vs. previous schemes (using RL
or not) tested over two cellular network traces (top-right are better). In both cases, Owl
outperforms our benchmark, and has the highest fairness, on average, in both our tested
use cases (Section 5.4.1). (c) GENI testbed evaluation. Throughput-loss rate trade-off for
kernel-level solutions over real networks. Owl optimizes the two quantities simultaneously
(Section 5.4.2).

compared Owl against sixteen other protocols, divided into five categories: (i) end-to-
end TCP designs: Cubic [149], Vegas [151], BBR [152], Copa [142], PCC [141] and
its variants; (ii) end-to-end cellular, i.e., LTE protocols: Verus [135], Sprout [134];
(iii) Machine Learning-based transport protocols: Indigo [159] and Aurora [148];
(iv) explicit congestion control: ABC [145] and (v) mixed schemes: LEDBAT [160],
SCReAM [161], WebRTC [162], Tao-VA [163]. For our LTE evaluation settings, we
use the publicly available [158] Verizon and T-Mobile traces, with separate packet
delivery for uplink and downlink. The traces were captured directly on those cellular
networks and reports the available bandwidth over time. These traces are also loaded
on our local SDN-based virtual network testbed. Our OpenFlow controller is only
aware of the virtual switches (instances of Open Virtual Switch (OVS) [42]) that
are connected to the SDN controller. For in-network algorithms, such as ABC, we
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emulate compliant routers as Mininet hosts that marks the packets according to the
algorithm’s logic.

Figures 5.2a-b shows that Owl performs efficiently in all tested scenarios. In
the case of Verizon LTE traces (Figure 5.2a) and a single sender, Owl achieves both
good throughput and 95th percentile per-packet-delay, and no other solution has
shown a better combined throughput-delay performance. Even though the RL reward
was designed to achieve high throughput and low loss rate, we can observe that our
mechanism can simultaneously obtain a low RTT, as a consequence of the imposed
utility. Similar conclusions hold even for T-Mobile traffic (Figure 5.2b), where Owl
provides a desirable trade-off between throughput and delay. It is worth noticing
that none of the other algorithms outperform Owl in both tested environments: our
solution appears to be more stable across traces.
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Fig. 5.3 Our protocol best follows the available bandwidth. (a) A 60-seconds throughput’s
evolution compared to the actual link capacity. Owl fits best the Verizon LTE trace; while,
especially for Cubic, overshoots in throughput lead to large standing queues. The curves
shown have been selected for visual clarity. (b) A 120-seconds utility’s evolution. Owl
guarantees an adaptive response to the network dynamic changes.

Figure 5.3 shows the shortcomings of transport protocols in use and the lack
of adaptation required for a good transport protocol. The Figure 5.3a represents a
sample of the throughput evolution over the Verizon LTE downlink traces for 60
seconds. For the sake of clarity, we report only our comparison to Cubic, as it is the
default in many Linux implementations, and PCC, as it one of the best performing
within utility-based approaches. Owl adapts its sending rate so as to closely match
the bottleneck link’s available bandwidth (dashed black line in the figure). In contrast,
Cubic slowly reacts to changes in the network, and PCC partially approximates the
link capacity. Our protocol can cope with rate variations in a reactive manner and
closely approximates the desired behavior by learning the optimal action.
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This result is also confirmed in Figure 5.3b where we plot the utility (Eq. 5.3)
obtained with different algorithms over AT&T LTE downlink. This time, we compare
against ABC [145] as it is the most representative of explicit congestion control and
Aurora as a novel RL-based congestion control algorithm. Likewise, we can observe
how Owl regularly provides a higher utility than the benchmarks over time. This is
due to the ability of the framework to learn the optimal behavior during training and
then react efficiently during network dynamics. We can also observe how Aurora
and Cubic fail to promptly react to the events.

5.4.2 Evaluation over the GENI Testbed

To establish the practicality of our approach and understand how Owl performs
over wide-area Internet paths with real cross-traffic and real packet schedulers, we
deploy our solution on the GENI testbed. In these experiments, we evaluate how
congestion control schemes behave across two federated GENI aggregates and three
senders transmit at the same time. We measure the performance of each schema
when competing with another flow to accentuate the possible congestion occurrences.
To evaluate our protocol in these realistic settings, we average the throughput and
delay over 60-second flows, while the senders share a bottleneck link with 3ms RTT
and a bandwidth of 100 Mbps.

We summarize in Figure 5.2c the performance of our protocol when compared
to other protocols available on Linux. Our prototype evaluation deployed in real
settings match our emulation results: our implementation can jointly achieve high
throughput and a low loss rate when compared to other solutions, balancing the two
components effectively.

5.4.3 Partial Network Knowledge Impact

Next, we discuss our experiments regarding the impact of the required network state
knowledge that Owl needs to train the RL system effectively. Figures 5.4 display
the (a) throughput and the (b) RTT, when different transport protocols run over
a network composed of 20 nodes emulated on our local Mininet virtual network
testbed. Specifically, we compare against Cubic as a reference end-to-end congestion
control, Aurora, as a reference RL-based congestion control, and ABC, as a reference
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Fig. 5.4 Network Knowledge Impact on Performance. (a) Throughput and (b) RTT of Owl
protocol for increasing percentage of known network. Somehow surprisingly, the highest
performance gaps with respect to other algorithms are obtained when the percentage of
network knowledge is either low or very high. (c) Throughput performance with or without
network knowledge averaged over different network topologies and increasing number of
informing switches.

in-network control. The performance of Cubic and Aurora are not affected by the
lack of in-network knowledge since they are both end-to-end congestion control
algorithms. On the other hand, ABC performs worse than Owl when the number
of ABC-compliant routers is relatively low. Our results validate that the value of
PNK is beneficial to the algorithm, but our protocol works even as a pure end-to-end
strategy. Our measurements reveal that even when less than 50% of the switches are
utilized to collect statistics, our solution outperforms both end-to-end approaches
(like Cubic) and novel in-network protocols (like ABC). On the other hand, if a
partial network knowledge (more than 50%) is available, Owl drastically speeds
up the transmission in terms of throughput and reduces latency. The worst result
occurs approximately when half of the devices are controlled, as the agent cannot
assign the proper importance to the coming information, resulting in occasionally
misleading values. Nonetheless, even though in this scenario the information does
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not help improve the overall performance, Owl has results that are comparable to
other protocols.

Lastly, we compare Owl against a few representative protocols as we increase
the number of informing switches over randomly generated topologies, i.e., links
are randomly generated while we fix the network size. The link capacity is also
uniformly distributed at random between 50 and 100 Mbps. We are interested in
assessing the impact of the network size on our congestion control algorithm. To
this aim, we compare the perceived throughput when our solution has no in-network
congestion feedback, and when the network is as informative as it can be, i.e., the
in-network feedback arrives from 100% of the switches. In Figure 5.4c, these two
Owl policies are denoted with Owl-0, namely, zero-percent of total switches are
communicating with the source, and Owl-100, respectively. It is notable how a
full network awareness is beneficial and allows a less prominent (and inevitable)
performance degradation when an increasing number of switches compose an end-
to-end path. However, we note how even Owl-0 provides better results than recent
end-to-end congestion control solutions based on RL [148].

5.5 Conclusion

In this chapter, we presented Owl, a reinforced learning-based transport protocol
designed to learn from end-to-end and in-network signals. Our evaluation, with a
kernel implementation and real traces, confirms that Owl is effective under various
network conditions, and it can speed up transmissions and reduce delays and loss
rate better than most existing protocols in the vast majority of the tested scenarios.

We also analyzed the stability condition of Owl and evaluated its fairness demon-
strating that it is less aggressive than other performant solutions when it competes
with other protocols and when it competes with itself across other sources. Finally,
we showed how taking into account information involving the network layer leads to
increasingly better results, especially when at least 50% of the network congestion
state is available at the source.



Chapter 6

Task Offloading in UAV Networks via
Multi-Agent Reinforcement Learning

The past decade has witnessed an explosive growth in mobile internet applications
consuming a significant amount of computational resources, e.g., face recognition,
virtual/augmented reality, realtime media streaming, mainly favored by the devel-
opment of the Internet of Things (IoT). A specific area of interest entails vehicles
and, in particular, Unmanned Aerial Vehicle (UAV) systems, that have experienced a
constantly increasing popularity in the last years, mainly thanks to their maneuver-
ability, flexibility, and limited deployment costs. UAVs have been primarily used for
military applications, but they are now expanding into business, science, agriculture,
and civilian fields, where successful examples include supports of first responders,
surveillance, aerial photography to cite a few [164] (see Section 2.2). Their con-
strained resources, however, open the problem of offloading part of their tasks to the
close multi-access edge computing (MEC) in order to speed up the computation. In
such a scenario, the IoT device can offload computationally intensive tasks to nearby
edge cloud to reduce computation latency and energy consumption [165–168].

The problem of task offloading has been extensively studied in the literature [169,
35, 165, 170, 171], where recent solutions attempt to significantly reduce the process-
ing time of mobile vehicle applications while greatly reducing data processing delays
and energy consumption. With the advent of machine learning (ML) and, specifically,
reinforcement learning (RL), this learning approach became dominant in solving

The work presented in this chapter has been partially published in [23].
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the offloading decisions in vehicular scenarios. Compared to traditional approaches
based on heuristics, these solutions have shown the ability to learn the best strategies
adapting to the challenging and highly varying environments [172–174, 23].

Inspired by these positive results, we addressed the task offloading problem
from two different perspectives. In this chapter we present our RL-based offloading
strategy, while we leave the discussion of a more lightweight ML-based strategy or
the next chapter (Chapter 7).

6.1 Collaborative RL for task offloading

To enable learning in an unknown environment, reinforcement learning (RL) has
been shown as a promising solution, which can help overcome the prohibitive com-
putational requirements. Recent RL-based online offloading decisions solutions have
demonstrated improvements compared to traditional approaches, e.g., [172–174].
However, none of them take full advantage of a possible collaborative framework
and decisions are taken independently by each agent of the system.

To this end, we propose the use of multi-agent reinforcement learning (MARL)
to jointly improve the energy efficiency (EE) and task completion time of edge
computing enabled UAVs swarms, while considering distributed offloading decision
strategies. The proposed MARL algorithm can solve the computation offloading
optimization problem in real-time by combining information coming from other
devices, i.e., in a collaborative way, in order to decide if computing a task locally or
offloading it to the closest edge cloud. In the case of offloading, the second decision
entails the radio access technology (RAT) to consume, i.e., Wi-Fi or cellular, to
transmit the task from the device to the edge cloud.

The presented decentralized algorithm leverages the actor-critic framework and
is applicable to large-scale problems where both the number of states and the number
of agents are massively large. Specifically, the actor step is performed individually
by each agent with no need to communicate and infer the policies of other agents.
On the other hand, for the critic step, each agent shares its estimate of the value
function with its neighbors in order to achieve a consensual estimate, further used in
the subsequent actor step. In this regard, the local information at each agent is able to
diffuse across the network, making the network-wide maximum reward achievable.
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As in standard distributed algorithms over networked systems, our algorithm provides
the advantages of scalability to a large number of agents, robustness against malicious
attacks, and communication efficiency.

