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Abstract─ In this paper, a new analytical method is proposed to accurately 

estimate the near-end and far-end crosstalk of a coupled Transmission Lines (TLs) 

based on eigenvector decomposition. For a non-homogenous two coupled lines, the 

related linear differential equations system (LDES) is derived for distributed 

voltage and current and then using matrix analysis, its four distinct eigenvalues and 

their associated eigenvectors are determined. It is shown that the two eigenvalues 

represent the self-propagation constant, while the other ones are linked to the 

mutual propagation constant of the coupled lines. In addition to, for these lines a 

closed form expression for near-end and far-end crosstalk is presented. In special 

case of homogenous coupled lines, the LDES is also determined and it is shown that 

they provide two couples of eigenvalues. Using the concept of generalized 

eigenvalues, the solution of these systems is derived and a closed form formula is 

derived for crosstalk. In order to verify the accuracy of the proposed method a few 

types of coupled lines, including homogeneous or non-homogeneous are investigated 

and the amount of crosstalk is estimated. The calculated crosstalk is presented and 

compared with those obtained by numerical investigation. It is shown that a good 

agreement is obtained between the calculated and measured results.  
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I.  INTRODUCTION 

In recent years, along with the developments 

of modern electronic and communication 

systems, the major tendency is toward the 

designing of compact, low consume power, high 

speed, low weight and high density circuits. The 

routing of a huge amount of wiring in each part 

of the entire structure is an important issue. In 

these compact device, the rout of signals is often 

grouped together with a closely distance due to 

limited available space. This phenomenon refers 

to the unplanned electromagnetic coupling 

between the adjacent lines, which are in close 

proximity. Crosstalk between wires in cables or 

between lands on PCBs is a near field coupling 

problem; that is, the source of the 

electromagnetic interference within the same 

system [1]. 

Today’s, crosstalk has already become one of 

the dominant limiting factors in designing 

process of Integrated Circuits (ICs). So, the 

problem of determining the electromagnetic 

coupling among coupled Transmission Lines 

(TLs) exists in many applications such as radio 

propagation, geophysical prospecting, 

Electromagnetic Compatibility (EMC), induction 

heating, radio remote sensing and radio direction 

finding [2-4]. 

In electromagnetic theory, the penetration of 

an unwanted electrical signal or electromagnetic 

wave from one transmission line to its adjacent 

one is called crosstalk. This phenomenon 

happens due to the mutual coupling because of 

mutual capacitance and inductance for any 

arbitrary two or more adjacent coupled lines. 

Multi-conductor Transmission Lines (MTLs) is 

one of the practical TLs in commercial systems, 

which are used in power and telephone lines and 

network cables over a wide area of applications. 

For this reason, the problem of calculating 

crosstalk between two lines located in close 

proximity is very important. This type of TL 
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consists of two or more shielded or unshielded 

conductors with a common conductor as a signal 

return path [5-8]. 

So far, various approaches including analytical 

and numerical methods have been used to 

calculate crosstalk for different applications [9]. 

Some of these methods are used at low 

frequencies and a few of them are suitable at 

high frequency applications. The observed 

discrepancy between these two methods is the 

electrical size. According to the above mentioned 

matter, an analytical method is required to be 

developed to obtain an expression for crosstalk 

of a coupled line. As a result, the closed form 

expression for crosstalk offers a clear 

relationship between the geometrical parameters 

of the coupled TL, which allows the designer to 

consider the initial results of the planned device. 

With the aim of this paper, a new analytical 

method is introduced to quickly estimate 

crosstalk at near-end or far-end of a 

homogeneous or non-homogeneous coupled 

lines based on eigenvalue and eigenvector 

analysis. At first, a linear differential equations 

system is derived for distributed voltage and 

current along the lines.  Using the matrix 

representation for the obtained equations, two 

types of eigenvalues are obtained and their 

related characteristic equations, eigenvectors and 

phase constants of the propagating waves along 

the lines are determined. It is shown that, the first 

type of eigenvalue shows the self-propagation 

constant of the propagated waves, while the 

other eigenvalues are related to the mutual 

propagation constant of the waves. Using the 

obtained results, a closed form expression is 

resulting to estimate the amount of crosstalk in 

the coupled line, which is valid for any type of 

coupled lines. In order to verify the accuracy of 

the proposed method, several coupled lines are 

investigated and the amount of crosstalk is 

calculated. The obtained results are compared 

with those of measurement and it is shown that 

the obtained results are in a good agreement. 

