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In this work, we introduce a general method to
deduce spectral functional equations in elasticity
and thus, the Generalized Wiener-Hopf Equations
(GWHESs), for the wave motion in angular regions
filled by arbitrary linear homogeneous media and
illuminated by sources localized at infinity. The work
extends the methodology used in electromagnetic
applications and proposes for the first time a complete
theory to get the GWHEs in elasticity. In particular
we introduce a vector differential equation of first
order characterized by a matrix that depends on the
medium filling the angular region. The functional
equations are easily obtained by a projection of
the reciprocal vectors of this matrix on the elastic
field present on the faces of the angular region.
The application of the boundary conditions to the
functional equations yields GWHEs for practical
problems. This paper extends and applies the general
theory to the challenging canonical problem of elastic
scattering in angular regions.

1. Introduction

In [1], we have applied a general theory to obtain
spectral functional equations in electromagnetics and
thus Generalized Wiener-Hopf Equations (GWHESs) for
scattering problem in angular regions filled by arbitrarily
linear media, inspired by [2] and described also in
[3]. The monographs [4]- [5] show the efficacy of
the generalization of the Wiener-Hopf (WH) technique
in practical electromagnetic wave scattering problems
in presence of geometries containing angular regions
and/or stratified planar regions, see references therein.
In this paper we implement for the first time the
methodology to the challenging canonical problem of
elastic scattering in angular regions where some physical
quantities are tensors. The technique consists of three
steps: 1) the deduction of functional equations in
spectral domain of sub-regions that constitute the whole
geometry of the problem, 2) the imposition of boundary
conditions to get the GWHEs and, 3) the solution of the
© The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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system of the WH equations using exact or semianalytical approximate techniques of factorization
as the Fredholm factorization technique [6]- [7].

This paper is focused on the first fundamental step and introduce the potentialities to develop
the other two steps through validations. We follows the method to obtain the WH equations in
spectral domain proposed by Jones [8]- [9], with the application of Fourier/Laplace transforms
directly to the PDE formulation of the problem avoiding the tricky derivation of the Green’s
function in the natural domain. In this work we use a first order differential vector formulation for
continuous components of the fields, inspired by Bresler and Marcuvitz in [10] for stratified media
in electromagnetics. We note that some of theoretical aspects used in electromagnetics (see [1])
are not available in elasticity or are cumbersome to be extended. For this reason, the GWHEs
derivation for scattering by angular regions in elasticity is more complicated and challenging,
although following the same general theory. Indeed, the authors of this paper have preliminary
introduced in [4]- [5] an abstract formulation for simplified elastic scattering problem concerning
the semi-infinite crack and some initial aspects of wedge problems.

In this paper, we first extend the formulation presented in [1] to elastic problems in angular
regions using oblique Cartesian coordinates. It yields a matrix differential problem of first order
whose unknowns are the field components continuous to the faces of the angular regions. The
application of Laplace transform along one face of the angular region and the assumption of
problem invariance along the edge profile yield a matrix ordinary differential problem of first
order. Following [1] based on [11], we develop a spectral solution before imposing boundary
conditions based on the derivation of the dyadic Green’s functions in terms of eigenvectors and
eigenvalue of the algebraic matrix operator (of the first order differential formulation) .

The projection of the solution on reciprocal vectors allows to get a set of functional equations
that relate the Laplace transforms of continuous field components along one face of the angular
regions to the ones of the other face. The imposition of boundary conditions yields a set of GWHEs
for practical angular region problems.

For the sake of simplicity, even if challenging, this work is focused on elastic wedge problem
filled by an elastic isotropic solid and extendable to anisotropic media. This problem is considered
a fundamental problem in the mathematical theory of elastic diffraction and, despite numerous
attempts to solve it in closed form, no exact solution exists for arbitrary aperture angle of the
wedge region. Three major semi-analytical approaches [12]- [14] have been proposed to solve
this problem in the two-dimensional case (i.e. at normal incidence). The first method is presented
by Budaev in his monograph [12] that is based on the Sommerfeld integral (SI) representation
of the elastic potentials and extends the popular and effective Sommerfeld-Malyuzhinets (SM)
method to wedge problems with two concurrent different propagation constants. The difference
equations, that initially arise from this formulation, are reduced to singular integral equations
that are treated with a regularization method. Further interesting aspects of this formulation are
presented also in [15]. A second method to study elastic wedge problems is reported in [13],
where the scattered field by the faces of the wedge is related to the Fourier transforms of the
displacement field of the faces (the spectral functions). Applying the Fourier transforms to the
differential formulation of the elastic field and taking into account the boundary conditions, the
authors obtain singular integral equations in terms of the spectral functions, that are numerically
solved by using the Galerkin collocation method. An important aspect of this work is the
use of recursive equations that provide analytical continuation (propagation of the solution) of
the approximate spectral functions obtained by the numerical solution in a certain strip. New
development of this method are reported in [16], where double Fourier transforms are introduced
to obtain the kernels of the singular integral equations. In [17] the method is extended to 3D
problems, however the proposed functional equations in spectral domain are again written
in terms of singular integral operators and not in an algebraic form. The concept of spectral
representation of the displacements on the wedge faces is applied also by Gautesen’s group
works [18]-[20], [14] that, according to our opinion, have produced the best practical results in the
solution of the two dimensional elastic isotropic wedge problem [14]. The difference with respect
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to [13] is the use of an integral representation in terms of the displacements in the natural domain.
Substantially, the integral representations of this method are those that in electromagnetism are
called Kirchhoff’s representations. The kernel of the integral representations are suitable Green
functions of the free space and the integral does not contain components of the stress tensors.
The traction-free boundary conditions on the faces of the wedge impose this property. Another
important aspect in these works is to resort to an extinction theorem that allows to impose the
vanishing of the displacement outside the elastic wedge. The application of the theorem allows
to use unilateral Fourier transform (or Laplace transform) on the Gautesen (Kirchhoff) integral
representations and it yield functional equations which are algebraic with respect to the Laplace
transforms of the displacements on the two faces of the wedge. We note that the arguments of
the Laplace transforms of the displacements on the two faces are different. Substantially, the
functional equations obtained in [14] are GWHEs', although not defined in this way:.

In this paper we derive with a systematic and efficient method spectral functional equations
in algebraic form useful to derive GWHEs in 3D elastic wedge problems. These equations are
validated by comparison with the ones proposed in [14]. The proposed method has the following
important characteristics:

(i) The functional equations are easily obtained in terms of eigenvectors and eigenvalues of
a matrix that characterizes the medium filling the angular region.
(if) These functional equations hold independently from the boundary conditions of the
angular region.
(iii) The application of boundary conditions yields a system of GWHEs for a specific problem.
(iv) The deduction of the GWHE:s is general, since the method can be applied to study wave
motion in angular regions filled by arbitrary linear media.
We remark that property (i) avoids the introduction of Kirchhoff type representations that require
the computation of the Green’s function. This computation can be difficult in elasticity, see
Gautesen’s group works [14]. Property (ii) allows the possibility to study complex wave motion
problems constituted of different angular sub-regions or angular regions connected to planar
stratified media, see in electromagnetics [21]- [24]. The third and the fourth characteristics allow
the derivation of GWHEs in isotropic elastic media with plane wave source at skew incidence
and in the general case of an elastic wedge filled by anisotropic medium. Moreover, we note
that it is possible to directly compute from the spectral solution of the GWHEs the field in every
point of the angular regions, avoiding Kirchhoff’s representations and Green’s function in natural
domain. In particular the diffracted field component can be asymptotically computed with the
saddle point method. A last but not less important property of the GWHE formulations of wedge
problems is constituted by the set of mathematical tools in complex analysis. The Wiener-Hopf
technique provides powerful solution methods based on exact and approximate factorization
methods. In their works, Gautesen et al. have proposed a possible original method to deal with
GWHE:s of elastic wedge problems, exploiting analytical properties of the unknowns, see [14] and
references therein. We propose, alternatively, the Fredholm factorization method [6]- [7] which is
an effective semi-analytical technique for the solution of arbitrary GWHEs and it is based on
the reduction of the factorization problem to Fredholm integral equations of second kind. We
expect, in a future work, to effectively apply the Fredholm factorization to solve the GWHEs of
elastic wedge problem using the same methodology applied in electromagnetic scattering from
dielectric wedge [5].

The paper is organized into eight sections and we assume plane wave sources and/or
sources localized at infinity in time harmonic fields with a time dependence specified by e/**
(electrical engineering notation) which is suppressed. In Section 2, we introduce the first order
vector differential formulation for continuous components of the elastic field in an indefinite
homogeneous medium. Note that, while in electromagnetics the continuous components of field
are the transversal ones, in elasticity we have a more complex definition in term of stress tensor

!The GWHEs differ from the Classical Wiener-Hopf equations (CWHESs) for the definitions of the unknowns in spectral
domain. While CWHE:s introduce plus and minus functions that are always defined in the same complex plane, the GWHEs
present plus and minus functions that are defined in different complex planes but related together.
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and velocity vector. The theory presented in Section 2 is also useful to study propagation in
stratified media. Using oblique Cartesian coordinates and taking into account the results of
Section 2, Section 3 describes the novel application of the method to angular regions, yielding
the oblique first order vector differential formulation for continuous components of the elastic
field. The application of Laplace transform along one face of the angular region and assumption
of problem with invariance along the edge profile yield a vector ordinary differential problem
of first order (oblique equations). The solution of these oblique equations, projected on the
reciprocal vectors of an algebraic matrix defined in Section 2, provides the functional equations
of an arbitrary angular region (Section 4). It is remarkable that we get functional equations
independently from the materials and the sources that can be present outside of the considered
angular region. Explicit expressions in algebraic form are reported in Section 5 for isotropic media
and arbitrary boundary conditions. Section 6 shows the validation of functional equations in
special simplified cases reported in literature by other authors for the planar problem; and Section
7 reports the validation of functional equations by evaluating the characteristic impedances of
half spaces in planar problem. Finally, conclusions are reported in section 8 and a glossary of the
symbols useful for the readability of the text is provided at the end. We remark that, according
to our opinion, the functional equations for the non planar (3D) general case, are deduced and
reported for the first time in literature in this paper at Section 5. We finally state that the scope of
our paper is to present algebraic spectral functional equations for arbitrary boundary conditions
for 3D wave motion problems in angular regions that are useful for the examination of practical
problems by imposing specific boundary conditions yielding GWHE formulations.

2. First order differential equations for continuous components of
the elastic field in an indefinite rectangular isotropic medium

In this section we study elastic wave propagation in stratified media along a direction (say y) and,
consequently in Section 3, we use these results to develop the theory for angular regions.

