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Abstract We study real ternary forms whose real rank equals the generic complex rank,
and we characterize the semialgebraic set of sums of powers representations with that rank.
Complete results are obtained for quadrics and cubics. For quintics, we determine the real
rank boundary: It is a hypersurface of degree 168. For quartics, sextics and septics, we identify
some of the components of the real rank boundary. The real varieties of sums of powers are
stratified by discriminants that are derived from hyperdeterminants.
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1 Introduction

Let R[x, y, z]d denote the
(d+2

2

)
-dimensional vector space of ternary forms f of degree d .

These are homogeneous polynomials of degree d in three unknowns x, y, z, or equivalently,
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1026 M. Michałek et al.

symmetric tensors of format 3×3× · · ·×3with d factors.We are interested in decompositions

f (x, y, z) =
r∑

i=1

λi · (ai x + bi y + ci z)
d , (1)

where ai , bi , ci , λi ∈ R for i = 1, 2, . . . , r . The smallest r for which such a representation
exists is the real rank of f , denoted rkR( f ). For d even, the representation (1) has signature
(s, r − s), for s ≥ r/2, if s of the λi ’s are positive while the others are negative, or vice versa.
The complex rank rkC( f ) is the smallest r such that f has the form (1) where ai , bi , ci ∈ C.
The inequality rkC( f ) ≤ rkR( f ) always holds and is often strict. For binary forms, this
phenomenon is well understood by now, thanks to [7,16]. For ternary forms, explicit regions
where the inequality is strict were identified by Blekherman, Bernardi and Ottaviani in [6].

The present paper extends these studies. We focus on ternary forms f that are general in
R[x, y, z]d . The complex rank of such a form is referred to as the generic rank. It depends
only on d , and we denote it by R(d). The Alexander–Hirschowitz Theorem [2] implies that

R(2) = 3, R(4) = 6, and R(d) =
⌈

(d + 2)(d + 1)

6

⌉
otherwise. (2)

We are particularly interested in general forms whose minimal decomposition is real. Set

Rd = {
f ∈ R[x, y, z]d : rkR( f ) = R(d)

}
.

This is a full-dimensional semialgebraic subset of R[x, y, z]d . Its topological boundary ∂Rd

is the set-theoretic difference of the closure of Rd minus the interior of the closure of Rd .
Thus, if f ∈ ∂Rd then every open neighborhood of f contains a general form of real rank
equal to R(d) and also a general form of real rank bigger than R(d). The semialgebraic set
∂Rd is either empty or pure of codimension 1. The real rank boundary, denoted ∂alg(Rd),
is defined as the Zariski closure of the topological boundary ∂Rd in the complex projective

space P(C[x, y, z]d) = P(d+2
2 )−1. We conjecture that the variety ∂alg(Rd) is non-empty and

hence has codimension 1, for all d ≥ 4. This is equivalent to R(d) + 1 being a typical rank,
in the sense of [6,7,16]. This is proved for d = 4, 5 in [6] and for d = 6, 7, 8 in this paper.

Our aim is to study these hypersurfaces. The big guiding problem is as follows:

Problem 1.1 Determine the polynomial that defines the real rank boundary ∂alg(Rd).

The analogous question for binary forms was answered in [25, Theorem 4.1]. A related
and equally difficult issue is to identify all the various open strata in the real rank stratification.

Problem 1.2 Determine the possible real ranks of general ternary forms in R[x, y, z]d .

This problem is open for d ≥ 4; the state of the art is thework of Bernardi, Blekherman and
Ottaviani in [6]. For binary forms, this question has a complete answer, due to Blekherman
[7], building on earlier work of Comon and Ottaviani [16]. See also [25, §4].

For any ternary form f and the generic rank r = R(d), it is natural to ask for the space
of all decompositions (1). In the algebraic geometry literature [29,33], this space is denoted
VSP( f ) and called the variety of sums of powers. By definition, VSP( f ) is the closure of
the subscheme of the Hilbert scheme Hilbr (P2) parametrizing the unordered configurations

{
(a1 : b1 : c1), (a2 : b2 : c2), . . . , (ar : br : cr )

} ⊂ P
2 (3)
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Real rank geometry of ternary forms 1027

Table 1 Varieties of sums of powers for ternary forms of degree d = 2, 3, 4, 5, 6, 7, 8

Ternary forms R(d) VSP( f ) References

Quadrics 3 del Pezzo threefold V5 Mukai [27]

Cubics 4 P
2 Dolgachev and

Kanev [19]

Quartics 6 Fano threefold V22 of genus 12 Mukai [27]

Quintics 7 1 point Hilbert,
Richmond,
Palatini, see [33]

Sextics 10 K3 surface V38 of genus 20 Mukai [28], see
also [33]

Septics 12 5 points Dixon and Stuart
[18]

Octics 15 16 points Ranestad and
Schreyer [33]

that can occur in (1). If f is general then the dimensionof its variety of sumsof powers depends
only on d . By counting parameters, the Alexander–Hirschowitz Theorem [2] implies

dim(VSP( f )) =

⎧
⎪⎨

⎪⎩

3 if d = 2 or 4,

2 if d = 0 (mod 3),

0 otherwise.

(4)

In Table 1, we summarize what is known about the varieties of sums of powers. In two-thirds
of all cases, the variety VSP( f ) is finite. It is one point only in the case of quintics, by [26].

We are interested in the semialgebraic subset SSP( f )R of those configurations (3) in
VSP( f ) whose r points all have real coordinates. This is the space of real sums of powers.
Note that the space SSP( f )R is non-empty if and only if the ternary form f lies in the
semialgebraic set Rd . The inclusion of SSP( f )R in the real variety VSP( f )R of real points
of VSP( f ) is generally strict. Our aim is to describe these objects as explicitly as possible.

A key player is the apolar ideal of the form f . This is the 0-dimensional Gorenstein ideal

f ⊥ =
{
p(x, y, z) ∈ R[x, y, z] : p

( ∂

∂x
,

∂

∂y
,

∂

∂z

)
annihilates f (x, y, z)

}
. (5)

A configuration (3) lies in VSP( f ) if and only if its homogeneous radical ideal is con-
tained in f ⊥. Hence, points in SSP( f )R are 1-dimensional radical ideals in f ⊥ whose zeros
are real.

Another important tool is themiddle catalecticant of f , which is defined as follows. For any
partition d = u+v, consider the bilinear form Cu,v( f ) : R[x, y, z]u ×R[x, y, z]v → R that
maps (p, q) to the real number obtained by applying (p ·q)( ∂

∂x , ∂
∂y ,

∂
∂z ) to the polynomial f .

We identify Cu,v( f ) with the matrix that represents the bilinear form with respect to the
monomial basis. The middle catalecticant C( f ) of the ternary form f is precisely that
matrix, where we take u = v = d/2 when d is even, and u = (d − 1)/2, v = (d + 1)/2
when d is odd. The hypothesis d ∈ {2, 4, 6, 8} ensures that C( f ) is square of size equal to
R(d) = (d/2+2

2

)
.

Proposition 1.3 Let d ∈ {2, 4, 6, 8} and f ∈ R[x, y, z]d be general. The signature of any
representation (1) coincides with the signature of the middle catalecticant C( f ). If C( f )
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1028 M. Michałek et al.

is positive definite then SSP( f )R = VSP( f )R, and this set is always non-empty provided
d ≤ 4.