 

II. CROSSTALK FORMULATION 

a) General Case with Distinct Eigenvalues 

Figure (1) shows a general form of a two 

coupled lines over a common ground plane. For 

simplicity, it is assumed that a weak coupling is 

occurred in the region of coupling. Let Li, Ci, i= 1, 

2 be self per unit length inductance and 

capacitance of the line respectively, which can be 

calculated, while the lines are isolated from each 

other [10]. It is known from electromagnetic 

theory that Ci is related to the capacitance to 

ground Cig via Ci=Cig+Cm. The corresponding 

propagation velocities and characteristic 

impedance are given by equations (1) and (2) [11].  
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Figure 1: The general structure of a coupled 

transmission line. 

According to TL theory, the coupling between the 

lines is modeled by introducing two mutual per unit 

length parameters including Lm and Cm, which are 

mutual inductance and capacitance respectively. Then, 

the coupled versions of the transmission line equations 

are given by equations (3a) to (3d). 
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The above equations can be written by a 4×4 matrix 

form given by equation (4). 
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Equation (4) shows a first order linear coupled 

system of differential equations [12], which can be 



written by a homogenous first order matrix differential 

equation given by (5). 

d

dz
=

X
AX  (5) 

In equation (5), A is coefficient matrix of the 

equations; X is a vector whose components are 

unknown values in the system under investigation and 

dX/dz is the derivative of X with respect to z, the 

direction of propagation. It is well known from matrix 

algebra that the solution of the equation is given by 

equation (6) using distinct eigenvalue and eigenvectors. 
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In Which Yi and i, i=1, 2, 3, 4 are eigenvectors and 

eigenvalues of matrix A respectively and di’s are 

constant coefficient. The characteristic equation for the 

mentioned linear systems of differential equations in (5) 

is given by determinant of matrix A-I given by 

equation (7), in which I is a 4-by-4 identity matrix. 

0− =A I  (7) 

By expanding equation (7), a polynomial power of 4 

for  is obtained, while its roots are eigenvalues of the 

square matrix A. It has at least one and at most four 

distinct eigenvalues [13]. In case of our coupled lines, 

for a 4×4 squared matrix A, its characteristic equation 

is given by (8). 
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In which |C|, |L|, |H1m| and |H2m| are the determinant 

of per unit length capacitance, inductance, hybrid 

capacitance-inductance type I and type II matrix 

respectively given by equations (9a) to (9d). 
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Based on TL theory, in case of homogeneous 

medium, per-unit-length inductance and capacitance 

matrixes are directly linked by equation (10), in which

 represents phase velocity of the related 

electromagnetic wave. 

2


−

= =CL LC I  (10) 

The eigenvalues of matrix A are determined by 

solving equation (8) given by (11). 
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According to the general solutions of equation (6) for  

voltage or current waves, it can be said that the 

eigenvalues are, in fact, phase constant of propagated 

waves in case of a single line. In this case, equation 

(11) is simplified as follows. 
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It is clear from (12) and Fig. 1 that in case of the 

uncoupled lines, ij
e

− and ij
e

 (i=1,2) show the 

propagating waves along +z and –z directions 

respectively for each line. For a specified TL, the per 

unit length capacitance and inductance can be 

computed from Method of Moment (MoM) with a good 

approximation [16], and therefore, the eigenvalues and 

eigenvectors of matrix A are known. Then, based on 

equation (6), four unknown values of di (i=1, 2, 3, 4) 

have to be calculated using boundary conditions at 

near-end and far-end of the coupled lines. These are 

given by equations (13a) to be (13d). 
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The modal matrix M for matrix A, which is a 4-by-4 

matrix formed with the eigenvectors (Yi) of A given by 

equation (14) [14]. 
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=

1 4
M Y Y Y Y  (14) 

