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Abstract In this paper we present a torsional non-relativi-
stic Chern–Simons (super)gravity theory in three spacetime
dimensions. We start by developing the non-relativistic limit
of the purely bosonic relativistic teleparallel Chern–Simons
formulation of gravity. On-shell the latter yields a non-
Riemannian setup with non-vanishing torsion, which, at non-
relativistic level, translates into a non-vanishing spatial tor-
sion sourced by the cosmological constant. Then we consider
the three-dimensional relativistic N = 2 teleparallel Chern–
Simons supergravity theory and obtain its non-relativistic
counterpart by exploiting a Lie algebra expansion method.
The non-relativistic supergravity theory is characterized, on-
shell, by a non-vanishing spatial super-torsion, again sourced
by the cosmological constant.

1 Introduction

The introduction of torsion in a gravity theory can be per-
formed through the teleparallel formulation of gravity [1–5],
which is considered to be equivalent to General Relativity.
Nevertheless, teleparallel gravity is characterized by a van-
ishing curvature and a non-vanishing torsion describing a
non-Riemannian geometry denoted as Weizenböck geom-
etry. In three spacetime dimensions, the role of torsion in
black hole solutions and boundary dynamics has been of
particular interest [6–13]. As it was shown in [6–8], torsional
three-dimensional gravity theory possesses a BTZ-like black
hole solution whose thermodynamic properties have been
studied in [14–16]. Moreover, both teleparallel gravity and
AdS gravity have identical asymptotic symmetries given by
two copies of the Virasoro algebra [9]. Interestingly, three-
dimensional teleparallel gravity can be formulated as a gauge
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theory using the Chern–Simons (CS) formalism and consid-
ering the so-called teleparallel algebra [17]. The teleparallel
CS gravity action can be alternatively recovered as a par-
ticular case of the Mielke–Baekler gravity model [18] by
fixing the Mielke–Baekler parameters. Remarkably, the CS
approach allows us to define a supersymmetric teleparallel
gravity in the presence of N = p + q supercharges which
in the vanishing cosmological constant limit reproduces the
N -extended Poincaré supergravity theory [17].

On the other hand, non-relativistic (NR) theories have
received a growing interest due to their relation to condensed
matter systems [19–30] and NR effective field theories [31–
35]. A NR theory can be obtained by taking the limit c → ∞,
where c is the speed of light, of a relativistic theory. At the
gravity level, the corresponding NR counterpart of the AdS
spacetime is the Newton–Hooke symmetry which in the van-
ishing cosmological constant limit reproduces the Galilei
symmetry [36–42]. In three spacetime dimensions, the CS
formalism allows us to construct NR gravity actions whose
underlying symmetry can be obtained as a NR limit of a rel-
ativistic algebra. However, it is necessary to consider addi-
tional u (1) generators in order to avoid infinities and degen-
eracy in the NR limit. Indeed, the Poincaré algebra requires
the presence of two extra u (1) generators in order to apply an
appropriate and well-defined NR limit with a non-degenerate
bilinear form and reproduces the extended Bargmann alge-
bra [43–47]. In the presence of a cosmological constant, the
NR version of the AdS⊕u (1)2 symmetry corresponds to an
extension of the Newton–Hooke symmetry [48–51].

The formulation of a NR supergravity theory has only
been approached recently and remains as a challenging task
mainly motivated by the diverse applications of these mod-
els in the context of holography and relativistic field theory
[52–57]. One way to circumvent the difficulty to establish
a well-defined NR limit in the presence of supersymme-
try is through the Lie algebra expansion methods of [58–
61], which allows us to obtain the respective NR version of
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a Lie (super)algebra [62–66]. In particular, the semigroup
expansion (S-expansion) method, introduced in [60] and fur-
ther developed in [67–72], allows us not only to obtain the
corresponding NR (super)algebra but also provides us with
the non-vanishing components of the invariant tensor of the
expanded (super)algebra. The S-expansion procedure con-
sists in combining the elements of a semigroup S with the
structure constant of a Lie (super)algebra g. The new Lie
(super)algebra G = S × g is said to be an S-expanded
(super)algebra.1 Further developments of the Lie algebra
expansion method in the NR context has also been explored
in [73–82].

In this work, we explore the NR counterpart of the
teleparallel CS (super)gravity introduced in [17]. In par-
ticular, we are interested in studying the role of a non-
vanishing torsion in a non-relativistic environment. To this
end, we first explore the NR limit of a particular U (1)-
enlargement of the teleparallel algebra introduced in [17].
We obtain a torsional NR algebra by applying a proper
Inönö–Wigner contraction to the [teleparallel]⊕u (1)2 alge-
bra. The corresponding NR gravity theory contains a non-
vanishing NR torsion in which the cosmological constant
can be seen as a source for the curvature of the spatial com-
ponent of the vielbein. The supersymmetric extension of
our theory is also presented by applying the S-expansion
to the N = 2 teleparallel superalgebra presented in [17]. As
it was shown in [64,65], a particular semigroup allows to
reproduce a Galilean expansion providing the respective NR
(super)algebra and (super)gravity CS action. Interestingly,
the novel torsional NR (super)gravity theory and the extended
Bargmann (super)gravity theory [54] are related through a
vanishing cosmological constant limit as their respective rel-
ativistic versions. It is important to emphasize that along
this work, unlike the Newton–Cartan (super)gravity the-
ory with torsion [53,83,84], we shall refer to a torsional
NR (super)gravity theory when the spatial component of
the NR (super) torsion is non-zero. Thus, a vanishing tor-
sion in our context is not intended as a zero torsion con-
dition as in the torsional Newton–Cartan geometry [85–
87].

The paper is organized as follows: In Sect. 2 we briefly
review the teleparallel CS gravity theory defined in three
spacetime dimensions. Sections 3 and 4 contain our main
results. In Sect. 3 we first present the torsional NR gravity
theory by applying a NR limit to the teleparallel CS grav-
ity. Section 4 is devoted to the construction of a supersym-
metric extension of the torsional NR gravity theory con-
sidering the S-expansion procedure. Section 5 concludes
our work with some discussions about future develop-
ments.

