POLITECNICO DI TORINO Repository ISTITUZIONALE

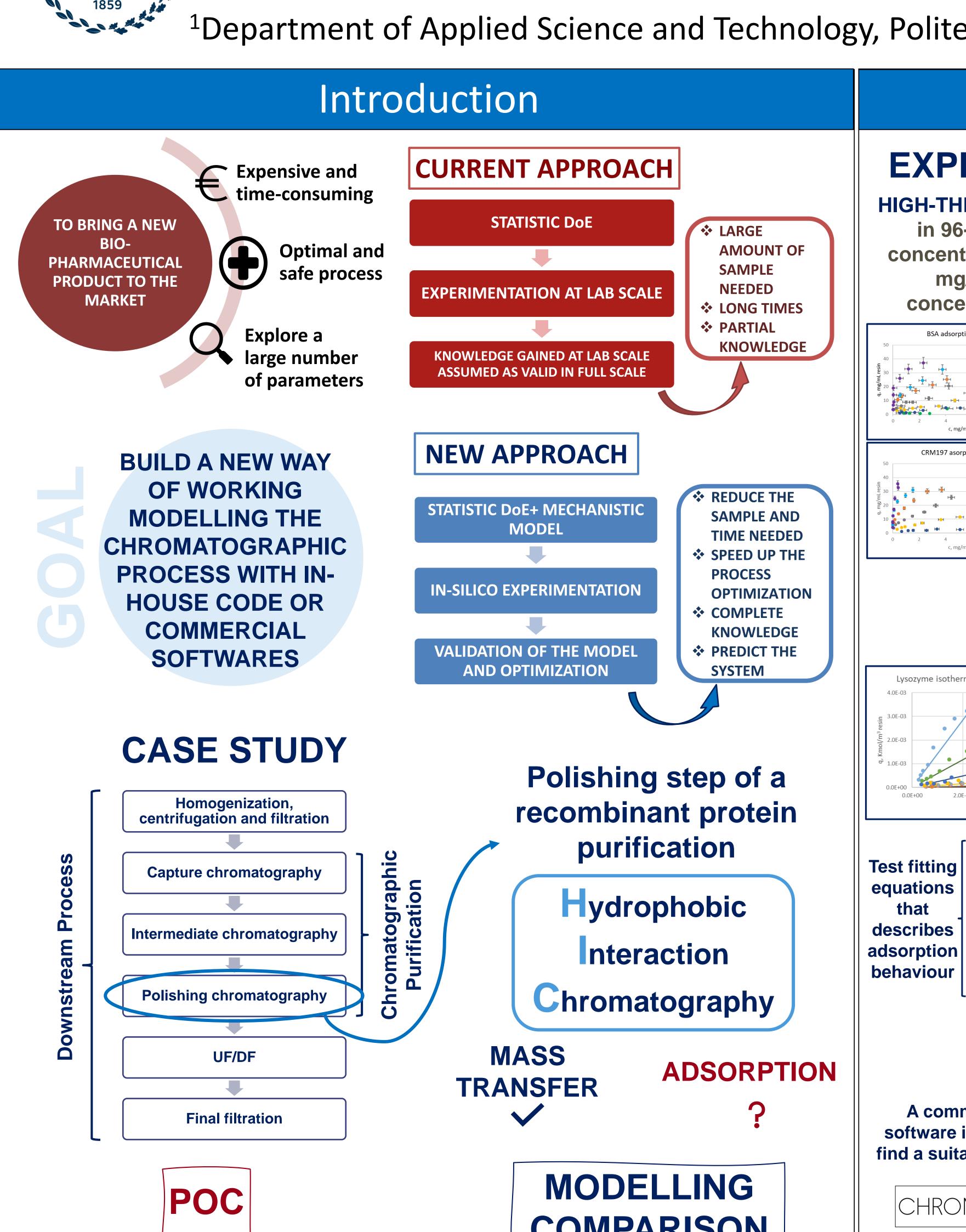
Mathematical Modelling of Chromatography as a tool for process understanding and development acceleration

Original Mathematical Modelling of Chromatography as a tool for process understanding and development acceleration / Lietta, E.; Barresi, A.; Pieri, A ELETTRONICO (2021), p. ID 32987. ((Intervento presentato al convegno 13th European Congress of Chemical Engineering and 6th European Congress of Applied Biotechnology "ECCE/ECAB 2021" tenutosi a online event nel 20-23 September 2021.
Availability: This version is available at: 11583/2955219 since: 2022-02-15T12:07:11Z
Publisher: DECHEMA e.V.
Published DOI:
Terms of use: openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright

(Article begins on next page)

Mathematical Modelling of Chromatography as a tool for process understanding and development acceleration

Politecnico

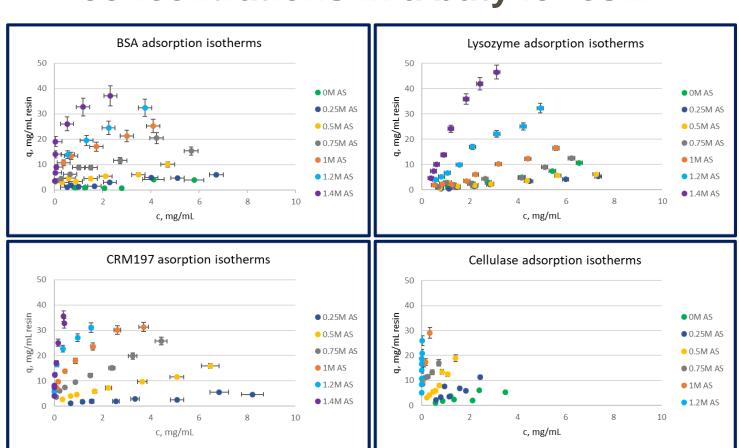

Antonello Barresi¹, Alessandro Pieri²

Elena Lietta¹,

¹Department of Applied Science and Technology, Politecnico di Torino, Italy; ²GSK, Siena, Italy

