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Abstract 

Star inventors generate superior innovation outcomes. Their capacity to invent high-quality patents might 

be decisive beyond mere productivity. However, the relationship between quantitative and qualitative 

dimensions has not been exhaustively investigated. The equal odds baseline (EOB) framework can explicitly 

model this relationship. This work combines a theoretical model for creative production with recent calls in 

the patentometrics literature for multifaceted measurement of the ability to create high-quality patents. 

The EOB is extended and analyzed through structural equation modeling. Specifically, we compared a 

multifaceted EOB model with a single latent variable for quality, and a two-dimensional model that 

distinguishes between technological complexity and value of invention portfolios. The two-dimensional 

model had better fit but weaker factor scores (for the “value” latent variable) than the unidimensional 

model. These findings suggest that both the uni- and the two-dimensional approaches can be directly used 

for extending research on star inventors, while for practical high-stakes assessments the two-dimensional 

model would require further improvements. 

 

Keywords: 

Intellectual productivity; Creativity; Patent quality; Star inventors 

 

1 Introduction 
Star inventors are considered of extreme interest since they generate superior innovation outcomes 

(Groysberg and Lee 2009; Oldroyd and Morris 2012; Zucker and Darby 1997). However, their identification 

is not immediate and can rely on different measures: is quantity of output sufficient or are quality 

indicators needed? For example, stars (please note that from here onward we will use the terms star 
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inventors and stars synonymously throughout the manuscript) have been usually identified through 

statistical cut-offs (e.g., using a top percentile or standard deviations as reference thresholds) calculated on 

mere productivity or on both productivity and citation counts as quality indicator (Bergé et al. 2018; Hess 

and Rothaermel 2011; Rothaermel and Hess 2007).  

Disentangling inventors’ productivity and the quality of their patents1 is generally quite challenging because 

quantity and quality are intricately related (Forthmann, Szardenings, & Dumas, 2020; Prathap, 2018; 

Simonton, 2009). In fact, the number of citations an inventor receives has been found to be a linear 

function of the number of patents, as suggested by Simonton’s equal odds baseline (EOB) (Simonton 2004, 

2010, 1988). However, the EOB framework also suggests the lack of a significant correlation between the 

average quality of an inventor’s patent portfolio and its size. Recent theoretical extensions and empirical 

evidence strongly suggest that the quality-quantity relationship increases when conditional quantiles 

towards the upper tail of the quality distribution are modeled as a function of quantity (Forthmann, 

Leveling, et al. 2020). Hence, it is questionable in how far quality indicators such as citation counts are 

incrementally informative for the identification of star inventors.  

In addition, researchers have called for more multifaceted measurement of patent quality (Caviggioli, et al., 

2020; Higham et al., 2020; Lanjouw & Schankerman, 2004; van Zeebroeck, 2011). Consequently, a 

multidimensional measurement perspective that focuses on between-inventor differences and explicitly 

takes the quality-quantity relationship into account poses a challenge for the identification of star 

inventors. 

In this study, we focus on patent inventors and their capacity to invent high-quality patents, a dimension of 

analysis which might be decisive beyond mere productivity (Kehoe et al. 2018; Rothaermel and Hess 2007). 

The most frequent methods to define a star inventor in the literature considered when the inventor is 

either extremely prolific (quantity) and/or is involved in the creation of outstanding inventions (quality). 

The relationship between the two dimensions has not been exhaustively investigated in light of what can 

be considered determinant for the identification of star inventors as agents to increase the production of 

valuable innovations. We use and extend the EOB framework to explicitly take the relationship between 

quantity and quality into account and thus provide useful diagnostic information for the identification of 

star inventors. We contribute to the literature by modeling a multifaceted extension of the EOB and 

incorporating latent variables with the aim to isolate the measurement of quality from quantity. Hence, it 

should further be noted that, beyond the specific implications for the identification of star inventors, the 

modeling of quantity and quality focused solely on one quality dimension thus far (Den Hartigh et al. 2016; 

Simonton 2004, 2010; Sinatra et al. 2016): we extend it from a unidimensional to a multidimensional 

quality modeling. 

The remainder of this article is organized as follows. Section 2 reviews the literature on the identification of 

star individuals and the EOB model, deriving the aim of our research. Section 3 describes the dataset and 

provide details on the operationalization of the employed measures. Section 4 reports the results of the 

analysis. Finally, Section 5 concludes and discusses the findings. 

2 Research framework 

2.1 Star individuals 
The relevance of star scientists is not limited to a direct increase of output (Groysberg and Lee 2009) but 

they also support organization activities (Kehoe and Tzabbar 2015) and improve the attraction of resources 

and skilled personnel (Hess and Rothaermel 2011; Lacetera et al. 2004). They also indirectly foster the 

                                                           
1 Notably, the perhaps most widely known attempt to combine productivity and quality in single score—i.e., the 
Hirsch index (Hirsch 2005)—has also been applied to patents (e.g., Guan and Gao 2009; Motiwala et al. 2020). 
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productivity of peers and collaborators thanks to learning and emulation (Lockwood and Kunda 1997). 

Although there is consensus on the presence of a general positive impact of star individuals, it is worth 

reminding that in some cases the literature identified negative effects in organizations due to coordination 

costs and conflicts (Bendersky and Hays 2012; Groysberg et al. 2011; Swaab et al. 2014). Furthermore, 

hiring stars is often expensive (Groysberg et al. 2011) and thus it should be considered a critical activity. The 

findings of the literature support the need to improve the understanding of the way to identify exceptional 

scientists. 

The identification of stars has taken different approaches in the literature, with respect to the examined 

field of activity and the different operationalizations of the criteria to distinguish outstanding from common 

individuals. In general, to be a star the individual must engage in disproportionately high performance 

relative to most other workers in their field (Aguinis and O’Boyle 2014; Call et al. 2015). The examined 

performance has been measured under different perspectives ranging from productivity (Kehoe and 

Tzabbar 2015; Lahiri et al. 2019; Subramanian et al. 2013; Zucker et al. 2002), impact (Azoulay et al. 2010; 

Rothaermel and Hess 2007) and, in some cases, visibility or celebrity (Oldroyd and Morris 2012).  

Star individuals have been studied in several contexts2 with particular attention to scientists/scholars 

(Azoulay et al. 2010) and inventors (Hohberger 2016), thanks to data availability, i.e. articles and patents. 