Proof If f =∑r
i=1 λi�

d
i as in (1) then C( f ) is the sum of the rank one matrices λiC(�di ). If

C( f ) has rank r then its signature is (# positive λi , # negative λi ). The identity SSP( f )R =
VSP( f )R will be proved for d = 2 in Theorem 2.1, and the same argument works for
d = 4, 6, 8 as well. The last assertion, for d ≤ 4, is due to Reznick [35, Theorem 4.6]. �	

The structure of the paper is organized by increasing degrees: Section d is devoted to
ternary forms of degree d . In Section 2, we determine the threefolds SSP( f )R for quadrics,
and in Section 3 we determine the surfaces SSP( f )R for cubics. Theorem 3.1 summarizes
the four cases displayed in Table 2. Section 4 is devoted to quartics f and their real rank
boundaries.We present an algebraic characterization of SSP( f )R as a subset ofMukai’s Fano
threefold V22, following [24,27,29,33,36]. In Section 5, we use the uniqueness of the rank 7
decomposition of quintics to determine the irreducible hypersurface ∂alg(R5). We also study
the case of septics (d = 7), and we discuss VSPX for arbitrary varieties X ⊂ P

N . Finally,
Section 6 covers all we know about sextics, starting in Theorem 6.1 with a huge component
of the boundary ∂alg(R6), and concluding with a case study of the monomial f = x2y2z2.

This paper contains numerous open problems and conjectures. We are fairly confident
about some of them (like the one stated prior to Problem 1.1). However, others (like Con-
jectures 4.3 and 5.5) are based primarily on optimism. We hope that all will be useful in
inspiring further progress on the real algebraic geometry of tensor decompositions.

2 Quadrics

The real rank geometry of quadratic forms is surprisingly delicate and interesting. Consider a
general real quadric f inn variables.Weknow from linear algebra that rkR( f ) = rkC( f ) = n.
More precisely, if (p, q) is the signature of f then, after a linear change of coordinates,

f = x21 + · · · + x2p − x2p+1 − · · · − x2p+q (n = p + q). (6)

The stabilizer of f in GL(n, R) is denoted SO(p, q). It is called the indefinite special
orthogonal group when p, q ≥ 1. We denote by SO+(p, q) the connected component
of SO(p, q) containing the identity. Let G denote the stabilizer in SO+(p, q) of the set{{x21 , . . . , x2p}, {x2p+1, . . . , x

2
n }
}
. In particular, if f is positive definite then we get the group

of rotations, SO+(n, 0) = SO(n), and G is the subgroup of rotational symmetries of the
n-cube, which has order 2n−1n!.
Theorem 2.1 Let f be a rank n quadric of signature (p, q). The space SSP( f )R can be
identified with the quotient SO+(p, q)/G. If the quadric f is definite then SSP( f )R =
VSP( f )R = SO(n)/G. In all other cases, SSP( f )R is strictly contained in the real variety
VSP( f )R.

Proof The analogue of the first assertation over an algebraically closed field appears in [34,
Proposition 1.4]. To prove SSP( f )R = SO+(p, q)/G over R, we argue as follows. Every
rank n decomposition of f has the form

∑p
i=1 �2i −

∑p+q
j=p+1 �2j and is hence obtained from (6)

by an invertible linear transformation x j → � j that preserves f . These elements of GL(n, R)

are taken up to sign reversals and permutations of the sets {�1, . . . , �p} and {�p+1, . . . , �n}.
Suppose that f is not definite, i.e., p, q ≥ 1. Then we can write f = 2�21 − 2�22 +∑n
j=3 ±�2j . Over C, with i = √−1, this can be rewritten as f = (�1 + i�2)2 + (�1 − i�2)2 +

123



Real rank geometry of ternary forms 1029

Table 2 Four possible types of a real cubic f of form (15) and its quadratic map F : P2 → P
2

λ < −3 −3 < λ < 0 0 < λ < 6 6 < λ

f Hyperbolic Not hyperbolic Not hyperbolic Not hyperbolic

H( f ) Not hyperbolic Hyperbolic Hyperbolic Hyperbolic

C( f ) Hyperbolic Hyperbolic Not hyperbolic Hyperbolic

#F−1(•)R 4, 2, 0 4, 2, 4 4, 2 4, 2, 0

SSP( f )R Disk Disk 	 Möbius strip Disk Disk

Oriented matroid (+, +,+, +) (+,+, +,+) 	 (+, +,−, −) (+,+, +,−) (+, +, +,+)

∑n
j=3 ±�2j . This decomposition represents a point in VSP( f )R\SSP( f )R. There is an open

set of such points.
Let f be definite and consider any point in VSP( f )R. It corresponds to a decomposition

f =
k∑

j=1

(
(a2 j−1+ib2 j−1)(�2 j−1 + i�2 j )

2 + (a2 j + ib2 j )(�2 j−1 − i�2 j )
2) +

n∑

j=2k+1

c j�
2
j ,

where �1, . . . , �n are independent real linear forms and the a’s and b’s are in R. By rescaling
�2 j and �2 j−1, we obtain a2 j−1 + ib2 j−1 = 1. Adding the right-hand side to its complex
conjugate, we get c j ∈ R and a2 j + ib2 j = 1. The catalecticant C( f ) is the matrix that
represents f . A change of basis shows that C( f ) has ≥ k negative eigenvalues, hence
k = 0. �	

The geometry of the inclusion SSP( f )R into VSP( f )R is already quite subtle in the case
of binary forms, i.e., n = 2. We call f = a0x2 + a1xy + a2y2 hyperbolic if its signature
is (1, 1). Otherwise f is definite. These two cases depend on the sign of the discriminant
a0a2 − 4a21 .

Corollary 2.2 Let f be a binary quadric of rank 2. If f is definite then SSP( f )R =
VSP( f )R = P

1
R
. If f is hyperbolic then SSP( f )R is an interval in the circleVSP( f )R = P

1
R
.

Proof The apolar ideal f ⊥ is generated by two quadrics q1, q2 in R[x, y]2. Their pencil
P( f ⊥

2 ) is VSP( f ) � P
1. A real point (u : v) ∈ P

1
R

= VSP( f )R may or may not be
in SSP( f )R. The fibers of the map P

1
R

→ P
1
R
given by (q1, q2) consist of two points,

corresponding to the decompositions f = �21 ± �22. The fiber over (u : v) consists of the
roots of the quadric uq2 − vq1. If f is definite, then both roots are always real. Otherwise
the discriminant with respect to (x, y), which is a quadric in (u, v), divides P

1
R
into SSP( f )R

and its complement. �	

Example 2.3 Fix the hyperbolic quadric f = x2 − y2. We take q1 = xy and q2 = x2 + y2.
The quadric uq2−vq1 = u(x2+y2)−vxy has two real roots if and only if (2u−v)(2u+v) <

0. Hence SSP( f )R is the interval in P
1
R
defined by −1/2 < u/v < 1/2. In the topological

description in Theorem 2.1, the group G is trivial, and SSP( f )R is identified with the group

SO+(1, 1) =
{(

cosh(α) sinh(α)

sinh(α) cosh(α)

)
: α ∈ R

}
.
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1030 M. Michałek et al.

The homeomorphism between SO+(1, 1) and the interval between −1/2 and 1/2 is
given by

α �→ u

v
= cosh(α) · sinh(α)

cosh(α)2 + sinh(α)2
.

The resulting factorization u(x2 + y2) − vxy = (
sinh(α)x − cosh(α)y

)(
cosh(α)x −

sinh(α)y
)

yields the decomposition f = (
cosh(α)x + sinh(α)y

)2 − (
sinh(α)x +

cosh(α)y
)2.

It is instructive to examine the topology of the family of curves SSP( f )R as f runs over
the projective plane P

2
R

= P(R[x, y]2). This plane is divided by an oval into two regions:

(i) the interior region {a0a2 − 4a21 < 0} is a disk, and it parametrizes the definite quadrics;
(ii) the exterior region {a0a2−4a21 > 0} is aMöbius strip, consisting of hyperbolic quadrics.

Over the disk, the circles VSP( f )R provide a trivial P
1
R
–fibration. Over the Möbius strip,

there is a twist. Namely, if we travel around the disk, along an S
1 in the Möbius strip, then

the two endpoints of SSP( f )R get switched. Hence, here we get the twisted circle bundle.
The topic of this paper is ternary forms, so we now fix n = 3. A real ternary form of rank

3 is either definite or hyperbolic. In the definite case, the normal form is f = x2 + y2 + z2,
and SSP( f )R = VSP( f )R = SO(3)/G, where G has order 24. In the hyperbolic case, the
normal form is f = x2 + y2 − z2, and SSP( f )R � VSP( f )R = SO+(2, 1)/G, where G has
order 4. These spaces are three-dimensional, and they sit inside the complex Fano threefold
V5, as seen in Table 1. We follow [29,34] in developing our algebraic approach to SSP( f )R.
This sets the stage for our study of ternary forms of degree d ≥ 4 in the later sections.

