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Figure 8. Fourth gear results: (a) boost; (b) recuperation. 
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Figure 9. Second gear results: (a) boost; (b) recuperation. 

 
Figure 10. ICE + EM in 4th gear boost result. 

2.3. Rotor Dynamic Analysis 
In this section are presented the modeling and results of the rotor dynamic analysis 

carried out using DYNROT FEM code [37] developed in MATLAB environment at our 
University. The main objective is to compute the deformations of the HDT primary shaft 
at the DMF side caused by the irregularities of the ICE and EM. 

The model is shown in Figure 11. The inner and outer primary shafts have been mod-
eled using Timoshenko beam elements (63 in total). The material properties for the beam 
elements are defined as AISI 4340. The ball bearings BB1 and BB2 are modeled as spring 
elements with the radial stiffness reported in Table 1. Each of the two needle bearings NB1 
and NB2 is modeled as a combination of three spring elements working in parallel with 
stiffness equal to one third of the radial stiffness of the corresponding needle bearings. 
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The rotating parts are assumed to be axially symmetrical so that linearized equa-
tion of motion for the undamped system in complex coordinate frame can be written as
follows [38]:

[M]
{ ..

q
}
− iω[G]

{ .
q
}
+ [K]{q} = ω2{F}eiωt (18)

where, M is mass matrix, G is gyroscopic matrix, K is stiffness matrix, F is vector of

unbalances, q =

{
u
ψ

}
is vector of complex coordinates and ω is rotation speed.

The model includes 55 nodes in total with 2 complex degrees of freedom each, resulting
in 110 degrees of freedom. The nodal displacements and rotations in complex coordinates
involved in the flexural behavior are u = ux + iuy , ψ = ψy − iψx where ux, uy, ψx and ψy
are the nodal displacements and rotations. The axial displacement uz and the torsional
rotation ψz are 2 additional real degrees of freedom that take the axial and torsional behavior
into account, respectively. Each node has thus a total of 2 complex plus two real degrees of
freedom. For this analysis only the flexural and torsional behavior are studied.

The model is used to determine the rotor Campbell diagram and critical speeds with
the corresponding mode shapes. The effect of EM is evaluated considering two kind of
dynamic effects:

1. Effect of EM inertia torque during shafts angular accelerations.
2. Effect of EM torque irregularities.

Both effects produce a torque that translates in contact forces acting on gears G1-G2-
G3. Therefore, the problem has been studied by computing at varying speeds the transfer
functions between the radial displacement at node 1 and the forces acting on node 54 as
shown in Figure 11.

For transformation of the matrices from complex coordinates to real coordinates, the

formulation in [33] has been used. Hence, the q =

{
u
ψ

}
in complex coordinates is

changed to qxy =


ux
uy
ψx
ψy

 in real coordinates.

The equation of motion to study the flexural behavior in X-Y coordinates is written as
in Equation (19). The description of variables is given in Table 3.

Mxy
..
qxy +

(
Lxy + ωGxy

) .
qxy +

(
Kωoxy + ω2Kω2xy + ωHxy

)
qxy (19)

= fsxy + ω2funb

{
sin(ωt)
cos(ωt)

}
+ Sixyfxy

Each node in real coordinates has four degrees of freedom compared to two degrees
of freedom in complex coordinates. So, there are 220 degrees of freedom in total to describe
the flexural behavior of the rotating system.

Dynamic Equation (19) can be reported, with explicit spin speed, in the state space
representation in the following way, for X-Y behavior. The matrices are described in Table 4.

.
x(t) =

(
Aω0 + ωAω1 + ω2Aω2

)
x(t) + Bu(t) (20)

y(t) = Cx(t) + Du(t) (21)
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Table 3. Description of the variables.

Name Description

ω Spin Speed
qxy Generalized displacements
Mxy Mass (symmetric) matrix
Lxy Damping (symmetric) matrix
Gxy Gyroscopic (skew-symmetric) matrix

Kωoxy Stiffness (symmetric) matrix: spin speed independent
Kω2xy Stiffness (symmetric) matrix: spin speed dependent
Hxy Circulatoric (skew-symmetric) matrix
fsxy Static forces
funb Unbalance forces
fxy External forces

Sixy Input selection matrix
y Output displacements

Soxy Output selection matrix

Table 4. Description of the matrices.

Name Description Description

x(t)
{

qxy.
qxy

}
Aω0

[
0 I

−M−1
xy Kωoxy −M−1

xy Lxy

]
Aω1

[
0 0

−M−1
xy Hxy −M−1

xy Gxy

]
Aω2

[
0 0

−M−1
xy Kω2xy 0

]
B

[
0 0
I I

0
Sixy

]
u(t)


fsxy
funb
fxy


y(t)

{
yxy.
yxy

}
C Soxy
D [0]
I Identity Matrix

Finally, the transfer function between the displacement at node 1 and force at node
54 is computed from the state space that is used to calculate the displacement in the
scenarios discussed later. The transfer function for different values of ω is depicted below
in Figures 12 and 13. It can be seen that there are two peaks corresponding to the natural
frequencies at 586 and 763 Hz. In Equation (19), it can be seen that the gyroscopic matrix
(Gxy) is speed dependent and as a result the gyroscopic effect increases with the speed.
Hence, in Figure 13, the absolute value of the transfer function increases with increase
in speed.