1 For a concise review of this expansion method we refer the reader to,
e.g., Appendix A of Ref. [65].

2 Three-dimensional teleparallel formulation of gravity

At the relativistic level, the inclusion of a non-vanishing
torsion in a three-dimensional gravity theory can be done
through the teleparallel formulation of gravity [2,3,5,8,9].
Interestingly, teleparallel gravity can be formulated as a CS
action invariant under a particular Lie algebra which has been
denoted as teleparallel algebra [17]. Such algebra, which is
isomorphic to two copies of the so (2, 1) algebra [88], is
spanned by the set of generators (JA, PA) and satisfies

[JA, JB] = εABC J
C ,

[JA, PB] = εABC P
C ,

[PA, PB] = −2

�
εABC P

C , (2.1)

where A, B,C = 0, 1, 2 are Lorentz indices and εABC is the
Levi-Civita tensor defined in three spacetime dimensions.
Here, the � parameter is related to the cosmological con-
stant � through � ∝ − 1

�2 . In the vanishing cosmological
constant limit � → ∞, analogously to the so (2, 2) symme-
try, we obtain the Poincaré algebra. The latter is the alge-
braic structure on which the three-dimensional CS formula-
tion of pure Einstein–Hilbert gravity is based. On the other
hand, the CS formulation of the three-dimensional Einstein–
Hilbert gravity theory with cosmological constant resides in
the AdS algebraic structure, in which case the last commuta-
tor in (2.1) becomes [PA, PB] = 1

�2 εABC JC , while the other
ones remain the same as in (2.1). Let us note that the Lie alge-
bra (2.1) admits the following non-vanishing components of
the invariant tensor:

〈JA JB〉 = α0 ηAB, 〈JAPB〉 = α1 ηAB,

〈PAPB〉 = −2α1

�
ηAB, (2.2)

where α0 and α1 are arbitrary constants and ηAB is the flat
Minkowski metric. Here let us mention the key differences
with the Poincaré and AdS algebras: in the Poincaré case, we
have 〈PAPB〉 = 0, while in the AdS one 〈PAPB〉 = α0

�2 ηAB .
Although the three symmetries differ only in the commuta-
tor and the bilinear invariant trace involving PA generators,
such subtle difference is responsible to produce different CS
gravity actions. The Poincaré CS gravity does not allow to
accommodate a cosmological constant in the theory, while
both teleparallel and AdS enable us to introduce a cosmolog-
ical constant but in diverse sectors of the gravity action repro-
ducing a theory with and without torsion, respectively. These,
in particular, are the sources of the differences between the
CS teleparallel gravity theory and the CS formulation of the
three-dimensional Einstein–Hilbert theory (pure or with cos-
mological constant).

On the other hand, the gauge connection one-form A reads

A = W AJA + E APA, (2.3)
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whereW A is the spin connection and E A denotes the vielbein
satisfying E A

μ EB
ν gμν = ηAB . The curvature two-form F =

d A + 1
2 [A, A] reads

F = RA (W ) JA + RA (E) PA, (2.4)

where

RA (W ) = dW A + 1

2
εABCWBWC ,

RA (E) = T A − 1

�
εABC EBEC . (2.5)

Here RA is the Lorentz curvature two-form and T A denotes
the usual torsion two-form T A = dE A + εABCWBEC . The
CS gravity action invariant under the teleparallel algebra (2.1)
can be obtained considering the one-form gauge connection
A (2.3) and the non-vanishing components of the invariant
bilinear form (2.2) in the general expression for the CS action:

ICS[A] = k

4π

∫
M

〈
AdA + 2

3
A3

〉
. (2.6)

Then, the teleparallel CS action reads

ITG = k

4π

∫
M

{
α0

(
W AdWA + 1

3
εABCWAWBWC

)

+α1

(
2EAR

A (W ) + 4

3�2 εABC EAEB EC − 2

�
T AEA

) }
,

(2.7)

where k is the CS coupling constant and is related to the
gravitational constant G as k = 1/ (4πG). The teleparallel
CS action is characterized by the Einstein–Hilbert term, the
cosmological constant term plus a torsional term along the
α1 constant. On the other hand, the sector proportional to α0

is known as the exotic CS term [89] and, as was mentioned
in [17], it can be made to vanish without loss of generality.
Nevertheless, for α0 �= 0, the non-degeneracy of the invariant
tensor (2.2) requires α0 �= − �

2α1 and α1 �= 0. One can then
see that, for non-degenerate invariant tensor, the equation
of motions are given by the vanishing of the curvature two-
form (2.5). Unlike AdS gravity, which describes a Rieman-
nian spacetime, the teleparallel CS gravity is characterized
by a non-Riemannian geometry2 in which the cosmological
constant can be seen as a source for the torsion,

T A − 1

�
εABC EBEC = 0. (2.8)

In fact, the latter is an on-shell constraint for the theory. In
the vanishing cosmological constant limit � → ∞, the the-
ory reduces to the usual Poincaré CS gravity theory with
vanishing torsion.

2 See, e.g., [90,91] for a recent review on non-Riemannian structures
and applications in (super)gravity. Besides, we refer the reader to, e.g.,
[92–96] for further implications of a non-vanishing torsion and non-
Riemannian structures in gravity and supergravity theories.

Let us note that the teleparallel gravity action can be recov-
ered alternatively as a particular case of the Mielke–Baekler
gravity model [18,97,98], whose action reads

IMB = aI1 + �I2 + β3 I3 + β4 I4, (2.9)

where a,�, β3 and β4 are constants and

I1 = 2
∫

EAR
A (W ) ,

I2 = −1

3

∫
εABC E

AEBEC ,

I3 =
∫

W AdWA + 1

3
εABCWAWBWC ,

I4 =
∫

EAT
A. (2.10)

Indeed, by fixing the Mielke–Baekler parameters as follows,

a = α1

16πG
, � = − α1

4πG�2 ,

β3 = α0

16πG
, β4 = − α1

8πG�
, (2.11)

we recover the teleparallel CS gravity action (2.7) for k =
1/ (4πG).