Fix S = R[x, y, z] and f ∈ S2 a quadric of rank 3. The apolar ideal f ⊥ ⊂ S is artinian,
Gorenstein, and it has five quadratic generators. Its minimal free resolution has the form

0 −→ S(−5) −→ S(−3)5
A−→ S(−2)5 −→ S −→ 0. (7)

By the Buchsbaum-Eisenbud structure theorem, we can choose bases so that the matrix A
is skew-symmetric. The entries are linear, so A = x A1 + yA2 + zA3 where A1, A2, A3

are real skew-symmetric 5×5-matrices. More invariantly, the matrices A1, A2, A3 lie in∧2 f ⊥
3 � R

10. The five quadratic generators of the apolar ideal f ⊥ are the 4×4-sub-Pfaffians
of A.

The three points (ai : bi : ci ) in a decomposition (1) are defined by three of the five
quadrics.Hence,VSP( f ) is identifiedwith a subvariety of theGrassmannianGr(3, 5), defined
by the condition that the three quadrics are the minors of a 2 × 3 matrix with linear entries.
Equivalently, the chosen three quadrics need to have two linear syzygies. After taking a set
of five minimal generators of f ⊥ containing three such quadrics, the matrix A has the form

A =
(

� T
−T t 0

)
. (8)

Here, 0 is the zero 2× 2 matrix and T is a 3× 2 matrix of linear forms. The 2× 2-minors of
T—which are also Pfaffians of A—are the three quadrics defining the points (ai : bi : ci ).
Proposition 2.4 The threefold VSP( f ) is the intersection of the Grassmannian Gr(3, 5), in
its Plücker embedding in P(

∧3 f ⊥
3 ) � P

9, with the 6-dimensional linear subspace

P
6
A = {U ∈ P

9 : U ∧ A1 = U ∧ A2 = U ∧ A3 = 0
}
. (9)
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Real rank geometry of ternary forms 1031

Proof This fact was first observed by Mukai [27]. See also [33, §1.5]. If U = u1 ∧ u2 ∧
u3 lies in this intersection then the matrix A has the form (8) for any basis that contains
u1, u2, u3. �	

Note that any general codimension 3 linear section of Gr(3, 5) arises in this manner. In
other words, we can start with three skew-symmetric 5 × 5-matrices A1, A2, A3 and obtain
VSP( f ) = Gr(3, 5) ∩ P

6
A for a unique quadratic form f . In algebraic geometry, this Fano

threefold is denoted V5. It has degree 5 in P
9 and is known as the quintic del Pezzo threefold.

Our space SSP( f )R is a semialgebraic subset of the real Fano threefold VSP( f )R ⊂
P
9
R
. If f is hyperbolic, then the inclusion is strict. We now extend Example 2.3 to this

situation.

Example 2.5 Weshall compute the algebraic representation of SSP( f )R for f = x2+y2−z2.
The apolar ideal f ⊥ is generated by the 4 × 4 Pfaffians of the skew-symmetric matrix

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 x −y z 0
−x 0 −z y −y
y z 0 0 −x

−z −y 0 0 0
0 y x 0 0

⎞

⎟
⎟
⎟
⎟
⎠

= x(e12−e35)− y(e13−e24+e25)+z(e14−e23). (10)

Here ei j = ei ∧ e j . This is in the form (8). We fix affine coordinates on Gr(3, 5) as follows:

U = rowspan of

⎛

⎝
1 0 0 a b
0 1 0 c d
0 0 1 e g

⎞

⎠ . (11)

If we write pi j for the signed 3 × 3-minors obtained by deleting columns i and j from this
3 × 5-matrix, then we see that VSP( f ) = P

6
A ∩ Gr(3, 5) is defined by the affine equations

p12 − p35 = ad − bc + e = 0,
p13 − p24 + p25 = be − ag + d + c = 0,

p14 − p23 = b + de − cg = 0.
(12)

We now transform (10) into the coordinate systemgiven byU and its orthogonal complement:

(
� T

−T t 0

)
=

⎛

⎜⎜⎜⎜
⎝

1 0 0 a b
0 1 0 c d
0 0 1 e g
a c e −1 0
b d g 0 −1

⎞

⎟⎟⎟⎟
⎠

· A ·

⎛

⎜⎜⎜⎜
⎝

1 0 0 a b
0 1 0 c d
0 0 1 e g
a c e −1 0
b d g 0 −1

⎞

⎟⎟⎟⎟
⎠

. (13)

The lower right 2× 2-block is zero precisely when (12) holds. The upper right block equals

T =

⎛

⎜
⎜
⎝

(be + c)x + (−ac + bc − e)y − (a2 + 1)z (bg + d)x + (−ad + bd − g)y − abz

(de − a)x + (−c2 + cd − 1)y − (ac + e)z (dg − b)x + (−cd + d2 + 1)y − (bc + g)z

egx + (−ce + cg + a)y − (ae − c)z (g2 + 1)x + (−de + dg + b)y − (be − d)z

⎞

⎟
⎟
⎠.

Writing T = xT1 + yT2 + zT3, we regard T as a 2 × 3 × 3 tensor with slices T1, T2, T3
whose entries are quadratic polynomials in a, b, c, d, e, g. The hyperdeterminant of that
tensor equals

Det(T ) = discrw
(
Jacx,y,z( T · (1

w

)
)
)

(by Schläfli’s formula [31, §5])
= 27a8c2d6g4+54a8c2d4g6+27a8c2d2g8+· · · −4d2+2e2 − 6eg − 8g2−1. (14)

123



1032 M. Michałek et al.

In general, the expected degree of the hyperdeterminant of this form is 24. In this case, after
some cancellations occur, this is a polynomial in 6 variables of degree 20 with 13956 terms.
Now, consider any real point (a, b, c, d, e, g) that satisfies (12). The 2×2-minors of T define
three points �1, �2, �3 in the complex projective plane P

2. These three points are all real if
and only if Det(T ) < 0.

Our derivation establishes the following result for the hyperbolic quadric f = x2+y2−z2.
The solutions of (12) correspond to the decompositions f = �21+�22−�23, as described above.

Corollary 2.6 In affine coordinates on the Grassmannian Gr(3, 5), the real threefold
VSP( f )R is defined by the quadrics (12). The affine part of SSP( f )R � SO+(2, 1)/G
is the semialgebraic subset of points (a, . . . , e, g) at which the hyperdeterminant Det(T ) is
negative.

We close this section with an interpretation of hyperdeterminants (of next-to-boundary
format) asHurwitz forms [38]. This will be used in later sections to generalize Corollary 2.6.

Proposition 2.7 The hyperdeterminant of format m × n × (m + n − 2) equals the Hurwitz
form (in dual Stiefel coordinates) of the variety of m× (m+n−2)-matrices of rank≤ m−1.
The maximal minors of such a matrix whose entries are linear forms in n variables define(m+n−2

n−1

)
points in P

n−1, and the above hyperdeterminant vanishes when two points coincide.

Proof Let X be the variety of m × (m + n − 2)-matrices of rank ≤ m − 1. By [22, Theorem
3.10, Section 14.C], the Chow form of X equals the hyperdeterminant of boundary format
m × n × (m + n − 1). The derivation can be extended to next-to-boundary format, and it
shows that the m × n × (m + n − 2) hyperdeterminant is the Hurwitz form of X . The case
m = n = 3 is worked out in [38, Example 4.3]. �	

In this paper, we are concerned with the case n = 3. In Corollary 2.6 we took m = 2.

Corollary 2.8 Thehyperdeterminant of format3×m×(m+1) is an irreducible homogeneous
polynomial of degree 12

(m+1
3

)
. It serves as the discriminant for ideals of

(m+1
2

)
points in P

2.

