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Relentless advances in DNN accelerator energy and area efficiency
are demanded in low-cost edge devices [1]-[8]. Both directly benefit
from the reduction in the complexity of MAC units (neurons), thanks
to the reduction in area and energy of computations and the
interconnect fabric. Unfortunately, such area and energy cost per
neuron further increases in practical cases where flexibility is needed
(e.g., precision scaling), ultimately limiting cost and power
reductions. In this work, the all-digital DDPMnet architecture for DNN
acceleration based on a pulse density data representation is
introduced to reduce the gate count/MAC unit from the thousand
range to few hundreds (Fig. 1). The proposed architecture removes
any arithmetic block from MAC units (e.g., multipliers), while retaining
the advantages of standard cell based design.

In this work, the dyadic digital pulse modulation [9] (DDPM) is
exploited to perform MAC computations in the pulse density domain
(Fig. 2). Each N-bit input feature X; is represented by the pulse
density Xi/2N over 2N cycles, according to its DDPM modulation that
translates X=(X[N-1], X[N-2]... X[0])2 into the superposition of N
pulse trains having binary-scaled density. For example, if the MSB
XIN-1]=1, 2M/2 1-pulses are generated in positions 0, 2, 4...2N-2; if
the next bit X[N-2]=1, 2V/4 1-pulses are generated in positions 1, 5,
9...2N-3, and so on. Weights are instead represented by digital pulse
duration encoding (Fig. 2), with the generic value W, being
represented with a sequence of WiW.ss subsequent 1-pulses
(WLss= weight LSB) in sign-magnitude representation. The resulting
pulse count count; of the DDPM-modulated input during the weight
pulse duration is clearly proportional to the pulse density in the X;
stream (i.e., X;itself) and the pulse duration of Wi (i.e., Wi itself), and
hence represents their product WiXi. Extending the bitstreams to
subsequent values of X;and Wi, the final count adds the contributions
Wi-Xi and thus inherently performs accumulation. This simplifies the
MAC operation into an up/down counter to accumulate positive (up)
or negative terms (Fig. 2). Weights are concatenated in time so that
each kernel is computed in a 2R-cycle window, and are normalized
so that the maximum sum of kernel weights (i.e., duration of union of
weight pulses) uses all 2R cycles (Fig. 2, scaling involves also biases
and outputs). ~100% utilization in non-max kernels is preserved via
weight reordering/interleaving via the software scheduler in Fig. 3.

From Fig. 3, input features (weights) are distributed and shared by
row (column) across the 27x30 MAC unit array, and stored in the
input (program) memory. At any time, two of the three input banks
are active, and the third stores the next patch of the input to sustain
the acquisition of the input bitstream via three-way time interleaving.
The scheduler pre-computes and stores 1) the resulting 6-bit AX and
4-bit AY displacement in the input memory, to cover the input video
frame with the intended stride and kernel size, followed by the 27x2
DDPM modulator array, 2) the MAC unit 4-bit control instructions in
the program memory, determined by the weight pulse duration and
their pulse sequences (Fig. 3). Instructions are executed by the MAC
units, which properly select incoming input features with the same
order as weights via a MUX, count the resulting pulses, execute
RelLU, and store the MAC output in a register (memory-mapped for
output readout). The MUX enables the scheduler to
reorder/interleave weights (and input features accordingly) for
maximum MAC unit utilization. The software framework also handles
the optimization of R, retraining and weight pulse normalization.

In DDPMnet, the MAC accuracy gracefully decreases at lower R (Fig.
4), while doubling throughput, area, and energy efficiency for every
1-bit reduction, due to the halved 2R-cycle window duration. The
approximation error is determined by the quantization in weight pulse
normalization (Fig. 2), and the discrete nature of the density-based
multiplication. The error is nearly image- and layer-independent, and
is reduced via 1) retraining with DDPM computation in the loop, 2)
bias subtraction of the mean residual error (evaluated across the
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training dataset, Fig. 4). Over a pre-
trained network, this aggressively
reduces R from 16 down to 10-12
at near-zero accuracy drop
(<0.2%), improving throughput and
energy efficiency by 25X (35X at
2% accuracy drop).