6.2 Related Work

The problem of shortening task completion time by exploiting the close edge cloud
is crucial for any type of IoT network in general, and robotic or drone networks in
particular; so it is not surprising that there are several proposed solutions to tackle
this problem. In the following, we first analyze the class for the RL model exploited
by our solution and the differences between our implementation with previous
approaches. Secondly, we cite a few representative (centralized and distributed)
solutions to clarify our contributions to the decision task offloading problem.

In the last years, edge computing has been proved to be an effective method in
supporting some latency-critical tasks [175, 176]. This paradigm can be particularly
beneficial for UAV swarms, or in general unmanned aerial systems (UAS), e.g., self-
driving vehicles, to conduct a computation offloading scheme with edge computing.
Edge computing-based UAV swarms [177], are able to improve the latency and
energy-efficiency issues caused by cloud computing [173]. In general, using ML/AI
to optimize offloading process in vehicular environments has gained the attention in
recent studies [178–180].

The minimization of transmission energy for single-user MEC systems, for
instance, has been addressed under specific latency constraints in [181, 182]. Fur-
thermore, in [166] the authors presented a game-theoretic approach to distributed
offload computation among mobile device users, modeling the problem as a multi-
user offloading game. You et al. [167] conceived a solution that determines the
offloading data volume, the offloading duration, and the transmission resources
of each user in an energy-efficient manner. Kalatzis et al. [183] decreased energy
consumption in UAV based forest fire detection applications by adopting the edge
and fog computing principles. However, such approaches fail in addressing the dy-
namicity of the environment, which is one of the main features of disaster scenarios,
and hinders from high long-term performance.
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Some researches studied the online computation offloading problem when edge
computing resources are available. For instance, a task offloading solution built
upon rent/buy problem aiming to minimize the task completion time in mobile
clouds has been presented in [184]. At the same time, another recent trend is the
utilization of RL in these circumstances, given its ability to adapt to highly dynamic
environments [185, 186]. Huang et al. [172] proposed a deep reinforcement learning-
based online offloading framework (DROO) to decide whether to offload tasks to the
edge cloud and proportionally allocate wireless resources. Despite the similarity in
the RL framework, our work differs from this class of solutions for the distributed
nature that leads to multiple heterogeneous agents with potentially distinct policies
and rewards, and the further improvements on protocol decisions. Besides, although
distributed approaches in task offloading decisions leveraging deep RL exist, e.g.,
DDLO [187] and a hotbooting Q-learning based schema [188], these solutions use
multiple parallel deep neural networks, rather than collaboratively take offloading
decisions.

6.3 Model and Problem Definition

In this section, we first present some preliminary notions on actor-critic and multi-
agent reinforcement learning (Section 6.3.1), used in our UAV task offloading model
(Section 6.3.2 and Section 6.3.3) and problem definition (Section 6.3.4).

6.3.1 Background on Actor-Critic and Multi-agent Reinforce-
ment Learning

Before describing the details and the notation of our model, we first describe the
actor-critic framework and the MARL concepts, where our system is built upon.

Actor-Critic Algorithm. The Actor-Critic belongs to the class of model-free, online,
on-policy reinforcement learning methods. The goal of an agent is to optimize the
policy (actor) directly and train a critic to estimate the return or future rewards.
Hence, at the very basis, a Markov decision process exists and is characterized by
a quadruple C = ⟨S,A,P,R⟩, where S denotes the finite state space, A is the finite
action space, P(s′|s,a) : S×A×S→ [0,1] refers to the state transition probability
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from state s to state s′ determined by action a, and R(s,a) : S×A→ R is the reward
function defined by R(s,a) = E[rt+1|st = s,at = a], where rt+1 is the instantaneous
reward at time t. The probability of choosing action a at state s is the policy of the
agent, defined as the mapping π : S×A→ [0,1]. The agent has the objective of
finding the optimal policy that maximizes the expected time-average reward, i.e., the
long-term return, which is given by J(π):

J(π) = lim
T

1
T

T−1

∑
t=0

E[rt+1] = ∑
s∈S

dπ(s) ∑
a∈A

π(s,a)R(s,a), (6.1)

where dπ(s)= limt→∞P(st = s|π) represents the stationary distribution of the Markov
chain under policy π . Such a distribution dπ(s) and the limit in (6.1) are well de-
fined when the Markov chain resulting from the Markov Decision Process (MDP) is
irreducible and aperiodic with any policy π .

Given any policy π , the action-value associated with the state s and action a,
Qπ(s,a), is thus defined, according to [189], as:

Qπ(s,a) = ∑
t
E[rt+1− J(π)|s0 = s,a0 = a,π]. (6.2)

Furthermore, the state-value associated with state s under policy π can be defined
as Vπ(s) = ∑a∈A π(s,a)Qπ(s,a). In the following, we simply refer to Qπ(s,a) and
Vπ(s) as action-value and state-value functions respectively. When the action or
state spaces are massively large, these two functions are usually approximated by
some parameterized functions Q(·, ·;ω) and V (·;ν), depending on the parameters ω

and ν . Also the policy π can be parameterized by parameter θ in πθ . For the sake of
simplicity, hereafter we replace the subscript πθ with just θ , e.g., Vπθ

to Vθ .

Actor-critic (AC) algorithms have been advocated to solve, with this parameteri-
zation, the optimal policy πθ . Built on the well-known policy gradient theorem [190],
AC algorithms are characterized by the gradient of the return J(θ) written as:

∇θ J(θ) = Es∼dθ ,a∼πθ
[∇θ logπθ (s,a) · (Qθ (s,a)−b(s))], (6.3)

where the term b(s) is commonly named baseline, and ∇θ logπθ (s,a) is referred as
the score function for policy πθ . Also, let the advantage function be:

Aθ (s,a) = Qθ (s,a)−Vθ , (6.4)
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which specifies how much better it is to take a specific action compared to the
average, general action at the given state. Indeed, it has been recognized, e.g.,
in [191], that the minimum variance baseline in the action-value function estimator
is the state-value function Vθ (s). Defining Qt(ω) = Q(st ,at ;ω) at time t, and let At

the sample at time t of the advantage function, we get:

At = Q(st ,at ;ωt)−∑
a∈A

πθt (st ,a)Q(st ,a;ωt), (6.5)

Let then ψt =∇θ logπθt (st ,at) be the sample of the score function. The AC algorithm
based on the action-value function approximation is based on the following updates:

µt+1 = (1−ξω,t) ·µt +ξω,t · rt+1,

ωt+1 = ωt +ξω,t ·δt ·∇ωQt(ωt),

θt+1 = θt +ξθ ,t ·At ·ψt ,

(6.6)

where ξω,t ,ξθ ,t > 0 are the stepsizes, µt tracks the unbiased estimate of the average
return, and δt refers to the action-value temporal difference (TD) error and is defined
as:

δt = rt+1−µt +Q(st+1,at+1;ωt), (6.7)

where action at+1 is retrieved from the policy πθt (st+1, ·). This TD error is used to
evaluate the action just selected, i.e., the action at taken in state st . A positive TD
error suggests that the tendency to select this action should be strengthened for the
future, whereas a negative TD error suggests the tendency should be weakened.

The standard AC algorithm is defined as a two-time-scale algorithm, where the
two stepsizes are set such that limt→∞ ξω,t ·ξ−1

θ ,t > 0. The first two updates in (6.6)
belongs to the critic step, which operates at a faster time scale; while the last update
in (6.6) corresponds to the actor step that occurs at a slower time scale. The actor
controls how our agent behaves by improving the policy along the gradient ascent
direction; on the other hand, the critic measures how good is the action taken, by
estimating the action-value function under policy πθt .

Finally, actor-critic algorithms are able to achieve state-of-the-art performance in
many complicated application domains, as shown in [192–194]. Inspired by these
achievements, we further define a MARL algorithm based on the AC approach.
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Multi-Agent Reinforcement Learning. We consider now a system of N agents
operating in a common environment with no central controller that either collects
rewards or makes the decisions for the agents. In this context, the set of agents is
denoted by Nt , whose cardinality is N, and each agent can communicate with each
other. In general, the set of agents is a time-varying set, defined as Nt at time t ∈ N.

A time-varying multi-agent MDP is defined as a tuple (S,{Ai}i∈N ,P,{Ri}i∈N ,{Nt}t≥0),
where S denotes the global state space shared by all the agents in Nt , and Ai is the
action set that agent i can execute. Besides, let A = ∏

N
i=1 Ai be the joint action space

of all agents, also referred to as global action profile. We then define Ri : S×A→ R
the local reward function of agent i, while P : S×A×S→ [0,1] is the state transition
probability. In this system, we assume that the states and the joint actions are globally
observable, while the rewards are observed only locally.

At time step t, assuming the global state space is st ∈ S and the joint actions
of agents are at = (a1

t , . . . ,a
N
t ) ∈ A, each agent will receive a reward ri

t+1, which
is a random value with Ri

(st ,at)
as expected value. Also, the model shift to the

new state st+1 ∈ S with probability P(st+1|st ,at). Our model is considered as fully
decentralized since the reward is locally received and the action is performed locally
by each agent.

As the state space S may be large, it is convenient to consider policies that are
in a parametric function class, similar to the single AC. For agent i the local policy
is then given by π i

θ i , where θ i ∈ Θi is the parameter, and Θi ⊆ RRi is a compact
set. We then pack these parameters altogether in θ = [(θ 1)T , . . . ,(θ N)T ] ∈Θ, where
Θ = ∏

N
i=1 Θi. Therefore, the joint policy is given by πθ (s,a) = ∏

N
i=1 π i

θ i(s,ai), and
is often shortened as πθ .

Joint objective of the agents is to collaboratively find the joint policy πθ that
maximizes the globally averaged long-term return based solely on local information.
The optimization problem to solve is:

max
θ

J(θ) = lim
T

1
T
E

[
T−1

∑
t=0

1
N ∑

i∈N
ri
t+1

]
=

∑
s∈S

dθ (s) ∑
a∈A

πθ (s,a) ·R(s,a),
(6.8)

where R(s,a) = N−1 ·∑R(s,a) is the globally averaged reward function. Further,
given rt = N−1 ·∑i∈N ri

t , it yields R(s,a) = E[rt+1|st = s,at = a]. Hence, the global
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Fig. 6.1 System Overview: mobile devices, e.g., UAVs, interaction with the edge cloud via
cellular and Wi-Fi network.

expected action value function for a state-action pair (s,a) under policy πθ is:

Qθ (s,a) = ∑
t
E [rt+1− J(θ)|s0 = s,a0 = a,πθ ] , (6.9)

Finally, the global state-value function Vθ (s) is given by Vθ (s)=∑a∈A πθ (s,a)Qθ (s,a).

6.3.2 System Model

As shown in Fig. 6.1, we consider a UAV swarm consisting of a set of agents
Nt = {A1, . . . ,AN}, each of which has a task to be completed. We consider that the
set Nt can change over time since the agents may suffer failures or running out of
power. However, for simplicity, we often refer to this set as N in the following,
without any ambiguity.