Proof The formula 12
(m+1

3

)
is derived from the generating function in [22, Theorem 14.2.4],

specialized to 3-dimensional tensors in [31, §4]. For the geometry see [31, Theorem 5.1]. �	

3 Cubics

The case d = 3 was studied by Banchi [4]. He gave a detailed analysis of the real ranks of
ternary cubics f ∈ R[x, y, z]3 with focus on the various special cases. In this section, we
consider a general real cubic f .We shall prove the following result on its real decompositions.

Theorem 3.1 The semialgebraic set SSP( f )R is either a disk in the real projective plane or
a disjoint union of a disk and a Möbius strip. The two cases are characterized in Table 2.
The algebraic boundary of SSP( f )R is an irreducible sextic curve that has nine cusps.

Our point of departure is the following fact which is well known, e.g., from [4, §5] or [6].

Proposition 3.2 The real rank of a general ternary cubic is R(3) = 4, so it agrees with the
complex rank. Hence, the closure of R3 is all of R[x, y, z]3, and its boundary ∂R3 is empty.
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Proof Every smooth cubic curve in the complex projective plane P
2 can be transformed, by

an invertible linear transformation τ ∈ PGL(3, C), into the Hesse normal form (cf. [3]):

f = x3 + y3 + z3 + λxyz. (15)

Suppose that the given cubic is defined over R. It is known classically that the matrix τ can
be chosen to have real entries. In particular, the parameter λ will be real. Also, λ �= −3;
otherwise, the curve would be singular. Banchi [4] observed that 24(λ + 3)2 f is equal to

[
(6 + λ)x − λy − λz

]3 + [
(6 + λ)y − λx − λz

]3 + [
(6 + λ)z − λx − λy

]3

+ λ(λ2 + 6λ + 36)
[
x + y + z

]3
.

By applying τ−1, one obtains the decomposition for the original cubic. The entries of the
transformation matrix τ ∈ PGL(3, R) can be written in radicals in the coefficients of f . The
corresponding Galois group is solvable and has order 432. It is the automorphism group of
the Hesse pencil; see e.g., [3, Remark 4.2] or [15, Section 2]. �	
Remark 3.3 The Hesse normal form (15) is well suited for this real structure. For any fixed
isomorphism class of a real elliptic curve over C, there are two isomorphism classes over R,
by [37, Proposition 2.2]. We see this by considering the j-invariant of the Hesse curve:

j ( f ) = −λ3 (λ − 6)3
(
λ2 + 6λ + 36

)3

(λ + 3)3
(
λ2 − 3λ + 9

)3 . (16)

For a fixed real value of j ( f ), this equation has two real solutionsλ1 andλ2. These two elliptic
curves are isomorphic over C but not over R. They are distinguished by the sign of the degree
6 invariant T of ternary cubics, which takes the following value for the Hesse curve:

T ( f ) = 1 − 4320λ3 + 8λ6

66
. (17)

If T ( f ) = 0 then the two curves differ by the sign of the Aronhold invariant. This proves
that any real smooth cubic is isomorphic over R to exactly one element of the Hesse pencil.

An illustrative example is the Fermat curve x3 + y3 + z3. It is unique over C, but it has
two distinct real models, corresponding to λ = 0 or 6. The case λ = 6 is isomorphic over R

to g = x3 + (y+ i z)3 + (y− i z)3. This real cubic satisfies rkC(g) = 3 but rkR(g) = 4. Here,
the real surface VSP(g)R is non-empty, but its semialgebraic subset SSPR(g) is empty.

Wenowconstruct the isomorphismVSP( f ) � P
2 for ternary cubics f as shown inTable 1.

The apolar ideal f ⊥ is a complete intersection generated by three quadrics q0, q1, q2. We
denote this net of quadrics by f ⊥

2 . Conversely, any such complete intersection determines a
unique cubic f . The linear system f ⊥

2 defines a branched 4 : 1 covering of projective planes:
F : P

2 → P
2, (x : y : z) �→ (

q0(x, y, z) : q1(x, y, z) : q2(x, y, z)
)
.

We regard F as a map from P
2 to the Grassmannian Gr(2, f ⊥

2 ) of 2-dimensional subspaces
of f ⊥

2 � C
3. It takes a point � to the pencil of quadrics in f ⊥

2 that vanish at �. The fiber of F
is the base locus of that pencil. Let B ⊂ P

2 be the branch locus of F . This is a curve of degree
six. The fiber of F over any point in P

2\B consists of four points �1, �2, �3, �4, and these
determine decompositions f = �31 +�32 +�33 +�34. In this manner, the rank 4 decompositions
of f are in bijection with the points of P

2\B. We conclude that VSP( f ) = Gr(2, f ⊥
2 ) � P

2.
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Second proof of Proposition 3.2 We follow a geometric argument, due to De Paolis in 1886,
as presented in [4, §5] and [6, §3]. Let H( f ) be the Hessian of f , i.e., the 3× 3 determinant
of second partial derivatives of f . We choose a real line �1 that intersects the cubic H( f )
in three distinct real points. The line �1 is identified with its defining linear form and hence
with a point in the dual P

2. That P
2 is the domain of F . We may assume that F(�1) is

not in the branch locus B. There exists a decomposition f = �31 + �32 + �33 + �34, where
�2, �3, �4 ∈ C[x, y, z]1. We claim that the �i have real coefficients. Let ∂p( f ) be the polar
conic of f with respect to p = �1 ∩ �2. This conic is a C-linear combination of �23 and �24. It
is singular at the point �3 ∩ �4. In particular, p belongs to �1 and to the cubic H( f ). Hence,
p is a real point, the conic ∂p( f ) is real, and its singular point �3 ∩ �4 is real. The latter point
is distinct from p = �1 ∩ �2 because f is smooth. After relabeling, all pairwise intersection
points of the lines �1, �2, �3, �4 are distinct and real. Hence the lines themselves are real.

The key step in the second proof is the choice of the line �1. In practice, this is done by
sampling linear forms �1 from R[x, y, z]1 until H( f ) ∩ �1 consists of three real points p.
For each of these, we compute the singular point of the conic ∂p( f ) and connect it to p by
a line. This gives the lines �2, �3, �4 ∈ R[x, y, z]1. The advantage of this method is that the
coordinates of the �i live in a cubic extension and are easy to express in terms of radicals.

In order to choose the initial line �1 more systematically, we must understand the structure
of SSP( f )R. This is our next topic. By definition, SSP( f )R is the locus of real points p ∈
P
2 = Gr(2, f ⊥

2 ) for which the fiber F−1(p) is fully real. Such points p have the form
p = F(�) where � is a line that meets the Hessian cubic H( f ) in three distinct real points.

Example 3.4 Let f be the Hesse cubic (15). The net f ⊥
2 is spanned by the three quadrics

q0 = λx2 − 6yz, q1 = λy2 − 6xz, and q2 = λz2 − 6xy.

These quadrics define the map F : P
2 → P

2. We use coordinates (x : y : z) on the domain
P
2 and coordinates (a : b : c) on the image P

2. The branch locus B of F is the sextic curve

177147λ4(a6 + b6 + c6) − (1458λ8 − 157464λ5 + 4251528λ2)(a4bc + ab4c + abc4)
+ (36λ10 − 5832λ7 − 39366λ4 − 5668704λ)(a3b3 + a3c3 + b3c3)

− (λ12 − 216λ9 − 61236λ6 + 3621672λ3 + 8503056)a2b2c2.