The average energy/area efficiency
and runtime performance were
evaluated using three datasets: MNIST (using LeNet-5), CIFAR-10
(using AlexNet) and ImageNet (using AlexNet), which achieve an
average efficiency of 22.39 (1.22), 12.48 (0.84) and 9.77 TOPS/W
(0.52 TOPS/mm?) at 0.5V and 35MHz (1.2V, 530MHz). The optimal
R depends on the neural network, and its across-layer average is
6.81 for LeNet-5 on MNIST, 10.47 for AlexNet on CIFAR-10 and 11.4
on ImageNet. At 1.2V, 530MHz, DDPMnet takes an average
execution time of 18.8ms (10.6ms) for Conv+FC (Conv only) layers
on AlexNet and can provide an inference throughput of 41K
inferences/s on LeNet-5, and 53.1 inferences/s on AlexNet.

From Fig. 5, the optimization of R in Fig. 4 brings the energy
efficiency from 0.65TOPS/W (pre-trained weights) to 21.4TOPS/W
(15.53 TOPS/W) under ~2% (<0.2%) accuracy loss. Also, on
average the software scheduler improves the MAC unit array
(memory capacity) utilization by 25.6% (29%), resulting in 20.2%
better energy efficiency. As expected, more aggressive R reductions
are allowed in layers with larger number of parameters/kernel (Fig
4). Similar considerations hold for fully-connected layers, whose
vector multiplication nature expectedly reduces the energy efficiency
by 25X compared to the best convolutional layer. Being the accuracy
most sensitive to the first (Conv1) and last (FC3) layer, their R is set
higher to allow aggressive scaling in the intermediate layers at minor
overall accuracy degradation.

Fig. 6 shows other measurement results for the DDPMnet testchip in
40nm CMOS technology. The area of 4.48mm? includes a 14.12-KB
latch memory, and the clock frequency ranges from 6MHz to
530MHz at a supply voltage from 0.4V to 1.2V. In terms of peak
values, DDPMnet achieves a peak energy efficiency of 28.06
TOPS/W at 0.5V and 35MHz at no accuracy loss, and a peak
throughput of 0.6 TOPS at 1.2V and 530MHz. The measured peak
area efficiency is 1.55 TOPS/mm?, and is 0.44 TOPS/mm? including
all on-chip peripherals within the testchip (better amortized across
the core array under larger array sizes).

Comparison with prior art (Fig. 6) shows that DDPMnet has the
uncommon ability to scale the MAC precision without any additional
reconfiguration logic in MAC units. This preserves the intended low
gate count even under accuracy/complexity adjustment via R. In
absolute terms, the peak energy efficiency under AlexNet is
comparable to [1], [2], [5] in sub-10nm technologies and [4] in 12nm,
and 1.9-27X better than prior time/pulse-domain accelerators [6]-[8].
Compared to the latter, the DDPMnet peak area efficiency is 152-
6,285X better, which is still comparable to [4], [5] in 7-12nm, in view
of its very compact MAC unit and efficient architecture. DDPMnet is
expectedly disadvantaged by 6-11.9X compared to 5-7nm
accelerators [1], [2]. Given the very broad range of CMOS
technologies (8 generations), the technology-normalized
comparison in Fig. 6 needs to be considered for fairness (see
conservative scaling factors in Fig. 6). When the benefits attributed
to the different technology are evened out, DDPMnet expectedly
outperforms energy (area) efficiency of prior art by 1.7-20.6X (1.9-
3,384X), offering a favorable tradeoff in terms of power and cost.
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Fig. 1. Prior DNN implementations are limited by complex MAC units,
which are simplified into simple counters in the proposed DDPMnet.
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Fig. 2. DDPMnet executes MAC operations by combining input
features encoded with pulse density (DDPM modulation) and sign-
magnitude weights with pulse duration encoding.

Fig. 3. DDPMnet architecture and underlying software stack.
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Fig. 4. Error compensation and accuracy recovery using retraining and
accuracy-throughput tradeoff.
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Fig. 5.Performance across datasets, neural networks, and layers
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