Stars in these two categories have been similarly addressed by considering either their productivity in 

terms of quantity of output, in most cases through the number of articles or patents, their impact relying 

on a measure of quality such as the received citations (Hess and Rothaermel 2011; Hohberger 2016; Liu 

2014), or a combination of them (Agrawal et al. 2017; Kehoe and Tzabbar 2015). The extent to which 

performance must be disproportional varies across studies (Call et al. 2015): some have used from one to 

three standard deviation (SD) difference (e.g. Hess & Rothaermel, 2011), others have applied a cutoff value 

for the top percentage of the examined sample, from 1 to 10% (e.g. Hohberger, 2016). Table 1 summarizes 

the approaches in the literature. 

 

                                                           
2 For example, sport players (Chen and Garg 2018) and actors (Han and Ravid 2020). 
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Table 1 Methods for the identification of stars in previous works 

Study Quantity Quality Additional criteria Percentage of stars 
in the sample 

(Zucker and 
Darby 1997) 

Genetic sequence 
discoveries 
 
Publications on 
genetic sequence 
discoveries 

 Three-year moving average of annual 
publications > 5 for at least 1 year 

Not calculable or 
reported 

(Lacetera et al. 
2004) 

Publications  Three-year moving average of annual 
publications > 5 for at least 1 year 

2.58% 

(Rothaermel and 
Hess 2007) 

Publications  Publication count > 3SD above the mean 1.77% 
 Citations to 

publications 
Citation count > 3SD above the mean 1.16% 

Publications Citations Publication count > 3SD above the mean 
AND Citation count > 3SD above the mean  

0.63% 

 Nobel 
Laureates 

 0.02% 

(Azoulay et al. 
2010) 

  At least one of the following criteria: (1) 
highly funded scientists (>95th p.); (2) 
highly cited scientists (top 250); (3) top 
percentile patenters; and (4) members of 
the National Academy of Sciences (5) NIH 
MERIT awardees; (6) Howard Hughes 
medical investigators; and (7) early career 
prize winners. 

5% 

(Hess and 
Rothaermel 
2011) 

Publications Citations Publication count > 3SD above the mean 
AND 
Citation count > 3SD above the mean  

0.63% 

(Beaudry and 
Schiffauerova 
2011) 

Patents  Patent count > 20 Not calculable or 
reported 

(Kehoe and 
Tzabbar 2015) 

Patents Citations Productivity score as yearly number of 
patents weighted by received citations 
and compared to industry average. Star if 
score > 2SD above the mean 

7% 

(Hohberger 
2016) 

 Patent 
citations 

Cumulative patent forward citations per 
inventor; one percent cut-off criterion 

1% 

(Agrawal et al. 
2017) 

Publications Citations Scientist whose stock of citation-weighted 
articles published up until year t − 1 is 
above the 90th percentile (or 95th) 

10% (5%) 

(Bergé et al. 
2018) 

Patents  Patent count > Q.99(Patent count)  Not calculable or 
reported 

Notes. The examined samples are different across the studies. 

 

So far the literature dealing with the identification and the analysis of the role of star inventors has not 

considered that patents can be evaluated for a variety of quality criteria and researchers have called for a 

multifaceted perspective on patent quality (e.g. Lanjouw and Schankerman, 2004; van Zeebroeck, 2011). In 

particular, the measurement of patent quality can be decomposed in two main dimensions with respect to 

the nature of the protected invention: technological complexity and value (Caviggioli et al., 2020; van 

Zeebroeck & van Pottelsberghe, 2011). Technological complexity refers to the number of components, their 

degree of inter-dependence and decomposability (Singh 1995; Wang et al. 2013). Patent value, as 

conceptualized in this work, refers to the technical merit and the potential market size of the invention 

(Caviggioli et al., 2020a)3. The corresponding measures will be described in detail in Section 3.2. 

                                                           
3 Ideally, one would want to assess value also in terms of economic relevance of the protected invention but 
unfortunately this type of information cannot be easily determined for large samples. The amount of money a patent 
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2.2 Quantity and quality: the equal odds baseline 
Previous literature analyzed the relationship between quantitative and qualitative output of intellectual 

activities and reported mixed evidence. According to one approach of the literature dealing with creativity, 

high-quality ideas consume time and resources, either intellectual and physical: this suggests the presence 

of a trade-off and a negative correlation between average quality (per product) and quantity (Fischer et al. 

2012; Guilford 1968; Michalska-Smith and Allesina 2017). On the other hand, the dual pathway of creativity 

(Nijstad et al. 2010) considers a positive correlation between average quality and quantity, achieved 

through two behaviors: flexibility, in terms of variety of conceptual ideas, or persistence-and-exhaustion in 

terms of specialization on a focal theme. Yet, other models emphasize the role of luck and propose a null 

correlation between quantity and average quality (Janosov et al. 2020; D. K. Simonton 2010; D K Simonton 

1988; Sinatra et al. 2016). In this work, we focus on the EOB which belongs to the latter group of models. 

Extending the previous work by Wayne Dennis (1958), the seminal study of (Simonton, 1988) introduced 

the EOB, a statistical model for the relationship between quantity and quality of scientific output within a 

comprehensive theoretical framework for scientific productivity (Simonton, 2010, 2009). Considering the 

focus of this study on patents, the EOB relies on two main propositions. First, the number of an inventor’ 

high-quality patents H (i.e., the number of hits) is positively and linearly related to the total number of 

patents T. Previous works (e.g. Forthmann, Leveling, et al., 2020) employed the number of citations 

received as a measure to identify “hits”. The EOB models the following equation (Simonton 2010; p. 163): 

𝐻𝑖 =  𝜌𝑇𝑖 + 𝑢𝑖.      (1) 

Where ρ refers to the hit-ratio and ui is a random error term for inventor i.4 The second proposition we 

highlight in the EOB framework is that individual hit-ratios H/T are uncorrelated with T (i.e., invention 

portfolio sizes in the context of this study). Otherwise it would follow that the relationship between H and T 

is non-linear (Simonton, 2003, 2004). In other words, a positive linear correlation between H and T is a 

necessary but not sufficient condition for the EOB (Forthmann et al., 2019; Forthmann et al., 2020b, 

2020a). The EOB further proposes an intercept of zero and a hit-ratio that equals the ratio of average H and 

average T. These implications of the EOB allow evaluation of model fit within the framework of structural 

equation modeling, SEM (Forthmann et al., 2020b, 2020a). SEM is a widely used approach in sociological 

and psychological research, for example, and it provides many options for the evaluation of data-model fit 

(West et al. 2012). 

