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Equations for the elastic wave
motion in angular regions
V. G. Daniele1 and G. Lombardi1

1DET-Poltecnico di Torino, 10129 Torino, Italy

In this work, we introduce a general method to
deduce spectral functional equations in elasticity
and thus, the Generalized Wiener-Hopf Equations
(GWHEs), for the wave motion in angular regions
filled by arbitrary linear homogeneous media and
illuminated by sources localized at infinity. The work
extends the methodology used in electromagnetic
applications and proposes for the first time a complete
theory to get the GWHEs in elasticity. In particular
we introduce a vector differential equation of first
order characterized by a matrix that depends on the
medium filling the angular region. The functional
equations are easily obtained by a projection of
the reciprocal vectors of this matrix on the elastic
field present on the faces of the angular region.
The application of the boundary conditions to the
functional equations yields GWHEs for practical
problems. This paper extends and applies the general
theory to the challenging canonical problem of elastic
scattering in angular regions.

1. Introduction
In [1], we have applied a general theory to obtain
spectral functional equations in electromagnetics and
thus Generalized Wiener-Hopf Equations (GWHEs) for
scattering problem in angular regions filled by arbitrarily
linear media, inspired by [2] and described also in
[3]. The monographs [4]- [5] show the efficacy of
the generalization of the Wiener-Hopf (WH) technique
in practical electromagnetic wave scattering problems
in presence of geometries containing angular regions
and/or stratified planar regions, see references therein.

In this paper we implement for the first time the
methodology to the challenging canonical problem of
elastic scattering in angular regions where some physical
quantities are tensors. The technique consists of three
steps: 1) the deduction of functional equations in
spectral domain of sub-regions that constitute the whole
geometry of the problem, 2) the imposition of boundary
conditions to get the GWHEs and, 3) the solution of the
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system of the WH equations using exact or semianalytical approximate techniques of factorization2

as the Fredholm factorization technique [6]- [7].3

This paper is focused on the first fundamental step and introduce the potentialities to develop4

the other two steps through validations. We follows the method to obtain the WH equations in5

spectral domain proposed by Jones [8]- [9], with the application of Fourier/Laplace transforms6

directly to the PDE formulation of the problem avoiding the tricky derivation of the Green’s7

function in the natural domain. In this work we use a first order differential vector formulation for8

continuous components of the fields, inspired by Bresler and Marcuvitz in [10] for stratified media9

in electromagnetics. We note that some of theoretical aspects used in electromagnetics (see [1])10

are not available in elasticity or are cumbersome to be extended. For this reason, the GWHEs11

derivation for scattering by angular regions in elasticity is more complicated and challenging,12

although following the same general theory. Indeed, the authors of this paper have preliminary13

introduced in [4]- [5] an abstract formulation for simplified elastic scattering problem concerning14

the semi-infinite crack and some initial aspects of wedge problems.15

In this paper, we first extend the formulation presented in [1] to elastic problems in angular16

regions using oblique Cartesian coordinates. It yields a matrix differential problem of first order17

whose unknowns are the field components continuous to the faces of the angular regions. The18

application of Laplace transform along one face of the angular region and the assumption of19

problem invariance along the edge profile yield a matrix ordinary differential problem of first20

order. Following [1] based on [11], we develop a spectral solution before imposing boundary21

conditions based on the derivation of the dyadic Green’s functions in terms of eigenvectors and22

eigenvalue of the algebraic matrix operator (of the first order differential formulation) .23

The projection of the solution on reciprocal vectors allows to get a set of functional equations24

that relate the Laplace transforms of continuous field components along one face of the angular25

regions to the ones of the other face. The imposition of boundary conditions yields a set of GWHEs26

for practical angular region problems.27

For the sake of simplicity, even if challenging, this work is focused on elastic wedge problem28

filled by an elastic isotropic solid and extendable to anisotropic media. This problem is considered29

a fundamental problem in the mathematical theory of elastic diffraction and, despite numerous30

attempts to solve it in closed form, no exact solution exists for arbitrary aperture angle of the31

wedge region. Three major semi-analytical approaches [12]- [14] have been proposed to solve32

this problem in the two-dimensional case (i.e. at normal incidence). The first method is presented33

by Budaev in his monograph [12] that is based on the Sommerfeld integral (SI) representation34

of the elastic potentials and extends the popular and effective Sommerfeld-Malyuzhinets (SM)35

method to wedge problems with two concurrent different propagation constants. The difference36

equations, that initially arise from this formulation, are reduced to singular integral equations37

that are treated with a regularization method. Further interesting aspects of this formulation are38

presented also in [15]. A second method to study elastic wedge problems is reported in [13],39

where the scattered field by the faces of the wedge is related to the Fourier transforms of the40

displacement field of the faces (the spectral functions). Applying the Fourier transforms to the41

differential formulation of the elastic field and taking into account the boundary conditions, the42

authors obtain singular integral equations in terms of the spectral functions, that are numerically43

solved by using the Galerkin collocation method. An important aspect of this work is the44

use of recursive equations that provide analytical continuation (propagation of the solution) of45

the approximate spectral functions obtained by the numerical solution in a certain strip. New46

development of this method are reported in [16], where double Fourier transforms are introduced47

to obtain the kernels of the singular integral equations. In [17] the method is extended to 3D48

problems, however the proposed functional equations in spectral domain are again written49

in terms of singular integral operators and not in an algebraic form. The concept of spectral50

representation of the displacements on the wedge faces is applied also by Gautesen’s group51

works [18]- [20], [14] that, according to our opinion, have produced the best practical results in the52

solution of the two dimensional elastic isotropic wedge problem [14]. The difference with respect53
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to [13] is the use of an integral representation in terms of the displacements in the natural domain.54

Substantially, the integral representations of this method are those that in electromagnetism are55

called Kirchhoff’s representations. The kernel of the integral representations are suitable Green56

functions of the free space and the integral does not contain components of the stress tensors.57

The traction-free boundary conditions on the faces of the wedge impose this property. Another58

important aspect in these works is to resort to an extinction theorem that allows to impose the59

vanishing of the displacement outside the elastic wedge. The application of the theorem allows60

to use unilateral Fourier transform (or Laplace transform) on the Gautesen (Kirchhoff) integral61

representations and it yield functional equations which are algebraic with respect to the Laplace62

transforms of the displacements on the two faces of the wedge. We note that the arguments of63

the Laplace transforms of the displacements on the two faces are different. Substantially, the64

functional equations obtained in [14] are GWHEs1, although not defined in this way.65

In this paper we derive with a systematic and efficient method spectral functional equations66

in algebraic form useful to derive GWHEs in 3D elastic wedge problems. These equations are67

validated by comparison with the ones proposed in [14]. The proposed method has the following68

important characteristics:69

(i) The functional equations are easily obtained in terms of eigenvectors and eigenvalues of70

a matrix that characterizes the medium filling the angular region.71

(ii) These functional equations hold independently from the boundary conditions of the72

angular region.73

(iii) The application of boundary conditions yields a system of GWHEs for a specific problem.74

(iv) The deduction of the GWHEs is general, since the method can be applied to study wave75

motion in angular regions filled by arbitrary linear media.76

We remark that property (i) avoids the introduction of Kirchhoff type representations that require77

the computation of the Green’s function. This computation can be difficult in elasticity, see78

Gautesen’s group works [14]. Property (ii) allows the possibility to study complex wave motion79

problems constituted of different angular sub-regions or angular regions connected to planar80

stratified media, see in electromagnetics [21]- [24]. The third and the fourth characteristics allow81

the derivation of GWHEs in isotropic elastic media with plane wave source at skew incidence82

and in the general case of an elastic wedge filled by anisotropic medium. Moreover, we note83

that it is possible to directly compute from the spectral solution of the GWHEs the field in every84

point of the angular regions, avoiding Kirchhoff’s representations and Green’s function in natural85

domain. In particular the diffracted field component can be asymptotically computed with the86

saddle point method. A last but not less important property of the GWHE formulations of wedge87

problems is constituted by the set of mathematical tools in complex analysis. The Wiener-Hopf88

technique provides powerful solution methods based on exact and approximate factorization89

methods. In their works, Gautesen et al. have proposed a possible original method to deal with90

GWHEs of elastic wedge problems, exploiting analytical properties of the unknowns, see [14] and91

references therein. We propose, alternatively, the Fredholm factorization method [6]- [7] which is92

an effective semi-analytical technique for the solution of arbitrary GWHEs and it is based on93

the reduction of the factorization problem to Fredholm integral equations of second kind. We94

expect, in a future work, to effectively apply the Fredholm factorization to solve the GWHEs of95

elastic wedge problem using the same methodology applied in electromagnetic scattering from96

dielectric wedge [5].97

The paper is organized into eight sections and we assume plane wave sources and/or98

sources localized at infinity in time harmonic fields with a time dependence specified by ejωt99

(electrical engineering notation) which is suppressed. In Section 2, we introduce the first order100

vector differential formulation for continuous components of the elastic field in an indefinite101

homogeneous medium. Note that, while in electromagnetics the continuous components of field102

are the transversal ones, in elasticity we have a more complex definition in term of stress tensor103

1The GWHEs differ from the Classical Wiener-Hopf equations (CWHEs) for the definitions of the unknowns in spectral
domain. While CWHEs introduce plus and minus functions that are always defined in the same complex plane, the GWHEs
present plus and minus functions that are defined in different complex planes but related together.
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and velocity vector. The theory presented in Section 2 is also useful to study propagation in104

stratified media. Using oblique Cartesian coordinates and taking into account the results of105

Section 2, Section 3 describes the novel application of the method to angular regions, yielding106

the oblique first order vector differential formulation for continuous components of the elastic107

field. The application of Laplace transform along one face of the angular region and assumption108

of problem with invariance along the edge profile yield a vector ordinary differential problem109

of first order (oblique equations). The solution of these oblique equations, projected on the110

reciprocal vectors of an algebraic matrix defined in Section 2, provides the functional equations111

of an arbitrary angular region (Section 4). It is remarkable that we get functional equations112

independently from the materials and the sources that can be present outside of the considered113

angular region. Explicit expressions in algebraic form are reported in Section 5 for isotropic media114

and arbitrary boundary conditions. Section 6 shows the validation of functional equations in115

special simplified cases reported in literature by other authors for the planar problem; and Section116

7 reports the validation of functional equations by evaluating the characteristic impedances of117

half spaces in planar problem. Finally, conclusions are reported in section 8 and a glossary of the118

symbols useful for the readability of the text is provided at the end. We remark that, according119

to our opinion, the functional equations for the non planar (3D) general case, are deduced and120

reported for the first time in literature in this paper at Section 5. We finally state that the scope of121

our paper is to present algebraic spectral functional equations for arbitrary boundary conditions122

for 3D wave motion problems in angular regions that are useful for the examination of practical123

problems by imposing specific boundary conditions yielding GWHE formulations.124

2. First order differential equations for continuous components of125

the elastic field in an indefinite rectangular isotropic medium126

In this section we study elastic wave propagation in stratified media along a direction (say y) and,127

consequently in Section 3, we use these results to develop the theory for angular regions.128

The evaluation of the physical fields in an elastic linear medium can be generally described
by a system of partial differential equation of first order. In absence of sources localized at finite
or in presence of plane wave sources, the system is constituted of the translational equation of
motion and the stress-displacement equation [25]- [26], i.e. considering dydadic notation and time
harmonic regime we have

∇ · T =−ρω2u, (2.1)

S =
1

2
(∇u + (∇u)′), (2.2)

where T , S,u are respectively the stress tensor, the strain tensor and the displacement vector and,
ρ is the mass density (′ stands for transpose). In a general media the stress and strain tensors have
constitutive relation given by the Hooke’s law

