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An Effective Land Type Labeling Approach for
Independently Exploiting High-Resolution Soil

Moisture Products Based on CYGNSS Data
Yan Jia , Member, IEEE, Shuanggen Jin , Senior Member, IEEE, Qingyun Yan , Member, IEEE,

Patrizia Savi , Senior Member, IEEE, Rongchun Zhang, and Wenmei Li , Member, IEEE

Abstract—Recently, soil moisture (SM) has been estimated using
Cyclone Global Navigation Satellite System (CYGNSS) data. Ma-
chine learning (ML) algorithms for CYGNSS SM estimation can
minimize unpredictable influences and help improve the accuracy
of SM retrieval. However, ML-based CYGNSS SM estimation re-
quires ancillary data from other sources, and thus, the uncertainty,
internal errors, and even dependence on external parameters of this
process may complicate and limit SM estimation. In this article,
a simple land type (LT) digitization strategy that incorporates
the idea of classification is proposed with feature optimization to
achieve an effective and independent SM retrieval without any
other auxiliary data. The input features are chosen from the
CYGNSS data themselves, and the corresponding labels (digitized
stable LTs) are used in the training stage of the SM estimation
model. During the fine-tuning stage, several input features (such
as the dielectric constant and incident angle) are compared and
selected after optimization to achieve better results. Moreover, the
CYGNSS data are gridded at 9 × 9 km to validate the enhanced
soil moisture active passive mission SM products at a resolution
of 9 km. Only three input variables are adopted for the SM learning
model, which are directly derived from the CYGNSS data for
independently estimating SM at a high spatial resolution. Powerful
performance is achieved by extreme gradient boosting based on a
LT digitalization strategy, with root-mean-square error (RMSE)
and unbiased RMSE (ubRMSE) values of 0.063 cm3/cm3 and a
correlation coefficient (R) of 0.71 for the entire dataset. The per-
formances of different ML learning models for various LTs are
presented. The mean ubRMSE and RMSE are 0.041 cm3/cm3 and
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0.057 cm3/cm3, respectively. The results demonstrate the effective-
ness of the proposed LT digitization strategy for retrieving SM
from CYGNSS data with various ML methods and the capability
of SM estimation using the CYGNSS product as a new independent
source.

Index Terms—Cyclone-GNSS (CYGNSS), global navigation
satellite system-reflectometry (GNSS-R), machine learning (ML),
soil moisture (SM), soil moisture active passive (SMAP).

I. INTRODUCTION

SOIL moisture (SM) directly controls surface water and
energy balance and, thus, is vital to the actual needs of

climate, agriculture, and drought monitoring [1], [2]. Microwave
remote sensing possesses 24-h, all-weather, and large-scale
monitoring capabilities for high-precision SM retrieval [3], [4].
At present, many passive microwave satellites and sensors were
used to observe surface SM (<5 cm), such as the National
Aeronautics and Space Administration’s (NASA’s) Advanced
Microwave Scanning Radiometer-Earth Observing System [5],
the soil moisture active passive (SMAP) mission [6] and the Soil
Moisture and Ocean Salinity (SMOS) mission of the European
Space Agency [7]. The use of microwave sensors can obtain
high-precision SM products; for example, the error of 36-km
SMAP SM products was approximately 0.04 m3/m3 [8]. How-
ever, its long revisit period of 2–3 days restricts its application
with higher time resolutions (1d).

Cyclone Global Navigation Satellite System (CYGNSS),
based on the measurement technology of the signals reflected
by the GNSS, was launched by NASA on Dec. 15, 2016. The
high-precision and excellent data provided by the CYGNSS
constellation offers a very favorable opportunity for realizing
long-term dynamic SM monitoring with high spatial and tem-
poral resolutions [9]–[17]. In general, CYGNSS-based land
remote sensing is facilitated by the observed surface reflec-
tivity Γ [9] or the bistatic radar cross-section (BRCS) [11],
which both lead to successful land remote sensing applications.
This work mainly focuses on using CYGNSS reflectivity. In
the literature, Chew and Small [12] reported that CYGNSS
reflectivity changes were correlated with changes in SMAP
SM. By using a linear regression method, SM estimates can be
obtained with an unbiased root-mean-square error (ubRMSE)
of 0.045 cm3/cm3. Clarizia et al. [14] proposed a significant
reflectivity-vegetation-roughness algorithm to retrieve SM with
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TABLE I
APPLICATIONS OF CYGNSS SM ESTIMATION METHODS WITH A RESOLUTION OF 9 KM

RMSE of 0.07 cm3/cm3, where a linear regression model was
developed for daily SM estimates with variables including
the CYGNSS reflectivity, roughness coefficient, and vegetation
opacity in SMAP. Yan et al. [16] adopted a similar method
but utilized the statistical properties of CYGNSS reflectivity
to analyze the effect of surface roughness, and then the SM
was determined with a correlation coefficient (R) of 0.80 and
an RMSE of 0.07 cm3/cm3. In addition, machine learning (ML)
algorithms have been rapidly applied to CYGNSS-based SM
estimation. A backpropagation-artificial neural network (ANN)
algorithm was adopted by Yang et al. [17] to evaluate the SM
estimation performance of two spaceborne GNSS-R satellite
missions (TechDemoSat and CYGNSS). The SM was obtained
with an R of 0.79 and an ubRMSE of 0.062 cm3/cm3. However,
the use of a few (six) ancillary variables was inevitable, and all
these previous studies utilized SMAP as reference and validation
data with a resolution of 36 km.