We regard the Hessian H( f ) as a curve in the image P
2. This cubic curve equals

H( f ) = a3 + b3 + c3 − λ3 + 108

3λ2
abc. (18)

The ramification locus of the map F is the Jacobian of the net of quadrics:

C( f ) = det

⎛

⎜⎜⎜
⎝

∂q0
∂x

∂q0
∂y

∂q0
∂z

∂q1
∂x

∂q1
∂y

∂q1
∂z

∂q2
∂x

∂q2
∂y

∂q2
∂z

⎞

⎟⎟⎟
⎠

= x3 + y3 + z3 + 54 − λ3

9λ
xyz. (19)

This cubic is known classically as the Cayleyan of f ; see [3, Prop. 3.3] and [21, eqn. (3.27)].
We note that the dual of the cubic C( f ) is the sextic B. The preimage of B = C( f )∨

under F is a non-reduced curve of degree 12. It has multiplicity 2 on the Cayleyan C( f ).
The other component is the sextic curve dual to the Hessian H( f ). That sextic equals

H( f )∨ = −2187λ8(x6+y6+z6)+(162λ10+34992λ7+1889568λ4)(x4yz+xy4z+xyz4)

+ (−12λ11 + 486λ8 − 41990λ5 − 15116544λ2)(x3y3 + x3z3 + y3z3) +
+ (λ12 − 2484λ9 − 244944λ6 + 5038848λ3 + 136048896)x2y2z2.
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So, we constructed four curves: the cubic C( f ) and the sextic H( f )∨ in the domain P
2 =

{(x : y : z)}, and the cubic H( f ) and the sextic B = C( f )∨ in the image P
2 = {(a :b :c)}. ♦

A smooth cubic f in the real projective plane is either a connected curve, namely a
pseudoline, or it has two connected components, namely a pseudoline and an oval. In the
latter case, f is hyperbolic. The cubic in the Hesse pencil (15) is singular for λ = −3, it
is hyperbolic if λ < −3, and it is not hyperbolic if λ > −3. This trichotomy is the key for
understanding SSP( f )R. However, we must consider this trichotomy also for the Hessian
cubic H( f ) in (18) and for the Cayleyan cubicC( f ) in (19). The issue is whether their Hesse

parameters − λ3+108
3λ2

and 54−λ3

9λ are bigger or smaller than the special value −3. The values
at which the behavior changes are λ = −3, 0, 6. Table 2 summarizes the four possibilities.

Three possible hyperbolicity behaviors are exhibited by the three cubics f, H( f ),C( f ).
One of these behaviors leads to two different types, seen in the second and fourth column
in Table 2. These two types are distinguished by the fibers of the map F : P

2 → P
2. These

fibers are classified by the connected components in the complement of the Cayleyan C( f ).
There are three such components if C( f ) is hyperbolic and two otherwise. The fifth row in
Table 2 shows the number of real points over these components. For 6 < λ, there are no real
points over one component; here, the general fibers have 4, 2 or 0 real points. However, for
−3 < λ < 0, all fibers contain real points; here, the general fibers have 4, 2 or 4 real points.

Proof of Theorem 3.1 After a coordinate change by a matrix τ ∈ PGL(3, R), we can assume
that the cubic f is in the Hesse pencil (15). Hence so are the associated cubics H( f ) and
C( f ). If we change the parameter λ so that all three cubics remain smooth, then the real
topology of the map F is unchanged. This gives four different types for SSP( f )R, the locus
of fully real fibers. The sextic B divides the real projective plane into two or three connected
components, depending on whether its dual cubic C( f ) = B∨ is hyperbolic or not.

Figures 1, 2, 3 and 4 illustrate the behavior of the map F in the four cases given by the
columns in Table 2. Each figure shows the plane P

2 with coordinates (x : y : z) on the left
and the plane P

2 with coordinates (a : b : c) on the right. The map F takes the left plane
onto the right plane. The two planes are dual to each other. In particular, points on the left
correspond to lines on the right. Each of the eight drawings shows a cubic curve and a sextic
curve. The two curves on the left are dual to the two curves on the right.

In each right diagram, the thick red curve is the branch locus B and the thin blue curve
is the Hessian H( f ). In each left diagram, the turquoise curve is the Cayleyan C( f ) = B∨,
and the thick blue curve is the sextic H( f )∨ dual to the Hessian. Each of the eight cubics
has either two or one connected components, depending on whether the curve is hyperbolic
or not. The complement of the cubic in P

2
R
has three or two connected components. The

diagrams verify the hyperbolicity behavior stated in the third and fourth row of Table 2. Note
that each sextic curve has the same number of components in P

2
R
as its dual cubic.

Consider the three cases where C( f ) is hyperbolic. These are in Figs. 1, 2 and 3. Here,
P
2
R
\B has three connected components. The fibers of F could have 0, 2 or 4 real points on

these three regions. The innermost region has four real points in its fibers. It is bounded by the
triangular connected component of the (red) branch curve B, which is dual to the pseudoline
of C( f ). This innermost region is connected and contractible: it is a disk in P

2
R
.

If λ /∈ [−3, 0] then this disk is exactly our set SSP( f )R. This happens in Figs.1 and 3.
However, the case λ ∈ (−3, 0) is different. This case is depicted in Fig. 2. Here, we see
that SSP( f )R consists of two regions. First, there is the disk as before, and second, we have
the outermost region. This region is bounded by the oval that is shown as two unbounded
branches on the right in Fig. 2. That region is homeomorphic to a Möbius strip in P

2
R
. The

key observation is that the fibers of F over that Möbius strip consist of four real points.
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(a) (b)

Fig. 1 Ramification and branching for λ < −3. The domain P2 = {(x : y : z)}. is shown in (a). The domain
P
2 = {(a : b : c)} is shown in (b). The triangular region in (b) is SSP( f )R

(a) (b)

Fig. 2 Ramification and branching for −3 < λ < 0. The locus SSP( f )R is bounded by the (red) sextic curve
on the right. It consists of the triangular disk and the Möbius strip (color figure online)

(a) (b)

Fig. 3 Ramification and branching for λ > 6. The triangular region is SSP( f )R

Figure 2 reveals something interesting for the decompositions f =∑4
i=1 �3i . These come

in two different types, for λ ∈ (−3, 0), one for each of the two connected components of
SSP( f )R. Over the disk, all four lines �i intersect the Hessian H( f ) only in its pseudoline.
Over theMöbius strip, the �i intersect the oval of H( f ) in two points and the third intersection
point is on the pseudoline. Compare this with Fig. 3: the Hessian H( f ) is also hyperbolic,
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(a) (b)

Fig. 4 Ramification and branching for 0 < λ < 6. The triangular region is SSP( f )R

but all decompositions are of the same type: three lines �i intersect H( f ) in two points of
its oval and one point of its pseudoline, while the fourth line intersects H( f ) only in its
pseudoline.

It remains to consider the case when C( f ) is not hyperbolic. This is shown in Fig. 4. The
branch curve B = C( f )∨ divides P

2
R
into two regions, one disk and one Möbius strip. The

former corresponds to fibers with four real points, and the latter corresponds to fibers with
two real points. We conclude that SSP( f )R is a disk also in this last case. We might note, as
a corollary, that all fibers of F : P

2 → P
2 contain real points, provided 0 < λ < 6.

For all four columns of Table 2, the algebraic boundary of the set SSP( f )R is the branch
curve B. This is a sextic with nine cusps because it is dual to the smooth cubic C( f ).

One may ask for the topological structure of the 4 : 1 covering over SSP( f )R. Over the
disk, our map F is 4 : 1. It maps four disjoint disks. Each linear form in the corresponding
decompositions f =∑4

i=1 �3i comes from one of the four regions seen in the left pictures:

(i) in Fig. 1, inside the region bounded by H( f )∨ and cut into four by C( f );
(ii) in Fig. 2, inside the spiky triangle bounded by H( f )∨ and cut into four by C( f );
(iii) in Figs. 3 and 4, one inside the triangle bounded by H( f )∨ and the others in the region

bounded by the other component of H( f )∨ cut into three regions by C( f ).

The situation is even more interesting over the Möbius strip. We can continuously change the
set {�1, �2, �3, �4}, reaching in the end the same as at the beginning, but cyclicly permuted.