The evaluation of the physical fields in an elastic linear medium can be generally described
by a system of partial differential equation of first order. In absence of sources localized at finite
or in presence of plane wave sources, the system is constituted of the translational equation of
motion and the stress-displacement equation [25]- [26], i.e. considering dydadic notation and time
harmonic regime we have

VT =—pwu, 2.1)
(Vu + (Vu)'), (2.2)

where T, S, u are respectively the stress tensor, the strain tensor and the displacement vector and,
p is the mass density (' stands for transpose). In a general media the stress and strain tensors have
constitutive relation given by the Hooke’s law

T=C:5, (2.3)
where C is a fourth order stiffness tensor that in isotropic media simplifies to
C =T+ 2u™™, (2.4)

where ) and 1 are the Lamé’s constants of the elastic medium and, I and [°¥™ are respectively
the unit dyadic and the symmetric fourth order unit dyadic (tetradic).
Using vector (Voigt) representation for tensor quantities [25] we re-write (2.1) as

V1T =jwp, (2.5)
Vov=jws, (2.6)
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9
%go
0 = O
o o 0 2
o0 2 E R 0 0 2 /
Vr= 0 3y g gz g 9z | Ve= 0 a@gj =(Vr), (2.7)
z
0o 0 Z 2 2 0 P
A R
Jy Oz

and where T, S, p and v are respectively the symmetric stress tensor in six-component vector
form (2.8), the symmetric strain tensor in six-component vector form (2.8), the vector momentum
density p = pv and the vector particle velocity v = jwu:

T = (Taox, Tyy, Toz, Tyz, Tuz, Tay)', S = (Sza, Syy, Szz,2Syz, 222, 25zy) . (2.8)

Inspired by [1] for electromagnetic applications, to effectively study wave motion problems in
elasticity, it is convenient to introduce the concept of transverse equations using abstract notation.
The homogeneous abstract form of (2.5) and (2.6), see section 2.9 of [4], is

I'y 9 = jwé, (2.9)

where I'y is a matrix differential operator of first order that relates the fields ¢) and 6:

T S 0 Y
¢:<V>, 0=(p>, Fv:<vT ) ) (2.10)

The vectors v and 8 have constitutive relation defined by the equation
0 =W, (2.11)

where the matrix W depends on the medium that is considered.

In order to close the mathematical problem (2.9)-(2.11), we need to enforce the geometrical
domain of the problem, its boundaries conditions and the radiation condition.

For simplicity, in the following, we consider isotropic loss-less material, however we claim that
transversal elastic equations in a general anisotropic medium assume the same form. Considering
the Hooke’s law T = C S in lossless isotropic medium we obtain

A2u A A0 0 0
A Ad+2¢ A0 0 0
00
c! o A A A+2% 0 0 0 P
- _ R— (12
w ( 0 R)’C 0 0 0 w0 0| 8 g 0] 212)
0 0 0 0 u 0 p
0 0 0 0 0 pu

In the following we use also alternative parameters to define the medium characteristics with
respect to the mass density p, and the Lamé’s constants A and

[ p [p ks
= = = Z, = 2.1
kp w N+ 21147 ks w luv ) W’ ( 3)

where kj is the propagation constant of the longitudinal/principal wave, ks is the propagation
constant of the transversal/secondary wave (vertical or horizontal) and the impedance Z, is a
quantity such that stress components have same dimensions of velocity components time Z,.
Comparing the equations (2.9)-(2.12) to the ones reported in [1] for electromagnetic
applications, we note that the stress T, the particle velocity v, the strain S and the momentum
density p are analogous respectively to the electric field E, the magnetic field H, the dielectric
induction D and the magnetic induction B with constitutive relations T=CS and p =pv
analogous respectively to E = ¢ !'D and B = uH (where ¢, 4 can be either scalar or tensor).
Moreover (2.5)-(2.6) are the elastic analogue of Maxwell’s equations in electromagnetism.
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Substituting (2.11) into (2.9) with (2.12)-(2.13) we get the nine equations that relate the stress T
with the velocity v [4]:

(I'y — jwW) 9 =0, (2.14)
whose explicit form is

DyTre + D2T5r + Dmiy = jksZoU:v

DyTyy + D:Tys + DyToy = jks Zovy

Dszz + DyTyz + DrTrz :jksZoUz
Gy (2R3 (Ta Ty =T ) K2 (2T + Ty + T2 )]

Davz = 8k2 7, —6k2Z,

K [k2 (Two —2T, +Tzz) 2k2 o (Toa—Tyy+T2)]

Dyvy = yykzZO,6k2zo = , (2.15)
Jkg [k (Tzz+Tyy72TZZ) 2k? ( z:c‘FTyy*TZZ)]

D,v, =

8k22076k2Z
D.vy + Dyv, = ks Tyz
Dyvz + Dgv, = ik Lo
Dyvg + Dzvy = L

jk,

N"J N”

o

T
;

N

where D, = %,Dy = 8%7DZ = %.

While the constitutive parameters change only in one direction, say y, using the divergence
theorem [25], it is possible to demonstrate that the continuous components of ¥ at interfaces are
the ones of v and n - T, where n is the unit normal at the interface, i.e.

Py = (Tyy:Tyz’Txy,Ux’Uyyvz)/- (2.16)

The transverse equations of a field are equations that involve only the components that remain
continuous along the stratification according to the boundary conditions on the interfaces and,
starting from (2.15), in general they assume the following form

0 0

(55 92) ¥t (2.17)

0
Y=

where we have a first order derivative along y and a matrix differential operator in = and z.

The reduction of the elastic differential problems to the transverse equations starts from
deriving expressions of the discontinuous components (along y) direction (Tz, T2z, Tx>) from
the 4th, the 6th and the 8th of (2.15). We get:

kyp?(—=2ksTyy+45Zo(Dyve+D, 1)z))+k 2(ksTyy—2§Zo(2Dzv:+D,v5))

sz‘

T ( 2ksTyy+4i2Zo (Dmvm—‘,-Dzvz))—&-k: (k:STyy—QjZO(Dsz-f—QDzvz)) . (218)
zz = PR

Ta:z:— Jj(D2ve+Dgv.)Z,

ks

By substituting (2.18) into the six non used equations of (2.15) (i.e. equations at line 1,2,3,5,7,9) we
get the transverse equations (2.17) where

0 Dz DI 0 _jk/'s Zo 0
D IR N S i i L2 V(Do)
D0 | e 00 Mu(D: D) o IDeDlihon)z,
0z o 0 0 i 0 D 0
R R R
0 = AL 0 D, 0

(2.19)
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i (kst + (4052 + D:2) k? —4D,21?) Z,

M34(Dz,Dg) = - 2 , (2.20)
ks
j (k54 n (sz T 4Dz2) ks — 4Dz2kp2) Zo
M26(Dz; DCL“) = - k 3 ’ (2.21)
S

and where D, = Z%,Dy = (%,Dz = 6%'

The transverse equations along y direction takes the form reported in (2.17) where M(a%, %)
is matrix differential operator of arbitrary differential order and dimension that, in case of
electromagnetic and elastic problems, have respectively dimension 4 and 6, both with differential
order 2 in = and z. In the following, we assume that the geometry of the elastic wave-motion
problem as well as the eventual boundary conditions are invariant along the z-direction, thus,
without loss of generality, when a source depends on a e 7% # factor, also the total field depends
on the same factor, i.e. ¥ = (z,y, z) = f(x,y)e 7%, see for instance [17] before (2.8). Of
course, the same behavior can be obtained by applying Fourier transform also along z direction
and assuming an incident plane wave with a particular skew direction that yields e/~
However, for simplicity, we prefer to avoid the use of a double Fourier transform, recalling that
in the present context an arbitrary source can be expanded in a summation of plane waves.

It yields %wt(az, Y, 2) = —jaot(x, y, 2), i.e. % — —ja, , thus

o 0 ;. ) o2
(a,%)fM(_]ao,%)fMo‘FMl% +M2@, (222)

where M, with m =0, 1,2 are 6x6 matrices and do not depend on z, as they are easily derived
from (2.19):

0 —jao 0 0 — ks Zo 0
2 : 2 2 a_ 27 2
—jao (1-2%) 0 0 0 0 —iZllothy Tk oo k)
0 0 0 _iZelkioat) 0
M= . Fs
0 0o ik 0 0 0
. 2 2
iy 0 0 0 0 ~jao (1~ 35)
0 %= 0 0 —jao 0
(2.23)
0 0 1 0 0 0
2 2
0 0 o 2eflhe kD)o 0
2k, : o Zo 4y —3k,2)
My=| 1= %% 00 0 0 S L @2
00 0 1 0
2
0 00 1- 2k 0 0
0 00 0 0 0
000 0 0 0
000 0 0 -1z
4524 (kp®—ks?)
My=| 0 0 O R 0 0 (2.25)
000 0 0 0
000 0 0 0
000 0 0 0

H
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(a) The eigenvalues and the eigenvectors of M in spectral domain

By applying Fourier transform along z direction to (2.17) with (2.22)-(2.25) (M, =0, m > 2) in
absence of source, we obtain an ordinary vector first order differential equation

—d%wt () = M(7) i (1), (2.26)

where 1 (z) = o= =, W, (n)e 7% dn (notation with omission of y, z dependence) and

M(n) = M(—jao, —jn) = Mo — jnMi — 7°Ma, (2.27)

where 8% — —ja, for the field factor e 7% # (see comment before (2.22)) and % — —jn for the

property of Fourier transforms.
Now, let us investigate the properties of the eigenvalue problem (2.28) associated to (2.26):

Mi(n) w;(n) = Ai(n)ui(n), (2.28)

where u;(n) and A; (i =1..n) are respectively the eigenvectors and the eigenvalues of the 6x6
matrix M(n) (2.27). In presence of a passive medium we observe that three eigenvalues (say
A1, A2, A3) present non-negative real part and the other three eigenvalues (say A4, A5, Ag) present
non-positive real part. In the following we use also alternative expressions:

M =7&m)=—X, Aa=A3=j&(n)=—Xs=—Xe. (2.29)

The explicit form of (2.29) are expressed in terms of Top = 4 /k% — 02, Tos = VK% — a?

5?("7) = Tgp - 7727 Es (77) =\ Tgs - 772» (2.30)

with I'mlkp,s] <0, Im[Top,0s] <0 in lossy media. Since k2 s = k2 + ki + k2 =102 + €2 + a2,
&p,s(n) are multivalued functions of 7. In the following we assume as proper sheets of £y, s (1), the
ones with £y 5(0) = Top,0s and as branch lines of &, s(n) the classical line Im[p,s(n)] =0 (see in
practical engineering estimations Ch. 5.3b of [32]) or the vertical line (Re[n] = Re[7os,0p], Im[n] <
Im[7os,0p])- In (2.29) we have that A1, A2, A3 (A4, A5, Ag) are related to progressive (regressive)
waves and, {p, s are with non-positive imaginary part. In this framework we associate the direction
of propagation to attenuation phenomena.