In terms of high-resolution CYGNSS-based SM retrieval,
a geosystems research group at Mississippi State University
took the International SM Network sites as references and
reported some results by employing ML algorithms [18]–[20].
Five to seven ancillary datasets were used, which were ob-
tained from external sources. For example, the 16-day composite
normalized difference vegetation index (NDVI) derived from
the moderate-resolution imaging spectroradiometer (MODIS)
data of MYD13A1 was utilized for characterizing vegetation
conditions, and the surface elevation information was provided
by a 1-km digital elevation model (GTOPO30) product from the
United States Geological Survey Earth Resources Observation
and Science archive [19], [20]. Similarly, the NDVI and elevation
data were all spatially averaged from their own high resolution
to a coarser resolution corresponding to the CYGNSS data.
Additionally, NDVI data usually suffer from clouds because
they are generated by optical instruments. A sliding window
average over 16 days was applied in a previous study [18]. This
spatial/temporal averaging operation and the use of imperfect
data sources with insufficient observation days or a running
process of one day become potential and inevitable risks, which
may increase the computational cost and even deteriorate the
estimation model. Thus, the dependence on ancillary data may
bring big issues, and it is essential to diminish the subset of
relevant features to achieve independent retrieval.

Furthermore, it is unfair to directly compare the obtained
RMSEs to those in the literature since cases vary in terms of
data samples, time spans, spatial coverage, assumptions regard-
ing gridding, validation datasets, employed ancillary data, and
spatial resolutions. These factors all impact the performance of
the CYGNSS-based SM estimation. Here, the related 9-km high-
resolution CYGNSS estimations are summarized in Table I.

In this article, we propose a novel land type (LT) digitalization
strategy to balance the accuracy and efficiency of independent
CYGNSS-based SM estimations. We adopt digitalized (label-
ing) LTs as the main physically-based features to incorporate the
surface conditions (e.g., topography, vegetation, and soil prop-
erties, among others) into the SM learning model. Quasi-global
SMAP data are used as reference data and to crossly validate the
learning model. In this approach, enormous amounts of ancillary
data can be discarded. Background terrain knowledge is accumu-
lated in the learning model through one variable. This extracted
feature incorporates the idea of classification, thus making the
SM estimation model smart and promoting stand-alone retrieval.
Moreover, various ML methods and variants are compared with
different LTs to obtain optimized performance in high-resolution
CYGNSS SM estimation.

The key innovations and aims of the article are threefold as
follows.

1) A simple and effective independent SM retrieval scheme
from CYGNSS data is proposed to cope with the involve-
ment of complicated auxiliary data.

2) The introduced LT digitization/labeling strategy solves the
insufficient geographical representation when performing
stone-alone CYGNSS retrieval and greatly avoids the
complex calculations when other data sources are con-
sidered.

3) Comprehensive experiments on different ML algorithms
with feature optimization are conducted to validate the
effectiveness of the proposed method and high-resolution
CYGNSS SM estimation is achieved with different LTs at
the global scale.

The rest of this article is organized as follows. Section II
depicts the dataset used in this article. Section III describes
the proposed CYGNSS SM estimation architecture and LT
digitization scheme. Section IV reports the experimental results.
Finally, Section V concludes this article.
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Fig. 1. Example BRCS of CYGNSS reflectivity on Jan. 1, 2018.

II. DATA AND QUALITY CONTROL

A. CYGNSS Data

The CYGNSS constellation contains eight CubeSats, which
can provide reflected signal data covering the whole pantropical
zone (38°S–38°N) and has the characteristics of high spatial
and temporal resolution compared to SMAP. We adopted the
data for the entire year of 2018 and the time period for which
the reference and validation data were available. The employed
CYGNSS Level 1 (L1) data1 include a time-delay Doppler map
(DDM), the radar cross-section (BRCS or σ) shown in Fig. 1,
and other measurement and geographic coordinate information,
such as the incident angle θ, signal-to-noise ratio, the longitude
and latitude (Lat/Lon) of the specular reflection point (SP), and
the distance between the SP and the transmitter and receiver
(Rt and Rr) [9].