Remark 3.5 Given a ternary cubic f with rational coefficients, how to decide whether
SSP( f )R has one or two connected components? The classification in Table 2 can be used
for this task as follows. We first compute the j-invariant of f and then we substitute the
rational number j ( f ) into (16). This gives a polynomial of degree 4 in the unknown λ. That
polynomial has two distinct real roots λ1 < λ2, provided j ( f ) /∈ {0, 1728}. They satisfy
λ1 < λ2 < −3, or 0 < λ1 < λ2 < 6, or (−3 < λ1 < 0 and 6 < λ2). Consider the involution
that swaps λ1 with λ2. This fixes the case in Fig. 1, and the case in Fig. 4, but it swaps the
cases in Figs. 2 and 3. Thus this involution preserves the hyperbolicity behavior. We get two
connected components, namely both the disk and Möbius strip, only in the last case. The
correct λ is identified by comparing the sign of the degree six invariant T ( f ), as in (17).
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Example 3.6 The following cubic is featured in the statistics context of [39, Example 1.1]:

f = det

⎛

⎝
x + y + z x y

x x + y + z z
y z x + y + z

⎞

⎠ = 4

3
(x + y + z)3

− 2

3
(x + y)3 − 2

3
(x + z)3 − 2

3
(y + z)3.

Its j-invariant equals j ( f ) = 16384/5. The corresponding real Hesse curves have parameters
λ1 = −13.506 . . . and λ2 = −5.57 . . ., so we are in the case of Fig. 1. Indeed, the curve
V ( f ) is hyperbolic, as seen in [39, Figure 1]. Hence SSP( f )R is a disk, shaped like a spiky
triangle. The real decomposition above is right in its center. Moreover, we can check that
T ( f ) < 0. Hence λ1 provides the unique curve in the Hesse pencil that is isomorphic to f
over R. ♦
Remark 3.7 The value 1728 for the j-invariant plays a special role. A real cubic f is hyper-
bolic if j ( f ) > 1728, and it is not hyperbolic if j ( f ) < 1728. Applying this criterion to a
given cubic along with its Hessian and Cayleyan is useful for the classification in Table 2.

What happens for j ( f ) = 1728? Here, the two real forms of the complex curve V ( f )
differ: one is hyperbolic and the other one is not. For example, f1 = x3 − xz2 − y2z is
hyperbolic and f2 = x3 + xz2 − y2z is not hyperbolic. These two cubics are isomorphic
over C, with j ( f1) = j ( f2) = 1728, and they are also isomorphic to their Hessians and
Cayleyans.

We find noteworthy that the topology of SSP( f )R can distinguish between the two real
forms of an elliptic curve. This happens when j ( f ) < 1728 < min

{
j (H( f )), j (C( f ))

}
.

Here the two real forms of the curve correspond to the second and fourth column in Table 2.

We close this section by explaining the last row of Table 2. It concerns the orientedmatroid
[5] of the configuration {(ai , bi , ci ) : i = 1, . . . , r} in the decompositions (1). For d = 3 the
underlying matroid is always uniform. This is the content of the following lemma.

Lemma 3.8 Consider a ternary cubic f =∑4
i=1 �3i whose apolar ideal f

⊥ is generated by
three quadrics. Then any three of the linear forms �1, �2, �3, �4 are linearly independent.

Proof Suppose �1, �2, �3 are linearly dependent. They are annihilated by a linear operator p
as in (5). Let q1 and q2 be independent linear operators that annihilate �4. Then pq1 and pq2
are independent quadratic operators annihilating f . Adding a third quadric would not lead
to a complete intersection. This is a contradiction, since f ⊥ is a complete intersection. �	

In the situation of Lemma 3.8, there is unique vector v = (v1, v2, v3, v4) ∈ (R\{0})4
satisfying v1 = 1 and

∑4
i=1 vi�i = 0. The oriented matroid of (�1, �2, �3, �4) is the sign

vector
(+, sign(v2), sign(v3), sign(v4)

) ∈ {−,+}4. Up to relabeling there are only three
possibilities:

(+,+,+,+): the four vectors �i contain the origin in their convex hull;
(+,+,+,−): the triangular cone spanned by �1, �2, �3 in R

3 contains �4;
(+,+,−,−): the cone spanned by �1, �2, �3, �4 is the cone over a quadrilateral.

For a general cubic f , every point in SSP( f )R is mapped to one of the three sign vectors
above. By continuity, this map is constant on each connected component of SSP( f )R. The
last row in Table 2 shows the resulting map from the five connected components to the
three oriented matroids. Two of the fibers have cardinality one. For instance, the fiber over
(+,+,−,−) is the Möbius strip in SSP( f )R. This is the first of the following two cases.

123



Real rank geometry of ternary forms 1039

Corollary 3.9 For a general ternary cubic f , we have the following equivalences:

(i) The space SSP( f )R is disconnected if and only if f is isomorphic over R to a cubic of
the form x3 + y3 + z3 + (ax + by − cz)3 where a, b, c are positive real numbers.

(ii) The Hessian H( f ) is hyperbolic and the Cayleyan C( f ) is not hyperbolic if and only
if f is isomorphic to x3 + y3 + z3 + (ax + by + cz)3 where a, b, c are positive real
numbers.

Proof The sign patterns (+,+,−,−) and (+,+,+,−) occur in the second and third col-
umn in Table 2, respectively. The corollary is a reformulation of that fact. The sign pattern
(+,+,+,+) in columns 1,2 and 4 corresponds to cubics x3 + y3 + z3 − (ax + by + cz)3.

�	
Remark 3.10 The fiber over the oriented matroid (+,+,+,+) consists of cubics of the form
x3 + y3 + z3 − (ax + by + cz)3, where a, b, c > 0. It may seem surprising that this space
has three components in Table 2. One can pass from one component to another, for instance,
by passing through singular cubics, like 24xyz = (x + y + z)3 + (x − y − z)3 + (−x + y −
z)3 + (−x − y + z)3.

4 Quartics

In this section, we fix d = 4 and we consider a general ternary quartic f ∈ R[x, y, z]4.
We have r = R(4) = 6 and dim(VSP( f )) = 3, so the quartic f admits a threefold of
decompositions

f (x, y, z) = λ1(a1x + b1y + c1z)
4 + λ2(a2x + b2y + c2z)

4

+ · · · + λ6(a6x + b6y + c6z)
4. (20)

By the signature of f , we mean the signature of C( f ). This makes sense by Proposition 1.3.
According to the Hilbert–Burch Theorem, the radical ideal IT of the point configuration

{(ai : bi : ci )}i=1,...,6 is generated by the 3×3-minors of a 4×3-matrix T = T1x+T2y+T3z,
where T1, T2, T3 ∈ R

4×3. We interpret T also as a 3× 3× 4-tensor with entries in R, or as a
3 × 3-matrix of linear forms in 4 variables. The determinant of the latter matrix defines the
cubic surface in P

3 that is the blow-up of the projective plane P
2 at the six points. The apolar

ideal f ⊥ is generated by seven cubics, and IT ⊂ f ⊥ is generated by four of these.
Mukai [29] showed that VSP( f ) is a Fano threefold of type V22, and a more detailed study

of this threefold was undertaken by Schreyer in [36]. The topology of the real points in that
Fano threefold was studied by Kollár and Schreyer in [24]. Inside that real locus lives the
semialgebraic set we are interested in. Namely, SSP( f )R represents the set of radical ideals
IT , arising from tensors T ∈ R

3×3×4, such that IT ⊂ f ⊥ and the variety V (IT ) consists of
six real points in P

2. This is equivalent to saying that the cubic surface of T has 27 real lines.
Disregarding the condition IT ⊂ f ⊥ for the moment, this reality requirement defines a

full-dimensional, connected semialgebraic region in the tensor space R
3×3×4. The algebraic

boundary of that region is defined by the hyperdeterminant Det(T ), which is an irreducible
homogeneous polynomial of degree 48 in the 36 entries of T . Geometrically, this hyperde-
terminant is the Hurwitz form in [38, Example 4.3]. This is Proposition 2.7 for m = n = 3.

We are interested in those ternary forms f whose apolar ideal f ⊥ contains IT for some
T in the region described above. Namely, we wish to understand the semialgebraic set

R4 = { f ∈ R[x, y, z]4 : SSP( f )R �= ∅ }.
The following is a step toward understanding the algebraic boundary ∂alg(R4) of this set.
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Theorem 4.1 The algebraic boundary ∂alg(R4) is a reducible hypersurface in the P
14 of

quartics. One of its irreducible components has degree 51; that component divides the quar-
tics of signature (5, 1). Another irreducible component divides the region of hyperbolic
quartics.