Since the matrix M(n) is diagonalizable, M(n) is semi-simple 2 [33], Ch. V.9. The semi-simple
property is fundamental to develop the procedure as it yields a set of independent eigenvectors
u;(n) even with same eigenvalues. Although a theory about geometric and mathematical
multiplicity of eigenvalues is available, in practice, we checked the diagonalizability of M(n)
using Jordan decomposition algorithm that in our case yields M(7) = U~'DU where the matrix
U is a matrix with column elements u;(n) and D is a diagonal matrix with diagonal elements the
eigenvalues \;. In relation to the eigenvectors u;(n), we introduce the reciprocal vectors v;(n) (see
chapter 3.16 of [33]) that, in the general elastic case with a, # 0, can be computed by inversion of
the matrix U. The vectors v;(n) satisfy the bi-orthogonal relations

6
Vj Uy = 5ji7 i.e. lt = Z u;v;, (231)
=1

where - is the vector scalar product, ;; is the Kronecker symbol and, 1, is the unit dyadic defined
in terms of dyadic products and such that 1, - a=a - 1, = a for an arbitrary vector a.

From a physics point of view, the eigenvalues A\; = —\4 are associated to longitudinal P
(principal) waves, while A2 = —\5 and A3 = —\g are relevant to the transversal S (secondary)
waves of two types: secondary vertical (5V) and secondary horizontal (SH). The P, SV and SH
waves are not decoupled when o, # 0, while if ap, =0 we have two decoupled problems: one
related to P and SV waves (planar problem) and the other to SH waves (antiplanar problem).

2 A square matrix of dimension n is called semi-simple iff it has a basis of eigenvectors in R™.
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ao’4n? o, n _n(ao’+n*—€3) o’ 40 _ao(a’+n’=€7)
2ks Zo€s 2k Z, 2ksZ, 2ks2Es kg2 2ks2Eg
a, (ks —ao) (ks+ao) __aon _aom aoés 1_ e
2ksZo 2ksZo&s 2ksZo8s ko2 kg2 2 kg2
(2.33)
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X Y4

Figure 1. Angular regions and oblique Cartesian coordinates. The figure reports the x, y, z Cartesian coordinates and
r, ¢, z cylindrical coordinates useful to define the oblique Cartesian coordinate system w, v, z with reference to the
angular region 1 0 < ¢ <« with 0 <~ < . In the figure, the space is divided into four angular regions delimited by ¢ =
++,0, 7, and the face boundaries are labeled a, b, ¢, d, 0, p, q, s. The figure reports also the local-to-face-a Cartesian
coordinate system X, Y, Z = z. Note that z = v and v = X.

The computation of eigenvectors in (2.28), using Wolfram Mathematica ®, it yields in compact
notation

Zo(ao®+n’=€2) 2z.¢. 0 Zo (0o +n*—£2) 27,6, 0
ksao ks ksa, s
_ 27208, _agZy  _ Zoks 220, _agZ, Zo&s
s e, ks Fs Fe ks
_27IZO§P ZO(fS -n ) Ao Zo8s 277Z0€P Zo(gﬂ_n ) _O‘Oans
U= ksao ksn ksn ksa, ksn ksn )
n _&s _ Qo . &s _ Qo
o n n e n n
gp 51’
2 1 0 -k 1 0
1 0 1 1 0 1

(2.32)

whose columns are u;(n) corresponding to the eigenvalues as defined and ordered in (2.29). The
inverse of U yields in its rows the reciprocal vectors v;(n):

In the following Sections 3-5, the eigenvectors u;(n) and the reciprocal vectors v;(n) will be used
to obtain functional equations that relates spectral quantities in elastic wave motion problems
between the two terminal faces of an angular region for an arbitrary «,, i.e. non planar problems.
We also note that u;(n) and v;(n) can be used to build the solution of the transverse equations
(2.26) in Laplace domain for elastic wave motion problems in a rectangular stratified region [31].

3. First order differential oblique equations for continuous
components of the elastic field in an angular region

In this section we introduce the oblique equations for continuous components of the elastic field in
an angular region using an oblique system of Cartesian axes and applying the properties reported
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in Section 2 for rectangular regions. In the following sections, first, we deduce spectral functional
equations then, by imposing boundary conditions, the GWHEs for angular shaped regions.

With reference to Fig. 1 where angular regions are defined thorough the angle v (0 < v < ), we
introduce the oblique Cartesian coordinates u, v, z in terms of the Cartesian coordinates z, y, 2:

u=1x —y coty, v= .y or x=u-+v cosvy, y=wvsin-y, (3.1)
siny

with partial derivatives

O _oud w9 _96 8 _Oud owo__ 9 1 O
Or OxOu Oxdv Ou' 0Oy Oydu Oydv 7 ou siny ov’ (32)
9 0950 o 9 9 0950 dyo 9 9 ’

u " oudr Toudy 0z’ v owos  oway BV oy T

87y~
Starting from (2.17) with (2.22) the transverse (with respect to y) equation of dimension n = 6 for
an elastic problem with invariant geometry along z-direction (i.e. e~7%°?) is
0 ) ) 9?
— Ty = M(—jao, =) aps = (Mo + M — + My —— ) ;. .
8y¢t M(=joo, 5) the = (Mo +Mi o+ Ma g ) 4y 3.3)
Note that for elastic problems, we have second differential order in z. Substituting (3.2), in

particular % = (% and a% = —coty % + -1 2 into (3.3), we obtain

siny v’
d ) d d*
_%’l/’t:/\/le(_JOCm%)¢t:(Meo+Me1%+Me2w)¢'t7 (34)
where
Meo =My siny, Mg =Mjsiny —Icosy, Meo=Mssinny. (3.5)

For the sake of simplicity and in order to get simple explicit expressions, we consider
homogeneous isotropic media filling the angular regions. In this case the explicit forms of
Mem, m=0,1,2 (3.5) are straightforwardly derived from (2.23)-(2.25). By applying the Fourier
transform along z = u direction to (3.4), i.e. ¢ (x) = % = % (n)e 7% dn with notation omitting
v, z dependence, we obtain the ordinary system of differential equations

0
——Y; =M L1/ .
502t e(v,m) P (3.6)
with
Me(7,7) = Me(~jcto, —jn) = Meo — jnMer — 7°Meo 37)

since 3% = % Py —Jn.
(a) Link between eigenvalues of M(7) and M (v, )
In the oblique coordinate system, the solution of (3.6) is related to the eigenvalue problem
Me (7, 1) wei (7, 1) = Xei (v M uei (v, ), (3.8)

where \.; and uc; (7, n) (¢ = 1..n) are respectively the eigenvalues and the eigenvectors of the 6x6
matrix Me (v, n). Using (3.6) and (3.7) equation (3.8) becomes

(Mo sin~y — jnMy siny — 7n°Ma siny) uei (v, 7) = (Aei (7, n) — jncos ) uei (v, ) (3.9)
and thus

M(n) ue;(v,n) = ( Aei (7 ns)in}j eos 7) Ui (7, 7m)- (3.10)

Comparing (3.10) with (2.28) we observe the relation among the eigenvalues and the eigenvectors
of the two problems. The two problems defined by the matrices M(n) and Me(v,n) have same
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228
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230

231
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233

eigenvectors
uei(’%n) =uy (77)7 (311)
thus same reciprocal vectors and related eigenvalues

Aei —j
ei(v,n) — jncosy — ().
sin vy

(3.12)

Since Me (7, n7) and M(n) have same eigenvectors (3.11), i.e. u;(n) reported in the columns of
(2.32), we note the important property that the eigenvectors of Mec(y,7) do not depends on the
aperture angle y of the angular region (Fig. 1). From (3.12), the eigenvalues A.; of M (7, n) can be
re-written using the notation (2.29)-(2.30):

Ae1(7,m) = j(ncosy +siny §p(n)),
Ae2,e3(7,m) = j(ncosy +siny &(n)),
Aea(y,m) = j(ncosy —siny &p(n)),
Aes,e6(7,m) = j(ncosy —siny £s(n)).

(3.13)

where the first three \.; are related to progressive waves and the last three to regressive waves
according to the definitions reported in Section 2. The corresponding eigenvectors and reciprocal
vectors corresponding to A¢; are u; and v; reported in (2.32) and (2.33) according to (3.11).

As we will see in the next section, the bi-orthogonal basis u; and v; can be used to build the
solution of the transverse equations (3.6) in Laplace domain for elastic wave motion problems in
an angular region with arbitrary o, i.e. non planar problems.

4. Solution of the oblique equations for angular regions

With reference to Fig. 1, let us introduce the Laplace transforms of ¢ (u, v) (2.16)

B, v) = j:o 54y (1, )l @)

for regions 1,2 and ’l[)t(’l],’l)):f(i o ejnuwt(u,v)du for regions 3,4. The Laplace transforms
applied to (3.4) yield:

d -~ -
— ¥t =Me (v, m) ¥t + s (v) (4.2)

with
Me (v, 1) =Meo — jn Me1 — 772M62~ (4.3)

Note that (4.3) and (3.7) share the same symbol and explicit mathematical expression, however
the first is related to a Fourier transform while the second to a Laplace transform, thus obviously
they have the same eigenvalues and eigenvectors.

The term )5 (v) is obtained from the derivative property of the Laplace transform and for each
angular region we obtain a different expression. In particular, we indicate with tqs(v) the value
of 15 (v) on the face a, see Fig. 1, (0 < v < 400, u = 04), with 4,5 (v) the value of s (v) on the face
b (—oo <v < 0,u=04), with 9cs(v) the value of ¥s(v) on the face ¢ (—oo <wv < 0,u=0-) and
with 145 (v) the value of ¥s(v) on the face d (0 <v < 400, u=0_).

Since (4.2) is a system of six ordinary differential equations of first order with constant
coefficients in a semi-infinite interval, we have mainly two methods for its solution: 1) to apply the
dyadic Green’s function procedure in v domain, 2) to apply the Laplace transform in v that yields
a linear system of six algebraic equations from which one can write down the general solution in
terms of eigenvalues and eigenfunctions. We note that both methods are effective and in particular
the second method is more useful for representing the spectral solution in each point of the
considered angular region. However, it initially introduces complex functions of two variables.
As proposed in the following subsections, we prefer the first method because, by this way, we
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get the functional equations of the angular regions that involve directly complex functions of one
variable.