B. SMAP Data

The SMAP enhanced radiometer Level 3 SM data (global
daily 9-km EASE-Grid SM, Version 4) were used as a reference
dataset (which can be downloaded freely at2) for a comparison
with the SM estimated by the CYGNSS. Furthermore, a 16-bit
binary string of 1 s and 0 s called a SMAP retrieval quality flag
(RQF) was taken as a significant quality control indicator [24].
The first position, “recommended quality,” indicated whether
the SM retrieval possessed the recommended quality (first
position = 0). In this article, the extracted data were filtered
according to the first position of the “recommended quality”
flag to ensure the quality of the data used in the modeling
calculations [20]. Although this operation decreased the overall
amount of data, the high-resolution global datasets at 9 km
could still provide valid training datasets for the learning model.
Thus, the data points that had 1 s in the first positions of their
RQFs were deleted and excluded from subsequent calculations.
This article used the data for the whole year of 2018 that were
marked with “retrieval recommended”. To facilitate subsequent
verification and comparison procedures, the CYGNSS data were
projected to the EASE-Grid employed by the SMAP data with
9 × 9 km cells. As such, the resolution of SM estimation was
considered to be 9 km. The global coverage of SMAP was
achieved approximately every three days and was more than
CYGNSS for two days. An example of SMAP SM without QF
is shown in Fig. 2.

1Free [Online]. Available: https://podaac.jpl.nasa.gov
2[Online]. Available: https://nsidc.org/data/SPL3SMP_E/versions/4

Fig. 2. SM example from Jan. 1–3, 2018.

Fig. 3. IGBP LTs in 2018.

C. LT Information

The LT information was relatively stable and could be ob-
tained from various data sources, making it more reliable than
other ancillary data types that were adopted by previous studies.
This information could be acquired from sources such as the
MODIS Aqua Surface Reflectance Daily Global 500 m dataset
[10], [11], [17]–[20], the Global Land Cover Map for 2009
(GLCover 2009) dataset [17], and the SMAP mission [16], [25].
In this article, we employed the LT information obtained from
SMAP radiometer Level 3 global daily 36-km3 EASE-Grid SM
data. The global LT information is shown in Fig. 3, which cor-
responds to the International Geosphere-Biosphere Programme
(IGBP) ecosystem surface classifications. Although the resolu-
tion of the LT information (36 km) was not consistent with the
9-km CYGNSS data and reference SM data, this LT information
was easier to manipulate and match with the CYGNSS and refer-
ence SM datasets since they all used the EASE-Grid projections
and could, thus, obtain the expected results. High-resolution LT
information can be upgraded to match the training data in future
work; this may produce even better results.

D. Quality Control

The collected data were filtered using several criteria as
follows.

1) CYGNSS reflectivity values below 0 and above 0.1 were
excluded. Some extremely high reflectivity values were
found, and they appeared consecutively within the same
ground track over the EASE grid [16].

2) We excluded the data obtained at elevation angles smaller
than 30°, which could effectively remove very weak sig-
nals (which may have resulted in the inclusion of noisy
DDMs and errors in the SM estimations) coming from the
side lobe of the circular polarization antenna [11], [17],
[21].

3[Online]. Available: https://nsidc.org/data/SPL3SMP

https://podaac.jpl.nasa.gov
https://nsidc.org/data/SPL3SMP_E/versions/4
https://nsidc.org/data/SPL3SMP
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TABLE II
NUMBER OF SAMPLES USED IN THE LEARNING MODEL AFTER DATA

QUALITY CONTROL

3) The negative antenna gain was removed (corresponding
to the uncertainties reported in the measured antenna gain
patterns) to ensure that only high-quality data obtained
from the left-hand circularly polarized (LHCP) data were
used [17], [18], [19], [22].

4) Observations with DDM peak values outside of the range
of 5 to 11 delay bins were removed from the dataset to
avoid the inclusion of high-altitude measurements [19],
[23].

5) The SMAP “retrieval recommended” quality flag was used
to filter the SMAP data to ensure the quality of the SM
estimations [20]. The total numbers of samples obtained
after conducting the quality control procedure for the
training and testing datasets are displayed in Table II.

III. SELF-SM ESTIMATION SCHEME

The input features were designed and intentionally selected
from the CYGNSS data to achieve stand-alone SM estimations.
Hence, several input variables were tested and compared for
feature optimization. Except for the digitized LT, the CYGNSS
reflectivity, incident angle, dielectric constant, and TES are
selected to demonstrate the capability of the SM estimation
model.

A. CYGNSS Reflectivity and Dielectric Constant

Assuming that the signal over land is predominantly deter-
mined by the coherent reflection from the surface, eventually
reduced by roughness and attenuated by vegetation, the reflectiv-
ity Γlr(θ) over a vegetated terrain can be regarded as a function
of SM, vegetation, and the surface roughness effect. Thus, the
relationship between reflectivity and the reflection coefficient

Rlr(θ) for most soils can be expressed by the following formula:

Γlr (θ) = Rlr(θ)
2γ2 exp−hcos2 (θ) (1)

where γ is transmissivity, which accounts for vegetation canopy
attenuation; θ is the local incidence angle; and the h-parameter
is assumed to be linearly related to the root-mean-square height
surface roughness.