T =C : S, (2.3)

where C is a fourth order stiffness tensor that in isotropic media simplifies to

C = λI I + 2µIsym, (2.4)

where λ and µ are the Lamé’s constants of the elastic medium and, I and Isym are respectively129

the unit dyadic and the symmetric fourth order unit dyadic (tetradic).130

Using vector (Voigt) representation for tensor quantities [25] we re-write (2.1) as

∇TT = jω p, (2.5)

∇vv = jω S, (2.6)
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with

∇T =


∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0

 , ∇v =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x
∂
∂y

∂
∂x 0


= (∇T )′, (2.7)

and where T, S, p and v are respectively the symmetric stress tensor in six-component vector131

form (2.8), the symmetric strain tensor in six-component vector form (2.8), the vector momentum132

density p = ρv and the vector particle velocity v = jωu:133

T = (Txx, Tyy, Tzz , Tyz , Txz , Txy)′, S = (Sxx, Syy, Szz , 2Syz , 2Sxz , 2Sxy)′. (2.8)

Inspired by [1] for electromagnetic applications, to effectively study wave motion problems in134

elasticity, it is convenient to introduce the concept of transverse equations using abstract notation.135

The homogeneous abstract form of (2.5) and (2.6), see section 2.9 of [4], is

Γ∇ψ= jωθ, (2.9)

where Γ∇ is a matrix differential operator of first order that relates the fields ψ and θ:

ψ=

(
T

v

)
, θ=

(
S

p

)
, Γ∇ =

(
0 ∇v
∇T 0

)
. (2.10)

The vectors ψ and θ have constitutive relation defined by the equation

θ= Wψ, (2.11)

where the matrix W depends on the medium that is considered.136

In order to close the mathematical problem (2.9)-(2.11), we need to enforce the geometrical137

domain of the problem, its boundaries conditions and the radiation condition.138

For simplicity, in the following, we consider isotropic loss-less material, however we claim that139

transversal elastic equations in a general anisotropic medium assume the same form. Considering140

the Hooke’s law T = CS in lossless isotropic medium we obtain141

W =

(
C−1 O
O R

)
, C =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


, R =

 ρ 0 0

0 ρ 0

0 0 ρ

. (2.12)

In the following we use also alternative parameters to define the medium characteristics with142

respect to the mass density ρ, and the Lamé’s constants λ and µ:143

kp = ω

√
ρ

λ+ 2µ
, ks = ω

√
ρ

µ
, Zo =

ksµ

ω
, (2.13)

where kp is the propagation constant of the longitudinal/principal wave, ks is the propagation144

constant of the transversal/secondary wave (vertical or horizontal) and the impedance Zo is a145

quantity such that stress components have same dimensions of velocity components time Zo.146

Comparing the equations (2.9)-(2.12) to the ones reported in [1] for electromagnetic147

applications, we note that the stress T, the particle velocity v, the strain S and the momentum148

density p are analogous respectively to the electric field E, the magnetic field H, the dielectric149

induction D and the magnetic induction B with constitutive relations T = CS and p = ρv150

analogous respectively to E = ε−1D and B = µH (where ε, µ can be either scalar or tensor).151

Moreover (2.5)-(2.6) are the elastic analogue of Maxwell’s equations in electromagnetism.152
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Substituting (2.11) into (2.9) with (2.12)-(2.13) we get the nine equations that relate the stress T153

with the velocity v [4]:154

(Γ∇ − jωW)ψ= 0, (2.14)

whose explicit form is155 

DxTxx +DzTxz +DyTxy = jksZovx
DyTyy +DzTyz +DxTxy = jksZovy
DzTzz +DyTyz +DxTxz = jksZovz

Dxvx =
jks[2k

2
p(Txx−Tyy−Tzz)+k

2
s(−2Txx+Tyy+Tzz)]

8k2pZo−6k2sZo

Dyvy =
jks[k

2
s(Txx−2Tyy+Tzz)−2k

2
p(Txx−Tyy+Tzz)]

8k2pZo−6k2sZo

Dzvz =
jks[k

2
s(Txx+Tyy−2Tzz)−2k

2
p(Txx+Tyy−Tzz)]

8k2pZo−6k2sZo

Dzvy +Dyvz =
jksTyz

Zo

Dzvx +Dxvz =
jksTxz

Zo

Dyvx +Dxvy =
jksTxy

Zo

, (2.15)

where Dx = ∂
∂x , Dy = ∂

∂y , Dz = ∂
∂z .156

While the constitutive parameters change only in one direction, say y, using the divergence157

theorem [25], it is possible to demonstrate that the continuous components of ψ at interfaces are158

the ones of v and n · T , where n is the unit normal at the interface, i.e.159

ψt = (Tyy, Tyz , Txy, vx, vy, vz)′. (2.16)

The transverse equations of a field are equations that involve only the components that remain
continuous along the stratification according to the boundary conditions on the interfaces and,
starting from (2.15), in general they assume the following form

− ∂

∂y
ψt =M(

∂

∂z
,
∂

∂x
)ψt (2.17)

where we have a first order derivative along y and a matrix differential operator in x and z.160

The reduction of the elastic differential problems to the transverse equations starts from161

deriving expressions of the discontinuous components (along y) direction (Txx, Tzz , Txz) from162

the 4th, the 6th and the 8th of (2.15). We get:163 
Txx =

kp
2(−2ksTyy+4jZo(Dxvx+Dzvz))+ks

2(ksTyy−2jZo(2Dxvx+Dzvz))
ks3

Tzz =
kp

2(−2ksTyy+4jZo(Dxvx+Dzvz))+ks
2(ksTyy−2jZo(Dxvx+2Dzvz))

ks3

Txz =− j(Dzvx+Dxvz)Zoks

. (2.18)

By substituting (2.18) into the six non used equations of (2.15) (i.e. equations at line 1,2,3,5,7,9) we164

get the transverse equations (2.17) where165

M(
∂

∂z
,
∂

∂x
) =



0 Dz Dx 0 −jksZo 0

Dz − 2Dzkp
2

ks2
0 0

jDxDz(4kp2−3ks2)Zo
ks3

0 M26(Dz , Dx)

Dx − 2Dxkp
2

ks2
0 0 M34(Dz , Dx) 0

jDxDz(4kp2−3ks2)Zo
ks3

0 0 − jksZo 0 Dx 0

− jkp
2

ksZo
0 0 Dx − 2Dxkp

2

ks2
0 Dz − 2Dzkp

2

ks2

0 − jksZo 0 0 Dz 0


,

(2.19)
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166

M34(Dz , Dx) = −
j
(
ks

4 +
(

4Dx
2 +Dz

2
)
ks

2 − 4Dx
2kp

2
)
Zo

ks
3

, (2.20)

M26(Dz , Dx) = −
j
(
ks

4 +
(
Dx

2 + 4Dz
2
)
ks

2 − 4Dz
2kp

2
)
Zo

ks
3

, (2.21)

and where Dx = ∂
∂x , Dy = ∂

∂y , Dz = ∂
∂z .167

The transverse equations along y direction takes the form reported in (2.17) whereM( ∂∂z ,
∂
∂x )168

is matrix differential operator of arbitrary differential order and dimension that, in case of169

electromagnetic and elastic problems, have respectively dimension 4 and 6, both with differential170

order 2 in x and z. In the following, we assume that the geometry of the elastic wave-motion171

problem as well as the eventual boundary conditions are invariant along the z-direction, thus,172

without loss of generality, when a source depends on a e−jαo z factor, also the total field depends173

on the same factor, i.e. ψt =ψt(x, y, z) = f(x, y)e−jαoz , see for instance [17] before (2.8). Of174

course, the same behavior can be obtained by applying Fourier transform also along z direction175

and assuming an incident plane wave with a particular skew direction that yields e−jαo z .176

However, for simplicity, we prefer to avoid the use of a double Fourier transform, recalling that177

in the present context an arbitrary source can be expanded in a summation of plane waves.178

It yields ∂
∂zψt(x, y, z) =−jαoψt(x, y, z), i.e. ∂

∂z →−jαo , thus

M(
∂

∂z
,
∂

∂x
) =M(−jαo,

∂

∂x
) = Mo + M1

∂

∂x
+ M2

∂2

∂x2
, (2.22)

where Mm with m= 0, 1, 2 are 6x6 matrices and do not depend on x, as they are easily derived
from (2.19):

Mo=



0 −jαo 0 0 −jksZo 0

−jαo
(

1− 2kp
2

ks2

)
0 0 0 0 − jZo(4αo

2kp
2+ks

4−4αo2ks2)
ks3

0 0 0 − jZo(ks
2−αo2)
ks

0 0

0 0 − jksZo 0 0 0

− jkp
2

ksZo
0 0 0 0 −jαo

(
1− 2kp

2

ks2

)
0 − jksZo 0 0 −jαo 0


,

(2.23)

M1 =



0 0 1 0 0 0

0 0 0
αoZo(4kp2−3ks2)

ks3
0 0

1− 2kp
2

ks2
0 0 0 0

αoZo(4kp2−3ks2)
ks3

0 0 0 0 1 0

0 0 0 1− 2kp
2

ks2
0 0

0 0 0 0 0 0


, (2.24)

M2 =



0 0 0 0 0 0

0 0 0 0 0 − jZoks
0 0 0

4jZo(kp2−ks2)
ks3

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (2.25)
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(a) The eigenvalues and the eigenvectors of M in spectral domain179

By applying Fourier transform along x direction to (2.17) with (2.22)-(2.25) (Mm = 0, m> 2) in
absence of source, we obtain an ordinary vector first order differential equation

− d

dy
Ψt(η) = M(η)Ψt(η), (2.26)

where ψt(x) = 1
2π

∫∞
−∞ Ψt(η)e−jηxdη (notation with omission of y, z dependence) and

M(η) =M(−jαo,−jη) = Mo − jηM1 − η2M2, (2.27)

where ∂
∂z →−jαo for the field factor e−jαo z (see comment before (2.22)) and ∂

∂x →−jη for the180

property of Fourier transforms.181

Now, let us investigate the properties of the eigenvalue problem (2.28) associated to (2.26):

M(η)ui(η) = λi(η)ui(η), (2.28)

where ui(η) and λi (i= 1..n) are respectively the eigenvectors and the eigenvalues of the 6x6
matrix M(η) (2.27). In presence of a passive medium we observe that three eigenvalues (say
λ1, λ2, λ3) present non-negative real part and the other three eigenvalues (say λ4, λ5, λ6) present
non-positive real part. In the following we use also alternative expressions:

λ1 = jξp(η) =−λ4, λ2 = λ3 = jξs(η) =−λ5 =−λ6. (2.29)

The explicit form of (2.29) are expressed in terms of τop =
√
k2p − α2

o, τos =
√
k2s − α2

o

ξp(η) =
√
τ2op − η2, ξs(η) =

√
τ2os − η2, (2.30)

with Im[kp,s]< 0, Im[τop,os]< 0 in lossy media. Since k2p,s = k2x + k2y + k2z = η2 + ξ2p,s + α2
o,182

ξp,s(η) are multivalued functions of η. In the following we assume as proper sheets of ξp,s(η), the183

ones with ξp,s(0) = τop,os and as branch lines of ξp,s(η) the classical line Im[ξp,s(η)] = 0 (see in184

practical engineering estimations Ch. 5.3b of [32]) or the vertical line (Re[η] =Re[τos,op], Im[η]<185

Im[τos,op]). In (2.29) we have that λ1, λ2, λ3 (λ4, λ5, λ6) are related to progressive (regressive)186

waves and, ξp,s are with non-positive imaginary part. In this framework we associate the direction187

of propagation to attenuation phenomena.188

Since the matrix M(η) is diagonalizable, M(η) is semi-simple 2 [33], Ch. V.9. The semi-simple
property is fundamental to develop the procedure as it yields a set of independent eigenvectors
ui(η) even with same eigenvalues. Although a theory about geometric and mathematical
multiplicity of eigenvalues is available, in practice, we checked the diagonalizability of M(η)

using Jordan decomposition algorithm that in our case yields M(η) = U−1DU where the matrix
U is a matrix with column elements ui(η) and D is a diagonal matrix with diagonal elements the
eigenvalues λi. In relation to the eigenvectors ui(η), we introduce the reciprocal vectors νi(η) (see
chapter 3.16 of [33]) that, in the general elastic case with αo 6= 0, can be computed by inversion of
the matrix U. The vectors νi(η) satisfy the bi-orthogonal relations