2.3 A multifaceted extension of the equal odds baseline 
As mentioned above, researchers have called for a multifaceted perspective on patent quality (Lanjouw and 

Schankerman 2004; van Zeebroeck 2011). Previous literature on the EOB, however, has not yet considered 

multiple dimensions of quality within the same modeling framework (nor did other chance models of 

scientific productivity (see, for example, Janosov et al. 2020 and Sinatra et al. 2016). Hence, in this work we 

rely on the empirical framework of patent inventors that makes it possible to leverage the presence of 

several indices of quality. This comprehensive assessment approach provides support to disentangle 

quantity and quality, with quality as a multifaceted dimension. Notably, beyond the concrete aim of 

constructing an assessment model for inventors’ capacity to create high-quality patents, our work extends 

chance models of creative success from unidimensional models to multidimensional modeling of quality. 

We argue that this approach allows a direct test of the generalizability of the model that can be evaluated 

in a multivariate model (i.e., not in multiple analyses conducted separately).  

                                                           
is worth can be determined when it is licensed or sold in disclosed transactions (e.g., cases when data on auctions are 
revealed, as in Caviggioli and Ughetto, 2016), or as a means of broad surveys (e.g., Torrisi et al. 2016). 
4 Please note that we omit the subscript i for simplicity in many parts of the paper. 
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Specifically, this work aims at extending the EOB in this regard by formulating the EOB as a SEM in which 

individual differences in hit-rates are explained by a quality latent variable. In other words, the error term 

uij for inventor i (i = 1,…,I) and quality indicator j (j = 1,…,J) will be modeled by the following equation 

𝑢𝑖𝑗 = 𝜆𝑗𝜂𝑖 +  𝜀𝑖𝑗 ,      (2) 

with latent factor 𝜂𝑖  as the capacity to create high-quality inventions, 𝜆𝑗 being the loading of the jth 

indicator on the capacity factor, and 𝜀𝑖𝑗  the remaining error left unexplained after taking quantity and the 

capacity for quality into account. Inserting Equation 2 into Equation 1 yields a multifaceted EOB: 

𝐻𝑖𝑗 =  𝜌𝑗𝑇𝑖 + 𝜆𝑗𝜂𝑖 +  𝜀𝑖𝑗 .      (3) 

Specifically, the multifaceted EOB proposes that η and T are uncorrelated which allows for independent 

assessment of inventors’ capacity for quality and productivity (i.e., quantity of output). As an extension of 

Equation 1, the model in Equation 3 can also be estimated within the SEM framework (Bollen 1989). In 

SEM, a proposed path model, its implied covariance matrix and mean vector are examined for their 

discrepancy to their empirically observed counterparts. Useful models have a model-implied covariance 

matrix and mean vector that are close to the observed covariance matrix and vector of means (Bollen 

1989). Goodness of fit between a proposed model and data in SEM can be evaluated by various established 

indices (West et al. 2012). In this approach, regression coefficients 𝜌
𝑗
 and 𝜆𝑗 can be estimated by maximum 

likelihood (or other robust variants). Estimates of the latent capacity 𝜂
𝑖
 can be obtained by means of 

empirical Bayes (Estabrook and Neale 2013), for example. This model is illustrated for the five quality 

indicators used in this study on the left side in Figure 1 (further details in Section 3). In particular, two 

models will be tested: one where capacity for quality is unidimensional (Model 1 in Figure 1) and a second 

model where two latent variables for quality are assumed (Model 2 in Figure 1). Since the measurement of 

patent quality can be decomposed into the dimensions of technological complexity and value (Caviggioli et 

al., 2020; van Zeebroeck & van Pottelsberghe, 2011), Equation 3 needs to be extended to a two-

dimensional model that includes the two corresponding latent variables (see also Model 2 in Figure 1 for a 

path model illustration).  

We aim to empirically test the fit of data on inventors to the EOB when quality is measured by multiple 

indicators and to explain the hit-ratio variation as a means of a latent capacity to create high-quality 

inventions. This study extends the recent findings and theorizing on the EOB in several ways. First, the 

literature on EOB has so far focused on quality measured with forward citations of patents (Forthmann et 

al., 2019; Forthmann et al., 2020a): other indicators are introduced because patent quality is a multifaceted 

construct (Lanjouw & Schankerman, 2004; van Zeebroeck & van Pottelsberghe, 2011). Second, the EOB is 

extended beyond the current results (Forthmann et al., 2020c) and in this work it incorporates a latent 

quality variable that potentially explains individual differences in hit-ratios within a SEM framework. Within 

the classical approach to EOB there is only one quality score H and one quantity score T and the differences 

in hit-ratios are explained by the residual term (e.g., some researchers are luckier than others). The residual 

term also reflects quality as differences in hit-ratios, but with only one quality score H it is not possible to 

isolate individual differences in the hit-ratio. In a multifaceted approach, there are as many residual terms 

as quality indicators and latent quality factors can be measured based on these residuals. This approach 

makes it possible to measure quality independent of quantity, while at the same time H depends linearly on 

T.  
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Figure 1 Path models of the unidimensional (left) and two-dimensional (right) multifaceted EOB models illustrated with the five quality indicators used in this study (see Section 3.2 for details). 
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2.4 Aim of the current research 
The main aim of this study is to extend recent findings and theorizing on the EOB in several ways. First, we 

extend recent results obtained for forward citations of patents (Forthmann et al. 2021b; Forthmann, 

Leveling, et al. 2020) to other indicators because patent quality is a multifaceted construct (Lanjouw and 

Schankerman 2004). Second, new EOB theorizing allows quantifying the amount of residual variance 

accounted by mere sampling variation (Forthmann, Szardenings, et al. 2020). This is useful to accurately 

estimate the amount of hit-ratio variation that is attributable to between-inventor differences. The 

presence of between-inventor variation in hit-ratios is essential for the measurement of capacity for patent 

quality. In this vein, the EOB is extended in this work to incorporate a latent quality variable that potentially 

explains individual differences in hit-ratios within a SEM framework. Finally, we aimed at comparing a 

unidimensional model with a two-dimensional model that incorporated latent variables to measure both 

technological complexity and patent value. Importantly, a reasonable fit of the data to either the 

unidimensional or two-dimensional multifaceted EOB implies that inventors’ capacities to create quality 

patents can be measured to potentially identify star inventors in a way that explicitly takes the intricate 

relationship between overall productivity and patent quality into account. Finally, the feasibility of the 

outlined approach for practical assessment contexts (e.g., high-stakes decisions) was examined. The 

approach results in estimates of inventors’ capacity to invent high-quality patents. These estimates taken 

from the multifaceted EOB are factor scores and it has been recommended in the literature that the 

correlation between these estimates and their true values (i.e., the factor determinacy index; FDI) should 

be larger than .80 for research purposes, but larger than .90 for individual differences assessments in 

practical high-stakes contexts (Ferrando and Lorenzo-Seva 2018). Thus, we wanted to examine if inventors’ 

capacity estimates can achieve this level of quality and further aimed to illustrate their usage for the 

identification of stars in comparison with other commonly applied approaches. 