The reflectivity is commonly used as the primary variable in
SM estimation models. Following the assumption of coherent
reflection [12]–[20], [22], [23], [25], the reflectivity Γlr(θ) can
be computed from CYGNSS BRCS σ, which has been verified
as optimal for SM estimation [18], [23]

Γlr (θ) =
σ(Rt +Rr)

2

4Π(RtRr)
2 (2)

where Rt and Rr are the distances from the transmitter and
receiver to the SP, respectively, and σ,Rt, andRr are obtainable
from CYGNSS data.

In practice, after the surface reflectivity Γlr is obtained, the
Fresnel reflection coefficient Rlr can be approximately simpli-
fied based on the square root of Γlr [15], [27] with respect to the
smooth surface assumption. Thus, Rlr can be calculated from
the CYGNSS surface reflectivity Γlr. With the known Rlr, the
soil dielectric constant can be obtained by substituting (4) and
(5) into (3). The Fresnel reflection (Rlr) of the soil surface is a
function of the permittivity εr and the angle of incidence θ

Rlr (θ) =
1

2
(Rvv (θ)−Rhh (θ)) (3)

where Rvv(θ) andRhh(θ) are the Fresnel coefficients for, respec-
tively, horizontal and vertical polarization

Rhh (θ) =
cos (θ)−√∈r − sin2 (θ)

cos (θ) +
√∈r − sin2 (θ)

(4)

Rvv (θ) =
∈r cos (θ)−

√∈r − sin2 (θ)

∈r cos (θ) +
√∈r − sin2 (θ)

(5)

where εr is the complex permittivity of the soil.
It should be noted that the imaginary part of permittivity can be

neglected [27] for most soils (dry and wet). With this assumption,
the real part of permittivity (dielectric constant) can be obtained.
In this article, the obtained dielectric constant is tested as one of
the inputs of the training model.

B. CYGNSS TES

A delay waveform is the returned power profile as a function
of the delay only, with the frequency set to a constant value
(normally the value at the specular point). A direct signal will
exhibit a sharp triangle shape as a result of the GPS correla-
tion process. Consequently, various delay waveform shapes are
formed due to the effects of soil humidity and surface roughness
(which contributes to the total signal power as a noncoherent
influence). The trailing edge slope (TES) is considered the slope
of the reflectivity delay waveform (see Fig. 4). The TES slope
can be computed from the reflectivity delay waveform values for
delay bins m and m+ 3, where m corresponds to the position
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Fig. 4. Example BRCS DDM and the corresponding delay waveform from
which the TES is derived.

of the peak of the waveform. TES is a shape-based observable
variable and more incoherent mixing through the scattering
surface makes TES smaller [23]. The contribution of TES was
examined and found significant in improving the SM regression
model [18]–[20]; thus, it is included in the input features.

C. LT Digitization/Labeling Strategy

By considering the linear and nonlinear relations among input
features, the SM estimation regression model can be improved.
However, using too many ancillary data or models that are
too complex may lead to overfitting. A large feature set will
increase the computational cost and number of cross-correlated
features, which might lead to marginal improvements or even
reductions in the final performance. Moreover, the ancillary data
from other data sources may be characterized by uncertainty and
internal errors, and the dependence on external parameters may
complicate and limit CYGNSS SM estimation.

In this article, LT information was employed to integrate
the complete characterizations of various land surfaces. We
digitized LT information for modeling; thus, labels were created
as inputs for the SM learning model (see Fig. 5) to enhance SM
estimation. The CYGNSS data were identified with labels ac-
cording to their geographic coordinate information. With this LT
digitization/labeling approach, global bio/geophysical dynamics
can ultimately be retained and represented in an intelligent form.
The rules for SM variations tend to be consistent when the
data belong to the same LT. Thus, this digitized LT can be
regarded as an extracted feature and incorporates the idea of
classification. The learning model is easy to identify the rules
from the data and is expected to show better estimation accuracy.
Moreover, the proposed SM estimation model does not rely on
other auxiliary data sources. The LT changed little, and data
were easily obtained.

D. Feature Optimization

The CYGNSS TES was selected to be a significant SM
estimation input in addition to reflectivity. Apart from that, in
this article, the input variables were limited to being selected
from the CYGNSS data to avoid the need for other data sources.

Fig. 5. Proposed LT digitization strategy that integrates land surface
information.

Moreover, the number of input variables was constrained (four
or less) to balance accuracy and efficiency. Input variables
such as the {TES (T), reflectivity (B), dielectric constant (D),
LTs (L), and incident angle (A)} were considered. As we have
mentioned before, the inclusion of too many ancillary input
data has drawbacks. In addition, using many correlated features
easily causes the model to ignore the essence and mechanism
of SM retrieval and makes it a simple numerical calculation.
Therefore, feature selection and optimization procedures are
particularly important. They must take the intrinsic principle
and rules of the SM retrieval problem into account while also
achieving higher prediction accuracy and better model expres-
sion. Considering both the principles and practical applications
of SM retrieval, the input variants were set with the following
combination: {D+T+L+A, B+T+L+A, B+T+A, B+T+L}. In
the fine-tuning stage, the input features are compared, and the
variables that display the best performance are selected as the
optimal variables for CYGNSS SM estimation.

