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Relentless advances in DNN accelerator energy and area efficiency 
are demanded in low-cost edge devices [1]-[8]. Both directly benefit 
from the reduction in the complexity of MAC units (neurons), thanks 
to the reduction in area and energy of computations and the 
interconnect fabric. Unfortunately, such area and energy cost per 
neuron further increases in practical cases where flexibility is needed 
(e.g., precision scaling), ultimately limiting cost and power 
reductions. In this work, the all-digital DDPMnet architecture for DNN 
acceleration based on a pulse density data representation is 
introduced to reduce the gate count/MAC unit from the thousand 
range to few hundreds (Fig. 1). The proposed architecture removes 
any arithmetic block from MAC units (e.g., multipliers), while retaining 
the advantages of standard cell based design. 

In this work, the dyadic digital pulse modulation [9] (DDPM) is 
exploited to perform MAC computations in the pulse density domain 
(Fig. 2). Each N-bit input feature Xi is represented by the pulse 
density Xi/2N over 2N cycles, according to its DDPM modulation that 
translates X=(X[N-1], X[N-2]… X[0])2 into the superposition of N 
pulse trains having binary-scaled density. For example, if the MSB 
X[N-1]=1, 2N/2 1-pulses are generated in positions 0, 2, 4…2N-2; if 
the next bit X[N-2]=1, 2N/4 1-pulses are generated in positions 1, 5, 
9…2N-3, and so on. Weights are instead represented by digital pulse 
duration encoding (Fig. 2), with the generic value Wi being 
represented with a sequence of Wi/WLSB subsequent 1-pulses 
(WLSB= weight LSB) in sign-magnitude representation. The resulting 
pulse count counti of the DDPM-modulated input during the weight 
pulse duration is clearly proportional to the pulse density in the Xi 
stream (i.e., Xi itself) and the pulse duration of Wi (i.e., Wi itself), and 
hence represents their product Wi⋅Xi. Extending the bitstreams to 
subsequent values of Xi and Wi, the final count adds the contributions 
Wi⋅Xi and thus inherently performs accumulation. This simplifies the 
MAC operation into an up/down counter to accumulate positive (up) 
or negative terms (Fig. 2). Weights are concatenated in time so that 
each kernel is computed in a 2R-cycle window, and are normalized 
so that the maximum sum of kernel weights (i.e., duration of union of 
weight pulses) uses all 2R cycles (Fig. 2, scaling involves also biases 
and outputs). ~100% utilization in non-max kernels is preserved via 
weight reordering/interleaving via the software scheduler in Fig. 3. 

From Fig. 3, input features (weights) are distributed and shared by 
row (column) across the 27x30 MAC unit array, and stored in the 
input (program) memory. At any time, two of the three input banks 
are active, and the third stores the next patch of the input to sustain 
the acquisition of the input bitstream via three-way time interleaving. 
The scheduler pre-computes and stores 1) the resulting 6-bit ∆X and 
4-bit ∆Y displacement in the input memory, to cover the input video 
frame with the intended stride and kernel size, followed by the 27x2 
DDPM modulator array, 2) the MAC unit 4-bit control instructions in 
the program memory, determined by the weight pulse duration and 
their pulse sequences (Fig. 3). Instructions are executed by the MAC 
units, which properly select incoming input features with the same 
order as weights via a MUX, count the resulting pulses, execute 
ReLU, and store the MAC output in a register (memory-mapped for 
output readout). The MUX enables the scheduler to 
reorder/interleave weights (and input features accordingly) for 
maximum MAC unit utilization. The software framework also handles 
the optimization of R, retraining and weight pulse normalization. 

In DDPMnet, the MAC accuracy gracefully decreases at lower R (Fig. 
4), while doubling throughput, area, and energy efficiency for every 
1-bit reduction, due to the halved 2R-cycle window duration. The 
approximation error is determined by the quantization in weight pulse 
normalization (Fig. 2), and the discrete nature of the density-based 
multiplication. The error is nearly image- and layer-independent, and 
is reduced via 1) retraining with DDPM computation in the loop, 2) 
bias subtraction of the mean residual error (evaluated across the 

training dataset, Fig. 4). Over a pre-
trained network, this aggressively 
reduces R from 16 down to 10-12 
at near-zero accuracy drop 
(<0.2%), improving throughput and 
energy efficiency by 25X (35X at 
2% accuracy drop). 

The average energy/area efficiency 
and runtime performance were 
evaluated using three datasets: MNIST (using  LeNet-5), CIFAR-10 
(using AlexNet) and ImageNet (using AlexNet), which achieve an 
average efficiency of  22.39 (1.22), 12.48 (0.84) and 9.77 TOPS/W 
(0.52 TOPS/mm2) at 0.5V and 35MHz (1.2V, 530MHz). The optimal 
R depends on the neural network, and its across-layer average is 
6.81 for LeNet-5 on MNIST, 10.47 for AlexNet on CIFAR-10 and 11.4 
on ImageNet. At 1.2V, 530MHz, DDPMnet takes an average 
execution time of 18.8ms (10.6ms) for Conv+FC (Conv only) layers 
on AlexNet and can provide an inference throughput of 41K 
inferences/s on LeNet-5, and 53.1 inferences/s on AlexNet.  