The overall system is compound of M tasks, denoted by a set of tasks M =

{T1, . . . ,TM}. The mobile node can either compute the task locally or offload the
computation to the edge cloud in two ways, i.e., through a mobile network (LTE) or
through Wi-Fi access points. In this case, we consider an application where tasks are
independent.
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Communication Model

As mentioned earlier, the access point for wireless communication can be either a
Wi-Fi access point, or a base-station in cellular networks. The channel from mobile
node i to access point s follows quasi-static block fading.

Let o1
i,m denote the computation offloading decision of task m of mobile device n.

Specifically, o1
i,m = 1 means that the node offloads the task via the wireless channel,

while o1
i,m = 0 means that the node performs the task locally on its own device. When

task is set to be performed at the edge cloud, the communication can occur over
cellular (e.g., LTE) network if o2

i,m = 1 or Wi-Fi network for o2
i,m = 0. Given the

global action profile A for any node i and task m, we can compute the uplink data
rate for computation offloading over cellular technology of task m of mobile device i
as:

Rtc
i,m(A) = W c · log2

(
1 +

Pc
i,mHc

i,m

(σ c
i,m)

2 + ∑
j ̸=i,k ̸=m,o1

j,k=1,o2
j,k=1

Pc
j,kHc

j,k

)
, (6.10)

where Pc
i,m is the transmission power of node i offloading task m to the edge cloud

via cellular connectivity; Hc
i,m denotes the channel gain from node i to access point

s when transmitting task m due to the path loss and shadowing attenuation; (σ c
i,m)

2

indicates the thermal noise power associated with the link between the node i and the
access point s, and W c is cellular channel bandwidth. From (6.10) we can observe
that when many mobile devices offload their tasks via cellular access simultaneously,
they may lead to severe interference and low data rates.

Likewise, we define the uplink rate of Wi-Fi network similar to the cellular
transmission as follows:

Rtw
i,m(A) = W w · log2

(
1 +

Pw
i,mHw

i,m

(σw
i,m)

2 + ∑
j ̸=i,k ̸=m,o1

j,k=1,o2
j,k=0

Pw
j,kHw

j,k

)
, (6.11)

where the involved variables have the same meaning of those in (6.10).
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Computation Model

Let Di,m denote the size of computation data (e.g., the recorded audio in UAVs swarm)
related to computation task m of node i. Li,m denotes the computing workload, i.e.,
the total number of CPU cycles needed to accomplish task m of node i. In the
following, we consider the computation overhead in terms of energy consumption
and application completion time for local and edge cloud computing. Further, we
differentiate the edge offloading into two cases, that represent the two possible
communication options: cellular and Wi-Fi networks.

Local Computing Mode. We denote the computation capability, i.e., the clock
frequency of the CPU chip, of node i, on task m, as fi,m. Our model allow differ-
ent mobile devices to have different computation capability with different clock
frequency per task. The local execution time of task m on node i is hence given by:

T l,exec
i,m =

Li,m

fi,m
, (6.12)

while the energy consumption of the device is given by:

E l
i,m = kLi,m f 2

i,m, (6.13)

where k denotes the effective switched capacitance for the specific chip architecture.
In line with previous studies, e.g., [195, 196], we set k = 10−11. Clearly, the clock
frequency of the CPU chip can be adjusted by using the DVFS technique to achieve
the optimum computation time and energy consumption on a device.

Aside the execution time, the time to complete task m is also affected by the
waiting time T wt

i,m. The waiting time of a task is defined as the time that task m spends
on board of i before its execution.

Consequently, the completion time for a local execution of task m on node i
is the sum of the local computation execution time and the waiting time in local
computing,

T l
i,m = T l,exec

i,m +T wt
i,m. (6.14)

We are now ready to introduce the computational cost of a task, which dictates
our energy-efficient strategy.
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Definition 6.3.1. Computational Cost. The computational cost is defined as the
weighted sum of energy consumption and completion time related to the execution of
a task m belonging to node i.

In the case of local execution, it is given by:

Zl
i,m = α

l
i,mT l

i,m +β
l
i,mE l

i,m, (6.15)

where α l
i,m and β l

i,m are the weights for the energy consumption and the computation
completion time respectively.

This form of computational cost enables to meet different user demands by
adjusting the weights, and, for example, save more energy rather than shortening
the delay. For delay-sensitive applications, such as rapid disaster response set-up, a
larger β l

i,m is recommended to meet the strict user requirements. In this regard, the
weights control the importance of the perceived latency and energy consumption
respectively.

Edge Computing Mode. In case the mobile node i offloads the computation task m
to the edge cloud, the latter executes the computation task and returns the results to
the device. When the task is offloaded to the edge cloud, the execution entrails three
phases: (i) the transmission phase, (ii) the edge computation phase, (iii) the outcome
receiving phase.

Starting with the first phase, we consider the time and energy consumed during
transmission. In line with the computation and communication model, we can define
the transmission time and energy consumption for task offloading over cellular
network as:

T c,tra
i,m (A) =

Di,m

Rtc
i,m(A)

, (6.16)

Ec,tra
i,m (A) = Pc

i,mT c,tra
i,m (A), (6.17)

respectively. The transmission over Wi-Fi technology entails different transmission
time and energy consumption, as follows:

T w,tra
i,m (A) =

Di,m

Rtw
i,m(A)

, (6.18)

Ew,tra
i,m (A) = Pw

i,mT w,tra
i,m (A). (6.19)
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Besides, for edge cloud execution we can derive the computation execution time
for task m of node i as:

T e,exec
i,m =

Li,m

fe
, (6.20)

where fe refers to the clock frequency of the edge cloud. In this case, the assumption
is that the frequency does not change during the computation and is constant over
time. Moreover, we assume the energy consumption in the edge cloud is negligible
since the cloud is in general powered by alternating current and has enough energy
to execute the offloaded tasks. Although the offloaded task needs to wait before it is
assigned to the proper resource in the cloud for the execution, we omit this waiting
time for simplicity, as it is negligible with respect to the other quantities involved.
Finally, as it is done in several other studies, e.g., [197, 198], we ignore the time for
receiving the outcome of task m, since the received data is typically small. As such,
the completion time for the edge offloading is the sum of the execution time and the
transmission time over the wireless channel. For the cellular case we have:

T c
i,m = T c,tra

i,m (A)+T e,exec
i,m . (6.21)

On the other hand, if the offloading is performed over the Wi-Fi network, the
completion time is computed as:

T w
i,m = T w,tra

i,m (A)+T e,exec
i,m . (6.22)

Consequently, the computational cost of task m of node i on the edge cloud
through the cellular network is:

Zc
i,m = α

c
i,mT c

i,m +β
c
i,mEc,tra

i,m (A), (6.23)

where a small data transmission rate Rti,m(A)c of the device i would result in high
energy consumption in the wireless communication and long transmission time for
offloading data to the closest edge cloud.

Similarly, we define the computational cost for the Wi-Fi offloading as:

Zw
i,m = α

w
i,mT w

i,m +β
w
i,mEw,tra

i,m (A), (6.24)

where the weights may differ from the ones utilized in (6.23).
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Notably, to enable diversity among the three cases in the importance of latency
with respect to the energy, the computational costs have different weights, depending
on where the task is performed. That is, αw

i,m is not necessarily equal to αc
i,m and α l

i,m.
Likewise for β w

i,m, β c
i,m and β l

i,m.

6.3.3 MARL Framework Formulation

Following the standard notation for reinforcement learning algorithms, we define the
state space as the set of metrics used to select the best action among all the actions
defined in the action space. The action selection occurs with the aim of maximizing
a reward function, which represents the objective (utility) to optimize.

State Space. We report in Table 6.1 the features adopted to build our model state
space. For each agent i in the network, we save the shown metrics for cellular and
Wi-Fi communications. The first information esteems the distance between the agent
and the base station, and is the same for both Wi-Fi and cellular transmissions. The
subsequent features consider the quality of the signal, the throughput, the round-
trip-time (RTT), and the loss rate, for the cellular and Wi-Fi channels separately.
These quantities change over time as effect of the single and combined actions of the

Table 6.1 The contextual metrics gathered for building the state space.

Features Description

1 di Distance between agent i and base station [m]
2 qc

i Cellular Reference Signal Received Quality (RSRQ) [dB]
3 iwi Wi-Fi Received Signal Strength Indicator (RSSI) [dB]
4 tc

i Cellular throughput [kbps]
5 tw

i Wi-Fi throughput [kbps]
6 rc

i Cellular RTT [ms]
7 rw

i i Wi-Fi RTT [ms]
8 lc

i Cellular lossrate [%]
9 lw

i i Wi-Fi lossrate [%]

system, so we define the state space at time t as st .

The choice of such features is dictated by a design goal of balancing the over-
head introduced by the metrics collection and the precision in grasping the system
conditions. Empirically, we found that this state set produces the optimal trade-off,
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as also outlined by the goodness of our results (Section 6.5). It can be noted, indeed,
as part of these quantities are already captured by the TCP protocol and form its
state. Thus, our solution can easily leverage these quantities, reducing the overhead.

Action Space. The main decision that the agent is supposed to take, is whether or
not to offload the task to the edge cloud. Formally, the first decision for each agent i
is the binary offloading decision o1

i,m:

o1
i,m =

1, if tasks are to be offloaded

0, otherwise.

If o1
i,m = 0, task is computed locally, whereas for o1

i,m = 1 the incoming task is
offloaded to the closest station. In the latter case, the subsequent decision regards the
technology on which the transmission occurs. In fact, as the offloading occurs, the
protocol and technology for transmitting bytes are extremely relevant for shortening
the latency. With this respect, we define a second binary decision o2

i,m:

o2
i,m =

1, if cellular technology is preferred

0, if Wi-Fi technology is preferred.

Such a decision takes place only for an o1
i,m = 1, and we can observe how the

total number of actions for each agent i is three, for an action set as follows: Ai =

[a1
i ,a

2
i ,a

3
i ], where a1

i denotes o1
i,m = 0, a2

i is o1
i,m = 1,o2

i,m = 0, and a3
i is o1

i,m =

1,o2
i,m = 1.

Utility function (RL reward). Based on reinforcement learning, the agent selects
the action with the highest global reward. This choice relies upon the utility function,
that specifies the objective of our algorithm. While RL can take a variety of different
objectives, we define a function as follows to minimize the total latency and the
usage of resources:

Ui,m =−o1
i,mo2

i,mZc
i,m−o1

i,m(1−o2
i,m)Z

w
i,m− (1−o1

i,m)Z
l
i,m, (6.25)

where a high cost in terms of computational time and energy consumption leads to
small utility value. Further, we can easily define the utility per agent for all tasks as
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follows

Ui =
M

∑
m=1

Ui,m. (6.26)

The utility function is the real objective that each agent attempts to optimize; still,
its value cannot be used to specify the desirability of the action taken in a particular
state and hence cannot be directly used as a reward for the learning process [144].
The ambiguity in action evaluation comes from the unique dynamic network envi-
ronment the learning agent is interacting with, and it means we cannot merely take
the utility value to define the reward. For this reason, we consider the difference
between consecutive utility values as the reward. This is because an increase in the
utility value denotes an improvement and hence, the corresponding action should be
encouraged, regardless of the original value of the utility. Consequently, we define
the reward value as follows:

ri
t =


a if U i

t −U i
t−1 > ε

b if U i
t −U i

t−1 <−ε

0 otherwise,

(6.27)

where U i
t refers to the cumulative utility at time t, a is a positive value, and b is a

negative value. Both indicate the reward (a reinforcement signal) given the direction
of changes between two newly observed consecutive utility values, while ε is a
tunable parameter that sets the sensitivity of the learning agent to changes in the
utility values (i.e., it sets a tolerance in the value change).