3 Method 

3.1 Data sources 
The main data sources are PatentsView and PATSTAT. PatentsView is a data warehouse sourced from 

USPTO-provided data on published patent applications (2001-present) and granted patents (1976-present). 

It provides disambiguated inventors’ names from the application of an algorithm that uses discriminative 

hierarchical co-reference5. Patent level data from PatentsView are linked to PATSTAT, the largest repository 

of patent data in terms of coverage and available information, maintained by the EPO with the 

collaboration of the main patent offices6. 

The analyses will be carried out at the level of inventors and the examined sample is defined by applying 

the following steps. The starting sample includes all the inventors with at least one US granted patent filed 

between 2008-107, corresponding to 725,577 disambiguated names in PatentsView. The selected inventors 

are associated to a total of 4,297,710 granted patents (their full patenting history) which are linked to 

PATSTAT to collect further information8. 

All the selected patents are associated to their INPADOC family (2.9 million families). Patent families 

represent a unit of analysis that is closer to invention: multiple patent documents regarding the same filing 

are collapsed to a single unit, providing a more accurate measure of inventors’ productivity (OECD, 2009; 

                                                           
5 More information at www.patentsview.org (last access and data release in August 2020, disambiguated inventors’ 
names updated in March 2020). 
6 More information at https://www.epo.org/searching-for-patents/business/patstat.html (last access in August 2020, 
version of database used in this study: fall 2019). 
7 Only “utility” patents have been considered. Withdrawn patents are included (corresponding to 0.17% of the 
examined granted patents). 
8 In terms of granted patents, the selected sample is 58% of the total US granted patents in PatentsView (1975-2020) 
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Martínez, 2011). Furthermore, country extensions can be identified providing information on the 

geographical coverage. The earliest filing year and the IPC subclasses of each family are collected and 

several patentometrics are calculated following the approach described in (Caviggioli et al., 2020). For each 

inventor it is thus possible to identify the portfolio of inventions and create portfolio level measures (these 

variables are described in the next section in detail) as of 2010 in terms of productivity. The cut-off year is 

required to consider a subsequent time window sufficiently large to calculate quality indicators such as 

citations and to account for potential delays in the publication of documents. 

With the aim to clean the sample from potential errors in the original data, either in name disambiguation 

or in patent family identification, those inventors reporting a portfolio-level earliest filing date prior to 1981 

(3.2%) were excluded. Inventors with no IPC codes associated to the invention portfolio were also 

eliminated (0.01%). 

The final sample is a selection of 703,977 inventors active in the years 2008-10 and with a patenting history 

of maximum 30 years in 2010: each invention portfolios represent the cumulated inventions up to 2010. 

Table 2 reports the distribution of the portfolio size in the sample. 

 

Table 2 Distribution of portfolios of inventions across selected inventors 

Portfolio size 
[from 

 
to] 

Number 
of inventors 

Perc. Cumulate 

1 1 214,226 30.43 30.43 
2 5 252,228 35.83 66.26 
6 10 108,368 15.40 81.65 

11 50 119,041 16.89 98.56 
51 100 8,032 1.14 99.70 

101 Max 2,082 0.30 100.00 
 Total 703,977 100%  

 

3.2 Variables  
The inventors’ quantitative productivity is captured by the number of patent families between 1981 and 

2010, corresponding to the T in the previous formulas. Quality is described through the count of an inventor’s 

outstanding inventions H according to several measures with the aim to test their relationship with quantity.  

The first step to generate the indicators of quality was to compute for any patent family the corresponding 

value of technological scope, generality and originality index, forward citations and geographical scope. The 

first three refer to indicators of technological complexity and the last two to the value of an invention. 

The technological scope counts the number of different IPC subclasses associated to patents (Lerner 1994): 

the count is extended to the family level by considering all the family members. It provides a measure of 

multi-disciplinarity: the broader the scope, the greater the complexity and the potential range of 

technological areas where it can impact (Harhoff et al. 2003).  

The originality and generality indexes are variations from the Simpson diversity index, also known as the 

Hirschmann-Herfindahl index or the repeat rate (for diversity; e.g., Rousseau 2018). They were first 

introduced in the patent data framework by Trajtenberg et al. (1997) and are calculated considering the 

concentration of the different technological fields among the cited and citing patents of every focal document 

respectively:  

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦𝑓 =  1 − ∑ (
#𝐶𝑖𝑡𝑖𝑛𝑔𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑓𝑘

#𝐶𝑖𝑡𝑖𝑛𝑔𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑓
)

2
𝑁𝑓

𝑘=1     (3) 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝑓 =  1 − ∑ (
#𝐶𝑖𝑡𝑒𝑑𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑓𝑘

#𝐶𝑖𝑡𝑒𝑑𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑓
)

2
𝑁𝑓

𝑘=1     (4) 
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Any patent family f is associated to k technological fields (up to Nf fields), identified by IPC subclasses (four-

digit IPC codes). Coherently with the general approach, the patent citation network is generated at the level 

of INPADOC families, excluding intra-family citations. The generality index is a forward-looking measure 

describing the width of the technological advances. The originality index represents the scope of the 

underlying research.  

The forward citations provides a measure of the technical value (van Zeebroeck and van Pottelsberghe, 

2011). The indicator considers only citations occurring in the first five years after the filing to account for the 

different time of exposure to the “risk” of receiving a citation (Caviggioli and Ughetto, 2016)9.  

The geographical scope indicates how large the expected market for the patented technology is. It is 

calculated as the number of jurisdictions in which patent protection is sought (Lanjouw et al. 1998; Agostini 

et al. 2015). 

Once each patent family was associated to its measures of quality, the next step was to follow the approach 

proposed in van Zeebroeck (2011) which allows calibrating the indicators with respect to the specificities of 

technological areas and the potential trends occurring in the time frame. Coherently with the unit of analyses, 

the approach was applied at the patent family level. The calibration of each indicator of quality is achieved 

by ranking patent families in a reference cohort, defined by technological sector and year. The sectors are 

identified by considering the concordance table between the IPC codes and 35 technical fields, developed by 

the WIPO10. The reference time is the earliest filing year among the family members. The ranking leads to a 

percentile value for each patent family, ranging between 0 and 100. It represents the share of families in the 

same sector and with the same earliest filing year that have a lower score than the examined family11. When 

a patent family is associated to more technical fields, the indicator assumes the value of the highest 

percentile. For example, if an invention is developed in the fields “Optics” and “Pharmaceuticals” and the 

percentile of the examined family is 60th for forward citations among all the inventions in the former and 80th 

in the latter, then the selected score for the considered family is 80. 