Proof By [6, Example 4.6], ∂alg(R4) is non-empty, so it must be a hypersurface. We next
identify the component of degree 51. The anti-polar of a quartic f , featured in [6, §5.1] and
in [20], is defined by the following rank 1 update of the middle catalecticant:

�( f )(a, b, c) := det
(
C( f + �4)

) − det
(
C( f )

)
for � = ax + by + cz. (21)

Writing “Adj” for the adjoint matrix, the Matrix Determinant Lemma implies

�( f )(a, b, c) := (a2, ab, ac, b2, bc, c2) · Adj(C( f )) · (a2, ab, ac, b2, bc, c2)T . (22)

The coefficients of the anti-polar quartic �( f ) are homogeneous polynomials of degree 5 in
the coefficients of f . The discriminant of�( f ) is a polynomial of degree 135 = 27×5 in the
coefficients of f . A computation reveals that this factors as det(C( f ))14 times an irreducible
polynomial Bdisc( f ) of degree 51. We call Bdisc( f ) the Blekherman discriminant of f .

We claim that Bdisc( f ) is an irreducible component of ∂alg(R4). Let f be a general quartic
of signature (5, 1). Then det(C( f )) is negative, and the quartic �( f ) is non-singular. We
claim that rkR( f ) = 6 if and only if the curve �( f ) has a real point. The only-if direction
is proved in a more general context in Lemma 6.4. For the if-direction, we note that the
anti-polar quartic curve divides P

2
R
into regions where �( f ) has opposite signs. Hence, we

can find � such that det
(
C( f + �4)

) = 0, and therefore rkR( f ) = 6. Examples in [6, §5.1]
show that rkR( f ) can be either 6 or 7. We conclude that, among quartics of signature (5, 1),
the boundary of R4 is given by the Blekherman discriminant Bdisc( f ) of degree 51.

To prove that ∂alg(R4) is reducible, we consider the following pencil of quartics:

ft = (6x − 4y + 17z)4 + (4x − 16y − 5z)4 + (20x + 2y − 19z)4 − (15y − 17z)4

− (13x + 14y + 9z)4 − (16x − 6y − 18z)4 + t · (−2x4 + 2x3z − x2y2 + 2x2yz

+ x2z2 + xy3 − xy2z − 2xyz2 + xz3 + y4 + y3z + 2y2z2 − 2yz3 − 2z4).

At t = 0, we obtain a quartic f0 of signature (3, 3) that has real rank 6. One checks that f0 is
smooth and hyperbolic. We substitute ft into the invariant of degree 51 derived above, and
we note that the resulting univariate polynomial in t has no positive real roots. So, the ray
{ ft } given by t ≥ 0 does not intersect the boundary component we already identified.

For positive parameters t , the discriminant of ft is nonzero, until t reaches τ1 =
6243.83 . . .. This means that ft is smooth hyperbolic for real parameters t between 0 and
τ1. On the other hand, the rank of the middle catalecticant C( ft ) drops from 6 to 5 when
t equals τ0 = 3103.22 . . .. Hence, for τ0 < t < τ1, the quartics ft are hyperbolic and of
signature (4, 2). By [6, Corollary 4.8], these quartics have real rank at least 7. This means
that the half-open interval given by (0, τ0] crosses the boundary of R4 in a new irreducible
component. �	
Remark 4.2 One of the starting points of this project was the question whether rkR( f ) ≥ 7
holds for all hyperbolic quartics f . This was shown to be false in [6, Remark 4.9]. The above
quartic f0 is an alternative counterexample, with an explicit rank 6 decomposition over Q.

We believe that, in the proof above, the crossing takes place at τ0, and that this newly
discovered component is simply the determinant of the catalecticant det(C( f )). But we have
not been able to certify this. Similar examples suggest that also the discriminant disc( f )
itself appears in the real rank boundary. Based on this, we propose the following conjecture.
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Conjecture 4.3 The real rank boundary ∂alg(R4) for ternary quartics is a reducible hyper-
surface of degree 84 = 6 + 27 + 51 in P

14. It has three irreducible components, namely
the determinant of the catalecticant, the discriminant and the Blekherman discriminant.
Algebraically,

∂alg(R4) = det(C( f )) · disc( f ) · Bdisc( f ).
The construction of the Blekherman discriminant extends to the case when f is a sextic

or octic; see Lemma 6.4. For quartics f , we can use it to prove rkR( f ) > 6 also when the
signature is (4, 2) or (3, 3). We illustrate this for the quartic given by four distinct lines.

Example 4.4 We claim that f = xyz(x + y+ z) has rkR( f ) = 7. For the upper bound, note

12 f = x4 + y4 + z4 − (x + y)4 − (x + z)4 − (y + z)4 + (x + y + z)4.

The catalecticant C( f ) has signature (3, 3). The anti-polar quartic �( f ) = a2b2 + a2c2 +
b2c2 − a2bc − ab2c − abc2 is nonnegative. By [6, Section 5.1], we have rkR( f ) = 7. ♦

If f is a general ternary quartic of real rank 6, then SSP( f )R is an open semialgebraic set
inside the threefold VSP( f )R. Our next goal is to derive an algebraic description of this set.
We begin by reviewing some of the relevant algebraic geometry found in [17,27,29,33,36].

The Fano threefold VSP( f ) in its anti-canonical embedding is a subvariety of the Grass-
mannian Gr(4, 7) in its Plücker embedding in P

34. It parametrizes 4-dimensional subspaces
of f ⊥

3 � R
7 that can serve to span IT . In other words, the Fano threefold VSP( f ) represents

quadruples of cubics in f ⊥
3 that arise from a 3×3×4-tensor T as described above. Explicitly,

VSP( f ) is the intersection of Gr(4, 7)with a linear subspace P
13
A in P

34. This is analogous to
Proposition 2.4, but more complicated. The resolution of the apolar ideal f ⊥ has the form

0 −→ S(−7) −→ S(−4)7
A−→ S(−3)7 −→ S −→ 0.

By the Buchsbaum-Eisenbud structure theorem, we can write A = x A1 + yA2 + zA3 where
A1, A2, A3 are real skew-symmetric 7×7-matrices. In other words, the matrices A1, A2, A3

lie in
∧2 f ⊥

3 . The seven cubic generators of the ideal f ⊥ are the 6×6-sub-Pfaffians of A.
The ambient space P

34 for the Grassmannian Gr(4, 7) is the projectivation of the 35-
dimensional vector space

∧4 f ⊥
3 . Thematrices A1, A2, A3 determine the following subspace:

P
13
A :=

{

U ∈
4∧

f ⊥
3 : U ∧ A1 = U ∧ A2 = U ∧ A3 = 0 in

6∧
f ⊥
3

}

. (23)

Each constraint U ∧ Ai = 0 gives seven linear equations, for a total of 21 linear equations.

Lemma 4.5 TheFano threefold VSP( f )of degree22 is the intersection of theGrassmannian
Gr(4, 7) with the linear space P

13
A . Its defining ideal is generated by 45 quadrics, namely the

140 quadratic Plücker relations defining Gr(4, 7) modulo the 21 linear relations in (23).

Proof This description of the Fano threefold V22 was given by Ranestad and Schreyer in
[33] and by Dinew, Kapustka and Kapustka in [17, Section 2.3]. We verified the numbers 22
and 45 by a direct computation. �	

It is important to note that we can turn this construction around and start with any three
general skew-symmetric 7× 7-matrices A1, A2, A3. Then the 6× 6-sub-Pfaffians of x A1 +
yA2 + zA3 generate a Gorenstein ideal whose socle generator is a ternary quartic f .
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1042 M. Michałek et al.