νj · ui = δji, i.e. 1t =

6∑
i=1

uiνi, (2.31)

where · is the vector scalar product, δij is the Kronecker symbol and, 1t is the unit dyadic defined189

in terms of dyadic products and such that 1t · a = a · 1t = a for an arbitrary vector a.190

From a physics point of view, the eigenvalues λ1 =−λ4 are associated to longitudinal P191

(principal) waves, while λ2 =−λ5 and λ3 =−λ6 are relevant to the transversal S (secondary)192

waves of two types: secondary vertical (SV) and secondary horizontal (SH). The P, SV and SH193

waves are not decoupled when αo 6= 0, while if αo = 0 we have two decoupled problems: one194

related to P and SV waves (planar problem) and the other to SH waves (antiplanar problem).195

2A square matrix of dimension n is called semi-simple iff it has a basis of eigenvectors in Rn.
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Figure 1. Angular regions and oblique Cartesian coordinates. The figure reports the x, y, z Cartesian coordinates and

r, ϕ, z cylindrical coordinates useful to define the oblique Cartesian coordinate system u, v, z with reference to the

angular region 1 0<ϕ< γ with 0< γ < π. In the figure, the space is divided into four angular regions delimited by ϕ=

±γ, 0, π, and the face boundaries are labeled a, b, c, d, o, p, q, s. The figure reports also the local-to-face-a Cartesian

coordinate system X,Y, Z ≡ z. Note that x≡ u and v≡X .

The computation of eigenvectors in (2.28), using Wolfram Mathematica r, it yields in compact
notation

U=



Zo(αo2+η2−ξ2s)
ksαo

− 2Zoξs
ks

0
Zo(αo2+η2−ξ2s)

ksαo
2Zoξs
ks

0

− 2Zoξp
ks

−αoZoks
−Zoξsks

2Zoξp
ks

−αoZoks
Zoξs
ks

− 2ηZoξp
ksαo

Zo(ξ2s−η
2)

ksη
αoZoξs
ksη

2ηZoξp
ksαo

Zo(ξ2s−η
2)

ksη
−αoZoξsksη

η
αo

− ξsη −αoη
η
αo

ξs
η −αoη

ξp
αo

1 0 − ξp
αo

1 0

1 0 1 1 0 1


,

(2.32)
196 whose columns are ui(η) corresponding to the eigenvalues as defined and ordered in (2.29). The

inverse of U yields in its rows the reciprocal vectors νi(η):

V=



− αo
2ksZo

− αo
2

2ksZoξp
− αoη

2ksZoξp
αoη
ks2

−αo(αo
2+η2−ξ2s)

2ks2ξp

αo
2

ks2

− αo
2+η2

2ksZoξs
αo

2ksZo
η

2ksZo

η(αo2+η2−ξ2s)
2ks2ξs

αo
2+η2

ks2
αo(αo2+η2−ξ2s)

2ks2ξs
αo

2ksZo
− (ks−αo)(ks+αo)

2ksZoξs
αoη

2ksZoξs
−αoη
ks2

−αoξs
ks2

1
2 −

αo
2

ks2

− αo
2ksZo

αo
2

2ksZoξp
αoη

2ksZoξp
αoη
ks2

αo(αo2+η2−ξ2s)
2ks2ξp

αo
2

ks2

αo
2+η2

2ksZoξs
αo

2ksZo
η

2ksZo
−η(αo

2+η2−ξ2s)
2ks2ξs

αo
2+η2

ks2
−αo(αo

2+η2−ξ2s)
2ks2ξs

αo
2ksZo

(ks−αo)(ks+αo)
2ksZoξs

− αoη
2ksZoξs

−αoη
ks2

αoξs
ks2

1
2 −

αo
2

ks2


.

(2.33)
197 In the following Sections 3-5, the eigenvectors ui(η) and the reciprocal vectors νi(η) will be used198

to obtain functional equations that relates spectral quantities in elastic wave motion problems199

between the two terminal faces of an angular region for an arbitrary αo, i.e. non planar problems.200

We also note that ui(η) and νi(η) can be used to build the solution of the transverse equations201

(2.26) in Laplace domain for elastic wave motion problems in a rectangular stratified region [31].202

3. First order differential oblique equations for continuous203

components of the elastic field in an angular region204

In this section we introduce the oblique equations for continuous components of the elastic field in205

an angular region using an oblique system of Cartesian axes and applying the properties reported206
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in Section 2 for rectangular regions. In the following sections, first, we deduce spectral functional207

equations then, by imposing boundary conditions, the GWHEs for angular shaped regions.208

With reference to Fig. 1 where angular regions are defined thorough the angle γ (0< γ < π), we
introduce the oblique Cartesian coordinates u, v, z in terms of the Cartesian coordinates x, y, z:

u= x− y cot γ, v=
y

sin γ
or x= u+ v cos γ, y= v sin γ, (3.1)

with partial derivatives

∂

∂x
=
∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v
=

∂

∂u
,

∂

∂y
=
∂u

∂y

∂

∂u
+
∂v

∂y

∂

∂v
=− cot γ

∂

∂u
+

1

sin γ

∂

∂v
,

∂

∂u
=
∂x

∂u

∂

∂x
+
∂y

∂u

∂

∂y
=

∂

∂x
,

∂

∂v
=
∂x

∂v

∂

∂x
+
∂y

∂v

∂

∂y
= cos γ

∂

∂x
+ sin γ

∂

∂y
.

(3.2)

Starting from (2.17) with (2.22) the transverse (with respect to y) equation of dimension n= 6 for
an elastic problem with invariant geometry along z-direction (i.e. e−jαoz) is

− ∂

∂y
ψt =M(−jαo,

∂

∂x
)ψt = (Mo + M1

∂

∂x
+ M2

∂2

∂x2
)ψt. (3.3)

Note that for elastic problems, we have second differential order in x. Substituting (3.2), in
particular ∂

∂x = ∂
∂u and ∂

∂y =− cot γ ∂
∂u + 1

sin γ
∂
∂v , into (3.3), we obtain

− ∂

∂v
ψt =Me(−jαo,

∂

∂u
)ψt = (Meo + Me1

∂

∂u
+ Me2

∂2

∂u2
)ψt, (3.4)

where

Meo = Mo sin γ, Me1 = M1 sin γ − I cos γ, Me2 = M2 sin γ. (3.5)

For the sake of simplicity and in order to get simple explicit expressions, we consider
homogeneous isotropic media filling the angular regions. In this case the explicit forms of
Mem, m= 0, 1, 2 (3.5) are straightforwardly derived from (2.23)-(2.25). By applying the Fourier
transform along x= u direction to (3.4), i.e.ψt(x) = 1

2π

∫∞
−∞ Ψt(η)e−jηxdηwith notation omitting

v, z dependence, we obtain the ordinary system of differential equations

− ∂

∂v
Ψt = Me(γ, η)Ψt (3.6)

with

Me(γ, η) =Me(−jαo,−jη) = Meo − jηMe1 − η2Me2 (3.7)

since ∂
∂u = ∂

∂x
FT↔ −jη.209

(a) Link between eigenvalues of M(η) and Me(γ, η)210

In the oblique coordinate system, the solution of (3.6) is related to the eigenvalue problem

Me(γ, η)uei(γ, η) = λei(γ, η)uei(γ, η), (3.8)

where λei and uei(γ, η) (i= 1..n) are respectively the eigenvalues and the eigenvectors of the 6x6
matrix Me(γ, η). Using (3.6) and (3.7) equation (3.8) becomes

(Mo sin γ − jηM1 sin γ − η2M2 sin γ)uei(γ, η) = (λei(γ, η)− jη cos γ)uei(γ, η) (3.9)

and thus

M(η)uei(γ, η) =

(
λei(γ, η)− jη cos γ

sin γ

)
uei(γ, η). (3.10)

Comparing (3.10) with (2.28) we observe the relation among the eigenvalues and the eigenvectors
of the two problems. The two problems defined by the matrices M(η) and Me(γ, η) have same
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eigenvectors

uei(γ, η) = ui(η), (3.11)

thus same reciprocal vectors and related eigenvalues

λei(γ, η)− jη cos γ

sin γ
= λi(η). (3.12)

Since Me(γ, η) and M(η) have same eigenvectors (3.11), i.e. ui(η) reported in the columns of
(2.32), we note the important property that the eigenvectors of Me(γ, η) do not depends on the
aperture angle γ of the angular region (Fig. 1). From (3.12), the eigenvalues λei of Me(γ, η) can be
re-written using the notation (2.29)-(2.30):

λe1(γ, η) = j(η cos γ + sin γ ξp(η)),

λe2,e3(γ, η) = j(η cos γ + sin γ ξs(η)),

λe4(γ, η) = j(η cos γ − sin γ ξp(η)),

λe5,e6(γ, η) = j(η cos γ − sin γ ξs(η)).

(3.13)

where the first three λei are related to progressive waves and the last three to regressive waves211

according to the definitions reported in Section 2. The corresponding eigenvectors and reciprocal212

vectors corresponding to λei are ui and νi reported in (2.32) and (2.33) according to (3.11).213

As we will see in the next section, the bi-orthogonal basis ui and νi can be used to build the214

solution of the transverse equations (3.6) in Laplace domain for elastic wave motion problems in215

an angular region with arbitrary αo, i.e. non planar problems.216

4. Solution of the oblique equations for angular regions217

With reference to Fig. 1, let us introduce the Laplace transforms of ψt(u, v) (2.16)

ψ̃t(η, v) =

∫∞
0
ejη uψt(u, v)du (4.1)

for regions 1,2 and ψ̃t(η, v) =
∫0
−∞ ejη uψt(u, v)du for regions 3,4. The Laplace transforms

applied to (3.4) yield:

− d

dv
ψ̃t = Me(γ, η) ψ̃t +ψs(v) (4.2)

with

Me(γ, η) = Meo − jηMe1 − η2Me2. (4.3)

Note that (4.3) and (3.7) share the same symbol and explicit mathematical expression, however218

the first is related to a Fourier transform while the second to a Laplace transform, thus obviously219

they have the same eigenvalues and eigenvectors.220

The termψs(v) is obtained from the derivative property of the Laplace transform and for each221

angular region we obtain a different expression. In particular, we indicate with ψas(v) the value222

ofψs(v) on the face a, see Fig. 1, (0≤ v <+∞, u= 0+), withψbs(v) the value ofψs(v) on the face223

b (−∞≤ v < 0, u= 0+), with ψcs(v) the value of ψs(v) on the face c (−∞≤ v < 0, u= 0−) and224

with ψds(v) the value of ψs(v) on the face d (0≤ v <+∞, u= 0−).225

Since (4.2) is a system of six ordinary differential equations of first order with constant226

coefficients in a semi-infinite interval, we have mainly two methods for its solution: 1) to apply the227

dyadic Green’s function procedure in v domain, 2) to apply the Laplace transform in v that yields228

a linear system of six algebraic equations from which one can write down the general solution in229

terms of eigenvalues and eigenfunctions. We note that both methods are effective and in particular230

the second method is more useful for representing the spectral solution in each point of the231

considered angular region. However, it initially introduces complex functions of two variables.232

As proposed in the following subsections, we prefer the first method because, by this way, we233
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get the functional equations of the angular regions that involve directly complex functions of one234

variable.235

Using the concept of non-standard Laplace transforms (see section 1.4 of [4]), the validity of236

(4.2) and (4.3) in absence of sources is extended to the total fields in presence of plane-wave237

sources or sources located at infinity from any direction yielding isolated poles in spectral domain.238