3 Non-relativistic gravity with torsion

In this section we present the explicit construction of a non-
relativistic version of the teleparallel CS gravity theory pre-
viously discussed. The NR action obtained is characterized
by vanishing curvatures for the NR analogue of the spin con-
nection and non-vanishing spatial torsion. Interestingly, the
spatial component of the torsion is zero in the vanishing cos-
mological constant limit � → ∞ and the NR gravity theory
reproduces the known extended Bargmann gravity. The novel
NR gravity theory presented here will be denoted as torsional
NR gravity and offers us an alternative way to introduce a
cosmological constant into the three-dimensional extended
Bargmann gravity model.

3.1 U (1)-enlargements

A torsional NR algebra can be obtained by applying the NR
limit to a particular U (1)-enlargement of the teleparallel
algebra (2.1). To this end, let us introduce two extra U (1)

gauge fields to the field content. Then, the gauge connection
one-form reads

A = W AJA + E APA + MY1 + SY2. (3.1)

As we shall see, the presence of these additional Abelian
generators is required to ensure a finite and non-degenerate
NR action in the limit process. Such extra gauge generators
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yield the following non-vanishing components of the invari-
ant tensor:

〈Y2Y2〉 = α0, 〈Y1Y2〉 = α1, 〈Y1Y1〉 = −2α1

�
. (3.2)

Then, the [teleparallel]⊕u (1)2 algebra admits the non-
vanishing components of the invariant tensor given by (2.2)
along with (3.2). One can show that the relativistic CS action
based on the [teleparallel]⊕u (1)2 algebra is obtained consid-
ering the gauge connection one-form (3.1) and the invariant
tensor (2.2) and (3.2) in the general expression of the CS
action (2.6),

IR = k

4π

∫
M

{
α0

(
W AdWA + 1

3
εABCWAWBWC + SdS

)

+α1

(
2EAR

A (W ) + 4

3�2 εABC EAEB EC

−2

�
T AEA + 2MdS − 2

�
MdM

)}
. (3.3)

Let us note that we recover the relativistic CS action for the
[Poincaré]⊕u (1)2 symmetry in the flat limit � → ∞.

3.2 Torsional non-relativistic gravity theory

The NR counterpart of the relativistic [teleparallel]⊕u (1)2

algebra can be derived through an Inönö–Wigner procedure
[99]. To this end, we shall first consider the decomposition
of the A index as follows:

A → (0, a) , a = 1, 2. (3.4)

Then, we will introduce a dimensionless parameter ξ which
will allows us to identify the relativistic generators in terms
of the NR ones (denoted with a tilde) as:

J0 = J̃

2
+ ξ2 S̃, Ja = ξ G̃a, Y2 = J̃

2
− ξ2 S̃,

P0 = H̃

2ξ
+ ξ M̃, Pa = P̃a, Y1 = H̃

2ξ
− ξ M̃ . (3.5)

Furthermore, in order to ensure a finite NR symmetry after the
contraction process we shall consider the following scaling
of the length parameter:

� → ξ�. (3.6)

Then, considering the identification (3.5) and the limit ξ →
∞ in the relativistic commutation relations (2.1), we obtain
a novel NR symmetry spanned by the set of generators
{ J̃ , G̃a, S̃, H̃ , P̃a, M̃} which satisfy the following commu-
tators:

[
J̃ , G̃a

]
= εabG̃b,

[
G̃a, G̃b

]
= −εab S̃,

[
H̃ , G̃a

]
= εab P̃b,

[
J̃ , P̃a

]
= εab P̃b,

[
G̃a, P̃b

]
= −εab M̃,

[
H̃ , P̃a

]
= −2

�
εab P̃b,

[
P̃a, P̃b

]
= 2

�
εab M̃, (3.7)

where we have defined εab ≡ ε0ab and εab ≡ ε0ab. As
in the extended Newton–Hooke symmetry [48,50], the tor-
sional NR algebra (3.7) consists of spatial translations P̃a ,
spatial rotations J̃ , Galilean boosts G̃a , time translations
H̃ and two central charges S̃ and M̃ . Let us note that the
extended Bargmann algebra [54] is obtained in the vanish-
ing cosmological constant limit � → ∞. On the other hand,
the NR symmetry (3.7) can be written as two copies of the
Nappi–Witten algebra [100,101],[
J̃±, G̃±

a

]
= εabG̃

±
b ,[

G̃±
a , G̃±

b

]
= −εab S̃

±, (3.8)

by considering the following redefinitions:

G̃a = G̃+
a + G̃−

a , P̃a = −2

�
G̃−

a ,

J̃ = J̃+ + J̃−, H̃ = −2

�
J̃−,

S̃ = S̃+ + S̃−, M̃ = −2

�
S̃−. (3.9)

Although the central charges can be set to zero, their pres-
ence is essential in the torsional NR algebra (3.7) in order to
admit a non-degenerate invariant bilinear trace:〈

J̃ S̃
〉
= −α̃0,〈

G̃aG̃b

〉
= α̃0δab,〈

G̃a P̃b
〉
= α̃1δab,〈

H̃ S̃
〉
=

〈
M̃ J̃

〉
= −α̃1,

〈
P̃a P̃b

〉
= −2α̃1

�
δab,

〈
H̃ M̃

〉
= 2α̃1

�
, (3.10)

where the relativistic parameters α’s have been rescaled as

α0 = α̃0ξ
2, α1 = α̃1ξ. (3.11)

Analogously to [74,79,102], such rescaling is required in
order to have a finite NR CS action after the IW contrac-
tion. One can see that the non-degeneracy of the invariant
tensor is preserved as long as α̃0 �= − �

2 α̃1 and α̃1 �= 0.
The non-degeneracy of the invariant tensor is related to the
requirement that the NR CS gravity action involves a kine-
matical term for each gauge field. In particular, the corre-
sponding gauge connection one-form for the torsional NR
algebra (3.7) reads

Ã = ω J̃ + ωaG̃a + τ H̃ + ea P̃a + mM̃ + s S̃. (3.12)
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The curvature associated to this gauge connection is given
by