It is worth noticing that each agent can potentially utilize a different reward, and
the system can be easily extended towards this scenario. However, for the sake of
simplicity, in the following we assume that all agents share the same utility.

6.3.4 Problem Formulation

Given the system model, we can formulate the optimization problem that our MARL
algorithm aims to solve. First, let the computational cost of a sequence of tasks M



6.4 Our Algorithm 95

for the mobile node i be:

Zi =
M

∑
m=1

Zi,m =
M

∑
m=1

(
o1

i,mo2
i,mZc

i,m + o1
i,m(1− o2

i,m)Z
w
i,m +(1− o1

i,m)Z
l
i,m

)
, (6.28)

where M is the size of the set M .

Formally, we have the following optimization problem:

min
A

∑
i

Zi (6.29)

s.t. o1
i,mo2

i,mT c
i,m +o1

i,m(1−o2
i,m)T

w
i,m +o1

i,m(1−o2
i,m)T

w
i,m ≤ T max

m ∀m = 1, . . . ,M

(6.30)

where A = {o1
i,m,o

2
i,m|i ∈ N ,m ∈M }. The constraint stated by (6.30) imposes

that the total completion time of all the tasks is bounded by the required maximum
completion time, T max

m . This time deadline is application-specific, and can vary based
on user needs.

The key challenge in solving the optimization problem is that the integer con-
straint of the device actions, i.e., o1

i,m,o
2
i,m, makes the problem a mixed integer

programming problem, which is generally non-convex and NP-hard. Thus, solv-
ing the problem by using a multi-agent reinforcement learning approach reduces
complexity and allows reaching a feasible solution in polynomial time.

6.4 Our Algorithm

Based on the previous formulations, we design an algorithm to establish the offload-
ing decision. An Actor-Critic (AC) algorithm comes with multiple flavours, e.g.,
Q Actor-Critic, Advantage Actor-Critic, TD-error Actor-Critic. Among them, we
follow the TD-error variant for the computation of the Critic.

In the following we first show the formulation of the policy gradient in a multi-
agent setting. Then, we present the proposed MARL algorithm for our decentralized
multi-agent system.
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6.4.1 MARL system optimization

We recall that πθ : S×A→ [0,1] is the derived joint policy for the packed weights
of the neural networks θ ∈ Θ, the globally long-term averaged return is J(θ), and
Qθ and Aθ are the action-value function and advantage function, respectively. Then,
for any i ∈N , we define the local advantage function Ai

θ
: S×A→ R as:

Ai
θ (s,a) = Qθ (s,a)−Ṽ i

θ
(s,a−i), (6.31)

where a−i denotes actions of all agents except for agent i, and Ṽ i
θ
(s,a−i)=∑ai∈Ai π i

θ i(s,ai)·
Qθ (s,ai,a−i). Given the outcome of the Policy Gradient Theorem for MARL sys-
tems [199], we can compute the gradient of J(θ) as follows:

∇θ iJ(θ) = Es∼dθ ,a∼πθ
[∇θ i logπ

i
θ i(s,ai) ·Ai

θ (s,a)] (6.32)

This gradient is applied to J(θ), previously defined in (6.8).

This result is precious as it shows that the policy gradient with respect to each θ i

can also be computed locally using the corresponding score function ∇θ i logπ i
θ i(s,ai).

However, local information is insufficient to estimate the global action-value and
the advantage functions. These functions are necessary to compute the gradient and
they require the reward values {ri

t}i∈N of all agents. For this reason, our proposed
algorithm fosters collaboration among the agents and includes a consensus-based
phase to diffuse the local information among them.

6.4.2 Local Updates and Consensus-based phase

The AC algorithm consists of two steps that occur at different time scales. In the
critic step, the update is similar to the action-value TD-learning in (6.6), followed
by a linear combination of its neighbor’s parameter estimates. This parameter
sharing step is also known as the consensus update, and involves a weight matrix
Ct = [ct(i, j)]N×N , where ct(i, j) denotes the weight on the message transmitted from
i to j at time t. In the following process, each agent only uses the transition at time t,
i.e., sample (st ,at ,st+1) for updating the parameters. First, we estimate J(θ) and Vθ

with, respectively, a scalar µ and a parameterized function V (·,v) : S→ R, where
parameter v ∈ RL with L≪ |S|. Each agent i shares local parameters µ i and vi, and
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updates its information as follows:

µ̃
i
t = (1−ξv,t) ·µ i

t +ξv,t · ri
t+1,

µ
i
t+1 = ∑

j∈N
ct(i, j) · µ̃ j

t ,

δ
i
t = ri

t+1−µ
i
t +Vt+1(vi

t)−Vt(vi
t),

ṽi
t = vi

t +ξv,t ·di
t ·∇vVt(vi

t),

vi
t+1 = ∑

j∈N
ct(i, j) · ṽ j

t ,

(6.33)

where, for the sake of simplicity, Vt(v) =V (st ;v)∀v ∈RL, and ξv,t > 0 is the stepsize.
In this context, differently from the single AC case, δ i

t denotes the state-value
TD-error of agent i.

Given the globally averaged reward R(s,a) = N−1 ·∑R(s,a), the agent estimates
the value R(s,a) in the critic step. Formally, let R(·, ·;λ ) : S×A→ R be the class of
parameterized functions and λ ∈ RM be the parameter with M≪ |S| · |A|. Motivated
by the distributed optimization literature [200, 201], in order to obtain the estimate
of R(·, ·;λ ), we minimize the following weighted mean-square error at the faster
time scale:

min
λ

∑
i∈N

∑
s∈S,a∈A

δθ (s) ·πθ (s,a) ·
[
R(s,a;λ )−Ri(s,a)

]
, (6.34)

where δθ refers to the stationary distribution of the Markov chain {st}t≥0 under
policy πθ . To solve this minimization problem, the updates to λ i

t are as follows:

λ̃
i
t = λ

i
t +ξv,t ·

[
ri
t+1−Rt(λ

i
t ) ·∇λ Rt(λ

i
t )
]
,

λ
i
t+1 = ∑

j∈N
ct(i, j) · λ̃ j

t ,
(6.35)

where Rt(λ ) is a compact notation for Rt(s,a;λ ). It is worth noticing that this
procedure preserves the privacy of agents on their rewards and policies, since the
rewards of other agents are not transmitted and the estimate R(·, ·;λ ) cannot be used
to reconstruct original reward of other agents.

The updates in (6.35), (6.33) forms the critic step. On the other hand, the actor
step uses the estimate Rt(λ

i) to evaluate the globally averaged TD-error δ̃ i
t and
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performs the updates:

δ̃
i
t = Rt(λ

i
t )−µ

i
t +Vt+1(vi

t)−Vt(vi
t),

θ
i
t+1 = θ

i
t +ξθ ,t · δ̃ i

t ·ψ i
t ,

(6.36)

where ψ i
t is defined as ψ i

t = ∇θ i logπ i
θ i

t
(st ,ai

t) and ξθ ,t > 0 is the stepsize.

We summarize the steps of the presented algorithm in Algorithm 5. After a
first initialization phase, the agents start the individual actor and critic steps. These
steps occur with a period of ∆t in order to not overload the agent itself, where the
optimal ∆t is selected via a sensitivity analysis (Section 6.5). The elaborated values
are then sent to the neighbors, and upon receiving such values, each agent updates
its parameters to embrace a global view of the action performed. The actor is a
neural network working as a function approximator and its task is to produce the best
action for a given state. The network shape is optimized empirically and motivated
in the evaluation (Section 6.5). The critic is another function approximator, i.e., a
neural network, which, receiving as input the environment and the action by the
actor, outputs the action value (Q-value) for the given pair.

Given the values to be stored for critic and actor steps, online implementing
this algorithm requires a memory complexity of O(N +L+M+Ri) for each agent
i. This complexity results in a great benefit compared to the regular reinforcement
learning algorithm, where a huge Q-table need to be stored in each agent for a large
N.

6.5 Evaluation Results

6.5.1 Experimental Setup

To evaluate the proposed solution, we run extensive experiments on an emulated
cloud edge system scenario where several agents (the UAVs) can offload tasks to the
edge by means of either cellular or Wi-Fi communications. Each agent is represented
by a process running in the system, while the edge cloud is replicated by means of
a further process emulating the execution of offloaded tasks. Channel parameters
regarding the cellular and Wi-Fi connections are obtained from a real dataset publicly
available [202]. The LTE technology is considered as a reference for the cellular case.
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Algorithm 5 MARL actor-critic

1: Initialize µ i
0, µ̃

i
0,v

i
0, ṽ

i
0,λ

i
0, λ̃

i
0,θ

i
0,∀i ∈N

2: Initialize s0,{ξv,t}t≥0,{ξθ ,t}t≥0
3: Each agent i implements ai

0 ∼ π
θ i

0
(s0; ·)

4: Step counter t ← 0
5: for all i ∈N do
6: if queued tasks then
7: for all tasks do
8: Take action ai

t ∼ π
θ i

0
(s; ·)

9: if ai
t = a1

i or ai
t = a2

i then
10: Offload task m to the edge
11: else
12: Compute task m locally
13: for every interval ∆t do
14: Collect metrics that form state st

15: Update µ̃ i
t ,δ

i
t according to (6.33)

16: Update λ̃ i
t according to (6.35)

17: Critic Step: ṽi
t ← vi

t +ξv,t ·di
t ·∇vVt(vi

t)

18: Update δ̃ i
t according to (6.36)

19: Update ψ i
t ← ∇θ i logπ i

θ i
t
(st ,ai

t)

20: Actor Step: θ i
t+1← θ i

t +ξθ ,t · δ̃ i
t ·ψ i

t

21: Send µ̃ i
t , λ̃

i
t , ṽi

t to the neighbors
22: Consensus Step:
23: µ i

t+1← ∑ j∈N ct(i, j) · µ̃ j
t

24: vi
t+1← ∑ j∈N ct(i, j) · ṽ j

t

25: λ i
t+1← ∑ j∈N ct(i, j) · λ̃ j

t
26: t ← t +1
27: close;
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To represent these channel conditions, we use the Mahimahi emulator [158], a recent
network emulator that allows testing with real traces. First, we adapt the information
of the dataset to the format accepted in Mahimahi, and then, we create two interfaces
for each agent, one with LTE traces and one with Wi-Fi traces. The task arrival rate
at the agent follows a uniform distribution, and in the case of edge offloading, each
task transmission is performed running TCP iperf3 over the emulated link for the
size of transmitted data, Di,m, of 7 MB.