From Fig. 5, the optimization of R in Fig. 4 brings the energy 
efficiency from 0.65TOPS/W (pre-trained weights) to 21.4TOPS/W 
(15.53 TOPS/W) under ~2% (<0.2%) accuracy loss. Also, on 
average the software scheduler improves the MAC unit array 
(memory capacity) utilization by 25.6% (29%), resulting in 20.2% 
better energy efficiency. As expected, more aggressive R reductions 
are allowed in layers with larger number of parameters/kernel (Fig 
4). Similar considerations hold for fully-connected layers, whose 
vector multiplication nature expectedly reduces the energy efficiency 
by 25X compared to the best convolutional layer. Being the accuracy 
most sensitive to the first (Conv1) and last (FC3) layer, their R is set 
higher to allow aggressive scaling in the intermediate layers at minor 
overall accuracy degradation. 

Fig. 6 shows other measurement results for the DDPMnet testchip in 
40nm CMOS technology. The area of 4.48mm2  includes a 14.12-KB 
latch memory, and the clock frequency ranges from 6MHz to 
530MHz at a supply voltage from 0.4V to 1.2V. In terms of peak 
values, DDPMnet achieves a peak energy efficiency of 28.06 
TOPS/W at 0.5V and 35MHz at no accuracy loss, and a peak 
throughput of 0.6 TOPS at 1.2V and 530MHz. The measured peak 
area efficiency is 1.55 TOPS/mm2, and is 0.44 TOPS/mm2 including 
all on-chip peripherals within the testchip (better amortized across 
the core array under larger array sizes). 
Comparison with prior art (Fig. 6) shows that DDPMnet has the 
uncommon ability to scale the MAC precision without any additional 
reconfiguration logic in MAC units. This preserves the intended low 
gate count even under accuracy/complexity adjustment via R. In 
absolute terms, the peak energy efficiency under AlexNet is 
comparable to [1], [2], [5] in sub-10nm technologies and [4] in 12nm, 
and 1.9-27X better than prior time/pulse-domain accelerators [6]-[8]. 
Compared to the latter, the DDPMnet peak area efficiency is 152-
6,285X better, which is still comparable to [4], [5] in 7-12nm, in view 
of its very compact MAC unit and efficient architecture. DDPMnet is 
expectedly disadvantaged by 6-11.9X compared to 5-7nm 
accelerators [1], [2]. Given the very broad range of CMOS 
technologies (8 generations), the technology-normalized 
comparison in Fig. 6 needs to be considered for fairness (see 
conservative scaling factors in Fig. 6). When the benefits attributed 
to the different technology are evened out, DDPMnet expectedly 
outperforms energy (area) efficiency of prior art by 1.7-20.6X (1.9-
3,384X), offering a favorable tradeoff in terms of power and cost. 
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Fig. 1. Prior DNN implementations are limited by complex MAC units, 
which are simplified into simple counters in the proposed DDPMnet. 
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Fig. 2. DDPMnet executes MAC operations by combining input 
features encoded with pulse density (DDPM modulation) and sign-
magnitude weights with pulse duration encoding. 
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Fig. 3. DDPMnet architecture and underlying software stack. 

WEIGHT-PULSE NORMALIZATION

SCHEDULER

DDPM COMPUTATION

OUTPUT DENORMALIZATION

weights (W) bias

input 
features

DDPMnet ERROR COMPENSATION FLOW

introduces 
errors due to 
approx. 
computation

 
partially fixed 
by mean 
compensation

0

5

10

15

20
1 10 100 1000

ac
cu

ra
c

y*
 d

ro
p

 fr
o

m
 b

as
e

lin
e 

(%
)

GOPS (evaluated at 530MHz)

higher R leads to 
higher accuracy

retraining 
improves 
accuracy, 
allowing 
higher 
throughput 
(and better 
energy/
area 
efficiency)

higher throughput 
for smaller kernels

25X throughput improvement at no accuracy degradation

RESULTING ACCURACY-THROUGHPUT TRADEOFF

5x5 (Layer 2)

3x3 (Layer 3)

pre-train post-train

kernel size 
(AlexNet 
Layer)

*TOP-1 accuracy on ImageNet

introduces 
errors due to 
quantization

 fixed by 
retraining

0

1

2

0 20 40 60 80

n
o

rm
al

iz
ed

 R
M

S
E

channel number

R=12
R=14
R=16

0

1

2

0 20 40 60 80

n
o

rm
al

iz
ed

 R
M

S
E

channel number

R=12
R=14
R=16

0

0.1

0.2

0 20 40 60 80

ERROR REDUCTION VIA RETRAINING AND MEAN ERROR COMPENSATION

exponential 
increase in error 
with R reduction

residual error due to 
DDPM encoding

error from weight-pulse 
normalization<< 

further error reduction via mean error 
compensation (subtract from biases)

(Example: AlexNet layer #1)

PRE-TRAINED WEIGHTS RETRAINED WEIGHTS

 
weight-pulse normalization main 
source of error when reducing R

fixed by 
retraining

 
 

Fig. 4. Error compensation and accuracy recovery using retraining and 
accuracy-throughput tradeoff. 
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 Fig. 5.Performance across datasets, neural networks, and layers 
along with the benefits of retraining and scheduling. 
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Fig. 6. Comparison table, measured energy efficiency, and 
technology-normalized TOPS/mm2 vs TOPS/W. 
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