Using the concept of non-standard Laplace transforms (see section 1.4 of [4]), the validity of
(4.2) and (4.3) in absence of sources is extended to the total fields in presence of plane-wave
sources or sources located at infinity from any direction yielding isolated poles in spectral domain.

With reference to Fig. 1, let us now focus the attention on the angular region 1 in details. The
results for the other regions will follow a similar procedure. We observe that the selection of four
angular regions as in Fig. 1 related to a unique aperture angle v does not limit the applicability
of the method. In fact all the equations (once derived) can be used with a different appropriate
aperture angle just replacing y with the proper value. The purpose of deriving the functional
equations with a unique + is related to the fact that we formulate and solve the angular region
problems by analyzing once and for all the matrix Me (v, 7) (4.3). We recall also that the imposition
of boundary conditions and media for each region will be made only while examining a practical
problem and it yields GWHEs from the functional equations.

(@) Region1:u > 0,v>0

Focusing the attention on region 1 (Fig. 1), i.e. u > 0,v > 0, (4.2) holds with

e(0) = Yas (0) = Mot 0(04,0) + 1Mz $r(04,0) ~ Moz 2Lt (04,0). (44)

Equation (4.2) is a system of differential equations of first order of dimension six, whose solution
1; is obtainable as sum of a particular integral 1, with the general solution of the homogeneous
equation v, [11]:

J’t = 1[’0 + "/;p- (4.5)
The solution of the homogeneous equation must satisfy

_%";o =Me(v,m) "JJO- (4.6)

Considering the solution form 4, = C e MMy (p), the most general solution is

6
Po(v,v) = Cie ) (), (47)
=1

where A; and u; (i=1..6) are the eigenvalues and the eigenvectors of the matrix Me(y,n)
respectively reported at (3.13) and (2.32).

In presence of a passive medium, following the properties described in Section 2(a), we observe
that the first three eigenvalues A.;,i=1,2,3 present non-negative real part and are related
to progressive waves along positive v direction while the last three eigenvalues A.;,i=4,5,6
present non-positive real part and are related to regressive waves. The evaluation of the particular
integral 1y (1, v) of (4.2) is easier if carried out in dyadic notation i.e.

= M, () + pul0), @8

where M is the dyadic counterpart of the matrix M assuming canonical basis>. It yields

Pp(n,v) = — ro G ps(v)dv, 4.9)

0
where G(v,v’) is the dyadic Green’s function of (4.8), i.e. solution of
L G(o,0) + M () - Gl =50 — ), (®.10)

with the unit dyadic 1, of dimension six.

3 Any dyadic A = 3" A;;eje;j can be represented by a matrix A with elements A;; where e; are unit vectors and vice versa.
ij
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Based on the theory reported in [31] and [11], we apply the methodology reported in Section
4 and Appendix B of [1], where we build the dyadic Green’s function for arbitrary boundary
conditions by selecting progressive and regressive waves in indefinite half-space as homogeneous
solutions of (4.10). It yields:

S e e =) sy
Gv,v')={ =1, . (4.11)
— 3 wype M (=)
i=4
In our framework, we avoid to impose the boundary condition at this step, since we want to
find functional equations that are free of this constraint, as described in [1] based on [11]. Only,
while investigating a practical problem, we will impose boundary condition to the functional
equations (for instance in region 1 at face ¢ =01ie. u >0, v=0 and face p =vie. u=0, v >0)
yielding GWHE:s of the problem.
By substituting (4.7) and (4.9) with (4.11) into (4.5), it yields

Py (777 v) =

Mo

3 ’
Cie M Vuy — 37wy - [ e A M=y (o) do'+
=1

i=1

6 4.12)
+ 3wy J‘;O e Aei (v (v—v )’lbas(v/)dv/.
i=4

Looking at the asymptotic behavior of (4.12) for v — 400 we have that the divergent terms are
6
the onesin C’ie*)‘“h) “u;. For this reason we assume C; =0, i =4, 5, 6. Note in particular the
i=4
vanishing of the last three integral terms as v — 4o (last sum in (4.12)).
Setting v = 0 in (4.12), we have

- 3 6 ,
Pe(1,0)= 3 Ciu; + X wyw - [0 MV g (v))dv. (4.13)
=1 1=4

Multiplying (4.13) by v;(n) for ¢ = 1..6, using bi-orthogonality, we obtain

P (n,0)=C;, i=1,2,3
vi $i(n,0)=Ci, i , . , (4.14)
V’L’lnbt(nyo):V’Ld"as(ij)‘el(’wn))v 7':47536

where A;(7,n) are reported in (3.13) and Tpas(x) is the Laplace transform in v along face a (v =r
in cylindrical coordinates)

Pas(X) = JO X s (v)do. (4.15)

We note that in the first three equations of (4.14) we use progressive reciprocal vectors and we
obtain C; that are needed in the computation of the homogeneous portion of the solution 1+ (7, v)
(4.12) through the Green’s function method. In particular, the unknowns C;, i =1, 2, 3 are related
to the Laplace transform Py (1, 0) evaluated in the lower face of the angular region (v = 0). We now
focus the attention on the last three equations of (4.14) obtained by using regressive reciprocal
vectors that yield the three functional equations of the angular region. We re-write them as

v 'Tl't(% 0):’/1 '&as(_mai(rﬁn))v Z:47576 (416)
with

maa(y,m) =mp(v,n) =jAea(y,n) = —ncosy + &psiny,

. . 417
Ma5,a6 (7, 1) =ms(7,m) = jAes,e6(7, 1) = —ncosy + s sin-y. (17

In (4.16) the Laplace transforms of combinations of the field components defined on the
boundaries of an angular region, i.e. v =0 (face 0) and u = 0 (face a) in Fig. 1, are related to each
other. These functional equations are the starting point to define the GWHEs of region 1. They are
valid for any linear isotropic elastic medium filling the region. Moreover, in (4.16), we note that
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the reciprocal vectors and eigenvectors do not appear in the definitions of the Laplace transforms
of the field. Only the eigenvalues are used as argument of the Laplace transforms at the right hand

side. In the following we apply the notation + to (7, 0) and zzas(—mai (v,m)), i.e. ¥¢1 (n,0) and

1,vba s+ (—mq;i(7,1m)), to highlight that these Laplace transforms are plus functions respectively in n
and x = —mg; (7, n), i.e. they are regular in the upper half plane of the complex plane  and .
Note that the functional equations (4.16) contains spectral unknowns defined into two different
complex planes (n and x = —mg;(7,n)) related together via (4.17) and thus, we impose the
boundary conditions we get GWHEs and not CWHEs (except in the case v = ).
Explicit form of functional equations (4.16) are obtained and reported in Section 5 for isotropic
media, however the theory reported in this paper can be applied to more complex media.

(b) From Region 1 to the other angular regions

Now, let us repeat the procedure for region 2 (Fig. 1), i.e. u > 0, v < 0. The solution 1&,5(777 v) of the
system of differential equations of first order of dimension six (4.2) is obtainable as sum (4.5) of
the general homogeneous solution v, with a particular integral v, defined in terms of

Ps(v) = Pps(v) = —Me1 ¢ (0+,v) + 51 Me2 91 (04, v) — Mea %'ﬁbt(o—h v). (4.18)

in region 2 (v < 0). We note that (4.18) is equal to (4.4) but with different support in v. The
homogeneous solution takes the form (4.7). In presence of a passive medium, we recall that
the first three eigenvalues present non-negative real part and are related to progressive waves
along positive v while the last three eigenvalues present non-positive real part and are related
to regressive waves, thus looking at the asymptotic behavior of (4.7) for v =+ —oco we have
C; =0, i=1,2, 3. Once obtained the dyadic Green’s function specialized for region 2, the solution
is

6 3 ,
Pi(n,0) = 3 Ciuge MV S [V T A=y, () o'+
=4 =1

= (4.19)
+ 3wy - [0 e e Mgy (o )d!
i=4
before imposing the boundary conditions. Setting v = 0 in (4.19), we have
7 6 3 0 Xei(7,m)v’ N g
Pi(n,0) = 24 Ciu; — ‘21 wv; - [2 et T gy (v)d” (4.20)
i= i=
Multiplying (4.20) by v;(n) for ¢ = 1..6, using bi-orthogonality, we obtain
i i(n,0)=C;, i=4,5,6
vi-vi(n,0)=Gi, =4, _ , 421)
Vi"d)t(nao)zfyi'd’bs(])‘ei(/yan))? 2213273
where \; (7, n) are reported in (3.13) and where
P00 = | (o= | () (422)
—oo

is the left Laplace transform of y¢(v) in v along face b (Fig. 1) or the Laplace transform in r of
s (—7) in cylindrical coordinates (r, ¢, z). The properties of (4.21) are the same as for region 1.
In particular, we focus the attention on the last three equations obtained by using progressive
reciprocal vectors that yield the functional equations of the angular region. We re-write them as

Vi "(,Zt(’f],o):—l/i "Ebs(_mbi(’ﬁ’r/)): 1=1,2,3 (423)
with

mp1(7,1) = mpp(7,n) = —jAe1(7,m) =ncosy + psiny, (4.24)
mp2 b3 (7, M) = Msp (7, M) = —JAe2,e3(77, 1) =ncosy + &ssiny.
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In (4.23) the Laplace transforms of combinations of the field components defined on the
boundaries of an angular region, i.e. v = 0 (face 0) and u = 0 (face b) in Fig. 1, are related together.
These functional equations are the starting point to define the GWHE:s of region 2 by imposing
boundary conditions and in particular they can be coupled to the ones of region 1 to build a
structure with two angular regions with different elastic properties.

Observing (4.23), we note that at the second members we have that, in general,

@bs(—mbi (7,7m)) contains discontinuous field components at the boundary u=0,v <0 of the
angular region, while ’l/NJt(n, 0) (by definition 2.16) is continuous at the boundary u > 0,v = 0.

Similarly to what has been done in [1] for electromagnetic applications, we can repeat the
procedure to obtain functional equations for regions 3 and 4 (Fig. 1).

5. Explicit form of the functional equations for non planar (3D)
problems in angular regions

In this Section, according to our opinion, we deduce and report for the first time in literature
explicit spectral functional equations in algebraic form for the non planar (3D) elastic scattering
problem in isotropic angular regions with arbitrary boundary conditions.