An invention is thus considered outstanding according to the quality indicator j when it is equal or above the 

95th percentile in the corresponding sector-year cohort (i.e., the family level indicator is equal or above 95): 

𝑂𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝐼𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑗 = {
1, 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑗 ≥ 95

0, 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑗 < 95
    (6) 

Note that a single patent family could be above the excellence threshold in none, one or more of the 

indicators of quality. Once all the top inventions are identified with respect to the quality indicator j, they are 

aggregated at the portfolio level for each inventor i. This provides the number of outstanding inventions 

generated by inventor i (i.e., her/his hits H): 

𝐻𝑖𝑗 =  ∑ 𝑂𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝐼𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑘𝑗
𝑁𝑖
𝑘=1 .    (7) 

The hit ratio, that is the share of outstanding inventions in the inventor’s portfolio, can be calculated by 

dividing H with the portfolio size T (i.e., H/T).  

                                                           
9 The models were also tested considering a variable with a 10 years window to capture citations (as in Forthmann et 
al., 2020a). The results are very similar and are openly available in the OSF repository (https://osf.io/bjad4/).. Note 
that intra-family citations are not considered. 
10 Source: WIPO IPC-Technology Concordance Table (last update in 2016), available at 
https://www.wipo.int/ipstats/en/statistics/patents/xls/ipc_technology.xlsx, last access August 2021. Further info 
available in Schmoch (2008). 
11 For example, patent families with zero forward citations report “0” as indicator (no other family has a lower number 
of forward citations). The patent family with the maximum number of citations in the sector-year cohort would be 
higher than 99.99% of the other families in the same group and thus the indicator reports a rounded value of 100. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://osf.io/bjad4/)


Finally, the following two variables are included to improve the model specifications and control for 

inventor’s characteristics. Since the selected sample includes inventors at different stage of their career, a 

proxy of their expertise is introduced as the number of years since the first filing date. PatentsView database 

provides also data on inventors’ gender, as a result of the method explained in the report of the Office of the 

Chief Economist (2019). Note that data coverage is not complete (the gender is missing for 9.1% of the 

inventors in the examined sample). 

Table 3 shows summary statistics of the variables. 

 

Table 3 Summary statistics of the examined variables 

Measure Indicator Obs. Mean Std.Dev. Median Min Max 

Quantity (T)        

Inventor’s portfolio 
size 

Count of inventions as patent 
families having earliest filing year 
in 1981-2010 

703,977 7.25 13.82 3 1 1041 

        
Quality of the portfolio of inventions as 
Count of patent families above the 95th percentile for the following indicators (H): 
Tech. complexity – 
Multidisciplinarity 

Technological scope 703,977 0.26 0.87 0 0 103 

Tech. complexity – 
Redeployability 

Generality index 703,977 0.50 1.60 0 0 176 

Tech. complexity – 
Novelty 

Originality index 703,977 0.49 1.68 0 0 294 

Value – Technical 
merit 

Count of Fwd cit. (5-years window) 703,977 0.59 1.93 0 0 198 

Value – Potential 
market size 

Geographical scope 703,977 0.44 1.74 0 0 197 

        
Quality of the portfolio of inventions as 
Share of patent families above the 95th percentile for the following indicators (H/T): 
Tech. complexity - 
Multidisciplinarity 

Technological scope 703,977 0.05 0.16 0.00 0 1 

Tech. complexity - 
Redeployability 

Generality index 703,977 0.07 0.20 0.00 0 1 

Tech. complexity - 
Novelty 

Originality index 703,977 0.07 0.20 0.00 0 1 

Value – Technical 
merit 

Count of Fwd cit. (5-years window) 703,977 0.08 0.20 0.00 0 1 

Value - Potential 
market size 

Geographical scope 703,977 0.07 0.20 0.00 0 1 

        
Control variables        
Expertise – career Years from the earliest filing date 703,977 8.00 6.76 5 1 30 
Gender Dummy=1 if male 640,043 0.87 0.34 1 0 1 

 

4 Analysis 
Initially, we examined the fit of the data to the EOB for each of the five quality indicators by means of 

correlations and a check of the presence of individual differences in the residual (Forthmann, Szardenings, et 

al. 2020). In the next step, we fitted the multifaceted EOB in SEM framework. Finally, we examined star 

identification based on the multifaceted EOB as compared to other common approaches for star 

identification (see Table 1). The R script used to perform the reported analyses and an html-file with all the 

related output are openly available in an online repository in the Open Science Framework 

(https://osf.io/bjad4/). 

4.1 Preliminary tests  
First, positive correlations between patent family counts (T) and all indicators of quality (H) were found (see 

column 1 in Table 4). This is in accordance with the EOB which proposes that the relationship between H 
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and T is positive and linear. Concerning the control variables, as expected, career length was moderately 

positively correlated with family count and with small/moderate values with all indicators of quality.  

Gender did not correlate with any of the measures for creative productivity.  

Second, the correlations between patent family counts and each of the quality indicators expressed as hit-

ratio (H/T) were close to zero (see column 1 in Table 5), which again provides evidence in favor of the EOB 

across all quality indicators. Both the control variables, career length and gender, correlated with all the 

variables of quality in terms of hit-ratio in a negligible way. 

 

Table 4 Correlation matrix of examined variables: quality indicators expressed as number of excellent inventions in the portfolio 
(Testing H~T - EOB relevant correlations in bold) 

 Variables 1 2 3 4 5 6 7 
1 Quantity: Count of families 1.00       
2 Quality: Tech. scope 0.43 1.00      
3 Quality: Generality index 0.49 0.65 1.00     
4 Quality: Originality index 0.47 0.61 0.78 1.00    
5 Quality: Count of fwd.cit. (5-yrs) 0.61 0.47 0.46 0.42 1.00   
6 Quality: Geographical scope 0.39 0.33 0.25 0.22 0.41 1.00  
7 Career 0.38 0.24 0.29 0.26 0.24 0.18 1.00 
8 Gender 0.05 0.03 0.04 0.03 0.03 0.02 0.11 

 

Table 5 Correlation matrix of examined variables: quality indicators expressed as ratio of excellent inventions on total number of 
inventions in the portfolio (Testing H/T~T - EOB relevant correlations in bold) 

 Variables 1 2 3 4 5 6 7 
1 Quantity: Count of families 1.00       
2 Quality: Tech. scope -0.03 1.00      
3 Quality: Generality index -0.02 0.33 1.00     
4 Quality: Originality index -0.02 0.33 0.39 1.00    
5 Quality: Count of fwd.cit. (5-yrs) 0.00 0.32 0.21 0.20 1.00   
6 Quality: Geographical scope -0.03 0.23 0.09 0.09 0.19 1.00  
7 Career 0.38 0.04 0.08 0.07 0.08 0.03 1.00 
8 Gender 0.05 -0.01 0.01 0.00 0.01 -0.01 0.11 

 

As a final preparatory step prior to the examination of the multifaceted EOB, we checked if residual 

variances were larger than what is expected under the strict EOB, the model which implies a constant hit-

ratio, or in other words where the error term u is excluded. This check can be meaningfully done when the 

EOB displays reasonable fit, as suggested by the correlations reported in Table 4 and Table 5. The SEM 

approach to study the EOB has been recently further extended (Forthmann et al., 2020c) to allow 

quantifying if residual variance Var(u) is larger as compared to the strict EOB with Var(u) = 0. This approach 

can be used to examine if individual differences are present in a given dataset, i.e., hit-ratio variance is 

larger than mere sampling error variation. The presence of individual differences in hit-ratios are a 

prerequisite to measure quality as a latent variable based on residuals resulting from multiple quality 

indicators. 