With reference to Fig. 1, let us now focus the attention on the angular region 1 in details. The239

results for the other regions will follow a similar procedure. We observe that the selection of four240

angular regions as in Fig. 1 related to a unique aperture angle γ does not limit the applicability241

of the method. In fact all the equations (once derived) can be used with a different appropriate242

aperture angle just replacing γ with the proper value. The purpose of deriving the functional243

equations with a unique γ is related to the fact that we formulate and solve the angular region244

problems by analyzing once and for all the matrix Me(γ, η) (4.3). We recall also that the imposition245

of boundary conditions and media for each region will be made only while examining a practical246

problem and it yields GWHEs from the functional equations.247

(a) Region 1: u> 0, v > 0248

Focusing the attention on region 1 (Fig. 1), i.e. u> 0, v > 0, (4.2) holds with

ψs(v) =ψas(v) =−Me1ψt(0+, v) + jηMe2ψt(0+, v)−Me2
∂

∂u
ψt(0+, v). (4.4)

Equation (4.2) is a system of differential equations of first order of dimension six, whose solution
ψ̃t is obtainable as sum of a particular integral ψ̃p with the general solution of the homogeneous
equation ψ̃o [11]:

ψ̃t = ψ̃o + ψ̃p. (4.5)

The solution of the homogeneous equation must satisfy

− d

dv
ψ̃o = Me(γ, η) ψ̃o. (4.6)

Considering the solution form ψ̃o =C e−λ(γ,η)vu(η), the most general solution is

ψ̃o(γ, v) =

6∑
i=1

Cie
−λei(γ) vui(η), (4.7)

where λei and ui (i=1..6) are the eigenvalues and the eigenvectors of the matrix Me(γ, η)249

respectively reported at (3.13) and (2.32).250

In presence of a passive medium, following the properties described in Section 2(a), we observe
that the first three eigenvalues λei, i= 1, 2, 3 present non-negative real part and are related
to progressive waves along positive v direction while the last three eigenvalues λei, i= 4, 5, 6

present non-positive real part and are related to regressive waves. The evaluation of the particular
integral ψ̃p(η, v) of (4.2) is easier if carried out in dyadic notation i.e.

− d

dv
ψ̃t =Me(γ, η) · ψ̃t +ψs(v), (4.8)

where Me is the dyadic counterpart of the matrix Me assuming canonical basis3. It yields

ψ̃p(η, v) =−
∫∞
0
G(v,v′) ·ψs(v′)dv′, (4.9)

where G(v, v′) is the dyadic Green’s function of (4.8), i.e. solution of

d

dv
G(v, v′) +Me(γ, η) ·G(v, v′) = δ(v − v′)1t (4.10)

with the unit dyadic 1t of dimension six.251

3Any dyadicA=
∑
ij
Aijeiej can be represented by a matrix A with elementsAij where ei are unit vectors and vice versa.



13

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Based on the theory reported in [31] and [11], we apply the methodology reported in Section
4 and Appendix B of [1], where we build the dyadic Green’s function for arbitrary boundary
conditions by selecting progressive and regressive waves in indefinite half-space as homogeneous
solutions of (4.10). It yields:

G(v, v′) =


3∑
i=1

uiνie
−λei(γ,η)(v−v′), v > v′

−
6∑
i=4

uiνie
−λei(γ,η)(v−v′), v < v′

. (4.11)

In our framework, we avoid to impose the boundary condition at this step, since we want to252

find functional equations that are free of this constraint, as described in [1] based on [11]. Only,253

while investigating a practical problem, we will impose boundary condition to the functional254

equations (for instance in region 1 at face ϕ= 0 i.e. u> 0, v= 0 and face ϕ= γ i.e. u= 0, v > 0)255

yielding GWHEs of the problem.256

By substituting (4.7) and (4.9) with (4.11) into (4.5), it yields

ψ̃t(η, v) =
6∑
i=1

Cie
−λei(γ) vui −

3∑
i=1

uiνi ·
∫v
0 e
−λei(γ,η)(v− v′)ψas(v

′)dv′+

+
6∑
i=4

uiνi ·
∫∞
v e−λei(γ,η)(v− v

′)ψas(v
′)dv′.

(4.12)

Looking at the asymptotic behavior of (4.12) for v→+∞ we have that the divergent terms are257

the ones in
6∑
i=4

Cie
−λei(γ) vui. For this reason we assume Ci = 0, i= 4, 5, 6. Note in particular the258

vanishing of the last three integral terms as v→+∞ (last sum in (4.12)).259

Setting v= 0 in (4.12), we have

ψ̃t(η, 0) =
3∑
i=1

Ciui +
6∑
i=4

uiνi ·
∫∞
0 eλei(γ,η)v

′
ψas(v

′)dv′. (4.13)

Multiplying (4.13) by νi(η) for i= 1..6, using bi-orthogonality, we obtain{
νi · ψ̃t(η, 0) =Ci, i= 1, 2, 3

νi · ψ̃t(η, 0) = νi ·
^

ψas(−jλei(γ, η)), i= 4, 5, 6
, (4.14)

where λei(γ, η) are reported in (3.13) and
^

ψas(χ) is the Laplace transform in v along face a (v= r

in cylindrical coordinates)

^

ψas(χ) =

∫∞
0
ejχvψas(v)dv. (4.15)

We note that in the first three equations of (4.14) we use progressive reciprocal vectors and we
obtain Ci that are needed in the computation of the homogeneous portion of the solution ψ̃t(η, v)

(4.12) through the Green’s function method. In particular, the unknowns Ci, i= 1, 2, 3 are related
to the Laplace transform ψ̃t(η, 0) evaluated in the lower face of the angular region (v= 0). We now
focus the attention on the last three equations of (4.14) obtained by using regressive reciprocal
vectors that yield the three functional equations of the angular region. We re-write them as

νi · ψ̃t(η, 0) = νi ·
^

ψas(−mai(γ, η)), i= 4, 5, 6 (4.16)

with

ma4(γ, η) =mp(γ, η) = jλe4(γ, η) =−η cos γ + ξp sin γ,

ma5,a6(γ, η) =ms(γ, η) = jλe5,e6(γ, η) =−η cos γ + ξs sin γ.
(4.17)

In (4.16) the Laplace transforms of combinations of the field components defined on the260

boundaries of an angular region, i.e. v= 0 (face o) and u= 0 (face a) in Fig. 1, are related to each261

other. These functional equations are the starting point to define the GWHEs of region 1. They are262

valid for any linear isotropic elastic medium filling the region. Moreover, in (4.16), we note that263
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the reciprocal vectors and eigenvectors do not appear in the definitions of the Laplace transforms264

of the field. Only the eigenvalues are used as argument of the Laplace transforms at the right hand265

side. In the following we apply the notation + to ψ̃t(η, 0) and
^

ψas(−mai(γ, η)), i.e. ψ̃t+(η, 0) and266

^

ψas+(−mai(γ, η)), to highlight that these Laplace transforms are plus functions respectively in η267

and χ=−mai(γ, η), i.e. they are regular in the upper half plane of the complex plane η and χ.268

Note that the functional equations (4.16) contains spectral unknowns defined into two different269

complex planes (η and χ=−mai(γ, η)) related together via (4.17) and thus, we impose the270

boundary conditions we get GWHEs and not CWHEs (except in the case γ = π).271

Explicit form of functional equations (4.16) are obtained and reported in Section 5 for isotropic272

media, however the theory reported in this paper can be applied to more complex media.273

(b) From Region 1 to the other angular regions274

Now, let us repeat the procedure for region 2 (Fig. 1), i.e. u> 0, v < 0. The solution ψ̃t(η, v) of the
system of differential equations of first order of dimension six (4.2) is obtainable as sum (4.5) of
the general homogeneous solution ψ̃o with a particular integral ψ̃p defined in terms of

ψs(v) =ψbs(v) =−Me1ψt(0+, v) + jηMe2ψt(0+, v)−Me2
∂

∂u
ψt(0+, v). (4.18)

in region 2 (v < 0). We note that (4.18) is equal to (4.4) but with different support in v. The
homogeneous solution takes the form (4.7). In presence of a passive medium, we recall that
the first three eigenvalues present non-negative real part and are related to progressive waves
along positive v while the last three eigenvalues present non-positive real part and are related
to regressive waves, thus looking at the asymptotic behavior of (4.7) for v→−∞ we have
Ci = 0, i= 1, 2, 3. Once obtained the dyadic Green’s function specialized for region 2, the solution
is

ψ̃t(η, v) =
6∑
i=4

Ciuie
−λei(γ,η) v−

3∑
i=1

uiνi ·
∫v
−∞ e−λei(γ,η)(v− v

′)ψbs(v
′)dv′+

+
6∑
i=4

uiνi ·
∫0
v e
−λei(γ,η)(v− v′)ψbs(v

′)dv′
. (4.19)

before imposing the boundary conditions. Setting v= 0 in (4.19), we have

ψ̃t(η, 0) =
6∑
i=4

Ciui −
3∑
i=1

uiνi ·
∫0
−∞ eλei(γ,η)v

′
ψbs(v

′)dv′ . (4.20)

Multiplying (4.20) by νi(η) for i= 1..6, using bi-orthogonality, we obtain{
νi · ψ̃t(η, 0) =Ci, i= 4, 5, 6

νi · ψ̃t(η, 0) =−νi ·
^

ψbs(jλei(γ, η)), i= 1, 2, 3
, (4.21)

where λei(γ, η) are reported in (3.13) and where

^

ψbs(χ) =

∫0
−∞

e−jχvψbs(v)dv=

∫∞
0
ejχrψbs(−r)dr (4.22)

is the left Laplace transform of ψbs(v) in v along face b (Fig. 1) or the Laplace transform in r of
ψbs(−r) in cylindrical coordinates (r, ϕ, z). The properties of (4.21) are the same as for region 1.
In particular, we focus the attention on the last three equations obtained by using progressive
reciprocal vectors that yield the functional equations of the angular region. We re-write them as

νi · ψ̃t(η, 0) =−νi ·
^

ψbs(−mbi(γ, η)), i= 1, 2, 3 (4.23)

with

mb1(γ, η) =mpb(γ, η) =−jλe1(γ, η) = η cos γ + ξp sin γ,

mb2,b3(γ, η) =msb(γ, η) =−jλe2,e3(γ, η) = η cos γ + ξs sin γ.
(4.24)
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In (4.23) the Laplace transforms of combinations of the field components defined on the275

boundaries of an angular region, i.e. v= 0 (face o) and u= 0 (face b) in Fig. 1, are related together.276

These functional equations are the starting point to define the GWHEs of region 2 by imposing277

boundary conditions and in particular they can be coupled to the ones of region 1 to build a278

structure with two angular regions with different elastic properties.279

Observing (4.23), we note that at the second members we have that, in general,280

^

ψbs(−mbi(γ, η)) contains discontinuous field components at the boundary u= 0, v < 0 of the281

angular region, while ψ̃t(η, 0) (by definition 2.16) is continuous at the boundary u> 0, v= 0.282

Similarly to what has been done in [1] for electromagnetic applications, we can repeat the283

procedure to obtain functional equations for regions 3 and 4 (Fig. 1).284

5. Explicit form of the functional equations for non planar (3D)285

problems in angular regions286

In this Section, according to our opinion, we deduce and report for the first time in literature287

explicit spectral functional equations in algebraic form for the non planar (3D) elastic scattering288

problem in isotropic angular regions with arbitrary boundary conditions.289

(a) Explicit form for region 1290

We remark that (4.16) are the functional equations of region 1 for an elastic wave motion problem291

in an isotropic medium at skew (non planar) incidence (αo 6= 0). The functional equations for the292