E. CYGNSS-Based Digitized LT SM Estimation Scheme

The flowchart in Fig. 6 shows the training and validation
processes designed to independently estimate CYGNSS SM
using the LT digitization/labeling approach.

The downloaded CYGNSS dataset was preprocessed to obtain
reflectivity and called the “unlabeled data”. The data were iden-
tified by the LT information and converted to digital information
to be labeled. In this way, the land surface background was
mostly retained and accumulated in the learning mode. Then,
the labels and other selected variables (reflectivity, dielectric
constant, incident angle, and TES) were combined and used
as inputs to train the ML-based SM learning model. Here, a
10-fold cross validation (CV) procedure was adopted to remove
the codependence of the training and testing datasets, and the
overall performance matrix was obtained.
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Fig. 6. Flowchart showing the independent SM estimation process using ML regression with the proposed LT digitization strategy.

IV. EXPERIMENTS AND RESULTS

A. Evaluation Criteria and Methods

In this article, the CYGNSS data were resampled to a 9 km
EASE grid to correspond with the SMAP data. In particular, if
there are multiple CYGNSS SPs that fall within a 9 km grid, all
were considered in the experiments [13], [18]. In such a case, a
constant SM value was assumed for all the CYGNSS observa-
tions in the same 9 km grid. This was considered feasible because
the geophysical parameters (such as LT and TES) corresponding
to each CYGNSS observation differ due to spatial variations,
which in turn could explain variations in the CYGNSS observa-
tions, even for uniform SM values.

Three ML methods including random forests (RF), extreme
gradient boosting (XGBoost), and ANNs, were selected and
compared to assess the effectiveness of the proposed scheme.
Among the traditional ML methods, RFs are popular and widely
employed, and they are powerful tools for ML regression [19],
[20], [27], [28], [29]. XGBoost exhibits superior performance
and provides several advantages, such as a fast speed, easy
parameterization scheme, and high robustness [30], [31]; thus,
it is chosen here. Advanced ANNs are also commonly used
ML techniques and have performed well in previous ML-based
CYGNSS SM studies [17], [18], [25], and for these reasons,
ANNs are employed as well. These approaches are advantageous
in capturing the features of training data, and their designs, in
this article, are described as follows.

1) XGBoost: Optimal hyperparameters are used to pre-
vent overfitting and underfitting in ML learning mod-
els. The optimal parameters include n_estimators (from
200 to 5000 with a 100-step interval), min_child_weight,
max_depth (from 1 to 10 with a 1-step interval), and the
learning rate (set to 0.1).

2) RF: The number of trees was varied, and the optimal
number was selected for the RF learning model. The
optimal number of trees was chosen from the set of {50,
100, 200, 300, 400, 500}.

3) ANN: A three-layer ANN-1D network was used in the
experiment [17]–[19], and it included one input layer, two
hidden layers (32 neuron nodes), and one output layer.
The nonlinear activation function selected was a recti-
fied linear unit (ReLU) function; ReLU functions have

been proven effective for the SM retrieval by a previous
study [18].

RF and XGBoost were implemented using the Python Scikit-
Learn library, and the ANN was implemented using the Python
Keras library. Experiments were performed on a workstation
with an Intel Xeon Gold 16-Core 5218 CPU (2.30 GHz) with
64 GB of RAM.

The performance of different evaluated algorithms was com-
pared based on the following metrics.

1) RMSE: a measure of accuracy that indicates the differ-
ences between values or samples predicted by a model or
an estimator and observed values.

2) ubRMSE: this metric is the traditional RMSE with bias
removed.

3) Bias: this metric depicts the deviations of the estimate with
respect to the true values.

It must be noted that, in general, the performance matrix
was calculated and shown for an entire dataset. Except for
the distribution maps, the performance matrix was calculated
for each grid pixel, so we also show the mean values here to
compare them with those obtained in other studies; these values
are displayed in Table I.

B. Model Configuration

The performance of different variants is evaluated for inde-
pendent SM retrieval by using XGBoost, which is the fastest and
most effective algorithm. These input variables are selected from
the CYGNSS data. Additionally, the number of input variables is
constrained (four or less) to balance the accuracy and efficiency
of the model. The variables, including the dielectric constant (D),
BRCS (B), TES (T), incident angle (A), and LT labels (L), and
the corresponding performance matrix for feature optimization
are described as follows (see Table III).

The SM estimation results are shown in Table III. For almost
all the input variables, the prediction performance improved
as the number of variables increased, and the (B+T+L+A)
model notably outperformed the others. Specifically, the pro-
posed LT digitization strategy leads to an accuracy increase of
0.02 cm3/cm3 for RMSE and ubRMSE at the global scale. The
bias is quite small, and the RMSE and ubRMSE are almost
the same (the difference is in the fifth decimal) when using all
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TABLE III
COMPARISON OF XGBOOST PERFORMANCE FOR DIFFERENT VARIANTS AND

DIFFERENT LTS

data to obtain the performance matrix. We note that the RMSE
and ubRMSE in the tables were calculated for an entire dataset,
but the distribution map (see Fig. 7) displays the performance
for each pixel. Consequently, the figures indicate that the mean
ubRMSE is lower than the mean RMSE in almost all areas,
contradicting the results in the tables.