Residual variance findings are reported in Table 6. All observed residual variances were at least twice as 

large as compared to the minimum expected residual variance under the EOB (i.e., the residual variance 

under strict equal odds). Hence, we conclude that hit-ratio variation in the data was larger than expected 

under strict equal odds which only allows sampling error as a unique source of residual variation. Hence the 

data were promising for the application of the multifaceted EOB with latent variable(s). 
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Table 6 Estimates of the observed residual variance and the smallest expected residual variance. 

Variables Observed residual variance [95% CI] Smallest residual variance (Strict EOB) [95% CI] 
Quality: Tech. scope 0.608 [0.577, 0.639] 0.255 [0.253, 0.257] 
Quality: Generality index 1.937 [1.820, 2.054] 0.463 [0.460, 0.466] 
Quality: Originality index 2.186 [1.938, 2.434] 0.455 [0.451, 0.458] 
Quality: Count of fwd.cit. (5-yrs) 2.353 [2.21, 2.49] 0.540 [0.536, 0.544] 
Quality: Geographical scope 2.555 [2.360, 2.750] 0.411 [0.408, 0.415] 

 

4.2 Multifaceted EOB results 
The SEM framework is implemented with the package lavaan (Rosseel 2012) for the statistical software R. 

Model fit was based on indices such as the RMSEA, SRMR, CFI, and TLI (Table 7), according to existing cut-

offs in the SEM literature (West et al. 2012). Using these fit indices is particularly helpful when examining the 

EOB in very large datasets because even small and negligible deviations from the EOB become easily 

statistically significant (Forthmann, Leveling, et al. 2020). SEM model fit indices indicate if the data can be 

adequately described by the EOB when sample sizes are large. Finally, we estimated marginal reliability for 

the latent quality variables to quantify measurement precision (Brown and Croudace 2015; Green et al. 

1984). We further report the factor determinacy index (FDI; i.e., the correlation between estimated factor 

scores and their true values) which can be obtained as the square-root from marginal reliability. The FDI is a 

useful index to quantify the measurement quality of factor scores for subsequent assessment purposes. For 

example, it has been proposed that a FDI > .80 is sufficient for research purposes, whereas a value for the 

FDI > .90 is needed for the assessment of individual differences in high-stakes situations (Ferrando and 

Lorenzo-Seva 2018). 

 

Table 7 SEM fit indices for the model with no latent variable and for the unidimensional and the two-dimensional models. 

Fit indices No latent variable Unidimensional model Two-dimensional model 

Root Mean Square Error of Approximation 
(RMSEA) 

.004 
90% - CI: [.004, .005] 

.015 
90% - CI: [.015, .015] 

.013 
90% - CI: [.013, .013] 

Standardized Root Mean Square Residual 
(SRMR) 

.007 .043 .034 

Comparative Fit Index (CFI) .999 .960 .977 
Tucker Lewis index (TLI) .999 .939 .962 

 

The multifaceted EOB without any latent quality variables displayed excellent fit. The model with a single 

latent variable for quality, the unidimensional one, was estimated and displayed adequate fit, with TLI 

being the only index that did not pass the common cut-off of .95. Standardized factor loadings of this model 

are depicted on the left side of Figure 2. These loadings revealed that the overall quality factor was 

dominated by technological complexity (standardized loadings were in the range from .57 to .76). The 

indicators of quality in terms of “value” had only small loadings (the variables on forward citations and 

geographical scope had a loading of .22 and .10 respectively). Marginal reliability of the latent quality 

variable was .86 indicating good reliability. In addition, the FDI was equal to .93, which indicated that factor 

score estimates based on the unidimensional multifaceted EOB model had excellent quality that allows 

using them in the context of high-stakes decisions (Ferrando and Lorenzo-Seva 2018). The latent quality 

variable was predicted by career length to a small degree (β = .14, p < .001) and negligibly small by gender 

(β = -.02, p < .001) with an overall R² = .02.  
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Figure 2 Standardized estimates for the unidimensional (left) and two-dimensional (right) multifaceted EOB models. 
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We outlined in the introduction that patent quality can be defined through multiple measures, each with 

different nuances. For the current work, we decided to stick to the dimensions of technological value and 

complexity (e.g., Caviggioli, De Marco, et al. 2020; van Zeebroeck and van Pottelsberghe de la Potterie 

2011). Notably, those studies have included the generality index among the measures of complexity, giving 

more importance to the aspect of embedding multiple features for several applications rather than a higher 

number of citations per se, which is directly addressed by the count of forward citations. However, 

generality as an index that is also based on forward citations could have been alternatively proposed to 

load on the value factor rather than technological complexity. Hence, we tested two alternative models: a) 

a model in which generality loaded on value and not on complexity, and b) a model with cross-loadings of 

generality on both latent factors. The results suggest that these alternative model specifications were not 

better than the original ones (see Figure 1). First, we tested a two-dimensional model in which generality 

loaded on value instead of complexity and found that the latent covariance matrix was not positive 

definite. Inspecting the matrix, it turned out that the correlation between both quality dimensions for such 

a model was greater than one. Such an anomalous finding can occur in SEM and it can hint at a mis-

specified model, for example. Another alternative model might allow cross-loadings of generality on both 

value and complexity. Such a model was estimated without any technical difficulties. However, it also did 

not outperform the intended two-dimensional model depicted in Figure 1 and for which results are 

reported below. The two-dimensional model based on previous literature (RMSEA = 0.013, SRMR = 0.034, 

CFI = 0.977, TLI = 0.962) had mostly better fit indices as compared to the model with cross-loadings for 

generality (RMSEA= 0.015, SRMR = 0.034, CFI = 0.978, TLI = 0.958). In addition, the standardized loading of 

generality on the value factor was -0.03 and, hence, negligibly small and negative. Consequently, we 

consider these additional checks as further validity evidence in favor of our initially intended models.  