(a) Explicit form for region 1

We remark that (4.16) are the functional equations of region 1 for an elastic wave motion problem
in an isotropic medium at skew (non planar) incidence (a, # 0). The functional equations for the
2D (planar and antiplanar) problems are a particular case of the general wave motion problem
with oo =0. In the following we demonstrate for validation that the GWHEs obtained from the
proposed functional equations enforcing the boundary conditions and the functional equations
obtained in [14] using the Gautesen (Kirchhoff) integral representations in the natural domain are
identical, although the applied notations are different from each other and not immediate in the
comparison.

To explicitly represent (4.16) in region 1, we need v; reported in the rows of V' (2.33), the
Laplace transform of the field 4 (n, 0) along z,u > 0,v = 04 (face o, see Fig. 1) and the Laplace

transform ., (—mai (v, 1)) along z,u=04,v >0 (face a, see Fig. 1). An important property of
functional equations is that they report combination of field components that are continuous
on the two boundary of the angular region. This property is fundamental to enforce boundary
conditions in particular while connecting the angular region to a different body. We observe
that, while 1[%(77, 0) is continuous at face o by definition (2.16), we need some mathematical

manipulations to demonstrate that 17Ja s(=mgi(v,7m)) (4.4) is defined in terms of continuous field
components at face a for an arbitrary aperture angle ~, since its expression contains potential
discontinuous components such as derivatives of the field. The proof follows.

According to a local-to-face-a Cartesian coordinate system X, Y, Z = z (see Fig. 1) we have that
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the continuous components of the field are Tyy, Ty z, T'xy, vx, vy, vz, but Eas(—mai (v,m)) and
thus 95 (v) = 1as(v) are originally defined in terms of Ty, Ty 2, Ty, Uz, Uy, V> and their derivatives
which in general are discontinuous, see (4.15), (4.4) and (2.16). In fact, the explicit form of s (v)
(4.4), using (3.5) and (2.23)-(2.25), is:

Tyy cos(y) — Tuy sin(y)
ks3Tyz cos(1)+20 sin(7) (1 Duvzks2—daokp?va+hs? (nvz+3a0v2))
kg3
ks 3 Ty cos(v)+sin(v) (2kp? (—2) Duva Zo+ks Tyy —2Z0(Govz+nva))+ks 2 (—ks Tyy+Zo(4i Duva +300vz +4nvz)))

PYas(v) = ks
vy cos(y) — vy, sin(vy)
. 2k
vy sin(vy) k:Z

vz cos(7)

— 1) + vy cos(y)
(5.1)

with Dy, = % on As a first step to check the properties of (5.1) on face a, we derive expressions
u=

for D,, components of the velocity that appears at the 2nd and 3rd components of (5.1). Noting that

Dy = Dy and D, = —ja, from the 4th and the 8th basic equations reported in (2.15), we have:

Do — 3k (2K (Lo =Ty —Tes )+ k3 (—2To0 +Tyy +7=2)]
ulz 8k2Z,—6k2Z, ’ (5.2)

ik Toz | -
Dyv, = JSTD’ + jaovy.

Substituting (5.2) into (5.1), we get an expression of qs(v) in terms of T and v components
without derivatives but still defined in terms of z, y, z. Now, in order to rewrite ¥s(v) = ¥as(v) =
s(X,Y =0) only in term of the local continuous components Tyy, Ty z, Txy, vx, vy, vz (face a,
see Fig. 1), we formulate the rotational problem between components along z, y, z with respect to
their definition along X, Y, Z. Without loss of generality, assuming 0 <y < 7,

T=R;' ToRq, (5.3)
Tow Toy Tz Txx Txy Txz cos(7) sin(y) 0
T=| Toy Tyy Tyz |, Ta=| Txy Tyy Tvz |,Ra=| —sin(y) cos(y) 0 [,(5.4)
Tz Tyz T2 TX Z TYZ TZ A 0 0 1
and
Vx vx
v= R;l Va, v=| vy |, Vva=| vy |. (5.5)
Uz vy

Substituting (5.3) and (5.5) into (5.1) after the application of (5.2), it yields an expression of 1qs(v)
in terms of the components Ty and va in X, Y, Z

Txy sin(y) + Tyy cos(v)
aoZD(ksz—Qkp2)(vx sin(2v)+vy cos(27)) QoVY Zo(k32—2k:p2)
kS - ks3
¢a53 (U)
5.6
Yas(v)= vx cos(27) — vy sin(27) 69
vy (k:p2 cos(2’y)7kp2+k52)+k:p2vx sin(2)
TBa?
vz cos(7)

+ WUZZIZSSiH(V) o

s Where
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Pas3 (V) (dkp ks — 3ks®) = ks*T'xy cos(v) (4k,,2 — 3k82) + sin(y) [ao(—vZ)ZO (4kp2 — 3k52)2+
+ks (4kp (Txx + Tyy — Tzz) — 2kp°ks2(2Tx x + 4Tyy — 3T72) + ks (Tx x +4Tyy — 2T22))] + - 67
+4nZ, (4kp* — Thpks® + 3ks*) (vy sin(y) — vx cos(v))

We recall that the procedure aims at finding qs(v) in terms of the continuous field
Tyy,Ty z,Txy,vx,vy,vz. The result of the proposed substitutions is that the components of
tas(v) (5.6) are expressed all in terms of the continuous field except the component 3. In fact, from
the beginning, the component 3 of (5.1) contains Dy v, that is represented by the 1st of (5.2) where
the discontinuous Tz, T » are present. The subsequent application of (5.3) and (5.5) do not change
the properties 1qs(v) in terms of continuous components and in particular the 3rd component
contains the discontinuous components T'x x, Tz as reported in (5.6) with (5.7). Noting that the
basic equations (2.15) are invariant for rotations of the coordinate axes, by applying the 6th of (2.15)
in X,Y, Z coordinates we get

ks (kSQ - szQ) (Txx + Tyy) + 20007 Zo (4k,,2 - 3/<;s2)
2 (ks3 - kp%s)

The substitution of (5.8) into ,s3(v) (5.7), after mathematical manipulations, yields an
expression in terms of continuous field, whose embedding in (5.6) gives a representation of 1qs(v)
only in terms of continuous field at face a:

Tzz = (5.8)

) Txy sin(vy) + Tyy co(s('y)
aoZo(ks?—2kp?) (v sin(2y)+vy cos(2v))  aovy Zo(ks?—2kp2 W07 5 ()
( e = 3 ) A +Tyz

sin(7) (4nvy Zo sin(9) (k2 —=k2)+ks 2 (a0vz Zo—ks Ty y)) +20vx Zo sin(27) (ks —kp) (kp+ks)+ks > Tx y cos(7)

Bas ()= o . (59)
vx cos(2v) — vy sin(27)
vy (k:p2 cos(2'y)7k:p2+ks2)+kp2vx sin(2v)

2

ks
vz cos(y)

From (5.9), we note that 1qs(v) is defined only in term of continuous field component at face a.
Now, the application of Laplace transform (4.15) to tas(v) yields the explicit expression of the
spectral functional equations (4.16) for region 1 in terms of continuous components. We remark
that this property is fundamental to easily impose impenetrable boundary conditions and to
couple region 1 with other penetrable surrounding regions of arbitrary geometry and in general
non-homogeneous to region 1.

The property of the elastic wave motion problem to be formulated in terms of a differential
problem (4.2) with sources tqs(v) (5.9) defined only in term of continuous field on the boundary
represents an equivalence theorem in elasticity analogous to the well-known equivalence theorem
in electromagnetism. In fact, the solution is given by (7, v) (4.12) through the Green’s function
formulation only in terms of continuous components on the two faces of the angular region (C;
on face o0 and qs(v) on face a), see (4.12)-(4.14). This property is corresponding to the well-
known Schelkunoff’s equivalence theorem together the uniqueness theorem in electromagnetics
[36] where the equivalent sources are defined in terms of the components of electromagnetic field
E, H tangent (continuous) to (at) the boundaries. A tentative text may be the following.

Equivalence theorem in elasticity: A field in a lossy region is uniquely specified by the sources
within the region plus the continuous components of the fields over the boundary.

In order to avoid trivial identities for cvo = 0 and in order to simplify a little the explicit form of
functional equations (4.16), we redefine the reciprocal vectors v; starting from the rows V (i, :), i =
1..6 of (2.33) according to the following scaling (reciprocal vectors as eigenvectors are defined up
to a multiplicative constant):

2 .
= 2208pks V(L) , V2 = 2Zo€sk§V(21 :)7 v3 = QZOESKEV(& :)a

. Us =2Z0E5k2V (5, 1), vg = 2Z0Esk2V (6, :).

V1 "
_ QZofp(Zf?V(4,;) (5.10)

| 2% o
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With (5.10), (4.16) take the form (5.11)-(5.13) where the T,v quantities with lowercase
subscripts in the LHS of the equations are defined for v > 0,v =04 and are Laplace transforms
in n, while the T',v quantities with uppercase subscripts are defined for u=04,v >0 and are
Laplace transforms in —m,, —ms, —ms respectively in the RHS of (5.11),(5.12),(5.13).

ks (=Tyylp + nTwy + @oTyz) + Zo [2517(77% + ovz) + vy (0402 +n? - 53)} =
= Zolvy (%2 + kp” — ks2) + vx sin(27) (772 - 53) + 2&p(nvx cos(2y)+
oy in(2y) + aovz cos(7)) + vy cos(27) (n* = & ) + 2a0mvz sin(7)]+

+ks[—&p(Txy sin(y) + Tyy cos(v)) +nTxy cos(y) — nTyy sin(y) + aoTy 7]

. (5.11)

ks€s(MTwy + aoTyz) + ksTyy (%2 + n2) +
+Zo[€2(nve + aovz) + 2vy (%2 + 772) & — (%2 + 772) (e + aovs)] =
= ks&s[nT'xy cos(y) — nTyy sin(y) + aoTy z]|+
+ks (0402 + 772) [Txy sin(y) + Tyy cos(y)]+
+Zo{&s[€s(nux cos(2y) — nuy sin(2y) + aovz cos(7)) + vx (%2 + 2?72) sin(27y)+
+oy (a02 + 27]2) cos(27y) + ao’vy + 200mvyz sin(y)]+

. (5.12)

— (0?4 92 [ cos(27) — vy sin(29) + vz cos()]}

ks Ty + €{ Zolks vz + 2a0vy€s — 200(NUa + (ovz2)] + aoksTyy} — oks(Tey + aoTyz) =

= Zo{aosin(2y)[vx <fa02 — 2772 + k52) + 2nvy &s] — ao cos(27y)[vy (ao2 + 2772 — ksz) +

+2nvx&s] + vz cos(vy) (ksz - 2a02) &s + nug sin(y) (k32 — 2a02) + aovy (kSQ — aOQ) H

sl Ty (ks — 20) + a0s Ty sin(y) + Ty cos(y)] + aonlTyy sin() — Ty cos(x)]}
(5.13)

We remark that (5.11)-(5.13) are the functional equations of region 1 for an elastic wave motion
problem in an isotropic medium at skew (non planar) incidence (a, # 0). These equations,
according to our opinion, are deduced and reported for the first time in literature.