The channel bandwidth is set to the default value available in Mahimahi (i.e.,
W w = 5 MHz for the Wi-Fi access, and W c = 4 MHz for LTE). The thermal noise
power is set equal for the two technologies, as (σ c

i,m)
2 = (σw

i,m)
2 = 50 dBm. For the

channel gain we have Hi,m = dν
i,s, where di,s denotes the distance between mobile

node i and access point s, and ν = 4 is the path loss factor. We then simply set the
default values of the weights defined in (6.15), (6.23), and (6.24), so that energy
consumption and task completion time have an equivalent importance in the compu-
tational cost evaluation, i.e., α l

i,m = β l
i,m = αc

i,m = β c
i,m = αw

i,m = β w
i,m = 0.5. For the

sake of simplicity we also set fi,m = 2.3 GHz for all nodes, fe = 3.4 GHz, and if not
otherwise specified, Li,m = 25×109. The other metrics change over time and are
collected when needed. In the following evaluation, the average values are computed
after 35 experiments.

Each agent maintains two neural networks for actor and critic, respectively,
and both of them have one hidden layer, containing 64 neural units (this number
is motivated in the following), and use ReLU as the activation function. While
the output layer for the actor network is softmax, that for the critic network is
linear. Considering the graph Gt of the N agents, in which, at first, all agents
can communicate with the others, we create the consensus weight matrix Ct by
normalizing the absolute Laplacian matrix of Gt to be doubly stochastic. The
stepsizes for the actor and critic step are set as constants, respectively ξθ ,t = 0.001
and ξv,t = 0.01.

6.5.2 Trace-Driven Emulation Results

In the following experiments we compare our solution against other currently de-
ployed algorithms. Among the related studies described in Section 6.2, we select as
benchmarks the most similar algorithms using some variants of machine learning-
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Fig. 6.2 System performance in terms of (a) task completion time and (b) utility for a varying
number of agents and (c) node-antenna distance. The results are compared with similar
solutions whose aim is analogous to ours.

based methods for the offloading process. Specifically, we compare our approach
against the DROO framework [172], which implements a deep neural network that
learns the binary offloading decisions, and a hotbooting Q-learning based compu-
tation offloading scheme [188], that for simplicity we refer to as hotbooting DQN,
as it uses a fast deep Q-network (DQN) model to further improve the offloading
performance.

Fig. 6.2a and Fig. 6.2b show the impact of the UAV swarm size (i.e., the number
of agents) on the task completion time and on the utility function defined in (6.26),
which also contemplates the power consumption. Decisions of each agent about
whether to offload the task or not, as well as which technology to use for the
offloading, are based on the information received from other nodes, according to the
cooperative algorithm at the basis of our solution. We can notice how this approach
can take full advantage of a rising number of computing nodes, shortening the task
completion time and increasing the overall utility. Conversely, for hotbooting DQN
occurs the opposite: if a large number of agents are present in the system, the task
completion time increases. Besides, with an increasing number of computing nodes,
power consumption increases as well. In the DROO case, the two quantities remain
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Fig. 6.3 System performance evaluation. (a) Application completion time for increasing
average computing workload. (b) Comparison in terms of computation rate for various
offloading solutions.

almost constant when the number of nodes increases, in any case leading this solution
to perform worse than ours. These results show how a proper algorithm for task
offloading decisions plays a crucial part in the system performance, and a multi-agent
approach to optimize actions more efficiently is a valuable solution.

Besides the dependence on the number of agents, we further examine how the
distance between nodes and the antenna affects the performance in Fig. 6.2c. We
perform experiments for a fleet of 50 nodes, and we can observe how, clearly, the
distance degrades the performance of the system because of the higher delays in
the communication with the edge cloud. However, in the case of our solution, the
curve is flattened, thus further proving its effectiveness in taking the offloading
decision. In fact, our state space also includes the distance to the antenna, which is
then considered in the decision process.

Moreover, we compare the performance of the three solutions with respect to the
average computing workload, i.e., the average amount of CPU cycles required to
complete the tasks submitted to the system. Fig. 6.3a depicts the energy consumption
and the task completion time, respectively, for the three considered solutions. We
can observe how the task completion time increases with the average computing
workload, for all the considered solutions. However, for DROO and hotbooting
DQN, the increment in the time is notably larger. This is because they do not have
the adaptive and control mechanism of energy consumption we have in our model,
which adaptively takes the offloading decision in a distributed manner.

In light of the previous findings, we can conclude that the knowledge not only of
the states, but also of some model parameters of the other agents (see Section 6.4),
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Fig. 6.4 (a) CDF of the task completion time for the compared solutions. (b) Utility evolution
for different RL-based algorithms. Our model can shorten convergence time compared to the
alternatives.

improves the decisions of the single agent. In fact, in this way the action can also
consider the likely actions of other agents, thus possibly anticipating their future
behavior.

Then, we evaluate the computation rate of all the agents, i.e., the number of
processed bits within a unit time from the system. In Fig. 6.3b we report the
computation rate for different algorithms at varying sizes of agents fleet. It is
straightforward to observe how our algorithm outperforms the analogous approaches,
and the more agents, the larger the rate improvements compared to the other methods.
Although this metric is only implicitly covered by the utility function, our solution
offers a high computation rate due to the optimized resource management and
distributed approach. In fact, minimizing the computational time for tasks results in
better computation rate performance too.

To analyze the variability of performance among nodes, we also evaluate the
cumulative distribution function (CDF) of the task completion time for the three
considered solutions. Results are reported in Fig. 6.4a and refer to a case when the
number of nodes is 15. Not only does our approach provide a lower completion time
on average, but most of the nodes complete the task at a time close to the average.
This small variance is extremely important in UAV systems, especially for real-time
applications requiring low and constant task completion times.

For the sake of completeness, we finally compare the convergence performance of
our MARL-based method against other possible RL-based algorithms when applied
in our solution. Specifically, we consider the following three alternative possibilities.
Firstly, Single AC, an approach still based on the Actor-Critic (AC) framework, but
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where each agent takes independent decisions. Secondly, Single DQN, a similar
approach where the RL algorithm belongs to the class of Value-based methods that
exploit Q-values to determine the probabilities of actions and any other parameter
of the algorithm. In this class of algorithms, deep Q-network (DQN) is one of the
most common methods that integrate deep neural networks into RL, originating
the deep reinforcement learning. It has been shown how deep neural networks can
empower RL to directly deal with high dimensional states thanks to techniques
used in DQN [203]. Finally, MARL DQN, which implements the DQN algorithm in
a multi-agent context, where the Q-values are transmitted among the agents for a
collaborative approach. Fig. 6.4b shows the result of this comparison. It is possible to
observe how the utility function increases as the number of episodes increases, until
it attains a relatively stable value, in all the methods. However, we can notice that
our approach provides a higher value for the utility function and that the convergence
is faster. MARL DQN, for example, despite the cooperation among agents, is unable
to properly handle the information of other nodes, whose learning process hardly fits
this context. On the other hand, both Single AC and Single DQN have comparable
yet better results with respect to MARL DQN due to the simplicity of their approach,
which is able to achieve quite fast convergence. However, with local reward and
action, classical reinforcement learning algorithms, i.e., Single AC and Single DQN,
fail to maximize the system-wide average reward, whose value is determined by the
joint actions of all agents. In conclusion, our algorithm can distribute the information
in an efficient way, thus resulting in an appropriate solution for our context.

6.6 Conclusion

This chapter presents a distributed algorithm for the offloading task decision whose
aim is to speed up the task completion time and, at the same time, limit the overall
energy consumption. To this end, we propose a multi-agent reinforcement learning
algorithm to decide whether or not to offload a task to the edge cloud. The overall
state of the system is appropriately shared between the nodes and used when each
agent has to decide where to perform an assigned task: locally or in the edge cloud
by means of an offloading procedure. Each node, in case of task offloading, can
further decide the transmission technology to use, Wi-Fi or LTE, according to the
current utilization.
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Results validate our algorithm, demonstrating the good performance of our
system. Our evaluation also shows how the developed algorithm can manage the
large quantity of information coming from the environment in an efficient way, thus
making our distributed solution a truly viable approach for task offloading decision
problems.



Chapter 7

A Self-Learning Strategy for Task
Offloading in UAV Networks

Despite the good results of newly computation offloading techniques, however, RL-
based methods have a severe impact on the memory and processing usage of the
mobile nodes. Moreover, it still remains challenging to develop a reliable system that
can anticipate future demands and take advisable computation offloading decisions.

In the following, we present a self-learning strategy that supports the UAV during
the decision of offloading incoming tasks. This decision is taken on the basis of
the predicted behavior of the agent, suggesting whether edge cloud is beneficial
or not to the incoming tasks. Two alternative methods are designed to perform a
prediction about future device load: a model belonging to time-series class, i.e.,
Vector Autoregressive Moving-Average (VARMA), and a model belonging to the
class of ML regressors, i.e., Random Forest Regression (RFR). In such a way, not
only the agent learns how to forecast future values, but it can also learn online what
type of model is more accurate, following a paradigm known as Follow the Perturbed
Leader (FPL). Having chosen two different ways in treating the input metrics, this
approach also provides flexibility and adaptability, resulting in a learning agent that
can select which predictor best fits a particular environment.

While other RL-based models can be computationally expensive to run on board
of constrained resources devices, our formulation simplifies the decision process.
The results illustrate clear advantages in the implementation of our approach, which

The work presented in this chapter has been partially published in [24].
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Fig. 7.1 System Overview. The mobile devices, e.g., UAVs, interacts with the edge cloud
asking help for the processing of the collected data.

can shorten the time required to accomplish a task. Besides, our solution can reduce
the energy consumed and the resource usage, i.e., memory and CPU, compared to
other benchmark algorithms. These benefits are originated by our predictor, which
outperforms alternatives, leading to a small error and a very accurate decision.

7.1 System Model

The considered system consists of a UAV swarm including a set of agents Nt =

{A1, . . . ,AN}, each of which has a task to be completed. We consider that the set Nt

can change over time since the agents may suffer failures or running out of power.
However, for simplicity, we often refer to this set as N in the following. The overall
system is then composed of M tasks, denoted by a set of tasks M = {T1, . . . ,TM}.
We consider that tasks are independent among them. Each task is assigned to a node,
which can decide either to compute the task locally or to offload the computation to
the edge cloud.

To capture real-world scenarios, we consider a limited capacity of nodes. We
model this constraint in resources as a finite queue where to store waiting tasks.
Thus, we denote the amount of tasks of the i-th node as si within [0,smax

i ], smax
i ∈

IR+. We also assume that the agent can execute only one task at a time, and, to avoid
burdening the notation, task deadlines have not been considered.
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For each new task arriving to a node, it has to decide where to perform the
computation of such a task. We denote the computation offloading decision of task
m of mobile device i by oi,m. Specifically, oi,m = 1 means that the node offloads the
task to the close cloud, while oi,m = 0 means that the node executes the task locally.

Table 7.1 Symbols and notations.