The block shown in Figure 14 is used to calculate the displacement at the node 1, using
the transfer function values shown in Figure 12. The inputs are ω, fxy (forces generated
due to ICE or EM torque irregularities which are described in the next subsection) and the
frequency of the applied forces (2nd order harmonics for the ICE irregularities and 3rd
order harmonics for the EM torque irregularities) and the output is displacement at node 1.
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2.3.1. Scenario 1: Effect of EM Inertia Torque

Torque irregularities coming from the ICE (2nd order) plays a crucial role in the
vibrations and deflections in the transmission. In this scenario, as depicted in Figure 15, the
effect of the angular acceleration acting at the input of the transmission on the generation
of the EM inertia torque are analyzed.

The speed of the ICE can be written as:

ωICE = ω0 + δω · cos(2ω0t) (22)

where, ω0 is the average ICE speed and δω · cos(2ω0t) represents the rotational speed
irregularity that is present due to the 2nd order harmonics of the ICE.
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The angular acceleration can be obtained by differentiating the Equation (22).

.
ω ICE = 2ω0 · δω · sin(2ω0t) (23)

The EM inertia torque is then calculated as follows:

TEM Inertia = JEM
.

ω ICE τG13 (24)

where, JEM is the inertia of the EM,
.

ω ICE is the angular acceleration due to the torque
irregularities and τG13 is the gear ratio between primary shaft and EM.

Inertia torque (TEM_inertia) acts on gear G3 and generates tangential (Ft_inertia), radial
(Fr_inertia) and axial (Fa_inertia) forces with a frequency that corresponds to the 2nd order
harmonics of the ICE, which produces the displacement at the front end of IPS.

2.3.2. Scenario 2: Effect of EM Torque Irregularities

Similar to ICE torque irregularities, the EM also have torque irregularities. The most
important is represented by the 3rd order frequencies of the EM speed (3ωEM). EM torque
irregularities (TEM_irregularities) generate tangential

(
Ft_irregularities

)
, radial (Fr_irregularities)

and axial (Fa_irregularities) forces that acts on the gear G3 as shown in Figure 16 and produce
the displacements at the input of the inner primary shaft. In this scenario TEM is considered
as 1% of the total torque being transmitted by the EM, that is a function of the speed of
the EM.
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3. Results and Discussion
Rotor Dynamic Analysis Results

In this section, the results obtained from the rotor dynamic analysis carried out with
DYNROT FEM code are presented and discussed. Campbell diagram for the model in
Figure 11 is shown in the Figure 17. From the Campbell diagram it can be seen that there
are two natural frequencies of the system at 586 and 763 Hz calculated at 0 rpm that can
reach up to 590 and 764 Hz at 6000 rpm due to variation of the stiffness matrix (Kω2xy)
in Equation (19) with speed. As far as the critical speeds are concerned, it can be seen
that in the working range of the ICE from 800 to 6000 rpm, no critical speeds are present
for synchronous speed. Moreover the 2nd and 4th order ICE harmonics do not show any
critical speeds either. The only critical speed exists for the 3rd order harmonics of the EM,
which is at 4700 rpm.
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The mode shape for the first critical speed is reported below in Figure 18. It can be
seen that the IPS and OPS both have a deflection at the ends.
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Figure 19 shows the displacement due to the EM inertia torque. It can be seen that
the displacement increases as the ω increase. This can be attributed to the fact that the
torque irregularities coming from the ICE increases with increase in the speed of ICE up to
a certain rpm (2500 rpm). Above this speed the angular acceleration is considered constant
and the increase in displacement at higher rpm is due to the high value of the transfer
function that are dependent on speed.
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Figure 19. Displacement results for EM inertia torque.

Figure 20 shows the displacement due to the EM torque irregularities. It can be seen
that the displacement reaches a maximum value of 92 µm at ωICE = 11750 rpm. This is
due to the fact that at this speed the 3rd order harmonics of the EM intersects with the first
natural frequency as seen in the Campbell diagram (Figure 17).
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4. Conclusions

Multiple sources of excitation and frequently changing operating modes may intro-
duce potential issues in terms of reliability for P2.5 hybrid powertrain with dual clutch
transmission. The paper presents static and rotor dynamic analysis of the HDT in terms of
radial displacements that arises at the DMF level due to additional torque transmission
from the EM. The responsible of such radial displacement is the gear train transmission that
links the EM to the primary shaft. The torque is transmitted by a tangential/radial/axial
force causing bending on the primary shafts. Static analysis show that the maximum
displacement of the shaft end can reach 120 µm in the case of torque transmission from both
the power sources. On the other hand, rotor dynamic analysis shows that the displacements
due to EM inertia torque are not high and can reach up to 33 µm at 6000 rpm, while they can
reach up to 92 µm due to the EM torque irregularities. The combined static and dynamic
effects can lead up to a maximum displacement of 242 µm, which is below the critical values
(1.6 mm) indicated in service manual of the DMF manufactures [27]. However, this radial
displacement can be amplified due to the manufacturing and assembling tolerances of the
HDT and may reach close to the critical values of the radial gap in the DMF. Therefore, the
manufacturing and assembling tolerances should be kept below the critical values of the
DMF clearance, including the deflection coming from the EM torque transmission.
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Appendix A

For this study, the DCT data used is from the 7-speed transmission from Magna
(7DCT300) [39]. Gear ratios of the DCT used in this work are given below in the Table A1:

Table A1. 7DCT300 Gear ratios.

Transmission type: Dual clutch

Number of gears: 7

Gear ratios (overall):

I 4.462 (18.63)

II 2.824 (11.79)

III 1.805 (7.54)

IV 1.262 (5.27)

V 0.964 (4.03)

VI 0.771 (3.22)

VII 0.638 (2.66)

Final drive ratio: 4.176 (4.733 for 3rd and 5th gear)

Detailed CAD data regarding the DCT can be assessed from [40].
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