2D (planar and antiplanar) problems are a particular case of the general wave motion problem293

with αo = 0. In the following we demonstrate for validation that the GWHEs obtained from the294

proposed functional equations enforcing the boundary conditions and the functional equations295

obtained in [14] using the Gautesen (Kirchhoff) integral representations in the natural domain are296

identical, although the applied notations are different from each other and not immediate in the297

comparison.298

To explicitly represent (4.16) in region 1, we need νi reported in the rows of V (2.33), the299

Laplace transform of the field ψ̃t(η, 0) along x, u > 0, v= 0+ (face o, see Fig. 1) and the Laplace300

transform
^

ψas(−mai(γ, η)) along x, u= 0+, v > 0 (face a, see Fig. 1). An important property of301

functional equations is that they report combination of field components that are continuous302

on the two boundary of the angular region. This property is fundamental to enforce boundary303

conditions in particular while connecting the angular region to a different body. We observe304

that, while ψ̃t(η, 0) is continuous at face o by definition (2.16), we need some mathematical305

manipulations to demonstrate that
^

ψas(−mai(γ, η)) (4.4) is defined in terms of continuous field306

components at face a for an arbitrary aperture angle γ, since its expression contains potential307

discontinuous components such as derivatives of the field. The proof follows.308

According to a local-to-face-a Cartesian coordinate system X,Y, Z ≡ z (see Fig. 1) we have that309
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the continuous components of the field are TY Y , TY Z , TXY , vX , vY , vZ , but
^

ψas(−mai(γ, η)) and
thusψs(v) =ψas(v) are originally defined in terms of Tyy, Tyz , Txy, vx, vy, vz and their derivatives
which in general are discontinuous, see (4.15), (4.4) and (2.16). In fact, the explicit form of ψas(v)

(4.4), using (3.5) and (2.23)-(2.25), is:

ψas(v) =



Tyy cos(γ)− Txy sin(γ)
ks

3Tyz cos(γ)+Zo sin(γ)
(
jDuvzks

2−4αokp
2vx+ks

2(ηvz+3αovx)
)

ks3

ks
3Txy cos(γ)+sin(γ)

(
2kp

2(−2jDuvxZo+ksTyy−2Zo(αovz+ηvx))+ks
2(−ksTyy+Zo(4jDuvx+3αovz+4ηvx))

)
ks3

vx cos(γ)− vy sin(γ)

vx sin(γ)

(
2kp

2

ks2
− 1

)
+ vy cos(γ)

vz cos(γ)


(5.1)

withDu = ∂
∂u

∣∣∣
u=0+

. As a first step to check the properties of (5.1) on face a, we derive expressions

forDu components of the velocity that appears at the 2nd and 3rd components of (5.1). Noting that
Du =Dx and Dz =−jαo, from the 4th and the 8th basic equations reported in (2.15), we have:

Duvx =
jks[2k

2
p(Txx−Tyy−Tzz)+k

2
s(−2Txx+Tyy+Tzz)]

8k2pZo−6k2sZo
,

Duvz =
jksTxz
Zo

+ jαovx.
(5.2)

Substituting (5.2) into (5.1), we get an expression of ψas(v) in terms of T and v components
without derivatives but still defined in terms of x, y, z. Now, in order to rewrite ψs(v) =ψas(v) =

ψs(X,Y = 0) only in term of the local continuous components TY Y , TY Z , TXY , vX , vY , vZ (face a,
see Fig. 1), we formulate the rotational problem between components along x, y, z with respect to
their definition along X,Y, Z. Without loss of generality, assuming 0< γ < π,

T = R−1a Ta Ra, (5.3)

T =

 Txx Txy Txz
Txy Tyy Tyz
Txz Tyz Tzz

 , Ta =

 TXX TXY TXZ
TXY TY Y TY Z
TXZ TY Z TZZ

 , Ra =

 cos(γ) sin(γ) 0

− sin(γ) cos(γ) 0

0 0 1

,(5.4)

and

v = R−1a va, v =

 vx
vy
vz

 , va =

 vX
vY
vZ

 . (5.5)

Substituting (5.3) and (5.5) into (5.1) after the application of (5.2), it yields an expression of ψas(v)

in terms of the components Ta and va in X,Y, Z

ψas(v)=



TXY sin(γ) + TY Y cos(γ)
αoZo(ks2−2kp2)(vX sin(2γ)+vY cos(2γ))

ks3
− αovY Zo(ks2−2kp2)

ks3
+
ηvZZo sin(γ)

ks
+ TY Z

ψas3(v)

vX cos(2γ)− vY sin(2γ)
vY (kp2 cos(2γ)−kp2+ks2)+kp2vX sin(2γ)

ks2

vZ cos(γ)


, (5.6)

where310
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ψas3(v)(4kp
2ks

3 − 3ks
5) = ks

3TXY cos(γ)
(
4kp

2 − 3ks
2
)
+ sin(γ)

[
αo(−vZ)Zo

(
4kp

2 − 3ks
2
)2

+

+ks
(
4kp

4(TXX + TY Y − TZZ)− 2kp
2ks

2(2TXX + 4TY Y − 3TZZ) + ks
4(TXX + 4TY Y − 2TZZ)

)]
+

+4ηZo
(
4kp

4 − 7kp
2ks

2 + 3ks
4
)
(vY sin(γ)− vX cos(γ))

. (5.7)

We recall that the procedure aims at finding ψas(v) in terms of the continuous field
TY Y , TY Z , TXY , vX , vY , vZ . The result of the proposed substitutions is that the components of
ψas(v) (5.6) are expressed all in terms of the continuous field except the component 3. In fact, from
the beginning, the component 3 of (5.1) contains Duvx that is represented by the 1st of (5.2) where
the discontinuous Txx, Tzz are present. The subsequent application of (5.3) and (5.5) do not change
the properties ψas(v) in terms of continuous components and in particular the 3rd component
contains the discontinuous components TXX , TZZ as reported in (5.6) with (5.7). Noting that the
basic equations (2.15) are invariant for rotations of the coordinate axes, by applying the 6th of (2.15)
in X,Y, Z coordinates we get

TZZ =
ks
(
ks

2 − 2kp
2
)

(TXX + TY Y ) + 2αovZZo
(

4kp
2 − 3ks

2
)

2
(
ks

3 − kp2ks
) . (5.8)

The substitution of (5.8) into ψas3(v) (5.7), after mathematical manipulations, yields an
expression in terms of continuous field, whose embedding in (5.6) gives a representation of ψas(v)

only in terms of continuous field at face a:

ψas(v)=



TXY sin(γ) + TY Y cos(γ)
αoZo

(
ks

2−2kp
2
)
(vX sin(2γ)+vY cos(2γ))

ks3
−
αovY Zo

(
ks

2−2kp
2
)

ks3
+
ηvZZo sin(γ)

ks
+ TY Z

sin(γ)
(
4ηvY Zo sin(γ)(k2p−k

2
s)+ks

2(αovZZo−ksTY Y )
)
+2ηvXZo sin(2γ)(ks−kp)(kp+ks)+ks3TXY cos(γ)

ks3

vX cos(2γ)− vY sin(2γ)
vY

(
kp

2 cos(2γ)−kp2+ks
2
)
+kp

2vX sin(2γ)

ks2

vZ cos(γ)


. (5.9)

From (5.9), we note that ψas(v) is defined only in term of continuous field component at face a.
Now, the application of Laplace transform (4.15) to ψas(v) yields the explicit expression of the
spectral functional equations (4.16) for region 1 in terms of continuous components. We remark
that this property is fundamental to easily impose impenetrable boundary conditions and to
couple region 1 with other penetrable surrounding regions of arbitrary geometry and in general
non-homogeneous to region 1.

The property of the elastic wave motion problem to be formulated in terms of a differential311

problem (4.2) with sources ψas(v) (5.9) defined only in term of continuous field on the boundary312

represents an equivalence theorem in elasticity analogous to the well-known equivalence theorem313

in electromagnetism. In fact, the solution is given by ψ̃t(η, v) (4.12) through the Green’s function314

formulation only in terms of continuous components on the two faces of the angular region (Ci315

on face o and ψas(v) on face a), see (4.12)-(4.14). This property is corresponding to the well-316

known Schelkunoff’s equivalence theorem together the uniqueness theorem in electromagnetics317

[36] where the equivalent sources are defined in terms of the components of electromagnetic field318

E,H tangent (continuous) to (at) the boundaries. A tentative text may be the following.319

Equivalence theorem in elasticity: A field in a lossy region is uniquely specified by the sources320

within the region plus the continuous components of the fields over the boundary.321

In order to avoid trivial identities for αo = 0 and in order to simplify a little the explicit form of
functional equations (4.16), we redefine the reciprocal vectors νi starting from the rows V(i, :), i=

1..6 of (2.33) according to the following scaling (reciprocal vectors as eigenvectors are defined up
to a multiplicative constant):

ν1 =
2Zoξpk

2
sV(1,:)

αo
, ν2 = 2Zoξsk

2
sV(2, :), ν3 = 2Zoξsk

2
sV(3, :),

ν4 =
2Zoξpk

2
sV(4,:)

αo
, ν5 = 2Zoξsk

2
sV(5, :), ν6 = 2Zoξsk

2
sV(6, :).

(5.10)
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With (5.10), (4.16) take the form (5.11)-(5.13) where the T, v quantities with lowercase
subscripts in the LHS of the equations are defined for u> 0, v= 0+ and are Laplace transforms
in η, while the T, v quantities with uppercase subscripts are defined for u= 0+, v > 0 and are
Laplace transforms in −mp,−ms,−ms respectively in the RHS of (5.11),(5.12),(5.13).

ks (−Tyyξp + ηTxy + αoTyz) + Zo
[
2ξp(ηvx + αovz) + vy

(
αo

2 + η2 − ξ2s
)]

=

=Zo[vY

(
αo

2 + kp
2 − ks2

)
+ vX sin(2γ)

(
η2 − ξ2p

)
+ 2ξp(ηvX cos(2γ)+

−ηvY sin(2γ) + αovZ cos(γ)) + vY cos(2γ)
(
η2 − ξ2p

)
+ 2αoηvZ sin(γ)]+

+ks[−ξp(TXY sin(γ) + TY Y cos(γ)) + ηTXY cos(γ)− ηTY Y sin(γ) + αoTY Z ]

, (5.11)

ksξs(ηTxy + αoTyz) + ksTyy
(
αo

2 + η2
)

+

+Zo[ξ
2
s (ηvx + αovz) + 2vy

(
αo

2 + η2
)
ξs −

(
αo

2 + η2
)

(ηvx + αovz)] =

= ksξs[ηTXY cos(γ)− ηTY Y sin(γ) + αoTY Z ]+

+ks
(
αo

2 + η2
)

[TXY sin(γ) + TY Y cos(γ)]+

+Zo{ξs[ξs(ηvX cos(2γ)− ηvY sin(2γ) + αovZ cos(γ)) + vX

(
αo

2 + 2η2
)

sin(2γ)+

+vY

(
αo

2 + 2η2
)

cos(2γ) + αo
2vY + 2αoηvZ sin(γ)]+

−
(
αo

2 + η2
)

[ηvX cos(2γ)− ηvY sin(2γ) + αovZ cos(γ)]}

, (5.12)

ks
3Tyz + ξs{Zo[ks2vz + 2αovyξs − 2αo(ηvx + αovz)] + αoksTyy} − αoks(ηTxy + αoTyz) =

=Zo{αo sin(2γ)[vX

(
−αo2 − 2η2 + ks

2
)

+ 2ηvY ξs]− αo cos(2γ)[vY

(
αo

2 + 2η2 − ks2
)

+

+2ηvXξs] + vZ cos(γ)
(
ks

2 − 2αo
2
)
ξs + ηvZ sin(γ)

(
ks

2 − 2αo
2
)

+ αovY

(
ks

2 − αo2
)
}+

+ks{TY Z
(
ks

2 − αo2
)

+ αoξs[TXY sin(γ) + TY Y cos(γ)] + αoη[TY Y sin(γ)− TXY cos(γ)]}

.