Symbol Description

Nt Set of agents at time t
M Set of tasks
T l

i,m Task completion time for local computation
T e

i,m Task completion time for offloading computation
smax

i Maximum amount of possible enqueued tasks in node i
si Number of enqueued tasks in node i
xt Observation at timestamp t
yt Prediction for timestamp t
oi,m Offloading decision of node i
T l,exec

i,m Local execution time of task m on node i
Ci,m Computing workload of task m on node i
T wt

i,m Local waiting time of task m on node i
T e,tra

i,m (A) Transmission time of task m
T e,exec

m Execution time of task m in the edge cloud
T e,rec

i,m (A) Reception time of task m
W up Wireless uplink channel bandwidth
W down Wireless downlink channel bandwidth
re,up

i,m (A) Wireless uplink data rate for offloading of task m
re,down

i,m (A) Wireless downlink data rate for offloading of task m
σup Background noise power in the uplink channel
σdown Background noise power in the downlink channel
Gup

i,m Channel gain from node i to the access point
Gdown

i,m Channel gain from the access point to the node i
pup

i,m Transmission power of node i to the edge cloud
pdown

i,m Transmission power of the edge cloud to the node i
di,s Distance between node i and access point s

We summarize the main components of the system in Fig. 7.1. The UAV fleet
relies on the close edge cloud for shortening the task completion time via task
offloading. In such a case, the task is sent to the edge, where the appropriate network
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and computational infrastructure resides. The sent data is thus used for extrapolating
helpful information by means of AI/ML algorithms. For clarity, we report in Table 7.1
all the symbols used throughout the chapter.

7.1.1 Local Execution

When the task is locally executed, the completion time for a local execution of task
m on node i is the sum of the local computation execution time and the waiting time
aboard the agent,

T l
i,m = T l,exec

i,m +T wt
i,m, (7.1)

where T l,exec
i,m and T wt

i,m are the execution time and the waiting time, respectively.
Formally, the waiting time of a task is defined as the time that task m spends on
board of i before its execution, and mainly depends on the enqueued tasks.

On the other hand, given Ci,m the computing workload, i.e., the total number of
CPU cycles needed to accomplish task m of node i, the local execution time of task
m on node i is hence given by:

T l,exec
i,m =

Ci,m

fi,m
, (7.2)

where fi,m is the computation capability, i.e., the clock frequency of the CPU chip,
of node i, on task m. Our model allows different mobile devices to have different
computational capacities with different clock frequencies per task.

7.1.2 Edge Cloud Offloading

In case the mobile node offloads the task to the edge cloud, the latter executes the
computation task and returns the results to the device. This process entails three
phases: (i) the transmission phase, (ii) the edge computation phase, (iii) the outcome
receiving phase. Before defining the resulting completion time, it must be noted
that this time is affected by the joint action space of all agents, A, also referred to as
global action profile. Therefore, given the global action profile A, the completion
time for the edge offloading is the sum of these three phases, as such:

T e
i,m = T e,tra

i,m (A)+T e,exec
m +T e,rec

i,m (A), (7.3)
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where T e,tra
i,m (A) refers to the transmission of task m to the edge e; T e,exec

m is the
execution time in the edge, and T e,rec

i,m (A) is the reception time.

Analyzing these parts in order, we start defining the transmission time for task
offloading as:

T e,tra
i,m (A) =

Din
i,m

re,up
i,m (A)

, (7.4)

where Din
i,m denotes the size of computation data sent over the channel (e.g., the

recorded audio in UAVs swarm) related to computation task m of node i, and re,up
i,m (A)

is the uplink data rate.

Then, we consider the data rate affected by both the background noise power
and the channel gain, as in other studies [168, 23]. Thus, given the global action
profile A for any node i and task m, we can obtain the wireless uplink data rate for
computation offloading of task m of mobile device i as:

re,up
i,m (A) =W up · log2

(
1+

pup
i,mGup

i,m

σup + ∑
j ̸=i,k ̸=m,o j,k=1

pc
j,kGup

j,k

)
, (7.5)

where pup
i,m is the transmission power of node i offloading task m to the edge cloud;

Gup
i,m denotes the channel gain from node i to the access point when transmitting task

m, mainly affected by the path loss and shadowing attenuation; σup indicates the
background noise power, and W up is the wireless uplink channel bandwidth. Clearly,
we can observe from the formula that when many mobile devices offload their tasks
to the edge simultaneously, the nodes can experience severe interference and low
data rates.

Subsequently, the task arrives to the edge that proceeds with the execution.
Although the offloaded task needs likely to wait before it is assigned to the proper
resource in the cloud for the execution, in the following we omit this waiting time
for simplicity, as it is negligible with respect to the other quantities involved. Thus,
we can derive the computation execution time for task m in the edge cloud as:

T e,exec
m =

Ci,m

fe
, (7.6)
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where fe denotes the clock frequency of the edge cloud, assuming that the frequency
does not change during the computation and is constant over time.

Finally, the results of the computation is sent back to the mobile device, incurring
in a reception time defined as:

T e,rec
i,m (A) =

Dout
i,m

re,down
i,m (A)

, (7.7)

where Dout
i,m denotes the size of obtained output data sent over the channel and

re,down
i,m (A) is the downlink data rate. Such a wireless downlink data rate is given by:

re,down
i,m (A) = W down · log2

(
1 +

pdown
i,m Gdown

i,m

σdown + ∑
j ̸=i,k ̸=m,o j,k=1

pc
j,kGdown

j,k

)
, (7.8)

where pdown
i,m is the transmission power of the edge cloud communicating the results

of offloaded task m to the node i; Gdown
i,m refers to the channel gain from the access

point to the node i when transmitting data of task m; σdown denotes the background
noise power, and W down indicates the wireless downlink channel bandwidth.

7.1.3 Problem Formulation

We formulate the optimization problem that aims to minimize the total delay in
finishing all devices’ tasks, by optimizing each node offloading decisions oi,m:

min
oi,m

∑
i∈N

∑
m∈M

(1−oi,m)T l
i,m +oi,mT e

i,m (7.9)

s.t.
N

∑
i=1

oi,m ≤ 1 ∀m ∈M , (7.10)

M

∑
m=1

oi,m ≤ smax
i ∀i ∈N , (7.11)
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where the constraints (7.10) and (7.11) force the solution to (i) mutually choose if
offloading task computation or executing the task locally, and (ii) not to exceed the
resources of the mobile device, respectively.

The given optimization problem (7.9) - (7.11) can be solved to find results
of offloading decision variables oi,m. However, since the decision variables are
binary, the formulated problem is not convex. Moreover, we would like to consider
realistic scenarios where the interaction between devices, the communication channel
conditions, and the nodes computation abilities are all dynamically changing. Given
these considerations, in the following we propose a online learning method to solve
this problem.

7.2 Regression Prediction Methods

With the aim of improving offloading decisions, each device predicts future con-
ditions in order to verify is beneficial circumstances hold or not. The node can
listen to the advice coming from two different class of predictors and obtain the best
from both of them. In particular, we select two algorithms belonging to the class
of time-series and to ML supervised regressors. In the following, we describe how
these two methods behave, explaining why and where they differ.

7.2.1 Time-Series Analysis with VARMA

To model the evolution of data over time, we employ a Vector Autoregressive Moving-
Average (VARMA) model. VARMA models are the multivariate generalization
of univariate autoregressive-moving average (ARIMA) models. However, while
ARIMA is used to represent stationary time series in almost all domains where a
variable is measured at equidistant times, VARMA can contemplate multiple parallel
time series, for a multivariate evolution. This class of models well fit problems in
econometrics and financial markets, but boasts a wide exploration even in other fields
since the 1970’s [204]. Our solution, then, uses a VARMA model for “real time”
model predictions (hindcasts) that are made within the independent dataset, using
only data up to that date were used. The general form of VARMA(r,q) is given by
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the following equation:

yt = A1yt−1 + . . .+Aryt−r +B0εt + . . .+Bqεt−q, (7.12)

where yt denotes an n× 1 vector of observed variables, εt is an n× 1 vector of
unobserved disturbances∼ IID(On×1, In), where In denotes the n×n identity matrix,
r and q denote any assumed nonnegative integers, such that at least one of r or q is
positive.

In our solution, we predict the future values of the series by means of a forecasting
method named minimization of the Mean Squared Forecast Error (MSFE), which
denote the goodness of the prediction using the cumulative error encountered so far.
The current information from the dataset, which constitutes the current knowledge,
contains the current and past values of the series. In detail, we are focused on the
one-step-ahead prediction, which just considers the prediction at the next time step,
i.e., yt+1 given the last observation at time t.

7.2.2 ML Regression with RFR

The Random Forest Regression (RFR) is a type of additive model that predicts by
combining decisions from a sequence of base models. More formally, this class of
algorithms can be written as:

g(x) = f0(x)+ f1(x)+ f2(x)+ . . . , (7.13)

where the final model g is the sum of simple base models fi. Although each base
model fi can be any ML algorithm, the most common version of RFR considers
as fi a simple decision tree. In this solution, we also consider this setting. This
broad technique of using multiple models to obtain better predictive performance is
also known as model ensembling. Moreover, in RFR, all the tree base models are
constructed and trained independently using a different subset of data.

Predictions are, then, made by averaging the predictions of each decision tree.
In other words, to extend the analogy—much like a forest is a collection of trees,
the random forest model is also a collection of decision tree models. This makes
random forests a strong modeling technique that is much more powerful than a
single decision tree. RFR is suitable for regression problems given its features: (i)
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it can capture non-linear or complex relationships between inputs and outputs, (ii)
compared to a single decision tree, RFR is more robust, with a limited dependence
to the noise in the training set, as it uses a set of uncorrelated decision trees, (iii)
it is able to limit both the variance and the bias, better addressing the problem of
overfitting.

7.2.3 State Variables in Our Solution

In our system, the current knowledge Y is modeled as a matrix of features, with a
shape N×M, where the column j represents the list of metrics gathered for task i,
given i the index of the row. Such a list of features for task i are three: (i) the number
of enqueued tasks when task i arrived to the node, (ii) time to complete task i, in
seconds, (iii) a boolean stating if task i has been offloaded to the edge cloud.

Features selection is a key topic when dealing with big data, demanding for a
trade-off between having a vast knowledge and time and resource constraints. This
imposes to limit the complexity, with little or none effect on the performance. In
fact, a smaller M yields simpler models, but it may be inadequate to represent the
space of possible behaviors. On the other hand, a large M leads to a more complex
model with more parameters, but may, in turn, lead to overfitting issues. While in
time-series this choice for observed variables is much easier, as it usually entails the
interested variable, in ML features selection is much more important. Our choice of
M = 3 and metrics that are extremely easy to collect, moves towards this direction.
Each node can train its model without the need to communicate with others, attaining
null communication overhead and modest memory occupation. Results support this
choice, achieving higher accuracy while reducing noise (Section 7.4).

However, given the differences in the two models, they also treat the input data
differently. Regarding the VARMA model, its input yt ,yt−1, . . . ,y1, is modeled with
a vector of metrics at timestamp t. This means that the input of the VARMA model
consists of all the values in the matrix. When the number of rows of Y exceeds a
threshold (Z = 1000), the considered temporal window is limited to a sub-matrix
consisting of the last Z rows. Alternatively, regarding the RFR, since it is agnostic
of the time order, it only considers the last line of the matrix Y , i.e., the input of the
model is composed by all the columns for the last row of the matrix.
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7.3 Agent’s Decision Process

In the following, we first overview the procedure as in the Follow the Perturbed
Leader (FPL) method. Then, we describe how the IoT agent implements our version
of FPL in our system.