COMPARISON

PREDICTIVE APPROACH:


Fit experimental isotherms and use parameters to predict elution behaviour

ESTIMATION APPROACH:

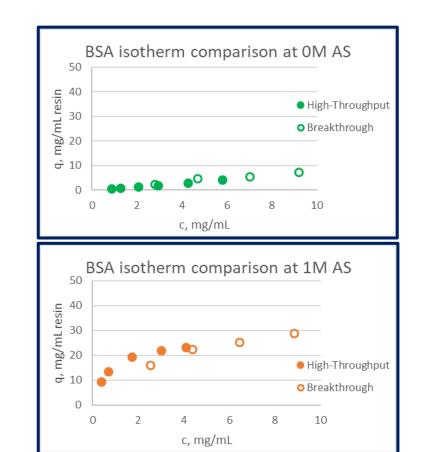
Results

EXPERIMENTAL ISOTHERM DETERMINATION

HIGH-THROUGHPUT experimentations in 96-wells filter plates, protein concentration increases from 1 to 10 mg/mL for six different salt concentrations in a butylic resin.

1M AS

 $\lambda b \, e^{k C_{salt}} \, C_p$


 $1 + be^{kC_{salt}} C_n$

 $\lambda b \mathit{Csalt}^{\,lpha} \mathit{C}_p$

 $1 + bCsalt^{\alpha}C_n$

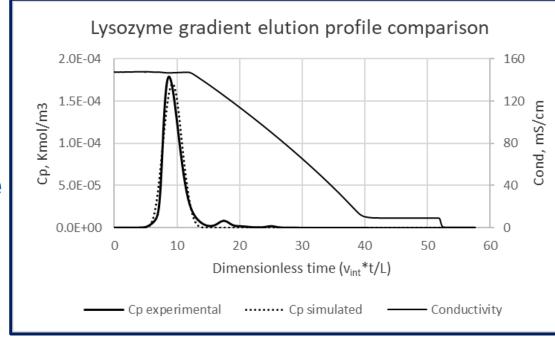
 $q = ae^{kC_{salt}} C_p$

BREAKTHROUGH experimentations in 1 mL column with butylic resin at four different protein concentrations and three salt conditions.

Breakthrough isotherm points compared to highthroughput isotherms seem follow the isotherm shape reaching higher protein concentrations

PREDICTIVE APPROACH

SIMULATION WITH A IN-HOUSE CODE


 Mass balance in the interstitial liquid Mass balance in the pores of the beads Equilibrium between solid and liquid

Isotherms parameters from experimental data

 V_d , ε_p , ε_c and D_{ax} are found experimentally with Acetone and Dextran injections. **k**_f, **D**_m and **D**_p are found with empirical correlations.

isochratic and gradient elution are performed and then simulated. **Elution profiles are** compared to validate the model.

Bind-elute tests with both

ESTIMATION APPROACH

A commercial software is used to find a suitable model

Lysozyme gradient elution profile comparisor

CHROM

equations

that

describes

behaviour

from GoSilico

Otimization algorithm **Parameter** estimation Curve fitting **Bind-elute experimental**

to find model parameters

tests with isochratic and gradient elution are used

Isotherm

parameters found

from

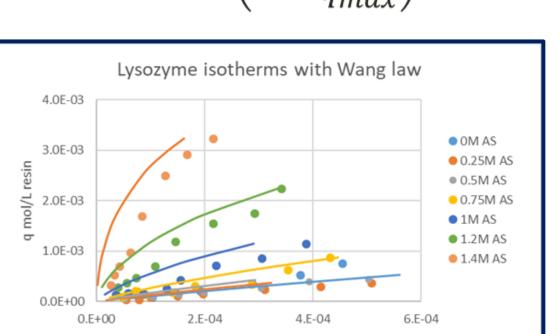
chromatograms

fitting are used, as

a validation, to fit

experimental

isotherms


Isotherm laws used from the software to model HIC are complex.

The laws are (in equilibrium conditions): the law developed by Mollerup et al.

$$q = k_{eq} \left(1 - \frac{q}{q_{max}} \right)^n \exp[(k_s C_{salt} + k_p C_p) C_p]$$

the law developed by Wang et al.

$$q^{1+n\beta} = k_{eq} \left(1 - \frac{q}{q_{max}} \right)^n C_p$$

Use elution tests to find model parameters and use them to fit experimental isotherms

Conclusions

EXPERIMENTAL ISOTHERM DETERMINATION

Static Method

High-Throughput tests

with 96 wells Filter Plates

Dynamic Method

Breakthrough curves with

HiTrap columns

Well-known

E Inexpensive

BSA, Lysozyme,

Cellulase, CRM₁₉₇

Equilibrium adsorption isotherms of

commercial proteins are

experimentally determined

- High-Throughput method needs small amount of product but requires high experimental effort
- Breakthrough tests are experimentally simple but require a large amount of sample
- Isotherm points obtained with two methods are on the same isotherm

PREDICTIVE APPROACH

Experiments for parameter determination **Simulations**

Experiments to validate the model

Feasible for simple systems and pure proteins

High experimental effort

ESTIMATION APPROACH

Experiments in different operative conditions

Curve fitting

Parameter estimation

Good for complex systems

Licence costs and advanced knowledge required