By substituting equations (13) in (6) using (14), the 

following equations are obtained. 
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The new obtained linear system of equations (15) can 

be written in matrix form Bd=g, in which the 

coefficient matrix B is a 4×4 matrix, while g and d are 

column vectors. It is clear that B depends on the modal 

matrix elements M, terminated impedances, lines length 

and the associated eigenvalues. Since vector g has one 

non-zero element, system is a non-homogeneous 

system of equations. Finally, unknown vector d is 

founded by d=B-1g equation. Using the above 

procedure, the near-end and far-end crosstalk is defined 

by equations (16) and (17) [1]. 
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b) Especial case with repeated eigenvalues 

The mentioned crosstalk estimation of the coupled 

lines based on eigenvalue analysis in previous section is 

quite general and is valid for asymmetrical transmission 

line with a non-homogeneous media. However, in case 

of practical applications, TLs are symmetrically 

arranged using a homogeneous material. In such a 

situations the per unit length self-capacitance and self-

inductance are equal, L1=L2, C1=C2, and therefore, the 

system of linear equations provide repeated eigenvalues 

and special techniques should be considered to obtain 

the solution. In this case, the following equations is 

satisfied be. 

2 2

1 mC C= −C  (18a) 

2 2

1 mL L= −L  (18b) 

1 2 1 1m m m mC L C L= = −H H  (18c) 

In this case, eigenvalues are given by (19), in which 

repeated eigenvalues exist. 
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In case of a symmetrical or asymmetrical TL and 

using equation (10), the following equations are 

satisfied. 
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By substituting equations (20) in (11), the repeated 

eigenvalues are obtained. 

1 2
j   = =  (21a) 

3 4
j   = = −  (21b) 

In which µ and ɛ are permeability and permittivity of 

the material. It is well known from TL theory that the 

propagation constant of a symmetrical or asymmetrical 

homogeneous coupled TL is only dependent on the 

medium characteristics, but for symmetrical or 

asymmetrical lines made by a non-homogeneous 

medium, propagation constant is not only depending on 

the medium characteristics, but also it is reliant on the 

geometrical parameters of the lines.  

 To find two linearly independent eigenvector Y1, Y2 

or Y3, Y4 in case of repeated eigenvalues, a set of 

generalized eigenvector have to be found to obtain the 

required solution. Based on linear algebra, the first and 

second eigenvectors Y1 or Y2 can be found using 

AY1=ζ1Y1 respectively. To obtain the other 

eigenvectors Y3 and Y4, a same process can be used. In 

other words, equation AY3=ζ3Y3 is used to determine 

Y3 and generalized eigenvector Y4. Therefore, in case 

of linearly independent eigenvectors Y1 and Y2 (or Y3 

and Y4), equation (6) is still suitable to find the 

solution. But in case of linearly dependent Y1, Y2 or Y3 

and Y4, the solution is the modified version of equation 

(6) given by equation (22) [14], in which by adding 

boundary conditions at z=0 and z=-l the required 

coefficients dis are determined. 
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It should be considered that in case of practical 

applications using homogenous coupled lines, all 

eigenvectors Yi (i=1,2,3,4) are always linearly 

independent due to validating (20a), and so far-end and 

near-end crosstalk is determined using equations (16) 

and (17) respectively. 

To verify the validity of equation (11), an 

asymmetrical double conductor transmission line with a 

non-homogeneous material above a ground plane is 

considered. The coupled lines have circular cross 

section and one of the lines (culprit line) is coated with 

a lossless dielectric material having a relative 

permittivity of 2.1 with thickness of 1.5 mm. The lines 

have a conductor radius of 0.64  mm and 1.5 mm 

respectively and their length is about 100 mm. The lines 

are at a height 3.14 mm and 6.02 mm above the ground 

plane. The distance between the two lines is 9.17 mm.  

The method of moment is used to determine the per 

unit length parameters [16], which gives per unit length 

parameters of C1=38.93 pF/m, C2=21.29 pF/m, 



Cm=1.88 pF/m, L1=4.23 nH/m, L2=5.43 nH/m and 

Lm=0.20 nH/m. Due to non-homogeneous properties of 

this coupled lines, equation (10) cannot be used. 