7.3.1 Follow the Perturbed Leader

Learning from a constant flow of data is considered one of the central challenges of
machine learning. Online learning entails sequentially decide on actions given the
changes in the environments. In past years, a variety of online learning algorithms
have been devised [205, 206]. Among them, in our work we investigate Follow the
Perturbed Leader algorithm, whose advantage is its simplicity and computational
efficiency.

Such a prediction with expert advice proceeds as follows. At each time step t
the system performs sequential predictions yt ∈ Y . At times t = 1,2, ..., we have
access to the predictions (yi

t)1≤i≤n of n experts E = e1, ...,en. After having made a
prediction, we receive observation xt ∈X , and the system computes our suffered
loss l(xt ,yt) and each expert’s loss l(xt ,yi

t). As our observations entail continuous
values, i.e., lie in a regression problem, the loss is calculated as: l(xt ,yt) = (yt−xt)

2.

Our goal can be summarized in achieving a total loss “not much worse” than the
best expert, after T time steps. More formally, we denote the cumulative loss of expert
i by LT

i = ∑
T
t=1 l(xt ,yi

t) and the cumulative loss of our system by LT = ∑
T
t=1 l(xt ,yt).

Thus, the goal of the system is to minimize the regret, defined as the difference
between the cumulative loss of the learner and the cumulative loss of the best
prediction in hindsight. The regret over T rounds is defined as:

RT =
T

∑
t=1

l(xt ,yt)− min
i∈1..n

T

∑
t=1

l(xt ,yi
t) = LT −minLT

i . (7.14)

The term minLT
i , is often defined as the loss of the best expert in hindsight (BEH).

Moreover, when this regret is sublinear, namely Rs ≤ o(T ), the learning algorithm is
said to be Hannan-consistent.



116 A Self-Learning Strategy for Task Offloading in UAV Networks

One algorithm for achieving Hannan-consistency is Follow the Perturbed Leader
(FPL), as demonstrated by Hannan [207] and Kalai and Vempala [208]. Let γ be
some n-dimensional random variable and ηi > 0. FPL involves picking the expert
exp that minimizes the perturbed cumulative loss:

exp = argmin
i
(Li +ηγi) (7.15)

Intuitively, if η is small, then we expect exp to be “close” to a minimizer of the
(non-perturbed) cumulative loss. On the other hand, when η is large, we expect
E to be “close” to the uniform distribution. Namely, η controls how similar the
algorithm is to Follow the Leader, the version of the algorithm that always picks the
expert who has minimized the cumulative loss. However, this version, and any other
deterministic learning algorithm, is not Hannan-consistent [209].

We summarize our version of FPL in Algorithm 6. As demonstrated by theorems
in [209, 210], for all possible sequences of losses where the loss is bounded and the
noise is spread out, i.e. the noise has a sufficiently high variance, FPL achieves an
expected regret that is bounded by:

E[Rt ] ∈ O(
√

T ). (7.16)

Consequently, this result is also valid for our Algorithm 6, where we consider the
random value γ sampled from a Gaussian distribution N (0, I).

Algorithm 6 Follow the perturbed leader
fpl(m: task, s:state, t: time)

1: η > 0, Li← 0
2: for every expert i do
3: Compute loss l of last prediction given evidence s
4: Accumulate the loss Lt

i ← Lt−1
i + l

5: Sample γi ∼N (0, I)
6: exp← argmini(Lt

i +ηγi)
7: Predict yt asking to the expert exp given state s and task m
8: return yt

Furthermore, it can be noted that this problem is similar to the Multi-Armed
Bandit (MAB), in the class of RL methods. FPL follows the “arm” that is assumed to
have the best performance so far, adding exponential noise to it to provide exploration.
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However, while the MAB algorithm offers more strict bounds to the regret, FPL can
drastically simplify the entire learning process making it suitable for constrained
agents as the UAVs. For example, differently from MAB that may take a long time
to converge, FPL requires a shorter time, and mostly, is not eager of computation
and memory resources as is the MAB.

7.3.2 Our Algorithm

We can now present our algorithm, built upon the Follow the Perturbed Leader (FPL)
formulation, which dictates the offloading decision process. The overall algorithm
running on each device is defined in Algorithm 7. Each learning agent is able to
monitor and gather statistics required to perform the prediction, as mentioned in
Section 7.2. Once a new task arrives at the node, it asks for help from the experts, as in
FPL. The experts that our FPL algorithm can employ are the two regressor algorithms.
This method, however, returns only one value, p, i.e., the expert’s prediction for the
next time step, and this predicted value is then used to determine whether offloading
the incoming task as follows. If this value exceeds a determined threshold specific for
the agent i, Ti, this implies a long local task execution, and the task is consequently
offloaded. Otherwise, it is kept local and enqueued for future execution.

Algorithm 7 Overall algorithm
1: Initialize threshold Ti for all nodes
2: for all i ∈N do
3: Wait new task m
4: Monitor the queue and node state
5: p← fpl(m, s, t)
6: if p > Ti then
7: Offload task m to the edge cloud
8: else
9: Enqueue task m locally

10: Store states for the future
11: End Wait

From the described algorithm, it appears as the value of the threshold Ti is a
crucial parameter. Clearly, its setting depends on the environment and the nature
of tasks, but, in general, it should be defined in order to balance the two actions,
i.e., offloading and local execution. Offloading means diminishing the waiting time



118 A Self-Learning Strategy for Task Offloading in UAV Networks

but increasing the transmission time. Keeping the task locally implies facing the
waiting time but avoiding wireless transmission. Thus, offloading should be selected
only when the expected waiting time is considered “too high”. The threshold is a
numerical definition of the “too high” concept.

In light of this self-learning procedure, not only can our agents progressively
enhance the single predictors, but they can learn the more advisable algorithm to
follow given the considered environment. Ideally, the expected behavior of this
framework is that the VARMA is selected in the first place, given its ability to
require a short amount of data (see Section 7.4). Then, when more metrics become
available, the RFR can outperform the statistical model and, consequently, becoming
the preferred choice of FPL.

It is known, indeed, that Random Forests produce better results on large datasets
and are able to work with missing data by using estimations of them [20]. However,
they pose a major challenge as they cannot extrapolate outside unseen data. On the
other hand, VARMA has the ability to work well with unseen data, interpolating the
given data to obtain the prediction. In conclusion – and as confirmed by our results –
we can enumerate the differences as follows: classical models are simpler and more
interpretable, while ML methods are more complex but more flexible. The choice
of VARMA to represent classical models and RFR for ML is then motivated by the
accuracy obtained in our experimental campaign (see Section 7.4).

7.4 Results

In this section, we report the results of experiments performed to assess the effec-
tiveness of the proposed approach. First, we analyze the accuracy of the proposed
prediction methods. Then, we consider the performance of our approach comparing
it to state-of-the-art solutions.

7.4.1 Experimental Setup

To evaluate the performance of the proposed task offloading strategy, we developed
a Python event-driven simulator, where a networked fleet of drones has to complete
incoming tasks. The edge cloud is replicated by means of a further process emulating
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the execution of offloaded tasks. To adopt realistic parameters for our experimental
campaign, we base the choice of their default values on recent studies addressing the
considered scenario, e.g., [174, 211]. In particular, new tasks are generated according
to a Poisson process with an arrival rate of 0.2 Hz if not otherwise specified. In
terms of computing resources, we assume the CPU capability of each server in the
edge cloud and each UAV to be fe = 20 GHz and fi,m = 1 GHz, respectively. The
computing workload is set as default to Ci,m = 1× 109. The channel bandwidth
is set to be W down = W up = 5 Mbps, the transmitted data Dout

i,m = 7 MB, while
Din

i,m = 1 MB. The background noise power is set equal for the two technologies, as
σdown = σup = 50 dBm. For the channel gain we have Gdown

i,m = Gup
i,m = dν

i,s, where
di,s is the distance between mobile agent i and access point s, and ν = 4 denotes the
path loss factor. By default, the distance di,s is set to 10m. Finally, we simply set the
default value of the weights defined in Algorithm 6 as η = 1.

The results reported are obtained after 35 trials. The resulting graph’s bars
refer to a confidence interval of 90%. We summarize in Table 7.2 the configuration
parameters utilized during the following evaluation, where the default values are
reported in bold.

Table 7.2 Parameters setting.

Parameter Values

Number of nodes 2, 3, 5, 7, 10, 20, 50
Task arrival rate (Hz) 0.1, 0.2, 0.3, 0.9
Nodes’ Average Distance [m] 1, 2, 3, 5, 10, 20, 30, 40
Computing workload, 109 0.5, 1, 10, 25, 50, 100
Channel bandwidth (Mbps) 5
Noise power (dBm) 50
Number of trials 35
Confidence interval [%] 90

7.4.2 Evaluation Metrics

Throughout this section, we make use of metrics and quantities defined in Section 7.1,
such as the task completion time. Besides them, in order to study the efficacy of
predictors, we use the Mean Absolute Percentage Error (MAPE), which is a simple
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regression error metric. For every data point, the residual is computed by taking only
its absolute value so that negative and positive residuals do not cancel out. The error
is then converted into a percentage, providing a clear interpretation that makes the
results easily understandable. The formal equation of MAPE is given by:

MAPE =
1
n

n

∑
t=1

100×
∣∣∣∣xt− yt

xt

∣∣∣∣ , (7.17)

where xt and yt are the real and the predicted observations, respectively. One key
advantage of MAPE is its robustness to the effects of outliers thanks to the use of the
absolute value. In summary, such a value describes how far the model’s predictions
are off from their corresponding outputs on average.

Similarly, we compute the Mean Absolute Deviation (MAD) for the predicted
values as follows:

MAD =
1
n

n

∑
t=1

∣∣yt−X
∣∣ , (7.18)

where X denotes the mean of the observed values. The MAD value, as explained
in [212], is another key metric during the evaluation of regressors.

Moreover, even though it is not an explicit objective of the process, we also
consider the energy consumed by agent i during the execution of task m. Since the
node can either compute the task locally or offload its computation to the edge cloud,
we define two types of energy consumption, E l

i,m and Ee
i,m, for the local execution

and the edge execution, respectively. In the case of local computation, we use
the widely adopted model of the energy consumption per computing cycle as E =

kC f 2 [213, 214], where k is the energy coefficient depending on the chip architecture,
fi,m is the CPU frequency, and Ci,m specifies the workload, i.e., the amount of
computation to accomplish the task in terms of numbers of cycles. According to
some realistic measurements available in [196], we set the energy coefficient k as

5× 10−11. Moreover, in the other event of task offloading, Eup =
pi,mT tra

i,m
ξi

,∀i,m,
where ξi is the power amplifier efficiency of node i. Without loss of generality, we
assume that ξi = 1 ∀i. We also assume the energy consumption in the edge cloud
is negligible since the cloud typically has enough energy to execute the offloaded
tasks. Then, similar to the energy spent in transmission, we define the energy
consumed during the reception phase, Edown =

pi,mT rec
i,m

ξi
,∀i,m. Thus, the energy spent

in offloading the task is the sum of these two communications, Ee
i,m = Eup +Edown.
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Fig. 7.2 (a) MAPE error and (b) mean absolute deviation (MAD) for different algorithms. (c)
Convergence time comparison, i.e., loss evolution, for FPL and RFR methods.