F̃ = R(ω) J̃ + Ra(ωb)G̃a + R(τ )H̃ + Ra(eb)P̃a

+R(m)M̃ + R(s)S̃, (3.13)

where

R(ω) = dω,

Ra(ωb) = dωa + εacωωc,

R(τ ) = dτ,

Ra(eb) = dea + εacωec + εacτωc − 2

�
εacτec,

R(m) = dm + εaceaωc − 1

�
εaceaec,

R(s) = ds + 1

2
εacωaωc. (3.14)

The respective CS action based on the torsional NR algebra
(3.7) is obtained considering the non-vanishing components
of the invariant tensor (3.10) and the gauge connection one-
form (3.12) in the general expression of the CS action (2.6):

INR = k

4π

∫
α̃0

[
ωa R

a(ωb) − 2sR (ω)
]

+α̃1

[
2ea R

a(ωb) − 2mR(ω) − 2τ R(s)

− 2

�
ea R

a
(
eb

)
+ 2

�
mR (τ ) + 2

�
τ R (m) + 2

�2 τεaceaec

]

. (3.15)

The NR CS action (3.15) is the most general NR CS action
invariant under the torsional NR algebra (3.7). One can notice
that it contains two independent sectors and can be seen as the
NR version of the three-dimensional teleparallel CS gravity
theory presented in [17]. The first term is indistinguishable
from the exotic sector of the extended Bargmann gravity [57],
being the corresponding NR version of the exotic gravity
[89]. The term proportional to α̃1 can be seen as a cosmo-
logical extension of the extended Bargmann gravity action
[54]. However, the inclusion of the cosmological constant
through the torsional NR algebra is quite different from the
one constructed using the extended Newton–Hooke symme-
try. Indeed, the field equations derived from (3.15) are given
by the vanishing of the curvature two-forms (3.14). One can
see that the field equations for ωa , ea , s and m are diverse
from the Newton–Hooke ones, the latter being given by

Fa(ωb) = dωa + εacωωc + 1

�2 εacτec = 0,

Fa(eb) = dea + εacωec + εacτωc = 0,

F(s) = ds + 1

2
εacωaωc + 1

2�2 εaceaec = 0,

F(m) = dm + εaceaωc = 0. (3.16)

In our torsional NR gravity theory, the cosmological constant
can be seen as a source for the spatial torsion T a

(
eb

) =
dea +εacωec +εacτωc and for the curvature T (m) = dm+
εaceaωc. Indeed, on-shell we find

T a
(
eb

)
= 2

�
εacτec,

T (m) = 1

�
εaceaec. (3.17)

The NR counterpart of the teleparallel CS gravity [17] is then
described, on-shell, by vanishing curvatures R (ω) = 0 =
Ra (ωa) and a non-vanishing spatial torsion T a

(
eb

) �= 0.
Naturally, we recover the extended Bargmann gravity theory
[54] with a vanishing spatial torsion in the vanishing cosmo-
logical constant � → ∞.

Let us note that the NR gravity action (3.15) can be alterna-
tively recovered from the relativistic U (1)-enlarged telepar-
allel CS action (3.3). Indeed, one can express the relativistic
gauge fields in terms of the NR ones as follows:

W 0 = ω + s

2ξ2 , Wa = ωa

ξ
, S = ω − s

2ξ2 ,

E0 = ξτ + m

2ξ
, Ea = ea, M = ξτ − m

2ξ
, (3.18)

which satisfy A = Ã. The NR CS action (3.15) appears
considering these last expressions along the rescaling of the
relativistic parameters (3.11) on the relativistic CS action
(3.3) and then applying the limit ξ → ∞.

The presence of torsion in a NR environment has already
been explored in [53,83,84] describing a (twistless) torsional
Newton–Cartan gravity. However, unlike the present case,
the torsional Newton–Cartan gravity is described by a non-
vanishing time-like torsion. Such torsional model can be
obtained by gauging the Schrödinger algebra which corre-
sponds to the conformal extension of the Bargmann algebra
[85]. A non-zero torsion condition in a NR framework was
first encountered in the context of Lifshitz holography [25]
and Quantum Hall Effect [34]. Although the NR version of
the teleparallel gravity contains a zero time-like torsion, the
presence of a non-vanishing spatial torsion can be viewed as
a step towards introducing non-zero time-like torsion as in
the (twistless) torsional Newton–Cartan gravity. In particu-
lar, one can note that under boosts (with parameter λa), one
has that

δT a(e) = 2

�
εacλa R(τ ),

δT (m) = 1

�
εacλaTc(e), (3.19)

which is consistent with the field equation for the torsion
(3.17). This boost behaviour also implies that introducing
non-zero time-like torsion R(τ ) requires introducing non-
zero T a(e) and T (m). Since the CS formulation offers us
a simpler way to construct the respective supersymmetric
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extension, our construction could be then useful to approach
a NR supergravity model with a non-zero time-like supertor-
sion.

4 Non-relativistic supergravity with torsion

We will now present the explicit supersymmetric extension
of the torsional NR gravity theory previously discussed. The
NR action will be characterized, on-shell, by the vanishing of
the NR curvatures but non-vanishing spatial super-torsion.

A torsional NR superalgebra can be obtained by applying
the S-expansion method to the N = 2 teleparallel superal-
gebra. The S-expansion procedure will also provide us with
a non-degenerate invariant tensor and therefore we will be
able to produce a well-defined torsional NR CS supergravity
action which can be seen as the corresponding NR counter-
part of the N = 2 teleparallel supergravity action presented
in [17].

4.1 Torsional non-relativistic superalgebra

We shall now move on to the supersymmetric extension of
the results presented in the previous section. To this aim, we
will focus on the relativistic N = 2 teleparallel superalgebra
presented in [17], and study its non-relativistic expansion.

At the relativistic level, N -extended teleparallel super-
gravity has been formulated as a CS theory invariant under
the so-called N -extended teleparallel superalgebra [17].
Although both teleparallel and AdS CS supergravity the-
ories correspond to cosmological extensions of the super-
Poincaré one, they are described by different equations of
motion.Indeed, the key difference between both CS models
resides in the fact that, unlike the AdS supergravity, in the
teleparallel case we have, on-shell, a non-vanishing super-
torsion, while the Lorentz supercurvature vanishes (cf. also
[103] for a detailed analysis of three-dimensional supergrav-
ity).