With respect to the unidimensional model, the two-dimensional model with latent variables for value and 

technological complexity displayed better fit. The factors that describe technological value and complexity 

factors reported a correlation of .35, indicating a limited overlap. Figure 2 reports the standardized factor 

loadings (right side): the indices of technological complexity display strong factor loadings (all above .57), 

while for value, only the variable based on forward citations shows a strong loading (.64). In this model, 

marginal reliability was .66 for the latent variable referring to the dimension of “value” and .86 for the 

latent variable referring to the technological complexity. The factor scores for “value” had an FDI equal to 

.81 and can thus be used for research purposes, but not for the practical assessment of individual 

differences (Ferrando and Lorenzo-Seva 2018). The factor scores for the technological complexity were 

associated to an FDI of .93, thus having excellent psychometric quality: they can be used for any 

assessment purpose (e.g., high-stakes decisions). Hence, value was comparably less reliable, whereas 

technological complexity had excellent reliability. The results suggest that the measurement of value 

should be complemented by other indicators developed in the corresponding samples: for example the 

number of renewals of granted patents, litigations or oppositions for disputed patents, licensing or sales 

data for transacted inventions, or direct assessment of the economic relevance through a survey (Caviggioli 

and Ughetto 2016; Torrisi et al. 2016; van Zeebroeck and van Pottelsberghe 2011). 

The technological complexity latent variable was predicted by career length to a small degree (β = .14, p < 

.001) and negligible small by gender (β = -.02, p < .001) with an overall R² = .02, similarly to the findings for 

the unidimensional model. In addition, the R² for the “value” latent variable was zero which indicated that 

both control variables had a negligible relationship with it. 

To test the robustness of the results, we analyzed the same models on 35 subsamples based on the 

technological fields represented in the WIPO concordance table. Each inventor was associated to one or 

more fields by considering the technological areas where s/he patented the most or representing at least a 

third of her/his total portfolio of inventions, to avoid marginal contributions. The fit indices of the 35 
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models are very similar across the subsamples based on the WIPO fields. The results are reported in the 

Appendix (Figure A1).  

4.3 Identification of stars 
To see the proposed assessment approach based on the multifaceted EOB in action, we compared 

estimates of inventors’ capacity to create high-quality patents with other commonly used approaches for 

the identification of stars. To understand how far quality indicators are incrementally informative for the 

identification of stars with respect to quantity alone, we calculated the Jaccard similarity between different 

groups of stars identified by different criteria. We tested in our sample if using either productivity or 

citation counts identifies nearly the same set of stars, and if so, how well the introduction of the 

multifaceted EOB for quality measurement can produce incremental information when the multifaceted 

EOB is used for measurement of quality: Jaccard similarity quantifies the amount of incremental 

information provided by different approaches for star identification beyond quantity. 

We identified stars as inventors who performed better than 3SD above the mean because this strategy has 

been used the most in the literature (Table 1). We employed this criterion for star identification to the 

dimensions of quantity, of quality based on forward citations, as well as to both quantity and the number of 

high-quality patents based on forward citations (Table 8). All these variables were normalized for career 

length (to account for the correlations of Table 4). These common approaches yielded percentages of stars 

(between 0.32 and 1.31%) in a comparable range as in previous works (Table 1). In addition, we used factor 

scores from the unidimensional multifaceted EOB model (Model 1 on the left in Figure 1 and Figure 2) 

because the FDI passed the recommended cut-off for usage in high-stakes decision contexts. Hence, for 

practical purposes we chose a model with less favorable model fit results (yet model fit was still adequate) 

over a better fitting model because the reliability of the associated capacity estimates indicated 

unambiguously higher quality (see section 4.2). Star identification based on the quality factor score 

estimated in Model 1 yielded a percentage of stars of approximately 1%. However, when combining this 

quality score with quantity, the percentage of stars was at a minimum of 0.15%. This result was expected 

because quality as measured in Model 1 by the latent variable η is disentangled from quantity (i.e., quantity 

and quality are uncorrelated). 

We checked the Jaccard similarity of the pools of identified stars for all pairs of applied approaches (Table 

8). Using the latent variable η for identification reports significantly smaller similarity scores with respect to 

the other criteria, indicating that this approach is based on different information. For example, the 

identification based on quantity and quality in terms forward citations is more similar to the group of stars 

based on quantity alone than the combination from quantity and quality defined by η. These similarities 

revealed that common practice to identify stars based on approaches that ignore the inherent relation of 

quantity and quality as implied by the EOB were indeed more alike as compared to the similarities of these 

approaches with star identification based on estimates of η. In other words, being identified as a star 

becomes less likely when the EOB is explicitly considered in a theoretically driven measurement approach. 
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Table 8 Percentages of stars, absolute star samples, and Jaccard similarity between various approaches to select stars (M=mean, 
3SD=three standard deviations) 

 Variables 
Perc. of stars 

[95% CI] 
Number 
of stars 

1 2 3 4 

1 Quantity: Count of families > M + 3SD 
1.31 

[1.28, 1.33] 
9195     

2 Quality: Count of fwd.cit. > M + 3SD 
0.72 

[0.70, 0.74] 
2392 

14.30  
[13.63, 15.00] 

   

3 
Quantity: Count of families > M + 3SD 

AND  
Quality: Count of fwd.cit. > M + 3SD 

0.32  
[0.30, 0.33] 

2234 
24.30  

[23.42, 25.19] 
45.65  

[43.91, 47.41] 
  

4 Quality: η (Model 1) > M + 3SD 
1.01  

[0.99, 1.04] 
7135 

7.01  
[6.61, 7.43] 

7.31  
[6.78, 7.87] 

5.90  
[5.42, 6.41] 

 

5 
Quantity: Count of families > M + 3SD 

AND  
Quality: η (Model 1) > M + 3SD 

0.15  
[0.14, 0.16] 

1070 
11.64  

[10.99, 12.31] 
12.77  

[11.61, 14.00] 
18.76  

[17.33, 20.26] 
15.00  

[14.18, 15.85] 

Notes. All variables used for the identification of stars were divided by career length to control for this variable. 

5 Conclusion 
In this work we extended the EOB, which accounts for the intricate relationship between quantity and 

quality in scientific productivity, into a multidimensional model that provides a practical assessment 

framework for the identification of star inventors.  

Previous findings demonstrated that the EOB fits reasonably well to data on scientific productivity. 