(5.13)

We remark that (5.11)-(5.13) are the functional equations of region 1 for an elastic wave motion322

problem in an isotropic medium at skew (non planar) incidence (αo 6= 0). These equations,323

according to our opinion, are deduced and reported for the first time in literature.324

In particular, by applying the traction-free boundary conditions (Txy = Tyy = Tyz = TXY =325

TY Y = TY Z = 0), (5.11)-(5.13) becomes GWHEs formulating the 3D elastic wedge problem326

considered in [17]. This formulation is important because allows to get semi-analytical solutions327

via Fredholm factorization method as developed by the authors in [4]. According to the authors’328

opinion, this technique constitutes a very power tool for the accurate approximate solutions of329

arbitrary WH equations. We remark that the GWHEs are algebraic, while in [17] the solution330

is obtained by functional equations written in terms of singular integral operators and solved331

by numerical technique. We assert that the semi-analytic solution using Fredholm factorization332

method allows physical insights by asymptotics in spectral domain.333

(b) Explicit form for region 2334

In this subsection, we repeat the procedure reported in subsection 5.(a) for region 2 (see Fig. 1),335

i.e. u> 0, v < 0, but with different aperture angle as reported in Fig. 2(b): the aperture angle of336

region 2 is γ instead of π − γ as originally taken in Fig. 1. This difference is of great utility in337

the analysis of wedge structures with symmetries. For this purpose, we first start on deriving338

functional equations of region 2 (4.23) with the original aperture angle γ (Fig. 1 and Fig. 2(a)) for339

an elastic wave motion problem in an isotropic medium at skew (non planar) incidence (αo 6= 0).340

Second, we apply the change in the aperture angle and the rotation of local reference system. To341

explicitly represent (4.23) for region 2, we need νi reported in the rows of V (2.33), the Laplace342

transform ψ̃t(η, 0) along x, u > 0, v= 0 (face o) and the Laplace transform
^

ψbs(−mbi(γ, η)) along343

x, u= 0, v < 0 (face b). We observe that, while ψ̃t(η, 0) is continuous at face p by definition (2.16),344

we need some mathematical manipulations to demonstrate that
^

ψbs(−mbi(γ, η)) (4.18) is defined345
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in terms of continuous field components at face b for an arbitrary aperture angle γ, since its346

expression contains potential discontinuous components such as derivatives of the field.347

Figure 2. Angular regions and oblique Cartesian coordinates. The left subfigure re-reports Fig. 1 for convenience and it

is the reference for the theory developed in the previous sections. The right subfigure shows the new framework of the

space divided into four angular regions for wedge structures. We note symmetry between regions 1(3) and 2(4). The

figure reports the x, y, z Cartesian coordinates and r, ϕ, z cylindrical coordinates useful to define the oblique Cartesian

coordinate system u, v, z with reference to the angular region 1 0<ϕ< γ with 0< γ < π and u, v, z with reference to

the angular region 2 (only in the right subfigure). The face boundaries are labeled a, b, c, d, o, p, q, s. The figure reports

also the local-to-face-a Cartesian coordinate system X,Y, Z ≡ z and the local-to-face-b Cartesian coordinate system

X2, Y2, Z2 ≡ z (only in the right subfigure). The X,Y, Z ≡ z and X2, Y2, Z2 ≡ z Cartesian coordinate systems are

obtained from x, y, z Cartesian coordinate system by rotation, respectively for a positive γ and −γ.

According to a local-to-face-b Cartesian coordinate system X2, Y2, Z2 ≡ z (see Fig. 2) we
have that the continuous components of the field are TY 2Y 2, TY 2Z2, TX2Y 2, vX2, vY 2, vZ2, but
^

ψbs(−mbi(γ, η)) and thus ψs(v) =ψbs(v) are defined in terms of Tyy, Tyz , Txy, vx, vy, vz and their
derivatives which in general are discontinuous, see (4.22), (4.18) and (2.16). In fact, the explicit form
of ψbs(v) (4.18), using (3.5) and (2.23)-(2.25), yields the same expression of ψas(v) given in (5.1),
even if ψbs(v) is defined for v < 0 and ψas(v) for v > 0. Following the steps done for ψas(v) in
region 1, we derive expressions for Du components of the velocity appearing in (5.1). Noting that
Du =Dx and Dz =−jαo, from the 4th and the 8th basic equations reported in (2.15), we have
(5.2) that substituted into ψbs(v) yields an expression in terms of T and v components without
derivatives but still defined in terms of the coordinate system x, y, z.

Now, in order to rewrite ψs(v) =ψbs(v) =ψs(X2, Y2 = 0) only in term of the local continuous
components TY 2Y 2, TY 2Z2, TX2Y 2, vX2, vY 2, vZ2 (face b), we formulate the rotational problem
between components along x, y, z with respect to their definition along X2, Y2, Z2. The required
rotation in Fig. 2(a) is −π + γ. Now, let us introduce also the change of aperture angle from γ to
π − γ as in the right subfigure of Fig. 2. This change of aperture angle impacts on the definitions of
Mei matrices (due to the replacement of γ with π − γ) and then ψbs(v) that now becomes different
from ψas(v). In the new region 2 (Fig.2(b)) the rotation relations (5.3)-(5.5) of region 1 are replaced
by the relations for region 2 where we have performed the substitution γ→−π + γ (rotation) and
γ→ π − γ (change of aperture angle), thus γ→−γ. It yields:

T = Rb
−1 Tb Rb, (5.14)

T =

 Txx Txy Txz
Txy Tyy Tyz
Txz Tyz Tzz

 , Tb =

 TX2X2 TX2Y 2 TX2Z2

TX2Y 2 TY 2Y 2 TY 2Z2

TX2Z2 TY 2Z2 TZ2Z2

 , Rb =

 cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1

,
(5.15)348
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v = Rb
−1 vb, v =

 vx
vy
vz

 , vb =

 vX2

vY 2

vZ2

 . (5.16)

Substituting (5.14) and (5.16) into ψbs(v) (same expression of ψas(v) (5.1)) after the application
of (5.2) and (5.8) in X2, Y2, Z2 coordinates, it yields an expression of ψbs(v) in terms of the
continuous (at face b) components TY 2Y 2, TY 2Z2, TX2Y 2, vX2, vY 2, vZ2:

ψbs(v) =



TX2Y2
sin(γ)− TY2Y2 cos(γ)

αovX2
Zo sin(2γ)

(
ks

2−2kp
2
)
+αovY2

Zo cos(2γ)
(
2kp

2−ks2
)
+αovY2

Zo

(
ks

2−2kp
2
)
+ηks

2vZ2
Zo sin(γ)

ks3
− TY2Z2

sin(γ)
[
4ηvY2

Zo sin(γ)(ks
2−kp2)+ks

2(αovZ2
Zo−ksTY2Y2 )

]
+2ηvX2

Zo sin(2γ)(ks
2−kp2)−ks3TX2Y2

cos(γ)

ks3

−vX2
cos(2γ)− vY2 sin(2γ)

kp
2[vX2

sin(2γ)−vY2 cos(2γ)]+vY2
(kp

2−ks2)

ks2

−vZ2
cos(γ)


.

(5.17)

Now, the application of Laplace transform (4.22) to ψbs(v) yields the explicit expression of the
spectral functional equations (4.16) for region 2 in terms of continuous components.349

Again the property of the elastic wave motion problem to be formulated in terms of a350

differential problem (4.2) with sources ψbs(v) (5.17) defined only in term of continuous field on351

the boundary represents an equivalence theorem in elasticity for region 2 as discussed in 5(a).352

As done for region 1, in order to avoid trivial identities for αo = 0 and in order to simplify
a little the explicit form of (4.23), we redefine the reciprocal vectors as reported in (5.10). With
(5.10), (4.23) take the form (5.18)-(5.20) where the T, v quantities with lowercase subscripts in the
LHS of the equations are defined for u> 0, v= 0− and are Laplace transforms in η, while the T, v
quantities with uppercase subscripts are defined for u= 0+, v < 0 and are Laplace transforms in
−mpb,−msb,−msb respectively in the RHS of (5.18),(5.19),(5.20). It yields:

Zo
[
2ξp(ηvx + αovz)− vy

(
αo

2 + η2 − ξ2s
)]
− ks (Tyyξp + ηTxy + αoTyz) =

=Zo[−vY 2

(
αo

2 + kp
2 − ks2

)
+ vX2 sin(2γ)

(
η2 − ξ2p

)
+ 2ξp(ηvX2 cos(2γ)+

ηvY 2 sin(2γ) + αovZ2 cos(γ)) + vY 2 cos(2γ)
(
ξ2p − η2

)
+ 2αoηvZ2 sin(γ)]+

−ks [ξp(TY 2Y 2 cos(γ)− TX2Y 2 sin(γ)) + ηTX2Y 2 cos(γ) + ηTY 2Y 2 sin(γ) + αoTY 2Z2]

, (5.18)

ksξs(ηTxy + αoTyz)− ksTyy
(
αo

2 + η2
)

+

+Zo[ξ
2
s (−(ηvx + αovz)) + 2vy

(
αo

2 + η2
)
ξs +

(
αo

2 + η2
)

(ηvx + αovz)] =

= ksξs[ηTX2Y 2 cos(γ) + ηTY 2Y 2 sin(γ) + αoTY 2Z2]+

−ks
(
αo

2 + η2
)

[TY 2Y 2 cos(γ)− TX2Y 2 sin(γ)]+

+Zo{ξs[−ξs(ηvX2 cos(2γ) + ηvY 2 sin(2γ) + αovZ2 cos(γ))− vX2

(
αo

2 + 2η2
)

sin(2γ)

+vY 2

(
αo

2 + 2η2
)

cos(2γ) + αo
2vY 2 − 2 sin(γ)αoηvZ2]+

+
(
αo

2 + η2
)

[ηvX2 cos(2γ) + ηvY 2 sin(2γ) + αovZ2 cos(γ)]}

, (5.19)

−ks3Tyz + ξs{Zo[ks2vz − 2αovyξs − 2αo(ηvx + αovz)] + αoksTyy}+ αoks(ηTxy + αoTyz) =

=Zo{αo sin(2γ)[vX2

(
−αo2 − 2η2 + ks

2
)
− 2αoηvY 2ξs] + αo cos(2γ)[vY 2

(
αo

2 + 2η2 − ks2
)

+

−2ηvX2ξs] + vZ2 cos(γ)
(
ks

2 − 2αo
2
)
ξs + ηvZ2 sin(γ)

(
ks

2 − 2αo
2
)

+ αovY 2(αo
2 − ks2)}+

+ks{TY 2Z2(αo
2 − ks2) + αoξs[TY 2Y 2 cos(γ)− TX2Y 2 sin(γ)] + αoη[TX2Y 2 cos(γ) + TY 2Y 2 sin(γ)]}

.

(5.20)

We remark that (5.18)-(5.20) are the spectral functional equations of region 2 for an elastic
wave motion problem in an isotropic medium at skew (non planar) incidence (αo 6= 0). As
cross-validation, we note that (5.18)-(5.20) of region 2 are equivalent to (5.11)-(5.13) of region 1,
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according to the following replacements dictated by means of symmetry (see Fig. 2):

{vx, vy, vz , Tyy, Txy, Tyz}→ {vx,−vy, vz , Tyy,−Txy,−Tyz},
{vX2, vY 2, vZ2, TY 2Y 2, TX2Y 2, TY 2Z2}→ {vX ,−vY , vZ , TY Y ,−TXY ,−TY Z}.