The most considerable accuracy improvement, 0.09 cm3/cm3

for RMSE in permanent wetland areas with the LT digitiza-
tion strategy, indicates that the proposed strategy does transfer
surface features; i.e., the labels of LTs in the IGBP system
effectively represent the land surface and are involved in ML
learning, thereby enhancing the performance of the model in
GNSS-R SM estimation, in particular, when the SM changes
little, and the surface conditions are relatively simple. However,
there was almost no improvement in B+T+L for the LT closed
shrublands in terms of ubRMSE and RMSE. The reason for this
result could be insufficient samples for the land type digitization
strategy or variable surface conditions, leading to inaccurate
labeling representation. Additionally, in the LT labeling strategy,
the accuracy improvement in terms of RMSE is greater than that
for ubRMSE, and the RMSE results agree with the ubRMSE
results for most land categories. Since ubRMSE eliminates
systematic deviation, the dynamic distribution of predicted SM
obtained using the LT labeling strategy is remarkably improved
and closer to the reference SM. Moreover, the LT classes (e.g.,
forest) with higher RMSEs often show higher biases and vice
versa. This was expected because any deviation and noise in the
CYGNSS observations will significantly affect the ML regres-
sion. The RMSE and ubRMSE in water bodies are worse than
the overall performance since their presence within the footprint
can strongly affect the signal.

In addition, outstanding accuracy is achieved for barren and
sparsely vegetated LTs, with an RMSE of 0.037 cm3/cm3; the
number of samples (see nine million in Table II) is higher
for these land use types than for all others, indicating that
the proposed method is advantageous for handling big data
scenarios and suitable for high-resolution global SM estimation.
This phenomenon is also observed for open shrubland, which
includes over eight million samples; notably, high accuracy of
0.045 cm3/cm3 is achieved for RMSE and ubRMSE.

It should be noted that the performance of the variant model
differs based on LT. The variant (B+T+L+A) model outper-
forms models with other variable combinations in terms of the
RMSE and ubRMSE; thus, it was selected for global SM estima-
tion. The impact factors for different LTs could be determined
from the standard deviation (SD) of SM, vegetation indices,
and the number of samples; therefore, these variables could be
investigated in future studies of several smaller regions.

C. Method Comparison

The performance of the proposed scheme and other ML
methods was compared. According to the results in the pre-
vious subsection, the variant (B+T+L+A) was employed as
the default input configuration. The results of the perfor-
mance comparison for different ML methods are displayed in
Table IV.

A significant finding is that the ANN yields worse results
than the traditional ML methods (XGBoost and RF). XGBoost
outperformed the RF in most cases, and RF performed compa-
rably to or slightly better than XGBoost for certain LTs, such as
evergreen needleleaf forest and evergreen broadleaf forest; these
two categories were characterized by a small number of samples,
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Fig. 7. Predicted daily. (a) Average SM using XGBoost with the LT strategy. (b) Average SMAP SM.

suggesting that the XGBoost algorithm is advantageous over the
RF model when handling a large amount of data.

In addition, both XGBoost and RF performed considerably
well overall. This finding suggests that for this dataset, sophis-
ticated deep learning models have no substantial advantages
over traditional ML methods. This similarity is likely due to the
serious overfitting problem that occurs when training deep neural
networks with an insufficient number of samples. In general,
XGBoost with the LT labeling strategy remarkably outperforms
the other competitors based on all indicators. Specifically, com-
pared with the RF method, XGBoost increases the accuracy by
0.002 cm3/cm3 for the RMSE and ubRMSE based on the entire
dataset. Moreover, it should be noted that different ML methods
are suitable for different datasets; that is, the ANN performed
well for certain LT categories, as did the RF. This conclusion
was previously noted [19]; notably, it was stated that multiple
ML models can be built for training in different geological
areas to obtain enhanced SM predictions for different terrain
types. Furthermore, the ANN achieves an expected accuracy of
0.040 cm3/cm3 for the barren or sparsely vegetated LT, with
over nine million samples. This finding indicates that the ANN
method is good at handling big data tasks and that the proposed
XGBoost method yields the best accuracy of 0.037 cm3/cm3

compared to the second-best method (RF).