However, these results were mostly limited to citation counts as quality indicators, whereas in this work 

quality of patents was operationalized as a multifaceted construct (i.e., we used citations, geographical 

scope, technological scope, generality, and originality as indicators). The multifaceted EOB proposed in this 

work (i.e., without modeling quality as a latent variable) fitted quite well to the data which provides further 

empirical support of the generalizability of the EOB to other quality indicators than citation counts. 

Furthermore, the analyses revealed that the residual variance conceptualized within the EOB framework 

was clearly larger than what is expected because of mere chance fluctuations. This finding was robust 

across the studied quality indicators and represents a prerequisite to model individual differences in hit-

ratios as a function of latent variables.  

In relation to this, it should be noted that besides the EOB other chance models (i.e., models that propose a 

random occurrence of high-quality products throughout a career) of creative productivity exist such as the 

Q model (Janosov et al. 2020; Sinatra et al. 2016). The Q model has been shown to fit data of scientists 

(Janosov et al. 2020; Sinatra et al. 2016), as well as data of people working in the movie business, the music 

business, or book authors (Janosov et al. 2020). This clearly hints at the wide applicability of chance models 

beyond science and patent inventors. For all these other fields, however, multidimensional extensions as 

proposed and empirically examined in the current work have not yet been considered. The Q model models 

the quality Si,a of product a produced by person i as a multiplicative function of Qi (i.e., the creator’s 

capacity generate high-quality products) and pa (i.e., the “luck” parameter or potential quality of a 

product). This highlights that the Q model is formulated at a finer level of aggregation (i.e., the level of 

products) as compared to the EOB (i.e., quality indicators are aggregated for each person across products). 

Hence, the Q model cannot be as simply integrated into a SEM framework as compared to the EOB. 

Nonetheless, we argue that extending the Q model into a multidimensional framework would be a useful 

extension to be tested in future research too. For example, analogous to the question (studied in the 

current work) in how far quality indicators load on the same person latent variable, it would be quite 

interesting to know if the luck component of a product is shared across different quality indicators. 

In accordance with the previous literature that considered patent value and technological complexity as 

different subdimensions of patent quality, we found that the model including the two dimensions as latent 

variables displayed better fit than the unidimensional model. Moreover, regressing the latent quality 
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variables on gender and career length revealed no significant result for gender, but a small positive 

relationship between career length and quality in the unidimensional model, and technological complexity 

in the two-dimensional model respectively. 

The usefulness and applicability of the proposed assessment framework is highlighted by the good 

reliability and FDI findings that imply that factor scores (i.e., estimates for inventors’ capacity for high-

quality patents) can be used in subsequent analyses and in practical assessment activities. SEM models can 

be directly used for extending the research on scientific productivity and the relationship among value, 

technological complexity and other variables. Within SEM, such estimated relationships (e.g., latent 

variable regression coefficients) account for unreliability of observed measures. Although further 

refinements of the two-dimensional model seem not absolutely necessary for research contexts, for 

practical assessment contexts the factor scores for the value latent variable were not reliable enough, 

having an FDI < .90 (Ferrando and Lorenzo-Seva 2018). Hence, further indicators of patent value would 

improve the reliability of the measurement. This is particularly the case when stakeholders and/or 

evaluators put a strong weight on the measurement of value in practical high-stakes decisions. 

Despite its theoretical soundness and comparably better model fit, the two-dimensional multifaceted EOB 

model seems to be not suited for practical assessment purposes without further improvements. For this 

reason, we illustrated the identification of star inventors based on the unidimensional multifaceted EOB 

model. Even if this model fit to the data is worse than the two-dimensional model, it displayed still 

adequate fit. The factor loadings in the unidimensional model weighted all indicators of technological 

complexity as stronger than the value indicators. Hence, the capacity to invent high-quality products as 

measured in this model is associated to technological complexity more than to value indicators. This finding 

seems to explain why the identification of star inventors according to the unidimensional multifaceted EOB 

appeared to be different from the other common approaches employed in the literature that ignore the 

EOB. Indeed, the overlap between the stars defined by patent quantity and the stars based on the count of 

highly cited inventions is larger than the overlap between those same prolific inventors and the stars 

identified via the unidimensional EOB approach.  

Finally, we equip researchers and evaluators with an R script to replicate all the findings reported in this 

work. This might pave the way for other scholars to employ the multifaceted EOB in their research and 

practical assessment projects, once the fit of the EOB to the data and the presence of individual differences 

in the model residuals are evaluated as requisite for application of the multifaceted EOB.  

Our work is not exempt from limitations. In particular, the model specification does not account for 

potential heterogeneity in the impact of the resources of patent assignees on quantity or quality. The 

assumption here is that working for a company with many or few resources provides a proportional impact 

both on quantity and quality, while the effect on one of the two dimensions might be disproportionately 

larger. In particular, this is of relevance for two aspects: when an inventor changes employer and the new 

one is very different from the prior in terms of available resources; the geographical scope can be 

particularly affected by employers’ resources (i.e., more than the other quality metrics). Future research 

could improve the analyses by examining when the role of employers is more impactful on the investigated 

dimensions of quantity and quality. Finally, the results suggest that the characterization of the value 

dimension could benefit from the introduction of additional variables which might be tested on specific 

subsamples, such as the number of renewals of granted patents, licensing or sales values for transacted 

patents, or the direct assessment of the economic relevance through a survey of inventors. 
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7 Appendix 
This section reports the robustness checks of the model fit of the unidimensional and two-dimensional 

multifaceted EOB models (Figure A1). The models were tested on 35 different subsamples, corresponding 

to the technological fields in the WIPO concordance table which associates IPC codes to technical areas. On 

the left side in Figure A1, the robustness check for the unidimensional multifaceted EOB is depicted. With 

the TLI as an exception, it is clearly visible that all other fit indices were at least acceptable for most of the 

WIPOs. Reliability and FDI values were good to excellent for latent quality factor scores across all WIPOs. 

This picture of results was found to be slightly reversed for the two-dimensional multifaceted EOB (see 

right side in Figure A1). Model fit was clearly generally better for this model, but reliability for the value 

factor was below the recommended cut-offs for almost all WIPOs. In addition, although not visible in Figure 

A1, technical estimation issues (e.g., Heywood-cases) occurred only for the two-dimensional model.  

For detailed findings on each of the 35 subsamples, the interested reader can look at the Open Science 

Framework repository for this work (https://osf.io/bjad4/). 
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Figure A1. Model fit, reliability, and FDI results summarized across all 35 WIPO technical fields for both the unidimensional Model 1 (left) and the two-dimensional Model 2 (right). Desirable cut-offs 
are depicted as dark gray dashed vertical lines. FDI, reliability, TLI, and CFI should be right to the cut-off, whereas SRMR and RMSEA should be left to the cut-off. 
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