In conclusion, for simplicity, we refer to the energy consumption as E, and is
computed as follows:

E = (1−oi,m)E l
i,m +oi,mEe

i,m,

= (1−oi,m)
(

k( f l
i,m)

2Ci,m

)
+oi,m

(
pi,mT tra

i,m + pi,mT rec
i,m
)
.

(7.19)

7.4.3 Predictor Accuracy

For this first part focusing on the accuracy of the predictors, we first offline train
the considered models on a relatively small dataset consisting of 5036 samples. In
particular, we apply a walk-forward validation. In such a technique, the dataset is
split into train and test sets by selecting a cut point, and we select a point to split
the dataset as 80% training set and 20% test set. Then, even over the test set these
models are fitted for every new observation, and the training phase continues online
to improve the accuracy and to fit the specific circumstances on the agent.

Fig. 7.2a shows MAPE for different predictors. Specifically, we compare against
two other time series forecasting methods, autoregressive-moving average (ARIMA)
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and Simple Exponential Smoothing (SES), and two ML-based regressors, Support
Vector Regression (SVR) and Gradient Boosting Regression (GBR). From the graph,
we can observe how results validate our approach. In particular, by leveraging
alternate techniques, our FPL model provides the lowest error in predicting. Notably,
compared to the second-best regressor, i.e., SES algorithm, our method can halve
the error.

We then compare the MAD error among the same set of predictors, and we report
the results in Fig. 7.2b. We can easily conclude that not only FPL can provide a
smaller error, but the variance is reduced. This result is particularly important since
it assures that our approach leads to fewer outliers in the prediction task. In fact, a
method with high MAD suggests that when it is wrong, the error could be too high,
leading to an inappropriate conclusion. On the other hand, our FPL is always close
to the real value, so even though the value is not exact, the finding is likely more
accurate.

We then study the time needed by our FPL-based algorithm to converge. To this
end, we compared the convergence time of FPL to RFR, as it is the most accurate
at regime. We consider two different versions for the latter: an already trained
version (offline-RFR) and an RFR during its learning phase (online-RFR). Fig. 7.2c
displays the loss (actual value - predicted value) of these alternatives, where the
offline-RFR is constant over time since the model parameters were already fixed
during training. We can notice how our approach outperforms the offline-RFR after
approximately 30 steps, while the online-RFR in the first 20 steps has a too excessive
loss to report in the figure. Such an online-RFR method achieves a reasonable still
high loss at 30 steps, the number of steps required by our FPL to stably converge.
This observation validates our hypothesis of using an FPL-based algorithm to online
adapt the prediction and mix online and offline parameter settings to speed up the
learning.

7.4.4 Solution Performance Analysis

To study the behavior of our solution at varying environmental conditions, we
consider diverse indicators for increasing fleet sizes.

In Fig. 7.3a we examine the average queue length of the agents when increasing
the task arrival rate. We can observe how, when tasks are introduced in the system
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Fig. 7.3 (a) Queue agents length at varying the task arrival rate. Both experiments consider
an increasing fleet size. (b) Task completion time of our FPL-based approach compared to a
more complex solution as MAB. Our FPL outperforms this alternative.

at a higher rate, the growth in the queue size is logarithmic. This result suggests
that our approach can efficiently handle the presence of many tasks in the system.
Confirmation of this behavior is presented in Section 7.4.5, when our solution is
compared against other methods.

7.4.5 Comparison with State-of-the-art

To study the effectiveness of our solution, we compare it against three similar solu-
tions: the DROO framework [172], which implements a deep neural network that
learns the binary offloading decisions; a solution based on the multi-agent reinforce-
ment learning framework [23], that is able to select the best radio access technology
for the offloading process; a hotbooting Q-learning scheme for computation offload-
ing [188], herein referred to as hotbooting DQN, as it uses a fast deep Q-network
(DQN) model to further improve the offloading performance.

We first evaluate the effects of task offloading over the queue of agents, reporting
in Fig. 7.4a the CDF of queue length. The queue length is considered a key metric in
this scenario, as it clearly impacts the time to complete tasks, but also the computation
rate and the energy spent by the node. It can be easily observed that, with our solution,
we can shorten the amount of tasks waiting in the agent’s queue, while other RL-
based methods are more prone to overload the agent.

Additionally, we investigate the energy consumption that the solutions lead
to, reporting the results in Fig. 7.4b. While other benchmark algorithms consider
the minimization of energy consumption in the problem formulation, our model is
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Fig. 7.4 CDF of queue agents length, and (c) energy consumption for various offloading
solutions. Despite not as an objective of our algorithm, our solution can also limit the energy
consumed by UAVs.
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Fig. 7.5 Memory resources and (d) CPU consumed during the execution of our considered
algorithms.

unaware of this aspect. Nevertheless, our solution is able to achieve comparable
results with MARL that has been designed for energy efficiency purposes. Moreover,
we can reduce consumption with respect to DROO and DQN. Thus we can conclude
that, although our approach is blindfolded concerning power saving, it can lead to
an energy-efficient method. These results confirm our hypothesis that modeling the
device as a queue of tasks is a simplistic yet effective way of exploiting the edge
while considering the application performance.

Finally, we consider the amount of RAM and CPU required to train and execute
these algorithms. As can be seen in Fig. 7.5a, our implementation can drastically
reduce the amount of memory consumed, leading to a significant improvement.
While the deep learning approaches are hungry for RAM, the MARL model can
optimize consumption. However, our regressors can further shorten the demand for
memory. Considering then the CPU consumption in Fig. 7.5b, similar conclusions
hold. Simulating the execution of the learning processes over an Intel(R) Core(TM)
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i7-7500U CPU @ 2.70GHz, it is observable a reduction of CPU usage. In conclusion,
we can consider our solution more lightweight than alternatives. This result is
extremely important, especially in the UAV context, where a reduced memory
footprint, along with less computation, is fundamental.

7.5 Conclusion

This chapter presents a learning-based solution to solve the dilemma of whether
a task should be offloaded to the close edge cloud or not. Our solution lets the
devices autonomously learn the offloading decisions on the basis of the current
state. Such a decision exploits two classes of predictors, i.e., time series and ML
regression, to predict future conditions. By doing so, the node can determine online
the accuracy of these methods. Based on this value, then, the agent determines where
incoming tasks should be executed. The results validate our model, evidencing how
our implementation outperforms state-of-the-art solutions. In particular, despite the
simplicity of our learning algorithm, its accuracy is comparable to other RL-based
processes.
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Conclusions

Edge-based applications have evolved over the last decade because of a considerable
demand from many recent applications to satisfy their strict requirements, e.g., very
low latency and high throughput. Among them, we can cite the Tactile Internet,
which can offer haptic engagement with visual feedback, providing the illusion of re-
mote touch, or telemedicine, where medical devices, or simply medical information,
are accessed remotely during an interactive session. This posed several challenges to
the network infrastructure that, to meet the stringent requirements, had to change its
nature as well. To this end, there is now increasing interest in equipping networks
with autonomous run-time decision-making capability via the incorporation of arti-
ficial intelligence (AI) and machine learning (ML). Given the fact that it is almost
impossible for human operators to render network management in real-time, it is
likely that future networks will apply AI/ML to autonomously identify and locate
congestion or malfunctions in the network, and opportunely react. To accurately
configure and manage itself, the network needs to detect the malfunction, collect
and analyze measurements in a stream way. Once metrics are collected, the network
reacts to address the sub-optimal behavior via network programmability.

In this dissertation, we explored novel methodologies aimed to solve some typical
networking management problems with the inclusion of reactive mechanisms. In
particular, we demonstrated how ML-based algorithms can be effectively used in
optimizing network operations, ranging from the offloading of tasks to the close edge
cloud to the management of virtualized and softwarized networks.
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Our attempt to solve this issue brought us to the design and implementation of a
novel load-aware routing strategy, RoPE, to enhance routing in SDN networks by
means of multiple ML strategies. Our routing solution predicts the future load on
links of a path and then chooses the best one according to such information. This
allows to avoid congested paths and reduces delay in the transmissions. After having
analyzed the regression algorithms and evaluated the advantages and disadvantages
of the class of methods, we defined the RoPE logic to choose the best algorithms as
the considered scenario changes.

Similarly, but to optimize (virtual) network resource allocation, we proposed
Mystique, a system that auto-scales the underlying network topology to accommodate
the traffic demand and reacts to possible failures via Reinforcement Learning (RL).
The network controller dynamically activates or deactivates links and nodes in an “as
needed” fashion with the aim of minimizing the energy consumption and improving
QoE and fairness among users. At the same time, the system can promptly react to
network failures as these happen.

To mitigate congestion at the end-hosts rather than on the network infrastruc-
ture, then, we proposed Owl, a new RL-based TCP congestion-control algorithm.
Designed to learn from end-to-end and in-network signals, Owl is effective under
various network conditions, and it can speed up transmissions and reduce delays
and loss rates better than most existing protocols in the vast majority of the tested
scenarios, especially in cellular networks. We also analyzed the stability condition
of Owl and evaluated its fairness demonstrating that it is less aggressive than other
performant solutions when it competes with other protocols and with itself across
other sources.

Lastly, we specifically addressed the task offloading problem and proposed
a distributed offloading decision strategy that, using Multi-Agent Reinforcement
Learning (MARL), jointly improves the energy efficiency and task completion
time of edge computing-enabled UAVs swarms. The overall state of the system is
appropriately shared between the nodes and used when each agent has to decide
where to perform an assigned task: locally or in the edge cloud by means of an
offloading procedure. Each node, in case of task offloading, can further decide the
transmission technology to use, Wi-Fi or LTE, according to the current utilization.

For a more lightweight solution, however, we also presented a self-learning-based
methodology that reduces the overall resource consumption and is more suitable
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for UAV execution. Our solution lets the devices autonomously learn the offloading
decisions on the basis of the current state. Such a decision exploits two classes of
predictors, i.e., time series and ML regression, to predict future conditions. Using
this value, then, the agent determines whether a task should be offloaded to the close
edge cloud or not.

As we deepened only a subset of the existing problems, we hope that future re-
search will cover the remaining challenges that, if solved, could lead to the definition
of a fully autonomous and functional network that can enable a better machine-
human hybrid architecture. Among the future challenges, we can cite, for example,
the need to cope with a few or partial data, which can hinder an accurate learning
process. Taking network management decisions when the telemetry is limited may
move current solutions towards production. Similarly, explaining the decisions of
the ML model can open up new opportunities to better understand the logic behind
the selected output, with the possibility to realize which input (and how) has most
impacted the final decision. Once gained this insight, the network telemetry process
can be optimized as well, improving both the process of network metrics collection
and the consequent decision process. By assuring that the partial information in-
cludes the most impacting information, the ML model can be accurate enough in
taking the proper network operation.
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