To better visualize the SM estimation results for the optimized
method, the CYGNSS and SMAP daily averaged SM distribu-
tions for each cell are shown in Fig. 7(a) and (b). Additionally,
the RMSE, ubRMSE, and SD results are shown in Fig. 8(a),
(b) and (c), respectively. The mean value of the SM based on
CYGNSS is 0.1285 cm3/cm3, which agrees with the reference
SMAP SM of 0.1281 cm3/cm3. Another expected result is that
the mean ubRMSE is 0.0412 cm3/cm3, and the mean RMSE is
0.0578 cm3/cm3. This demonstrates that the SM obtained with
the XGBoost LT strategy is consistent with the reference SMAP
data. It is noted that the legend was classified with a natural
breaks model in which classes were based on natural groupings
inherent in the data. Breakpoints were identified by picking the
class breaks those best grouped similar values and maximized
the differences among classes. The features were divided into
classes with boundary sets where there were relatively large
jumps in values. Thus, Fig. 7(a) and (b) indicates that CYGNSS
tends to underestimate values when SM levels are higher
than approximately 0.32 cm3/cm3, as has been previously
reported [14].

In addition, in most areas, high SM values (see Fig. 7) are
associated with high RMSE, ubRMSE, and SD values (see
Fig. 8). Moreover, the use of ubRMSE enhanced performance
since the systematic error was removed, as shown in Fig. 8(b).
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TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT METHODS WITH THE LT-

DIGITIZATION STRATEGY FOR SM ESTIMATION USING 10-FOLD

Fig. 9 shows examples of density plots (XGBoost model, RF
model, and ANN model) on a log scale comparing the CYGNSS-
based SM and the reference SM. The performance of the SM
test dataset (three million samples) for each model with the LT
digitization strategy is shown. The density plot demonstrates
an overall fairly good consistency between the CYGNSS-based

SM and reference SM from SMAP, especially when samples are
abundantly available.

Notably, the XGBoost model [see Fig. 9(a)] exhibits the
highest R of 0.71. Meanwhile, we noticed the data cloud in
the density plot looks like many bold horizontal lines stacked
along the 1:1 line. This data cloud demonstrates the principles of
the digitized LTs/labeling strategy that possesses the significant
effects of classification, which is working for redistributing the
samples into groups (lines). In this way, the learning model can
more easily search and build the rules between the inputs and
outputs, which can provide more accurate results. This is the
reason that the digitized LT strategy works well in global SM
estimation. A similar feature can be seen in Fig. 9(b). Such
pattern in Fig. 9(c) is not very obvious. The R value in Fig. 9(c)
is also lower than that in Fig. 9(a) and (b). From the comparison
of the three figures, it can also be seen that the labeling method
can effectively improve the correlation of prediction.

Moreover, when the data density is low, a tendency to deviate
from the line is displayed. This result demonstrates that the
CYGNSS product tends to underestimate SM values to some
degree, as has been observed in previous figures (see Fig. 7) and
was previously reported in [14]. We notice that surfaces with
high SM usually have dense vegetation growth and high moisture
contents, resulting in an increase in a variety of incoherent
components and a decrease incoherent components. In such
cases, the change in reflectivity cannot be used to completely
and correctly express the change in SM, and there is a positive
correlation between SM and the coherent components of the
signal. As a result, the learning model cannot correctly extract
the characteristics of surfaces with high SM, so the SM predicted
by the model is low.

D. Effect of the Proposed Scheme on Other Models

To further verify whether the proposed scheme is effective,
we trained each variable combination without the LT strategy
(see Table V). The variant without labels is B+T+A, and the
variant with the LT strategy is B+T+L.

The proposed digitalization LT strategy may be widely ef-
fective for use with different neural networks. In this section,
we compare its performance when combined with RF and ANN
models. The outstanding performance of RFs has been previ-
ously discussed, and ANNs have been used in many previous
studies. Both learning models were trained on the same dataset,
and the exact labeling configurations were adopted. The 10-fold
CV method was again adopted.

We observe that for all methods, the SM estimation accuracy
of the digitization LT strategy is improved. In particular, for
the RF, the digitization LT strategy results in an increase of
0.021 cm3/cm3 for the RMSE and ubRMSE for the entire dataset.
For the ANN, the digitization LT strategy performed better, with
an accuracy improvement of 0.024 cm3/cm3 for the RMSE and
ubRMSE. The results demonstrate that the proposed LT strategy
also works for SM estimation with neural networks and indicate
that the risk of overfitting when an ANN is used can be largely
reduced by applying a labeling model.
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Fig. 8. Predicted daily. (a) RMSE distribution for SM estimation using XGBoost with the LT strategy. (b) ubRMSE distribution for SM estimation using XGBoost
with the LT strategy. (c) SD distribution for SM estimation using XGBoost with the LT strategy.

In addition, the performance gain of the RF is larger than
that of the ANN for certain LT categories, indicating that the
proposed digitization LT strategy scheme appears to be poten-
tially more effective for traditional ML networks than for ANNs.
This result may be attributed to the ability of RFs to eliminate
the effects of unbalanced data and missing data. The labeling
strategy, which incorporates the idea of classification, enhances
the performance of the RF method more than that observed

for the ANN, even though ANNs are more advantageous for
handling large datasets.