Moreover, this asymmetrical TL provides two pairs of 

complex conjugates eigenvalues, which can be 

calculated by equation (11). In order to investigate the 

validity of equation (11), the mentioned structure is 

simulated using High Frequency Simulator Structure 

(HFSS) and the simulated propagation constant and 

calculated results are shown in Fig. 2a and Fig. 2b. It 

can be seen that the results are in a good agreement. 

A symmetrical double conductor transmission line 

without dielectric insulation above the ground plane is 

also considered as the second example. The conductor 

radius and their length are 0.64 mm and 100 mm 

respectively. The lines are at a height of 5 mm above 

the ground plane and the distance between two lines is 

11 mm. The self and mutual per unit length capacitance 

are 20.43 pF/m and 2.26 pF/m respectively. Also, from 

equation (10), L1=L2=0.55 H/m, Lm=60.97 nH/m. 

According to equation (11), the imaginary part of all 

eigenvalues is equal. Comparison of the calculated 

propagation constant and the simulated results using 

HFSS in plotted in Fig. 2c versus frequency, which 

confirms the accuracy of the proposed method 

compared with that of the simulation. 

III. RESULTS AND DISCUSSION 

As an example of a wire-typed TLs, two wires with 

radius of r=0.4 mm are separated by distance of d=20 

mm is considered to calculate its crosstalk [1]. The 

length of the lines is L=4.6 m and they are suspended at 

h=20 mm above the ground plane, which is the path for 

return current. No dielectric material is used as the 

media and so, the coupled lines are categorized as a 

homogeneous case study. The per unit length 

parameters were computed using the MATLAB code 

and MoM, which gives parameter values of 

C1=C2=20.29 pF/m, Cm=2.19 pF/m, L1=L2=0.91 H/m, 

Lm=0.16 H/m. All termination impedances are set to 

100 Ω. Fig. 3 shows the predicted near-end crosstalk 

including the measured results versus frequency. Since 

the wires are widely separated, the crosstalk between 

the coupled lines is weak. 

A double conductor transmission line above the 

ground plane is considered as a second example. The 

geometrical parameters of this line are as L=870 mm, 

d=90 mm, h=45 mm, r=0.4 mm. The per unit length 

parameters are as C1=C2=9.64 pF/m, Cm=0.66 pF/m, 

L1=L2=1.1 H/m, Lm=63.3 nH/m [18]. In the designed 

experimental setup, the culprit line uses 290 Ω source 

impedance and an open circuit load at its end. The 

victim line uses a 1000 Ω near-end impedance and 

1050 Ω far-end impedance. Fig. 4 shows the predicted 

and measured crosstalk for the mentioned line, which 

confirms the accuracy of the proposed method of 

calculating. 

 
Figure 2a: The simulated and calculated propagation 

constant of an asymmetrical TL, eigenvalues 1 and 2. 

 
Figure 2b: The simulated and calculated propagation 

constant of an asymmetrical TL, eigenvalues 3 and 4. 

 
Figure 2c: The simulated and calculated of propagation 

constant of a symmetrical TL. 



 
Figure 3: The calculated and measured near-end 

crosstalk of a two wires TL. 

 

Figure 4: Far-End Crosstalk of a double conductor TL. 

To determine the crosstalk between adjacent parallel 

lines on a printed circuit board (PCB), which is adapted 

for microstrip coupled line structures, two lines having 

same width along their length is considered in our 

investigation. It is assumed that quasi-TEM mode is 

propagating on the lines. Thus, TL theory can be used 

to determine the voltages and currents along the 

terminated lines. The applied substrate is glass-epoxy 

with relative permittivity of 4.7, while copper plane is 

on one side and two parallel coupled lines are etched on 

the other side with the lengths of 0.2 m. The width to 

height ration for both traces is about 0.4. All different 

load cases are considered as 50 Ω. The per unit length 

parameters are C1=C2=24.4 pF/m, Cm=7.3 pF/m, 

L1=L2=0.5 H/m, Lm=0.15 H/m. The computed near-

end and far-end crosstalk coefficients are using 

equations (16) and (17) including the measurement 

results [17] are shown in Fig. 5a and Fig. 5b. It can be 

seen that a good agreement is obtained between the 

obtained simulation and measurement results up to 1 

GHz, whereas the lines are in a non-homogeneous 

structure and an equivalent approximated homogeneous 

is used for the crosstalk calculation. 