In the N = 2 case, which is the one of interest in
the present paper, the teleparallel superalgebra is spanned
by the bosonic generators (JA, PA) along with the internal
symmetry generator Z , and the fermionic charges Qi

α , with
i = 1, 2 and α = 1, 2, which are two-components Majorana
spinor charges.3 However, in order to have a well-defined
flat limit � → ∞ leading to the N = 2 Poincaré superal-
gebra extended with an so(2) automorphism algebra [104],
the N = 2 teleparallel superalgebra was extended in [17] to
include the automorphism generator S. To this end, the redef-
inition T = Z − �

2S was performed, obtaining the following

3 For simplicity, in the following we will frequently omit writing of the
spinor indices.

non-trivial (anti-)commutation relations in the N = 2 case:
[
JA, Qi

α

]
= −1

2
(γA) β

α Qi
β,

[
T , Qi

α

]
= −εi j Q j

α,

{
Qi

α, Q j
β

}
= −δi j

(
γ AC

)
αβ

(
PA + 2

�
JA

)

+Cαβεi j
(

2

�
T + S

)
, (4.1)

along with (2.1). The gamma matrices in three dimensions
are denoted by γA and C is the charge conjugation matrix,
satisfying CT = −C and Cγ A = (Cγ A)T , while εi j is
the rank-2 Levi-Civita symbol (ε12 = 1, ε21 = −1). The
N = 2 Poincaré superalgebra extended with the so(2) auto-
morphism algebra is properly recovered in the flat limit
� → ∞. The presence of the automorphism generator in the
Poincaré case is required in order to define a non-degenerate
invariant tensor [104]. Observe that, as in the case of the
N = 2 Poincaré superalgebra, the generator S is a cen-
tral charge. Even though the N = 2 teleparallel super-
algebra given by (2.1) and (4.1) presents a well-defined
Poincaré limit, its (anti-)commutation relations are quite dif-
ferent from the super-AdS ones. Let us stress that the N = 2
teleparallel superalgebra can be written as the direct sum of
osp(2|2) ⊗ sp(2) and the so(2) automorphism algebra by
considering the following identification of the generators:

L A ≡ JA + �

2
PA, SA ≡ −�

2
PA,

Gi
α ≡

√
�

2
Qi

α, M ≡ T + �

2
S, B ≡ −�

2
S, (4.2)

where (L A, SA,M,Gi
α) satisfy the osp(2|2) ⊗ sp(2) super-

algebra, while B is the so(2) automorphism generator.
The N = 2 teleparallel superalgebra is endowed with the

following non-vanishing components of the (non-degenerate)
invariant tensor:

〈T T 〉 = −2α0,

〈T S〉 = −2α1,

〈SS〉 = 4α1

�
,

〈Qi
αQ

j
β〉 = 2

(
2α0

�
+ α1

)
Cαβδi j , (4.3)

along with (2.2). We refer the reader to [17] for the way in
which the constant parameters α0 and α1 are related to the
osp(2|2)⊗sp(2) and so(2) ones. The flat limit � → ∞ yields
the invariant tensor for the N = 2 Poincaré superalgebra
extended with so(2) [104].

A NR teleparallel superalgebra can be obtained from the
N = 2 relativistic one by performing an S-expansion [60].
Indeed, as it was also seen in [64–66], the S-expansion of
a relativistic superalgebra considering S(2)

E as the relevant
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semigroup reproduces a NR contraction. This is due to the
fact that the S-expansion method can be seen as a general-
ization of the Inönö–Wigner contraction process [99] when
the semigroup considered belongs to the S(N )

E family. Here

we focus on the semigroup S(2)
E , which allows to obtain not

only a well-defined NR teleparallel superalgebra but also its
non-degenerate invariant tensor.

We first proceed as in Sect. 3 by considering the decom-
position of the A index given in (3.4). Besides, we perform
a redefinition of the supercharges by defining

Q±
α = 1√

2

(
Q1

α ±
(
γ 0

)
αβ

Q2
β

)
. (4.4)

Then, we consider S(2)
E = {λ0, λ1, λ2, λ3} as the relevant

semigroup to perform the expansion of the relativisticN = 2
teleparallel superalgebra. The elements of S(2)

E satisfy the
following multiplication law:

λ3 λ3 λ3 λ3 λ3

λ2 λ2 λ3 λ3 λ3

λ1 λ1 λ2 λ3 λ3

λ0 λ0 λ1 λ2 λ3

λ0 λ1 λ2 λ3

(4.5)

where λ3 = 0s is the zero element of the semigroup such
that 0sλk = 0s , k = 1, 2, 3. Before applying the S-expansion
procedure, we consider a particular subspace decomposition
of theN = 2 teleparallel superalgebra. To this end, let us first
consider the split of the index A along with the redefinition of
the supercharges above. Hence, we can see that the subspaces
decomposition of the teleparallel superalgebra given by V0 =
{J0, P0, T ,S, Q+

α } and V1 = {Ja, Pa, Q−
α } satisfies

[V0, V0] ⊂ V0, [V0, V1] ⊂ V1, [V1, V1] ⊂ V0. (4.6)

Let us consider now S(2)
E = S0 ∪ S1 as decomposition of the

relevant semigroup S(2)
E , where

S0 = {λ0, λ2, λ3},
S1 = {λ1, λ3}. (4.7)

Then, the decomposition (4.7) is said to be resonant since it
satisfies the same structure as the subspaces, that is

S0 · S0 ⊂ S0, S0 · S1 ⊂ S1, S1 · S1 ⊂ S0. (4.8)

Following [60], after extracting a resonant subalgebra of
the S(2)

E -expansion of the N = 2 teleparallel superalgebra
and applying a 0s-reduction, one ends up with a new NR
expanded superalgebra spanned by the set of generators

{ J̃ , G̃a, S̃, H̃ , P̃a, M̃, T̃1, T̃2, Ũ1, Ũ2, Q̃
+
α , R̃α, Q̃−

α }, (4.9)

which are related to the relativistic ones through the semi-
group elements as

λ3

λ2 S̃, M̃ , T̃2, Ũ2, R̃α

λ1 G̃a, P̃a, Q̃−
α

λ0 J̃ , H̃, T̃1, Ũ1, Q̃+
α

J0, P0, T , S, Q+
α Ja, Pa, Q−

α
(4.10)