In particular, by applying the traction-free boundary conditions (Toy =Tyy =Ty =Txy =
Tyy =Ty z =0), (5.11)-(5.13) becomes GWHEs formulating the 3D elastic wedge problem
considered in [17]. This formulation is important because allows to get semi-analytical solutions
via Fredholm factorization method as developed by the authors in [4]. According to the authors’
opinion, this technique constitutes a very power tool for the accurate approximate solutions of
arbitrary WH equations. We remark that the GWHEs are algebraic, while in [17] the solution
is obtained by functional equations written in terms of singular integral operators and solved
by numerical technique. We assert that the semi-analytic solution using Fredholm factorization
method allows physical insights by asymptotics in spectral domain.

(b) Explicit form for region 2

In this subsection, we repeat the procedure reported in subsection 5.(a) for region 2 (see Fig. 1),
i.e. u>0,v <0, but with different aperture angle as reported in Fig. 2(b): the aperture angle of
region 2 is «y instead of m —  as originally taken in Fig. 1. This difference is of great utility in
the analysis of wedge structures with symmetries. For this purpose, we first start on deriving
functional equations of region 2 (4.23) with the original aperture angle - (Fig. 1 and Fig. 2(a)) for
an elastic wave motion problem in an isotropic medium at skew (non planar) incidence (oo # 0).
Second, we apply the change in the aperture angle and the rotation of local reference system. To
explicitly represent (4.23) for region 2, we need v; reported in the rows of V (2.33), the Laplace

transform +; (1, 0) along z,u > 0,v = 0 (face 0) and the Laplace transform Ebs(*mbi(% n)) along
z,u=0,v <0 (face b). We observe that, while 1;(n, 0) is continuous at face p by definition (2.16),

we need some mathematical manipulations to demonstrate that P bs (=M (v, 1)) (4.18) is defined
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in terms of continuous field components at face b for an arbitrary aperture angle ~, since its
expression contains potential discontinuous components such as derivatives of the field.

y
WX Y2 P
a
ORNNEVS
& [}
q [0) 0
¢=tn s p =0y y

(a) (b)

Figure 2. Angular regions and oblique Cartesian coordinates. The left subfigure re-reports Fig. 1 for convenience and it
is the reference for the theory developed in the previous sections. The right subfigure shows the new framework of the
space divided into four angular regions for wedge structures. We note symmetry between regions 1(3) and 2(4). The
figure reports the x, y, z Cartesian coordinates and r, ¢, z cylindrical coordinates useful to define the oblique Cartesian
coordinate system wu, v, z with reference to the angular region 1 0 < ¢ < v with 0 <~y < 7 and u, v, z with reference to
the angular region 2 (only in the right subfigure). The face boundaries are labeled a, b, ¢, d, o, p, q, s. The figure reports
also the local-to-face-a Cartesian coordinate system X, Y, Z = z and the local-to-face-b Cartesian coordinate system
Xa,Ya, Zo = z (only in the right subfigure). The X,Y, Z = z and X2, Y2, Z2 = z Cartesian coordinate systems are
obtained from z, y, z Cartesian coordinate system by rotation, respectively for a positive v and —~.

According to a local-to-face-b Cartesian coordinate system Xpg,Y2,Z> =2z (see Fig. 2) we
have that the continuous components of the field are Ty-oy 92, Ty 222, Tx2y2, Ux2, Vy2, Uz2, but

ers(—mbi(’y, n)) and thus s (v) = ¥y, (v) are defined in terms of Ty, Ty, Ty, Va, Uy, v> and their
derivatives which in general are discontinuous, see (4.22), (4.18) and (2.16). In fact, the explicit form
of ¥ps(v) (4.18), using (3.5) and (2.23)-(2.25), yields the same expression of ¥as(v) given in (5.1),
even if ¥y (v) is defined for v < 0 and tqs(v) for v > 0. Following the steps done for tqs(v) in
region 1, we derive expressions for D, components of the velocity appearing in (5.1). Noting that
Dy =Dy and D, = —ja,, from the 4th and the 8th basic equations reported in (2.15), we have
(5.2) that substituted into 1,5 (v) yields an expression in terms of T and v components without
derivatives but still defined in terms of the coordinate system z, y, z.

Now, in order to rewrite 95 (v) = 1ps(v) = s (X2, Y2 = 0) only in term of the local continuous
components Ty oy 2, Ty 272, Tx2y2, VX2, Vy2,vz2 (face b), we formulate the rotational problem
between components along x, y, z with respect to their definition along X», Y2, Z3. The required
rotation in Fig. 2(a) is —7 + 7. Now, let us introduce also the change of aperture angle from ~ to
m — v as in the right subfigure of Fig. 2. This change of aperture angle impacts on the definitions of
M; matrices (due to the replacement of v with = — 7) and then 45 (v) that now becomes different
from a5 (v). In the new region 2 (Fig.2(b)) the rotation relations (5.3)-(5.5) of region 1 are replaced
by the relations for region 2 where we have performed the substitution v — —m +  (rotation) and
v — m — « (change of aperture angle), thus v — —~. It yields:

T=R, ! T, R, (5.14)
Mow Ty Tz Txox2 Txove Txo2z2 cos(y) —sin(y) O
Toy Tyy Tyz |, To=| Tx2v2 Tvaye Tvazz |,Rp=| sin(y) cos(y) 0 |,
Tz Tyz Tz Txoz2 Tyozz Tz2z2 0 0 1
(5.15)
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Uz VX2
VvV = Rbil Vp, V= Vy ;, Vp = vy 2 . (516)
Vz VZz2

Substituting (5.14) and (5.16) into v, (v) (same expression of ¥qs(v) (5.1)) after the application
of (5.2) and (5.8) in Xg, Y2, Za coordinates, it yields an expression of 4(v) in terms of the
continuous (at face b) components Ty-9y2, Ty 2z2, Tx2y2, VX2, Vy2, Vz2:

Txy vy sin(y) — Ty, vs, cos(7)
aovx,Zo sin(2'y)(k52—2kp2)+aovy2 Zo cos(2v) (zkpz —k52)+aovy2 Zo (k52—2kp2)+17k52v22 Zo sin(7)
kg3
sin(7) [4nvy, Zo sin(y) (ks 2 —kp?)+ks2 (a0 2, Zo—ks Ty, vy) | 210 x, Zo sin(2) (ks 2 —kp2) —ks > Ty, v, cos(+)

— Ty, 2,

S
—vx, c0s(27) — vy, sin(27)
kpz[vXQ sin(29) vy, cos(27)]+vy, (kp2—ks
kg2
—vz, cos(y)

2)

(5.17)

Now, the application of Laplace transform (4.22) to v,5(v) yields the explicit expression of the
spectral functional equations (4.16) for region 2 in terms of continuous components.

Again the property of the elastic wave motion problem to be formulated in terms of a
differential problem (4.2) with sources 15 (v) (5.17) defined only in term of continuous field on
the boundary represents an equivalence theorem in elasticity for region 2 as discussed in 5(a).

As done for region 1, in order to avoid trivial identities for ao =0 and in order to simplify
a little the explicit form of (4.23), we redefine the reciprocal vectors as reported in (5.10). With
(5.10), (4.23) take the form (5.18)-(5.20) where the T', v quantities with lowercase subscripts in the
LHS of the equations are defined for u > 0,v = 0_ and are Laplace transforms in 7, while the 7', v
quantities with uppercase subscripts are defined for u =04, v < 0 and are Laplace transforms in
—Mypp, —Mgp, —Mgy, Tespectively in the RHS of (5.18),(5.19),(5.20). It yields:

Zo [251)(77% + aovz) — vy (0402 +n? - f?)] — ks (Tyyép + nTay + aoTyz) =
=Zo|~vy2 (0402 + kp® — k52> +vx2sin(2y) (n® - 5%) + 26p(nuxo cos(2y)+

My2 $in(2y) + aovzs cos(y)) + vy cos(27) (& — 772) + 200mv 72 sin(y)]+
—ks [£p(Tyay2 cos(y) — Txayasin(y)) + nTx2y2 cos(vy) + nTyay2sin(y) + aoTy2z2)

. (5.18)

Fisks (1Ty + a0Tys) — kTyy (a0 +12) +
+Zo[€2(— (e + aovz)) + 2vy (%2 + 772) &+ (%2 + n2) (mva + aovz)] =
= ks&s[NTxay2 cos(7) + nTyayasin(y) + aoTy2z2]+
—ks (%2 + 772) [Ty2y2 cos(y) — Txaya sin(y)]+ , (5.19)
+Zo{&s[—E&s(nvx2 cos(2y) + nuy2sin(2y) + aovzz cos(y)) — vx2 (a02 + 2772) sin(27)
+uys (ao2 - 2772) c08(27) + aovys — 2sin(y)aonuzo]+
+ (%2 + 772) [nvxa cos(2y) + nuy2 sin(2y) + aovza cos(v)]}

*ks?)Tyz + €S{Z0[k827-)2 - 2aovy€s - 2ao(77vz + ao'Uz)} + aoksTyy} + aoks(nsz + aoTyz) =
= Zo{awo sin(2y)[vxa (faoz — 2172 + ks2> — 2a0mvy2€s| + ao cos(27)[vya (a02 + 27]2 — k52) +
—2nvx9&s| + vza cos(7y) (ksz — 20402) &s + nuzg sin(y) (k32 — 2a02) + ozovyg(ozo2 — ks2)}+

+ks{Ty2z2(a0® — ks?) + aols[Tyay2 cos(y) — Txayasin(y)] + aon[Tx 2y cos(y) + Tyaya sin(y)]}

(5.20)

We remark that (5.18)-(5.20) are the spectral functional equations of region 2 for an elastic
wave motion problem in an isotropic medium at skew (non planar) incidence (oo #0). As
cross-validation, we note that (5.18)-(5.20) of region 2 are equivalent to (5.11)-(5.13) of region 1,
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according to the following replacements dictated by means of symmetry (see Fig. 2):

{ve, vy, vz, Tyy, Tay, Tyzt = {ve, —vy, vz, Tyy, —Toy, —Tyz},

(5.21)
{vx2,vv2,vz2, Tyaye, Txov2, Tyaz2} — {vx, —vy,vz, Tyy, ~Txy, —Tyz}.