 
Figure 5a: The calculated and measured near-end 

crosstalk of a PCB line. 

 
Figure 5b: The calculated and measured far-end 

crosstalk of a PCB line. 

In order to verify the accuracy of the proposed 

method for estimating the crosstalk of a coupled 

microstrip line, two lines with same width of 4.8 mm 

and lengths of 55 mm is considered to adapt 50 Ω lines 

and the center to center distance between them is d. To 

carry out a parametric study, d is varied and the amount 

of crosstalk is studied. TLY062 substrate is used with 

relative permittivity and height of 2.2 and 1.56 mm 

respectively. Both strips are excited at one end and the 

other end is terminated to open circuit. The second strip 

is terminated to SMA connector to adapt with a 50 Ω 

load. The measurement setup is shown in Figure (6).  

The measured and calculated crosstalk is plotted in 

Fig. 7 versus frequency for different values of d. The 

shape of the graphs is reasonably the same; however, 

the deviation between measured and computed results 

is due to fabrication imperfection and systematical 

errors in measurement. Moreover, it is believed that the 

non-homogeneous structure of this line may be another 

source of error. For this reason, effective dielectric 

constant is usually considered as the dielectric constant 

of an equivalently homogeneous medium, which 



replaces air and dielectric regions of the coupled lines 

[9]. 

Finally, a coupled strip line is considered in our 

analysis. The culprit conductor is connected to a source 

at one end and to a 50 Ω resistive load at the other end, 

while the victim line is connected to 50 Ω loads at both 

ends. The lengths of the lines are 160 mm. The relative 

dielectric constant, ground plane spacing, line width 

and spacing between lines are 4.7 mm, 3.2 mm, 1 mm 

and 4 mm respectively, in which per unit length 

capacitances are C1=C2=125.02 pF/m, Cm=2.5 pF/m. 

Due to using two conductors in this structure in a 

homogeneous medium, it supports TEM wave and per 

unit length inductances are computed by equation (10). 

The near and far-end cross talks are plotted in Fig. 8 

versus frequency. It can be seen that the obtained 

results are in a good agreement with those obtained by 

simulation using HFSS. In addition to, due to presence 

of the second ground plane on the top of the strips, the 

crosstalk coefficients are decreased slightly compared 

to that of the other coupled lines. 

 
Figure 6: The experimental setup of measurement of a 

microstrip coupled line. 

 
Figure 7: The calculated and measured far end 

crosstalk of a microstrip line for different values of d. 

 
Figure 8: The calculated and simulated far-end and 

near-end crosstalk of a strip line. 

VI. Conclusion 

In this paper, a new analytical method based on 

eigenvector decomposition is introduced to quickly 

calculate the near-end and far-end crosstalk of coupled 

transmission lines. A linear differential equations 

system is derived for distributed voltage and current 

along the coupled lines. For this system of differential 

equations, using matrix formulation, generally four 

distinct eigenvalues are obtained for the two lines. It is 

shown that the propagated waves along the lines are 

related to these eigenvalues and their associated 

eigenvectors. Two eigenvalues show the self-

propagation constant, while the other ones are 

associated to the mutual propagation constant of the 

coupled lines. By identifying the transmission line 

equations, a closed form formula for the near-end and 

far-end crosstalk is derived. In case of homogenous 

environment for the coupled lines, eigenvalues and 

eigenvalues are determined and it is shown for these 

lines provide repeated eigenvalues. Using generalized 

eigenvalues, the solution of the system of differential 

equation is presented by matrix computations and a 

closed form formula is derived for crosstalk. To verify 

the accuracy of the proposed method four types of the 

coupled lines are investigated and the amount of 

crosstalk is calculated and compared with those of 

experimental examination. It is shown that a very good 

agreement between the calculated and measured results 

is obtained. 
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