The NR generators satisfy precisely the purely bosonic sub-
algebra (3.7) along with the following (anti-)commutation
relations:[

J̃ , Q̃±
α

]
= −1

2
(γ0)

β
α Q̃±

β ,
[
J̃ , R̃α

]
= −1

2
(γ0)

β
α R̃β,

[
S̃, Q̃+

α

]
= −1

2
(γ0)

β
α R̃β,

[
G̃a, Q̃

+
α

]
= −1

2
(γa)

β
α Q̃−

β ,
[
G̃a, Q̃

−
α

]
= −1

2
(γa)

β
α R̃β,

[
T̃1, Q̃

±
α

]
= ±

(
γ 0

)
αβ

Q̃±
β ,

[
T̃2, Q̃

+
α

]
=

(
γ 0

)
αβ

R̃β,

[
T̃1, R̃α

]
=

(
γ 0

)
αβ

R̃β,

{
Q̃+

α , Q̃+
β

}
= −

(
γ 0C

)
αβ

(
H̃ + 2

�
J̃

)
−

(
γ 0C

)
αβ

(
2

�
T̃1 + Ũ1

)
,

{
Q̃−

α , Q̃−
β

}
= −

(
γ 0C

)
αβ

(
M̃ + 2

�
S̃

)
+

(
γ 0C

)
αβ

(
2

�
T̃2 + Ũ2

)
,

{
Q̃+

α , R̃β

}
= −

(
γ 0C

)
αβ

(
M̃ + 2

�
S̃

)
−

(
γ 0C

)
αβ

(
2

�
T̃2 + Ũ2

)
,

{
Q̃+

α , Q̃−
β

}
= − (

γ aC
)
αβ

(
P̃a + 2

�
G̃a

)
. (4.11)

The superalgebra given by (3.7) and (4.11) can be seen as
the supersymmetric extension of the torsional NR algebra
obtained previously (3.7). One can see that such superal-
gebra requires the introduction of four additional bosonic
generators T̃1, T̃2, Ũ1 and Ũ2. Notice that the generators Ũ1

and Ũ2 are central charges, while T̃1 and T̃2 which arise
from the S-expansion of the relativistic R-symmetry gener-
ator T , act non-trivially on the spinor charges Q̃±

α and R̃α .
Although the central charges can be set to zero by performing
a simple contraction, their presence here is essential in order
to have a non-degenerate invariant tensor. Interestingly, we
recover the extended Bargmann superalgebra [54] in the flat
limit � → ∞ and considering T̃1 = T̃2 = Ũ1 = Ũ2 = 0.
Such behavior is inherited from the respective relativistic
counterparts, in which case the teleparallel algebra repro-
duces the Poincaré algebra in the vanishing cosmological
constant limit. The inclusion of a cosmological constant
into the extended Bargmann supergravity has already been
approached considering a supersymmetric extension of the
extended Newton–Hooke symmetry [57]. Here we present an
alternative NR superalgebra allowing the presence of a cos-
mological constant, but with a non-vanishing spatial super-
torsion as we shall see.

Before approaching the construction of a CS supergravity
action based on the torsional NR superalgebra, let us stress
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that the NR superalgebra given by (3.7) and (4.11) can be
written as two copies of the Nappi–Witten algebra, one of
which is augmented by supersymmetry endowed with u (1)

generators. To this end, let us consider the following redefi-
nition of the generators of the torsional NR superalgebra:

G̃a = Ga + Ĝa, P̃a = −2

�
Ĝa, Q̃+

α =
√

2

�
Q+

α

J̃ = J + Ĵ , H̃ = −2

�
Ĵ , Q̃−

α =
√

2

�
Q−

α ,

S̃ = S + Ŝ, M̃ = −2

�
Ŝ, R̃α =

√
2

�
Rα,

T̃1 = X1 + X̂1, Ũ1 = −2

�
X̂1,

T̃2 = X2 + X̂2, Ũ2 = −2

�
X̂2. (4.12)

Here, the subset spanned by {J,Ga, S, X1, X2,Q+
α ,Q−

α ,

Rα} satisfy a supersymmetric extension of the Nappi–Witten
algebra [57,65]:

[J,Ga] = εabGb, [Ga,Gb] = −εabS,

[
J,Q±

α

] = −1

2
(γ0)

β
α Q±

β , [J,Rα] = −1

2
(γ0)

β
α Rβ,

[
Ga,Q+

α

] = −1

2
(γa)

β
α Q−

β ,
[
Ga,Q−

α

] = −1

2
(γa)

β
α Rβ,

[
S,Q+

α

] = −1

2
(γ0)

β
α Rβ,

[
X1,Q±

α

] = ±1

2
(γ0)αβ Q±

β ,

[
X2,Q+

α

] = 1

2
(γ0)αβ Rβ, [X1,Rα] = 1

2
(γ0)αβ Rβ,

{
Q+

α ,Q−
β

}
= − (

γ aC
)
αβ

Ga,{
Q+

α ,Q+
β

}
= − (

γ 0C
)
αβ

J − (
γ 0C

)
αβ

X1,{
Q−

α ,Q−
β

}
= − (

γ 0C
)
αβ

S+ (
γ 0C

)
αβ

X2,{Q+
α ,Rβ

} = − (
γ 0C

)
αβ

S − (
γ 0C

)
αβ

X2. (4.13)

On the other hand, the set of generators { Ĵ , Ĝa, Ŝ, X̂1, X̂2}
satisfy a U (1)-enlargement of the usual Nappi–Witten alge-
bra (3.8).

4.2 Torsional non-relativistic supergravity theory

Let us construct the explicit NR CS supergravity action
invariant under the torsional NR superalgebra (3.7) and
(4.11). Although the Nappi–Witten algebraic structure seems
simpler, we are interested in exploring an alternative
way to accommodate a cosmological constant into the
extended Bargmann supergravity different from considering
the extended Newton–Hooke one [63]. As we shall see, the
inclusion of a cosmological constant through the NR super-
algebra (3.7) and (4.11) will imply the presence of a non-
vanishing spatial super-torsion.