E. Effects of Land Types

We also investigated the accuracy of the SM model and
considered incorrect input LT labels to perform analyses that
demonstrated the effect of compressing vegetation and surface
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Fig. 9. Density plot with 10-fold CV. (a) XGBoost for SM estimation using
the LT strategy. (b) RF for SM estimation using the LT strategy. (c) ANN for
SM estimation using the LT strategy.

TABLE V
PERFORMANCE MATRIX OF DIFFERENT METHODS WITH/WITHOUT LT

STRATEGY FOR SM ESTIMATION
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TABLE VI
PERFORMANCE MATRIX FOR THE EVALUATION OF INPUT LTS

TABLE VII
COMPUTATION SPEEDS OF DIFFERENT METHODS WITH THE LT STRATEGY

roughness descriptions into a single land classification variable.
In other words, we examined the SM estimation accuracy when
the LT labels of the testing samples and the established model
did not match. Here, we selected two LT (open shrublands and
barren or sparsely vegetated) datasets to exchange LT labels.
These two LT datasets have a larger amount of data and perform
well for SM estimation. The labels for these two types were
intentionally exchanged to “16” and “7” for testing, which
were supposed to be “7” and “16”. Labels with other LTs
remained constant and were regarded as the testing samples to
obtain the corresponding RMSE, and the results are shown in
Table VI.

All of the data, including the testing LT “open shrublands”
and “barren or sparsely vegetated” samples, were tested.
The performance for the entire dataset decreased, i.e., the
accuracy decreased from 0.0630 cm3/cm3 to 0.0642 cm3/cm3

for the RMSE and ubRMSE after exchanging the labels in the
testing datasets. This shows that for these two LTs, the RMSE
(from 0.0373 cm3/cm3 to 0.0583 cm3/cm3) and ubRMSE
(from 0.0373 cm3/cm3 to 0.0444 cm3/cm3) worsened for
“barren or sparsely vegetated”. The performance of “open
shrublands” did not change much. This finding demonstrates
the importance and significance of the LT datasets and provides
compelling evidence for proposing the digitized LT concept.

The contributions and weight of the digitized LT numbers could
be another subject to be investigated in future work.

F. Computational Efficiency

In practice, high-resolution global SM estimation often in-
volves millions of samples. Therefore, the computational effi-
ciency of ML and neural network models should be taken into
consideration. In this section, we compare the computational
speeds of several models. The results are given in Table VII. Ac-
cording to the results, XGBoost is the fastest model, followed by
the ANN model, and RF is the slowest. Specifically, XGBoost is
approximately 68% faster than the RF model. Additionally, XG-
Boost, which has displayed competitive performance in previous
experiments [30], [31], is 58.8 faster than the ANN. Moreover,
XGBoost outperformed the other methods in SM estimation.
Therefore, XGBoost is most suitable for high-resolution global
SM estimation because it possesses high accuracy and efficiency
at once.

V. CONCLUSION

In this article, an SM data product from two data sources
(CYGNSS and SMAP products) is achieved daily with a spa-
tiotemporal resolution of 9 × 9 km. A simple but powerful
LT digitization strategy clearly shows the improvement of SM
estimation, which incorporates the idea of classification and
can avoid the use of complex data from multiple sources and
learn robust and complete geographic surface information. The
number of input variants is set based on a combination of three
variables derived from the CYGNSS product and processed
with a fine-tuning step to achieve optimal performance. We
also introduce the XGBoost ML algorithm for SM estimation.
Evaluations of different LTs reveal that the proposed LT digiti-
zation/labeling strategy is generally effective for different ML
algorithms, including RF, ANN, and XGBoost models. The
comparison of the results with/without LT labeling supports
our design and indicates that the digitization/labeling of LTs
can improve the representation of surface conditions and, thus,
enhance the performance and generalization ability of models
in global SM estimation. In addition, the results demonstrate
that XGBoost outperforms the RF and ANN models in global
SM estimation. The proposed approach can be easily imple-
mented and adjusted for small- and large-scale surfaces with
very low costs since no other data sources are required beyond
the CYGNSS data. Once trained on reference samples (SM
reference data), the model does not require SM information
from other sources for SM estimation. This approach allows the
learning model to be trained with any SM source data, and SM
predictions are performed independently of complex ancillary
data for stand-alone SM estimation. In the future, better results
could be obtained by increasing the number of samples for cer-
tain LTs, and the incorporation of matching spatial information
should be investigated. Although this work focuses on using
CYGNSS reflectivity, the proposed LT labeling scheme could
be extended to other CYGNSS observables in future work, e.g.,
BRCS/NBRCS.
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The highlights are as follows.
1) A practical and effective strategy that directly extracts and

uses complete LT information (LT digitization) in an ML
framework.

2) A comparative study with different LTs and variable com-
binations is conducted as a multiple-feature optimization
process for CYGNSS ML-based SM estimation.

3) The model can achieve good performance while requir-
ing the least ancillary data among several state-of-the-art
models.

4) Our SM product provides faster revisit times and is ver-
ified with multiple ML methods on a global scale with a
9 × 9 km resolution.

5) The approach is applicable to other ML-based regression
tasks.
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