The procedure reported in this Section can be repeated to get the functional equations for
regions 3 and 4 following also the explicit mathematical steps described in [1] for em applications.

6. Validation of functional equations for an isotropic angular
region with traction-free boundary conditions in the 2D case

The functional equations for the 2D (planar and antiplanar) problems (o, = 0) are a particular
case of the ones obtained for the general 3D problem (5.11)-(5.13) and (5.18)-(5.20) respectively for
region 1 and region 2 with reference to the right subfigure of Fig. 2.

Taking into consideration region 1, in the following, we demonstrate that the GWHEs
obtained from the proposed functional equations while enforcing the traction-free face boundary
conditions in the planar angular problem (o, = 0) and the functional equations obtained in [14] by
Gautesen’s group are identical, although the applied notations are very different from each other
and cumbersome to be compared. Moreover, the functional equation for the anti-planar problem
are checked with an independent method, too.

We recall that the explicit functional equations for region 1 reported in (5.11)-(5.13) are
derived from (4.16). Since functional equations can be written up to multiplicative constant
as eigenvectors, to perform the comparison with compact expressions and to avoid the lack o
definition of some eigenvectors/reciprocal vectors for o, = 0, we redefine the reciprocal vectors
(2.33) as in the following scaling:

2 . 2 . 2 . 2 .
_ 26pksV(1, .)’ vy = 28sk5V (2, .); vy = 2V(3,1), vy = 26pksV (4, .)’ v = 26sksV(5,:)

Qo n Qo n

6.1)

For readability, we report (6.1) in explicit form for o, = 0 in terms of rows of the following matrix:

I ks
o U ST R
A A
(| — 0 0 0 1
Vo = k. Zoks (6.2)
o "Zkg 2 n* & 0
Y- 0 B2 p2 g 0
kfs
0 A= 0 0 0o 1
For avp = 0 we obtain a simplified version of (5.6)
Txy sin(y) + Tyy cos(v)
mz (e o 1y,
4nZ, sin(y) (k> —ks?) (vy sin(y)—vx cos(v)) .
+ T'xy cos(y) — Tyy sin
was () = 3 () ™) 63)

vx cos(2y) — vy sin(27y)
vy (kp? cos(2y)—kp, > +ks>)+kp vx sin(2y)
k2
v cos(7)

With reference to Fig. 1 we now explicit the functional equations (4.16) of an angular region
filled by isotropic elastic medium before imposing face boundary conditions in the 2D case.
With oo =0, the re-scaled reciprocal vectors (6.2), the Laplace transform 1[%(77, v=0) (4.1) of

the continuous field (2.17) at face o and the Laplace transform 17: as(X) (4.15) of the quantity (6.3)

, v =2V(6,:).
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expressed in terms of the continuous field at face a, we obtain the following explicit form of the
functional equations (4.16):

o (NTiy—Ty, )
Myziw + 2nveép + vy (772 - 53) = sin(2y) [~ 2népvy — vx&p® + nPux] + vy (kp® — ks®)+

+cos(27)[~&p vy + 2n&pux + nPuy ] — hubplTxy sin(v)4Tyy COS(W)]ZJ:M& Py eomin o Fyy izl
(6.4)

7ks(szgso+77Tyy) — Uz (772 - £§> + 2nvyés = sin(2’y) [277UX§S - UY&? + 772UY1+

+00s(29) [ux €2 + 2nuy &5 — nPux] + RebelTxy cos(n)Tyy Sin(“/)]Z+ksn[Txy sin(y)+Tyy cos(y)]

o

(6.5)
ksTy- ksTyz | nuz .
= + sin(vy) + vz cos(7). 6.6
S v = B2 B in) 4 ug cos() 66)
a0 We recall the T', v quantities with lowercase subscripts in the LHS of the equations are defined

an for u>0,v=04 and are Laplace transforms in 7 of by (n,v=0), while the T, v quantities with
a2 uppercase subscripts are defined for u = 0, v > 0 and are Laplace transforms in —my, —ms, —ms
o Of 1as(v) respectively in the RHS of (6.4),(6.5),(6.6).

a4 We note that (6.4) is related to the complex propagation constant —m, of the principal wave
ws  while (6.5),(6.6) are related to —m, i.e. the one of the secondary waves.

a76 We note also some sort of symmetry between (6.4) and (6.5) except for the additional term
377 Vy (k‘p2 - k’52) in (64)

a78 Egs. (6.4),(6.5),(6.6) are functional equations for the general 2D wave motion angular problem

o in elasticity before imposing boundary conditions, i.e. they represent the planar and anti-planar
s problems.
To complete the validation with the equations proposed at (4.1) of [14], with reference to region
1 of Fig.1, we impose traction-free face boundary conditions at faces o and a, i.e. the traction
t =T - n = 0 where n is the unit normal to the face:

Tyy, Tyz, Tyz =0atfaceo (u>0,v=04), Tyy,Tyz,Tyx =0atfacea(u=04,v>0). (6.7)
It yields the following GWHEs:

20v2€p + vy(n® — £2)=sin(27)[—2n&pvy +vx (n® — &)+

+cos(2)[vy (n* — &) + 2n&pux] + vy (kp® —ks?) (6.8)

—Ug (n2 - 6?) + 2nvy€s = sin(29)[2nux Es — vy Ex + nPvy] + cos(29)[ux €2 + 2y Es — nPux], (6.9)

Vy =

nvz
&s
w1 Where the v quantities with lowercase subscripts in the LHS of (6.8),(6.9),(6.10) are plus functions
w2 innand v quantities with uppercase subscripts in the RHS are minus functions (plus functions) in
®  Mp,Ms, Ms (—mp, —ms, —ms). Both minus and plus functions are Laplace transforms. Standard
s plus(minus) functions are analytic in the upper(lower) half-plane. We extend the theory to non-
ss  standard functions when they have isolated poles due to plane wave sources located in the
s standard regularity half-plane.
a7 Note that (6.10) is independent from (6.8),(6.9). In fact (6.10) is associated to SH wave in the
s wave motion problem (antiplanar problem), while (6.8),(6.9) model the coupled problem between
s P and SV waves (planar problem).
Eq. (6.10) can be checked and validated after imposing the traction-free face boundary
conditions with (3.15.5) of [4] where a completely different method specialized on antiplanar
problems has been used. Now, let us compare (6.8),(6.9) with (4.1) of [14], reported in original

sin(y) + vz cos(7). (6.10)

)
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form at (6.11) with (6.12)- (6.13).

a(€)an(€) — b1 (€)T2(€) + T1(€) = (6.11)
u -

b (€)1 (€) + a(€)
(:Jl € =(-1) [_—a (C1) a1 (C1) +b1(§)az (¢1)], €=1,2, (antisym, sym), 6.12)
Ua(€) = (—1)" [b2(&)an (C2) +a(C2) a2 (G2)],  £=1,2(antisym, sym), '

C1,2=¢&cosa+71,2(§)sina,
M2 =E&sina— 7 2(€)cosa, (6.13)
b1,2(£) = 2C1,2m1,2-

In (6.11) @y (§),u2(€) are one-sided Fourier transforms of unknown displacements on face
o (Fig.1) respectively in z,y, § is the spectral variable, a(£),b1(£),b2() are spectral functions
and, 171(5)7 Us (&) are one-sided Fourier transforms of quantities defined in terms of unknown
displacements on face a (Fig.1) respectively in X, =Y. f1(£), f2(£) model the source of the wave
motion problem. In order to compare (6.11) with (6.8),(6.9), we scale all the displacements by jw
to get the velocities, thus (6.11) hold in homogeneous form (f1(¢), f2(§) =0) also interpreting
1;(€),U;(€) in terms of velocities. Moreover, we observe that i = 1,2 waves in [14] are respectively
associated to SV, P waves, thus we need to compare (6.8),(6.9) respectively with the 2nd and the
1st equation of (6.11). With the help of the definitions given in [14], let us interpret (6.11) in our
formalism. Table 1 reports the correspondences for the definition of some quantities in the two
works. With Table 1, it is easy to show the equivalence between the LHS of (6.8),(6.9) and the
terms in @; (€) in (6.11).

Table 1. Translation of definitions between this work and [14]

[14] €| k12 | o | G128 | Va=rlo— € | al§)=rT — 26 | b12(€) =26712()

this paper || 7 | ksp | v | vay(n) | €2, =k3p —n? 2 —n? 25 p

To complete the comparison we need to check the 1st equation of (6.11) and (6.9) focusing the
attention on U; (&) (6.12) and then check the 2nd equation of (6.11) and (6.8) focusing the attention
on Us (&) (6.12). Starting from (6.13), (1,2 play the roles of —ms,p (4.17) and 71,2 play the role of
ns,p. In particular we note that, in our notation,

G2 = meosy +&spsiny, 112 —nsiny = &,pcosy, (6.14)
that apart from a sign in the combination of the two terms are respectively —ms , (4.17) and ns p:
Ms,p=—ncosy+ Espsiny, mnsp=nsiny+ &spcosy. (6.15)

Further sign differences appear also in the combination of the quantities between (6.8)-(6.9) and
(6.11). We are convinced that these differences are due to different notations in Fourier transforms
between engineering (ours, [7] p.XV) and applied mathematics (as in [14]) and, to the different
orientation of local coordinate system on face a between our work and [14] where (X, —Y) are
selected (see Fig. 1). We note that i1,2(¢1) in U1 (&) (6.12) for equation (6.11) play the roles of
vx,y (—ms) for equation (6.9). Let us compare the functional coefficient of @1,2(¢1) with the ones
of vx y (—ms). With the help of Table 1 and (6.14)-(6.15), for %1 (¢1) and vx (—ms) we have resp.

—a(¢1) =kt — 27 —+ k2 — 2m3, (6.16)
sin(29)20€s + cos(27)[€3 —n”) = kF — 2m] (617)

after some trigonometric manipulation. Again for 2 (¢1) and vy (—ms) we have respectively
b1(§) = 2C1m — 2msns, (6.18)

sin(29)[—€2 + 0] + cos(2v)[2n€s] = 2msns. (6.19)
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Now let us complete the comparison between the 2nd equation of (6.11) and (6.8), focusing the
attention on Us (&) (6.12)a nd comparing the functional coefficient of @1 2(¢1) in ﬁg(f ) with the
ones of vx y (—mp). With the help of Table 1 and (6.14)-(6.15), for i1 ((2) and vx (—mp) we have
respectively

ba(€) = 2¢am2 — 2mpny, (6.20)
sin(27)[—&” + 1] + cos(27)[2n€p] = 2mpny (6.21)

with same calculus done in (6.18)-(6.19). On the contrary, we note that 2 (¢2) and vy (—mp) show
different properties with respect to (6.16)-(6.17). Their respective functional coefficients are

a(C2) = KT — 2G5 — ki — 2mp, (6.22)
sin(27)[—2n&p] + cos(27)[—&p° + 07 + (kp® — ks®) = k2 — 2m3 (6.23)

that are equivalent after some trigonometric manipulation. Note in (6.22)-(6.23) we have the
simultaneous presence of SV and P spectral variables and propagation constants and, the presence
of additional term (kp? — ks?) in the LHS of (6.23) with respect to the LHS of (6.17). This property
denotes coupling between SV and P waves.