One can show that the non-vanishing components of an
invariant tensor for the NR teleparallel superalgebra just
obtained are given by (3.10) along with

〈T̃1T̃2〉 = −2α̃0,

〈T̃1Ũ2〉 = 〈T̃2Ũ1〉 = −2α̃1,

〈Ũ1Ũ2〉 = 4α̃1

�
,

〈Q+
α Rβ〉 = 2

(
2α̃0

�
+ α̃1

)
Cαβ,

〈Q−
α Q−

β 〉 = 2

(
2α̃0

�
+ α̃1

)
Cαβ. (4.14)

Here the invariant tensor can be obtained from the relativis-
tic one (2.2) and (4.3) considering (4.10) and defining the
NR parameters in terms of the relativistic ones through the
semigroup elements as

α̃0 = λ2α0, α̃1 = λ2α1. (4.15)

The gauge connection one-form for the torsional NR
superalgebra given by (3.7) and (4.14) reads as follows:

Ã = ω J̃ + ωaG̃a + τ H̃ + ea P̃a + mM̃ + s S̃ + t1T̃1

+t2T̃2 + u1Ũ1 + u2Ũ2 + ψ̄+ Q̃+ + ψ̄− Q̃− + ρ̄ R̃.

(4.16)

The curvature two-form associated with the gauge connec-
tion above is given by

F̃ = F(ω) J̃ + Fa(ωb)G̃a + F(τ )H̃

+Fa(eb)P̃a + F(m)M̃ + F(s)S̃

+F(t1)T̃1 + F(t2)T̃2 + F(u1)Ũ1 + F(u2)Ũ2

+∇ψ̄+ Q̃+ + ∇ψ̄− Q̃− + ∇ρ̄ R̃, (4.17)

where the bosonic curvatures are given by

F(ω) = R(ω) + 1

�
ψ̄+γ 0ψ+ = dω + 1

�
ψ̄+γ 0ψ+,

Fa(ωb) = Ra(ωb) + 2

�
ψ̄+γ aψ− = dωa + εacωωc + 2

�
ψ̄+γ aψ−,

F(τ ) = R(τ ) + 1

2
ψ̄+γ 0ψ+ = dτ + 1

2
ψ̄+γ 0ψ+,

Fa(eb) = Ra(eb) + ψ̄+γ aψ− = dea + εacωec + εacτωc

−2

�
εacτec + ψ̄+γ aψ−,

F(m) = R(m) + 1

2
ψ̄−γ 0ψ− + ψ̄+γ 0ρ

= dm + εaceaωc − 1

�
εaceaec + 1

2
ψ̄−γ 0ψ− + ψ̄+γ 0ρ,

F(s) = R(s) + 1

�
ψ̄−γ 0ψ− + 2

�
ψ̄+γ 0ρ

= ds + 1

2
εacωaωc + 1

�
ψ̄−γ 0ψ− + 2

�
ψ̄+γ 0ρ,

F(t1) = dt1 + 1

�
ψ̄+γ 0ψ+,

F(t2) = dt2 − 1

�
ψ̄−γ 0ψ− + 2

�
ψ̄+γ 0ρ,
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F(u1) = du1 + 1

2
ψ̄+γ 0ψ+,

F(u2) = du2 − 1

2
ψ̄−γ 0ψ− + ψ̄+γ 0ρ, (4.18)

with R(ω), Ra(ωb), R(τ ), Ra(eb), R(m), and R(s) defined
in (3.14), while the fermionic field-strengths are

∇ψ+ = dψ+ + 1

2
ωγ0ψ

+ + t1γ0ψ
+,

∇ψ− = dψ− + 1

2
ωγ0ψ

− + 1

2
ωaγaψ

+ − t1γ0ψ
−,

∇ρ = dρ + 1

2
ωγ0ρ + 1

2
sγ0ψ

+ + 1

2
ωaγaψ

−

+t2γ0ψ
+ + t1γ0ρ. (4.19)

The supergravity CS action based on the torsional NR
superalgebra given by (3.7) and (4.14) is then obtained by
considering the non-vanishing components of the invariant
tensor (3.10) and (4.14) together with the gauge connection
one-form (4.16) in the general expression of the CS action
(2.6). By doing so, we get

I super
NR = k

4π

∫
α̃0

[
ωa R

a(ωb) − 2sR (ω) − 4t1dt2

−4

�
ψ̄+∇ρ − 4

�
ρ̄∇ψ+ − 4

�
ψ̄−∇ψ−

]

+2α̃1

[
ea R

a(ωb) − mR(ω) − τ R(s) − 1

�
ea R

a
(
eb

)

+1

�
mR (τ ) + 1

�
τ R (m)

+ 1

�2 τεaceaec − 2t1du2 − 2t2du1

+4

�
u1du2 − ψ̄+∇ρ − ρ̄∇ψ+ − ψ̄−∇ψ−

]
. (4.20)

The NR CS supergravity action (4.20) contains two inde-
pendent sectors and can be seen as the NR version of the
N = 2 relativistic teleparallel CS supergravity action. The
first term corresponds to a supersymmetric NR exotic action,
while the contribution proportional to α̃1 can be seen as
a supersymmetric cosmological extension of the extended
Bargmann gravity action [54]. In the vanishing cosmolog-
ical constant limit � → ∞ we recover the most general
extended Bargmann supergravity action [57]. In particular,
the term proportional to α̃0 is no more supersymmetric in
the flat limit. Neglecting the fermionic contributions and the
additional bosonic gauge fields {t1, t2, u1, u2}, (4.20) pre-
cisely boils down to the purely NR bosonic action (3.15) we
have previously presented.

Let us stress that the non-degeneracy of the invariant ten-
sor is preserved as long as α̃0 �= − �

2 α̃1 and α̃1 �= 0, which
implies that the field equations derived from (4.20) give the
vanishing of the curvatures (4.18) and (4.19). Here, anal-
ogously to the purely bosonic case, the cosmological con-
stant can be seen as a source for the spatial super-torsion
T̂ a

(
eb

) = dea + εacωec + εacτωc + ψ̄+γ aψ− and for the

curvature T̂ (m) = dm + εaceaωc + 1
2 ψ̄−γ 0ψ− + ψ̄+γ 0ρ.