(5.21)

The procedure reported in this Section can be repeated to get the functional equations for353

regions 3 and 4 following also the explicit mathematical steps described in [1] for em applications.354

6. Validation of functional equations for an isotropic angular355

region with traction-free boundary conditions in the 2D case356

The functional equations for the 2D (planar and antiplanar) problems (αo = 0) are a particular357

case of the ones obtained for the general 3D problem (5.11)-(5.13) and (5.18)-(5.20) respectively for358

region 1 and region 2 with reference to the right subfigure of Fig. 2.359

Taking into consideration region 1, in the following, we demonstrate that the GWHEs360

obtained from the proposed functional equations while enforcing the traction-free face boundary361

conditions in the planar angular problem (αo = 0) and the functional equations obtained in [14] by362

Gautesen’s group are identical, although the applied notations are very different from each other363

and cumbersome to be compared. Moreover, the functional equation for the anti-planar problem364

are checked with an independent method, too.365

We recall that the explicit functional equations for region 1 reported in (5.11)-(5.13) are
derived from (4.16). Since functional equations can be written up to multiplicative constant
as eigenvectors, to perform the comparison with compact expressions and to avoid the lack o
definition of some eigenvectors/reciprocal vectors for αo = 0, we redefine the reciprocal vectors
(2.33) as in the following scaling:

ν1 =
2ξpk

2
sV(1, :)

αo
, ν2 =

2ξsk
2
sV(2, :)

η
; ν3 = 2V(3, :), ν4 =

2ξpk
2
sV(4, :)

αo
, ν5 =

2ξsk
2
sV(5, :)

η
, ν6 = 2V(6, :).

(6.1)

For readability, we report (6.1) in explicit form for αo = 0 in terms of rows of the following matrix:366

Vo =



−ksξpZo
0 −ηksZo 2ηξp ξ2s − η2 0

−ηksZo 0 ksξs
Zo

η2 − ξ2s 2ηξs 0

0 − ks
Zoξs

0 0 0 1

−ksξpZo
0 ηks

Zo
2ηξp η2 − ξ2s 0

ηks
Zo

0 ksξs
Zo

ξ2s − η2 2ηξs 0

0 ks
Zoξs

0 0 0 1


. (6.2)

For αo = 0 we obtain a simplified version of (5.6)367

ψas(v) =



TXY sin(γ) + TY Y cos(γ)
ηvZ sin(γ)Zo

ks
+ TY Z

4ηZo sin(γ)(kp
2−ks2)(vY sin(γ)−vX cos(γ))

ks3
+ TXY cos(γ)− TY Y sin(γ)

vX cos(2γ)− vY sin(2γ)
vY (kp2 cos(2γ)−kp2+ks2)+kp2vX sin(2γ)

ks2

vZ cos(γ)


. (6.3)

With reference to Fig. 1 we now explicit the functional equations (4.16) of an angular region368

filled by isotropic elastic medium before imposing face boundary conditions in the 2D case.369

With αo = 0, the re-scaled reciprocal vectors (6.2), the Laplace transform ψ̃t(η, v= 0) (4.1) of

the continuous field (2.17) at face o and the Laplace transform
^

ψas(χ) (4.15) of the quantity (6.3)
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expressed in terms of the continuous field at face a, we obtain the following explicit form of the
functional equations (4.16):

ks(ηTxy−Tyyξp)
Zo

+ 2ηvxξp + vy
(
η2 − ξ2s

)
= sin(2γ)[−2ηξpvY − vXξp2 + η2vX ] + vY (kp

2 − ks2)+

+ cos(2γ)[−ξp2vY + 2ηξpvX + η2vY ]− ksξp[TXY sin(γ)+TY Y cos(γ)]+ηks[TXY cos(γ)−TY Y sin(γ)]
Zo

,

(6.4)

ks(Txyξs+ηTyy)
Zo

− vx
(
η2 − ξ2s

)
+ 2ηvyξs = sin(2γ)[2ηvXξs − vY ξ2s + η2vY ]+

+ cos(2γ)[vXξ
2
s + 2ηvY ξs − η2vX ] +

ksξs[TXY cos(γ)−TY Y sin(γ)]+ksη[TXY sin(γ)+TY Y cos(γ)]
Zo

,

(6.5)

ksTyz
Zoξs

+ vz =
ksTY Z
Zoξs

+
ηvZ
ξs

sin(γ) + vZ cos(γ). (6.6)

We recall the T, v quantities with lowercase subscripts in the LHS of the equations are defined370

for u> 0, v= 0+ and are Laplace transforms in η of ψ̃t(η, v= 0), while the T, v quantities with371

uppercase subscripts are defined for u= 0+, v > 0 and are Laplace transforms in−mp,−ms,−ms372

of ψas(v) respectively in the RHS of (6.4),(6.5),(6.6).373

We note that (6.4) is related to the complex propagation constant −mp of the principal wave374

while (6.5),(6.6) are related to −ms, i.e. the one of the secondary waves.375

We note also some sort of symmetry between (6.4) and (6.5) except for the additional term376

vY (kp
2 − ks2) in (6.4).377

Eqs. (6.4),(6.5),(6.6) are functional equations for the general 2D wave motion angular problem378

in elasticity before imposing boundary conditions, i.e. they represent the planar and anti-planar379

problems.380

To complete the validation with the equations proposed at (4.1) of [14], with reference to region
1 of Fig.1, we impose traction-free face boundary conditions at faces o and a, i.e. the traction
t = T · n = 0 where n is the unit normal to the face:

Tyy, Tyz , Tyx = 0 at face o (u> 0, v= 0+), TY Y , TY Z , TY X = 0 at face a (u= 0+, v > 0). (6.7)

It yields the following GWHEs:

2ηvxξp + vy(η2 − ξ2s )=sin(2γ)[−2ηξpvY + vX(η2 − ξp2)]+

+ cos(2γ)[vY (η2 − ξp2) + 2ηξpvX ] + vY (kp
2 − ks2)

, (6.8)

−vx
(
η2 − ξ2s

)
+ 2ηvyξs = sin(2γ)[2ηvXξs − vY ξ2s + η2vY ] + cos(2γ)[vXξ

2
s + 2ηvY ξs − η2vX ], (6.9)

vz =
ηvZ
ξs

sin(γ) + vZ cos(γ). (6.10)

where the v quantities with lowercase subscripts in the LHS of (6.8),(6.9),(6.10) are plus functions381

in η and v quantities with uppercase subscripts in the RHS are minus functions (plus functions) in382

mp,ms,ms (−mp,−ms,−ms). Both minus and plus functions are Laplace transforms. Standard383

plus(minus) functions are analytic in the upper(lower) half-plane. We extend the theory to non-384

standard functions when they have isolated poles due to plane wave sources located in the385

standard regularity half-plane.386

Note that (6.10) is independent from (6.8),(6.9). In fact (6.10) is associated to SH wave in the387

wave motion problem (antiplanar problem), while (6.8),(6.9) model the coupled problem between388

P and SV waves (planar problem).389

Eq. (6.10) can be checked and validated after imposing the traction-free face boundary
conditions with (3.15.5) of [4] where a completely different method specialized on antiplanar
problems has been used. Now, let us compare (6.8),(6.9) with (4.1) of [14], reported in original
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form at (6.11) with (6.12)- (6.13).

a(ξ)û1(ξ)− b1(ξ)û2(ξ) + Û1(ξ) = f1(ξ),

b2(ξ)û1(ξ) + a(ξ)û2(ξ) + Û2(ξ) = f2(ξ),
(6.11)

Û1(ξ) = (−1)`
[
−a (ζ1) û1 (ζ1) + b̄1(ξ)û2 (ζ1)

]
, `= 1, 2, (antisym, sym),

Û2(ξ) = (−1)`
[
b̄2(ξ)û1 (ζ2) + a (ζ2) û2 (ζ2)

]
, `= 1, 2 (antisym, sym),

(6.12)

ζ1,2 = ξ cosα+ γ1,2(ξ) sinα,

η1,2 = ξ sinα− γ1,2(ξ) cosα,

b̄1,2(ξ) = 2ζ1,2η1,2.

(6.13)

In (6.11) û1(ξ), û2(ξ) are one-sided Fourier transforms of unknown displacements on face390

o (Fig.1) respectively in x, y, ξ is the spectral variable, a(ξ), b1(ξ), b2(ξ) are spectral functions391

and, Û1(ξ), Û2(ξ) are one-sided Fourier transforms of quantities defined in terms of unknown392

displacements on face a (Fig.1) respectively in X,−Y . f1(ξ), f2(ξ) model the source of the wave393

motion problem. In order to compare (6.11) with (6.8),(6.9), we scale all the displacements by jω394

to get the velocities, thus (6.11) hold in homogeneous form (f1(ξ), f2(ξ) = 0) also interpreting395

ûi(ξ),Ûi(ξ) in terms of velocities. Moreover, we observe that i= 1, 2 waves in [14] are respectively396

associated to SV, P waves, thus we need to compare (6.8),(6.9) respectively with the 2nd and the397

1st equation of (6.11). With the help of the definitions given in [14], let us interpret (6.11) in our398

formalism. Table 1 reports the correspondences for the definition of some quantities in the two399

works. With Table 1, it is easy to show the equivalence between the LHS of (6.8),(6.9) and the400

terms in ûi(ξ) in (6.11).

Table 1. Translation of definitions between this work and [14]

[14] ξ κ1,2 α û1,2(ξ) γ21,2 = κ21,2 − ξ2 a(ξ) = κ21 − 2ξ2 b1,2(ξ) = 2ξγ1,2(ξ)

this paper η ks,p γ vx,y(η) ξ2s,p = k2s,p − η2 ξ2s − η2 2ηξs,p

401

To complete the comparison we need to check the 1st equation of (6.11) and (6.9) focusing the
attention on Û1(ξ) (6.12) and then check the 2nd equation of (6.11) and (6.8) focusing the attention
on Û2(ξ) (6.12). Starting from (6.13), ζ1,2 play the roles of −ms,p (4.17) and η1,2 play the role of
ns,p. In particular we note that, in our notation,

ζ1,2→ η cos γ + ξs,p sin γ, η1,2→ η sin γ − ξs,p cos γ, (6.14)

that apart from a sign in the combination of the two terms are respectively −ms,p (4.17) and ns,p:

ms,p =−η cos γ + ξs,p sin γ, ns,p = η sin γ + ξs,p cos γ. (6.15)

Further sign differences appear also in the combination of the quantities between (6.8)-(6.9) and
(6.11). We are convinced that these differences are due to different notations in Fourier transforms
between engineering (ours, [7] p.XV) and applied mathematics (as in [14]) and, to the different
orientation of local coordinate system on face a between our work and [14] where (X,−Y ) are
selected (see Fig. 1). We note that û1,2(ζ1) in Û1(ξ) (6.12) for equation (6.11) play the roles of
vX,Y (−ms) for equation (6.9). Let us compare the functional coefficient of û1,2(ζ1) with the ones
of vX,Y (−ms). With the help of Table 1 and (6.14)-(6.15), for û1(ζ1) and vX(−ms) we have resp.