We conclude by affirming that (6.8),(6.9),(6.10) are the GWHEs for the elastic wave motion
angular problem in 2D (a, = 0) with traction-free face boundary conditions that model the planar
(6.8),(6.9) and antiplanar (6.10 problems in presence of plane-wave sources or sources located at
infinity with the help of the concept of non-standard Laplace transforms (see section 1.4 of [5]).

7. Validation of functional equations through the estimation of
characteristic impedances in half-space planar regions

In this Section we further validate the functional equations (5.11)-(5.13) and (5.18)-(5.20) obtained
in the general case of 3D angular region problems by computing the characteristic impedances of
the half spaces identified as region 1 (y > 0) and region 2 (y < 0) in Fig. 3 for planar problems.

Fig. 3 shows the half-plane problem (crack) where arbitrary boundary condition can be
applied. We recall that GWHE:s for practical problems can be derived from (5.11)-(5.13) and (5.18)-
(5.20) by applying specific boundary conditions (traction-free, clamped, ...). For example, this
method can be used to compare with solutions reported in [34]- [35] for the half-plane problem.
In this case, we note that, starting from the general functional equations, by imposing v =, we
model the half-plane problem via GWHE:s that reduce to Classical Wiener-Hopf equations due to
the definitions of spectral variables m.

Let us start from region 1, considering (5.11)-(5.13). To model the planar problem, we impose
v =, ao = 0and all the continuous z components of the field T and v null: Ty, =Ty z =0, v =
vz = 0. From (5.11)-(5.12) ((5.13) is trivially null in this case) we have
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7.1)

Now let us focus the attention on the non null continuous field component of T and v, we have
respectively for (2.16) with (4.1) and (5.9) with (4.15):

P = (Tyy7 Try, va, Uy)/ , Yas = (_TYY» —Txy,vx, 'UY)I . (7.2)

From the definitions of v; and s, respectively defined in « > 0,y = 0 in z, y coordinates and in
x < 0,y=04 in X,Y coordinates, we estimate the total fields for y =04 as

!
Wi = — was = (Ty! Thy ol o) (7.3)
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Figure 3. Half-plane planar crack problem with the reference coordinate systems and boundaries adapted from the
general configuration reported in Fig. 2 (X = X2, Y = Y3 local face Cartesian coordinates are reported and are equal
in this case due to rotation). The half crack is localized at < 0,y = 0 and the surrounding space is divided into two
rectangular regions: region 1 (y > 0) and region 2 (y < 0). In this section we evaluate the characteristic impedances of
the half-space regions 1 and 2 that are independent from the boundary conditions on the half-plane and implicitly assume
absence of sources localized at finite.

In fact, we note that the local-to-face-a X,Y coordinates have opposite direction with respect
to x,y thus the velocity vectors are measured with opposite directions while the tensorial stress
components have same directions because of the double inversion.

With the definition of total fields at y = 0 (7.3), from (7.1) we derive expressions of Ttot Té?f

Yy
in terms of v£°f, vgtf’t that in matrix form yield the matrix characteristic impedance of region 1:
tot tot nZo ( _ L) _ keZots
Tyg — Z+ vﬂUO Z+ — ke 2 T]2+£yfs 772 +fp§s (7 4)
v Y & ke \n?+&8

Note that the definition of the characteristic impedance is independent from boundary conditions
on the half-plane and implicitly assumes absence of sources localized at finite. The impedance
(7.4) is validated with the admittance Y = (Zj)*1 reported in (2.12.5)-(2.12.8) of [4] where, by
mistake, a coefficient 2 is missing in (2.12.7) and (2.12.8). We note that while in section 2.12 of [4]
the characteristic impedance is evaluated from the homogeneous solution of transverse equations
in Fourier domain, in the present work we have used Laplace transforms with boundary
conditions that results in a completely different and independent proof.

Now, let us consider region 2 (Fig. 3) and the related functional equations (5.18),(5.19),(5.20)
and (5.17) with (4.22). To model the planar problem, we impose yv=m, ao =0 and all the
continuous z components of the field T and v null: Ty, =Ty z =0, v; = vz = 0. From (5.18)-(5.19)
((5.20) is trivially null in this case) we have

vy (ks® = 20%) + 2002y ) = ks(Tyy&p + 1Try) = Zo (vy (ks = 20%) + 200x&p ) + ka(Tyy & + nTxy),
vs (202 = ks?) + 2vy€s ) + ks(Tay€s = 1Tyy) = Zo (vx (202 = ks?) + 20y €s ) = ks(Txy € = nTyy)-

(7.5)

Now let us focus the attention on the non null continuous field component of T and v, we
have respectively for (2.16) with (4.1) and (5.17) with (4.22):

Pt = (Tyy, Toy, vz, vy) , ¥os = (Tyy, Txy, —vx, —vy)’. (7.6)

From the definitions of v; and v, respectively defined in z > 0,y = 0 in z, y coordinates and in
x<0,y=0_in X,Y coordinates, we estimate the total fields for y = 0_ as

/
Wi = e+ s = (T35 TG 0l o) 77)
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Due to the expressions (7.6), the total field in region 2 (7.7) show a different sign with respect to
the expression of region 1 (7.3) to maintain the same physical meaning. With the definition of total
fields at y = 0_ (7.7), from (7.5) we derive expressions of T}.5" Tégt in terms of v£%¢, vff’t that in

Yy
matrix form yield the matrix characteristic impedance of region 2:
tot tot nZo ( ke ) _ kaZo&s
Tyz =7 _,UrO 7 = ks "72+§p§s 2 772+§p£s (7 8)
tot - #c _ . tot ’ c — ks Zo& z k.2 . .
Tmy 'Uy _ P N4o 2 #>
7]2+§p£s ks 7]2+£pfs

The impedance (7.8) is validated with the admittance Yz = (Z; )~ ! reported in section 12 at
(2.12.5)-(2.12.8) of [4] as discussed for region 1. Note that in (7.8) we have assumed different sign
in the velocity with respect to (7.4) of region 1 due to the different direction of propagation in the
two regions. Finally, we recall that the method presented in this paper for the calculation of the
characteristic impedances is more general and independent from the one reported in [4].

8. Remarks and Conclusions

In this work, we have introduced a general method for the deduction of spectral
functional equations and thus GWHEs in angular regions filled by arbitrary linear isotropic
homogeneous media in elasticity. The importance to formulate wedge problems with GWHEs
in Electromagnetism has been showed in [4]- [5]. We remark that these equations are important
also for elastic wedge problems. In particular the functional equations obtained and solved in [14]
by Gautesen’s group for the planar elastic wedge are GWHESs, although not defined in this way.

The method is based on the original solution of vector differential equations of first order via
dyadic Green’s function method and on the projection of this solution along the boundaries of
the angular region using reciprocal vectors of the pertinent algebraic matrix related to the matrix
differential operator. The application of the boundary conditions to the functional equations
yields GWHEs for practical problems. We observe that the functional equations are the starting
point to develop solutions using WH technique for complex scattering problems.

Using the concept of non-standard Laplace transforms (see section 1.4 of [5]), the validity of
the functional equations and of the GWHEs obtained in absence of sources is extended to the
total fields in presence of plane-wave sources or in general of sources located at infinity. We
observe that the GWHEs in elasticity contains unknowns defined in multiple complex planes
1, —Mmyp, —ms related to P and S waves and this property recall electromagnetic applications (and
related solution methods) in media with multiple propagation constants as reported in [27]-
[30]. In fact, in this case the reduction of GWHEs to classical WH equations is not possible.
Explicit expressions of spectral functional equations in algebraic form are provided in the text
in the general case of non planar elastic problems in angular regions with isotropic media and
arbitrary boundary conditions and, we remark that, according to our opinion, this is the first
time in literature. Validation of the GWHE formulation has been demonstrated by comparison
with prestigious literature references reporting special simplified cases in anti-planar and planar
problems. The paper demonstrates the flexibility and the advantages of the proposed method,
based on first order differential formulation, that is useful for the analysis of complex scattering
problem containing angular regions in arbitrarily linear media by changing the matrix operator
defined through the fundamental matrices My, M1, Ma. The paper shows systematic procedural
steps that can be used for arbitrary wave motion problems in different physics.
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Glossary

Table 2. Symbols introduced in the paper

‘ Notation ‘ Description
(z,y,2), (r,¢,2), (u,v,2), (X,Y, Z) | Cartesian, cylindrical, oblique Cartesian, local to face Cartesian coordinates
A A A A A(Y) scalar, column vector, dyadic, matrix, matrix differential operator
kp, ks propagation constants of P and S waves
T(T),S(S) stress tensor (Voigt notation), strain tensor (Voigt notation)
P,V vector momentum density, vector particle velocity
Py A, b material density and Lame’s constants
&) Hooke’s law as fourth order stiffness tensor
Vo, Vy, I'v matrix differential operators
P, 0 vector fields in abstract notation
A matrix constitutive parameters of media
Py transverse field for a stratification along the y direction
M (%, %) transversal matrix differential operator for elastic equations
z = % alternative partial derivative notation
Qo field dependence specified by the factor e 77> * due to invariance along z
7 Fourier or Laplace spectral variable according to the position on the text
Wi (n) Fourier transform along = = u direction (y, z or v, z dependence is omitted)
M(n) matrix operator in Fourier/Laplace domain in indefinite rectangular region
Aiy w, V4 eigenvalues, eigenvector and reciprocal vectors of M(n)
& different notation of \; for propagation’s properties, multivalued function
v aperture angle of angular regions (Fig. 1)
Me (v, n) matrix operator in Fourier/Laplace domain in indefinite angular region
Aei eigenvalues of Me (v, )
Pi(n,v) Laplace transform along = = u of 4¢(u, v) (omitting z dependence)
Ps(v) field components on the face of an angular region in Laplace domain
Pas(v), Eas (x) specialized expression of s (v) on face a and its Laplace transform
G(v, v’) dyadic Green’s function in Laplace domain for an angular region
Mg spectral variable for the evaluation of Eas (x) along face a in functional eqs
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