In particular, on-shell we have

T̂ a
(
eb

)
= 2

�
εacτec,

T̂ (m) = 1

�
εaceaec. (4.21)

Hence, the torsional NR supergravity theory is then char-
acterized, on-shell, by vanishing supercurvatures F (ω) =
0 = Fa

(
ωb

)
and a non-vanishing spatial super-torsion

T̂ a
(
eb

) �= 0. In the vanishing cosmological constant limit
� → ∞, the field equations reduces to those of the extended
Bargmann ones in which the super-torsion vanishes. Let
us note that the present theory is quite different from the
extended Newton–Hooke supergravity at the dynamic level.
Indeed, the Newton–Hooke supergravity theory is charac-
terized by a vanishing super-torsion and the cosmological
constant appears explicitly along the supercurvatures of the
ω and ωa NR gauge fields [57,63].

As an ending remark, one can alternatively obtain the
torsional NR supergravity action (4.20) from the relativis-
tic N = 2 teleparallel CS supergravity action [17]:

IN=2
TSG = k

4π

∫
M

{
α0

(
W AdWA

+1

3
εABCWAWBWB − 2AdA − 4

�
�̄ i∇� i

)

+α1

(
2EAR

A(W ) + 4

3�2 εABC EAEBEC

−2

�
T AEA − 4CdA + 4

�
CdC − 2�̄ i∇� i

)}
,

(4.22)

where i = 1, 2 and

RA (W ) = dW A + 1

2
εABCWBWC ,

T A = dE A + εABCWBEC ,

∇� i = d� i + 1

2
W AγA� i + εi jA� j . (4.23)

The NR supergravity action (4.20) appears by expressing the
NR gauge fields in terms of the relativistic ones through the
semigroup elements as

ω = λ0W
0, ωa = λ1W

a, s = λ2W
0,

h = λ0E
0, ea = λ1E

a, m = λ2E
0,

ψ+ = λ0�
+, ψ− = λ1�

−, ρ = λ2�
+,

t1 = λ0A, t2 = λ2A,

u1 = λ0C, u2 = λ2C, (4.24)

plus the expansion of the relativistic parameters as in (4.15).
Here, we have considered the decomposition of the Aindex
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as in (3.4) along with the following redefinition of the spinor
one-form fields:

�± = 1√
2

(
�1

α ±
(
γ 0

)
αβ

�2
β

)
. (4.25)

5 Conclusions

In this work we have presented the NR counterpart of
the teleparallel CS (super)gravity theory in three spacetime
dimensions. We first focused on the purely bosonic case,
studying the NR limit of the relativistic teleparallel CS grav-
ity [17], based on the teleparallel algebra (2.1). A torsional
NR algebra has been obtained by considering a particular
U (1)-enlargement of (2.1). Such enlargement, with involves
additional Abelian generators, is required firstly to ensure a
non-degenerate invariant tensor in the limit process to the
NR theory and secondly to have a well-defined flat limit
leading to the extended Bargmann symmetry. The NR action
obtained is characterized, on-shell, by non-vanishing spa-
tial torsion, which is sourced by the cosmological constant.
In the vanishing cosmological constant limit � → ∞ such
spatial torsion vanishes and the NR CS gravity model boils
down to the extended Bargmann gravity theory [54]. The lat-
ter was also obtained as the vanishing cosmological constant
limit of the CS gravity theory invariant under the Newton–
Hooke symmetry. However, as we have shown, the inclusion
of the cosmological constant through the torsional NR alge-
bra is different from the one constructed using the Newton–
Hooke symmetry. Hence, we have also provided another
NR CS gravity model which can be seen as an alternative
cosmological extension of the extended Bargmann gravity
theory.

At the supersymmetric level, we have considered the
three-dimensional relativistic N = 2 teleparallel CS super-
gravity theory [17] and developed its NR counterpart by
performing the S-expansion procedure [60]. Indeed, the S-
expansion method can be seen as a generalization of the
Inönö–Wigner contraction when the semigroup considered
belongs to the S(N )

E family. In particular, the semigroup

S(2)
E allows to obtain not only a well-defined NR teleparal-

lel (super)algebra but also its invariant tensor. Analogously
to the non-vanishing super-torsion appearing in the rela-
tivistic three-dimensional N = 2 teleparallel CS super-
gravity, the torsional NR CS supergravity theory presented
here is characterized, on-shell, by a non-vanishing spa-
tial super-torsion sourced by the cosmological constant.
In the vanishing cosmological constant limit � → ∞ of
the aforementioned NR model, the supersymmetric exten-
sion of the extended Bargmann gravity theory [54,57,62] is
recovered.

To obtain the respective NR version of a relativistic super-
algebra is a challenging task and, to our knowledge, has
only been approached in three spacetime dimensions [52–
57,62–66,105]. The S-expansion method not only offers us
a straightforward mechanism to derive its corresponding NR
counterpart but also provides us with the non-vanishing com-
ponents of the NR invariant tensor. Such procedure could be
useful to go beyond three spacetime dimensions and to derive
NR CS (super)gravity model in higher odd spacetime dimen-
sions. In even dimensions, a completely different approach
should be considered. In this direction, a geometrical formu-
lation of supergravity à la MacDowell–Mansouri [106–108]
could be used.

Further generalizations of the teleparallel CS gravity
theory has been obtained in [12] by considering a non-
vanishing torsion in the Maxwell CS gravity theory [109–
117]. The study of black hole solutions, and their thermody-
namics, of the Maxwellian teleparallel gravity could bring
valuable information about the physical implications of a
non-vanishing torsion in Maxwell gravity theory [work in
progress]. On the other hand, a Maxwellian version of the
teleparallel supergravity remains unexplored and could be
useful not only to elucidate the role of torsion in Maxwell
supergravity but also to approach a Maxwellian generaliza-
tion of the present torsional NR supergravity. It would be
then interesting to analyze the differences with our torsional
NR (super)gravity theory. In particular, one could expect to
find a deformation of the Maxwellian extended Bargmann
(super)algebra [56,102].
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