− a(ζ1) = κ21 − 2ζ21 → k2s − 2m2
s, (6.16)

sin(2γ)2ηξs + cos(2γ)[ξ2s − η2] = k2s − 2m2
s (6.17)

after some trigonometric manipulation. Again for û2(ζ1) and vY (−ms) we have respectively

b̄1(ξ) = 2ζ1η1→ 2msns, (6.18)

sin(2γ)[−ξ2s + η2] + cos(2γ)[2ηξs] = 2msns. (6.19)
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Now let us complete the comparison between the 2nd equation of (6.11) and (6.8), focusing the
attention on Û2(ξ) (6.12)a nd comparing the functional coefficient of û1,2(ζ1) in Û2(ξ) with the
ones of vX,Y (−mp). With the help of Table 1 and (6.14)-(6.15), for û1(ζ2) and vX(−mp) we have
respectively

b̄2(ξ) = 2ζ2η2→ 2mpnp, (6.20)

sin(2γ)[−ξp2 + η2] + cos(2γ)[2ηξp] = 2mpnp (6.21)

with same calculus done in (6.18)-(6.19). On the contrary, we note that û2(ζ2) and vY (−mp) show
different properties with respect to (6.16)-(6.17). Their respective functional coefficients are

a(ζ2) = κ21 − 2ζ22 → k2s − 2m2
p, (6.22)

sin(2γ)[−2ηξp] + cos(2γ)[−ξp2 + η2] + (kp
2 − ks2) = k2s − 2m2

p (6.23)

that are equivalent after some trigonometric manipulation. Note in (6.22)-(6.23) we have the402

simultaneous presence of SV and P spectral variables and propagation constants and, the presence403

of additional term (kp
2 − ks2) in the LHS of (6.23) with respect to the LHS of (6.17). This property404

denotes coupling between SV and P waves.405

We conclude by affirming that (6.8),(6.9),(6.10) are the GWHEs for the elastic wave motion406

angular problem in 2D (αo = 0) with traction-free face boundary conditions that model the planar407

(6.8),(6.9) and antiplanar (6.10 problems in presence of plane-wave sources or sources located at408

infinity with the help of the concept of non-standard Laplace transforms (see section 1.4 of [5]).409

7. Validation of functional equations through the estimation of410

characteristic impedances in half-space planar regions411

In this Section we further validate the functional equations (5.11)-(5.13) and (5.18)-(5.20) obtained412

in the general case of 3D angular region problems by computing the characteristic impedances of413

the half spaces identified as region 1 (y > 0) and region 2 (y < 0) in Fig. 3 for planar problems.414

Fig. 3 shows the half-plane problem (crack) where arbitrary boundary condition can be415

applied. We recall that GWHEs for practical problems can be derived from (5.11)-(5.13) and (5.18)-416

(5.20) by applying specific boundary conditions (traction-free, clamped, ...). For example, this417

method can be used to compare with solutions reported in [34]- [35] for the half-plane problem.418

In this case, we note that, starting from the general functional equations, by imposing γ = π, we419

model the half-plane problem via GWHEs that reduce to Classical Wiener-Hopf equations due to420

the definitions of spectral variables m.421

Let us start from region 1, considering (5.11)-(5.13). To model the planar problem, we impose
γ = π, αo = 0 and all the continuous z components of the field T and v null: Tyz = TY Z = 0, vz =

vZ = 0. From (5.11)-(5.12) ((5.13) is trivially null in this case) we have

Zo
(

(2η2 − ks2)vy + 2ηvxξp
)

+ ks (ηTxy − Tyyξp) =Zo
(

(2η2 − ks2)vY + 2ηvXξp
)
− ks (ηTXY − TY Y ξp) ,

Zo
((
ks

2 − 2η2
)
vx + 2ηvyξs

)
+ ks (Txyξs + ηTyy) =Zo

((
ks

2 − 2η2
)
vX + 2ηvY ξs

)
− ks (TXY ξs + ηTY Y ) .

(7.1)

Now let us focus the attention on the non null continuous field component of T and v, we have422

respectively for (2.16) with (4.1) and (5.9) with (4.15):423

ψt = (Tyy, Txy, vx, vy)′ , ψas = (−TY Y ,−TXY , vX , vY )′ . (7.2)

From the definitions of ψt and ψas, respectively defined in x> 0, y= 0 in x, y coordinates and in424

x< 0, y= 0+ in X,Y coordinates, we estimate the total fields for y= 0+ as425

ψtot0+ =ψt −ψas =
(
T totyy , T

tot
xy , v

tot
x , vtoty

)′
. (7.3)
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Figure 3. Half-plane planar crack problem with the reference coordinate systems and boundaries adapted from the

general configuration reported in Fig. 2 (X ≡X2, Y ≡ Y2 local face Cartesian coordinates are reported and are equal

in this case due to rotation). The half crack is localized at x< 0, y= 0 and the surrounding space is divided into two

rectangular regions: region 1 (y > 0) and region 2 (y < 0). In this section we evaluate the characteristic impedances of

the half-space regions 1 and 2 that are independent from the boundary conditions on the half-plane and implicitly assume

absence of sources localized at finite.

In fact, we note that the local-to-face-a X,Y coordinates have opposite direction with respect426

to x, y thus the velocity vectors are measured with opposite directions while the tensorial stress427

components have same directions because of the double inversion.428

With the definition of total fields at y= 0+ (7.3), from (7.1) we derive expressions of T totyy , T
tot
xy429

in terms of vtotx , vtoty that in matrix form yield the matrix characteristic impedance of region 1:430 (
T totyy

T totxy

)
= Z+

c

(
vtotx
vtoty

)
, Z+

c =

 ηZo
ks

(
2− ks2

η2+ξpξs

)
− ksZoξs
η2+ξpξs

− ksZoξp
η2+ξpξs

ηZo
ks

(
ks2

η2+ξpξs
− 2
)  . (7.4)

Note that the definition of the characteristic impedance is independent from boundary conditions431

on the half-plane and implicitly assumes absence of sources localized at finite. The impedance432

(7.4) is validated with the admittance Y+
c = (Z+

c )−1 reported in (2.12.5)-(2.12.8) of [4] where, by433

mistake, a coefficient 2 is missing in (2.12.7) and (2.12.8). We note that while in section 2.12 of [4]434

the characteristic impedance is evaluated from the homogeneous solution of transverse equations435

in Fourier domain, in the present work we have used Laplace transforms with boundary436

conditions that results in a completely different and independent proof.437

Now, let us consider region 2 (Fig. 3) and the related functional equations (5.18),(5.19),(5.20)
and (5.17) with (4.22). To model the planar problem, we impose γ = π, αo = 0 and all the
continuous z components of the field T and v null: Tyz = TY Z = 0, vz = vZ = 0. From (5.18)-(5.19)
((5.20) is trivially null in this case) we have

Zo
(
vy(ks

2 − 2η2) + 2ηvxξp
)
− ks(Tyyξp + ηTxy) =Zo

(
vY (ks

2 − 2η2) + 2ηvXξp
)

+ ks(TY Y ξp + ηTXY ),

Zo
(
vx(2η2 − ks2) + 2ηvyξs

)
+ ks(Txyξs − ηTyy) =Zo

(
vX(2η2 − ks2) + 2ηvY ξs

)
− ks(TXY ξs − ηTY Y ).

(7.5)

Now let us focus the attention on the non null continuous field component of T and v, we438

have respectively for (2.16) with (4.1) and (5.17) with (4.22):439

ψt = (Tyy, Txy, vx, vy)′ , ψbs = (TY Y , TXY ,−vX ,−vY )′ . (7.6)

From the definitions of ψt and ψbs, respectively defined in x> 0, y= 0 in x, y coordinates and in440

x< 0, y= 0− in X,Y coordinates, we estimate the total fields for y= 0− as441

ψtot0− =ψt +ψbs =
(
T totyy , T

tot
xy , v

tot
x , vtoty

)′
. (7.7)
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Due to the expressions (7.6), the total field in region 2 (7.7) show a different sign with respect to442

the expression of region 1 (7.3) to maintain the same physical meaning. With the definition of total443

fields at y= 0− (7.7), from (7.5) we derive expressions of T totyy , T
tot
xy in terms of vtotx , vtoty that in444

matrix form yield the matrix characteristic impedance of region 2:445

(
T totyy

T totxy

)
= Z−c

(
−vtotx
−vtoty

)
, Z−c =

 ηZo
ks

(
ks

2

η2+ξpξs
− 2
)

− ksZoξs
η2+ξpξs

− ksZoξp
η2+ξpξs

ηZo
ks

(
2− ks

2

η2+ξpξs

)  . (7.8)

The impedance (7.8) is validated with the admittance Y−c = (Z−c )−1 reported in section 12 at446

(2.12.5)-(2.12.8) of [4] as discussed for region 1. Note that in (7.8) we have assumed different sign447

in the velocity with respect to (7.4) of region 1 due to the different direction of propagation in the448

two regions. Finally, we recall that the method presented in this paper for the calculation of the449

characteristic impedances is more general and independent from the one reported in [4].450

8. Remarks and Conclusions451

In this work, we have introduced a general method for the deduction of spectral452

functional equations and thus GWHEs in angular regions filled by arbitrary linear isotropic453

homogeneous media in elasticity. The importance to formulate wedge problems with GWHEs454

in Electromagnetism has been showed in [4]- [5]. We remark that these equations are important455

also for elastic wedge problems. In particular the functional equations obtained and solved in [14]456

by Gautesen’s group for the planar elastic wedge are GWHEs, although not defined in this way.457

The method is based on the original solution of vector differential equations of first order via458

dyadic Green’s function method and on the projection of this solution along the boundaries of459

the angular region using reciprocal vectors of the pertinent algebraic matrix related to the matrix460

differential operator. The application of the boundary conditions to the functional equations461

yields GWHEs for practical problems. We observe that the functional equations are the starting462

point to develop solutions using WH technique for complex scattering problems.463

Using the concept of non-standard Laplace transforms (see section 1.4 of [5]), the validity of464

the functional equations and of the GWHEs obtained in absence of sources is extended to the465

total fields in presence of plane-wave sources or in general of sources located at infinity. We466

observe that the GWHEs in elasticity contains unknowns defined in multiple complex planes467

η,−mp,−ms related to P and S waves and this property recall electromagnetic applications (and468

related solution methods) in media with multiple propagation constants as reported in [27]-469

[30]. In fact, in this case the reduction of GWHEs to classical WH equations is not possible.470

Explicit expressions of spectral functional equations in algebraic form are provided in the text471

in the general case of non planar elastic problems in angular regions with isotropic media and472

arbitrary boundary conditions and, we remark that, according to our opinion, this is the first473

time in literature. Validation of the GWHE formulation has been demonstrated by comparison474

with prestigious literature references reporting special simplified cases in anti-planar and planar475

problems. The paper demonstrates the flexibility and the advantages of the proposed method,476

based on first order differential formulation, that is useful for the analysis of complex scattering477

problem containing angular regions in arbitrarily linear media by changing the matrix operator478

defined through the fundamental matrices Mo,M1,M2. The paper shows systematic procedural479

steps that can be used for arbitrary wave motion problems in different physics.480
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Glossary563

Table 2. Symbols introduced in the paper

Notation Description

(x, y, z), (r, ϕ, z), (u, v, z), (X,Y, Z) Cartesian, cylindrical, oblique Cartesian, local to face Cartesian coordinates
A, A, A, A, A(·, ·) scalar, column vector, dyadic, matrix, matrix differential operator
kp, ks propagation constants of P and S waves
T (T), S (S) stress tensor (Voigt notation), strain tensor (Voigt notation)
p, v vector momentum density, vector particle velocity
ρ, λ, µ material density and Lame’s constants

C Hooke’s law as fourth order stiffness tensor

∇T , ∇v, Γ∇ matrix differential operators
ψ, θ vector fields in abstract notation
W matrix constitutive parameters of media
ψt transverse field for a stratification along the y direction

M( ∂∂z ,
∂
∂x ) transversal matrix differential operator for elastic equations

Dx = ∂
∂x alternative partial derivative notation

αo field dependence specified by the factor e−jαo z due to invariance along z
η Fourier or Laplace spectral variable according to the position on the text
Ψt(η) Fourier transform along x= u direction (y, z or v, z dependence is omitted)
M(η) matrix operator in Fourier/Laplace domain in indefinite rectangular region
λi, ui, νi eigenvalues, eigenvector and reciprocal vectors of M(η)

ξi different notation of λi for propagation’s properties, multivalued function
γ aperture angle of angular regions (Fig. 1)
Me(γ, η) matrix operator in Fourier/Laplace domain in indefinite angular region
λei eigenvalues of Me(γ, η)

ψ̃t(η, v) Laplace transform along x≡ u of ψt(u, v) (omitting z dependence)
ψs(v) field components on the face of an angular region in Laplace domain

ψas(v),
^

ψas(χ) specialized expression of ψs(v) on face a and its Laplace transform
G(v, v′) dyadic Green’s function in Laplace domain for an angular region

mai spectral variable for the evaluation of
^

ψas(χ) along face a in functional eqs