This correspondence shows how to go from rank 6 decompositions of f to points U in
VSP( f ) = Gr(4, 7) ∩ P

13
A ⊂ P

34. Given the configuration X = {(ai : bi : ci )} in (20), the
point U is the space of cubics that vanish on X. Conversely, given any point U in VSP( f ),
we can choose a basis of f ⊥

3 such that our 7×7-matrices Ai have the form analogous to (8):

Ai =
(

� Ti
−T t

i 0

)
for i = 1, 2, 3.

Here Ti is a 4× 3-matrix, and 0 is the zero 3× 3-matrix. The four 3× 3-minors of the 4× 3-
matrix T = xT1+yT2+zT3 are among the seven6×6-sub-Pfaffians of A = x A1+yA2+zA3.
These four cubics define the six points in the decomposition (20).

We are now ready to extend the real geometry in Corollary 2.6 from quadrics to quartics.
Let V = (vi j ) be a 4×3-matrix of unknowns. These serve as affine coordinates on Gr(4, 7).
Each point is the row span of the 4×7-matrix U = ( Id4 V

)
. This is analogous to (11).

Proceeding as in (13), we consider the skew-symmetric 7 × 7-matrix
(

� T
−T t 0

)
=

(
Id4 V
V t −Id3

)
· A ·

(
Id4 V
V t −Id3

)
. (24)

Its entries are linear forms in x, y, z whose coefficients are quadratic polynomials in the 12
affine coordinates vi j . Vanishing of the lower right 3×3-matrix defines VSP( f ). The matrix
T is identified with a 4 × 3 × 3-tensor whose entries are quadratic polynomials in the vi j .

Theorem 4.6 Let f be a general ternary quartic of real rank 6. Using the affine coordinates
vi j onGr(4, 7), the threefoldVSP( f )R is defined by nine quadratic equations inR

12. If f has
signature (6, 0) then SSP( f )R equals VSP( f )R. If SSP( f )R is a proper subset of VSP( f )R
then its algebraic boundary has degree 84. It is the hyperdeterminant of the 4×3×3-tensor T .

Proof The description of VSP( f ) in affine coordinates follows from Lemma 4.5. The equa-
tions in (23) mean that the linear map given by A vanishes on the kernel ofU . This translates
into the condition that the lower right 3× 3-matrix in (24) is zero. Each of the 3 coefficients
of the 3 upper diagonal matrix entries must vanish, for a total of 9 quadratic equations.

If f has signature (6, 0) then we know from Proposition 1.3 that SSP( f )R = VSP( f )R.
In general, a point (vi j ) of VSP( f )R lies in SSP( f )R if and only if all six zeros of the ideal IT
are real points in P

2. The boundary of SSP( f )R is given by those (vi j ) for which two of these
zeros come together in P

2 and form a complex conjugate pair. The Zariski closure of that
boundary is the hypersurface defined by the hyperdeterminant Det(T ), by Proposition 2.7.

The hyperdeterminant of format 4 × 3 × 3 has degree 48 in the tensor entries. For our
tensor T , the entries are inhomogeneous polynomials of degree 2, so the degree of Det(T )

is bounded above by 96 = 2 × 48. A direct computation reveals that the actual degree
is 84. The degree drop from 96 to 84 is analogous to the drop from 24 to 20 witnessed
in (14). �	

At present, we do not know whether the hyperdeterminantal boundary always exists:

Conjecture 4.7 If the quartic f has real rank 6 and its signature is (3, 3), (4, 2) or (5, 1),
then the semialgebraic set SSP( f )R is strictly contained in the variety VSP( f )R.

Our next tool for studying VSP( f ) is another quartic curve, derived from f , and endowed
with a distinguished even theta characteristic θ . Recall that there is a unique (up to scaling)
invariant of ternary cubics in degree 4. This is the Aronhold invariant, which vanishes on
cubics g with rkC(g) ≤ 3. For the given quartic f , the Aronhold quartic S( f ) is defined by

S( f )(p) := the Aronhold invariant evaluated at ∂p( f ). (25)
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Following [19], we call f the Scorza quartic of S( f ). Points on S( f ) correspond to lines in
the threefold VSP( f ). To see this, consider any decomposition f = ∑6

i=1 �4i , representing
a point in VSP( f ). This point lies on a P

1 in VSP( f ) if and only if three of the lines
�1, �2, . . . , �6 meet. Indeed, if a ∈ �1 ∩ �2 ∩ �3 in P

2 then ∂p( f ) is a sum of three cubes,
i.e., p ∈ S( f ). We may regard �1, �2, �3 as linear forms in two variables, so that �41 +�42 +�43
is a binary quartic. This binary quartic has a P

1 of rank 4 decomposition, each giving a
decomposition of f , with �4, �5, �6 fixed. The resulting line in VSP( f ) ⊂ P

13
A is the set of

4-planes U containing the P
3 of cubics Q · a, where Q is a quadric vanishing on �4, �5, �6.

This gives all lines on VSP( f ).
One approach we pursued is the relationship of the real rank of f with its topology in P

2
R
.

A classical result of Klein and Zeuthen, reviewed in [32, Theorem 1.7], states that there are
six types of smooth plane quartics in P

2
R
, and these types form connected subsets of P

14
R
:

4 ovals, 3 ovals, 2 non-nested ovals, hyperbolic, 1 oval, empty curve. (26)

We consider the pairs of types given by a general quartic f and its Aronhold quartic S( f ).

Proposition 4.8 Among the 36 pairs of topological types (26) of smooth quartic curves in
the real projective plane P

2
R
, at least 30 pairs are realized by a quartic f and its Aronhold

quartic S( f ). Every pair not involving the hyperbolic type is realizable as
(
f, S( f )

)
.

Proof This was established by exhaustive search. We generated random quartic curves using
various sampling schemes, and this led to 30 types. The six missing types are listed in
Conjecture 4.9. For a concrete example, here is an instance where f and S( f ) are empty:

f = (3x2 + 5zx − 5yx − 5z2 − 3yz)2 + (7x2 + 7zx − 7yx + z2 − yz − 5y2)2

+ (5x2 + 7zx + 7yx − 8z2 − 2yz + 2y2)2

At the other end of the spectrum, let us consider

f = 1439x4 + 1443y4 − 2250(x2 + y2)z2 + 3500x2y2 + 817z4 − x3z − x3y
− 5x2z2 − 7x2yz − 4xz3 − 6xyz2 + xy2z + 6xy3 − 3yz3 + 5y2z2 + 7y3z

For this quartic, both f and S( f ) have 28 real bitangents, so they consist of four ovals. �	
Conjecture 4.9 If a smooth quartic f on P

2
R
is hyperbolic then its Aronhold quartic S( f ) is

either empty or has two ovals. If f consists of three or four ovals then S( f ) is not hyperbolic.

We now describe the construction in [29] of eight distinguishedMukai decompositions

f = �41 + �42 + �43 + �412 + �413 + �423. (27)

The configuration �12, �23, �13 is a biscribed triangle of the Aronhold quartic S( f ). Being
a biscribed triangle means that �i j is tangent to S( f ) at a point qi j , the lines �i j and �ik meet
at a point qi on the curve S( f ), and the line �i is spanned by qi j and qik .

Let D = q1 + q2 + q3 + q12 + q13 + q23 be a divisor on the Aronhold quartic S( f ).
The biscribed triangle �12�13�23 is a contact cubic [32, §2], and 2D is its intersection divisor
with S( f ). The associated theta characteristic is given by θ ∼ q12 + q13 + q1 − q23. Each
of the points q12, q13, q23 ∈ S( f ) represents a line on the Fano threefold VSP( f ) ⊂ P

13
A .

The pairs (q12, q13), (q12, q23), (q13, q23) lie in the Scorza correspondence, as defined in
[19,36]. Indeed, the corresponding second derivatives of f are �212, �

2
13 and �223, so the lines

q12, q13, q23 on VSP( f ) intersect pairwise. In fact, there is a point of VSP( f ) on all three
lines, namely (27).
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Example 4.10 We illustrate the concepts above, starting with the skew-symmetric matrix

A = A1x + A2y + A3z

=

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎜
⎝

0 −x + y + 3z z y + z x −x 0
x − y − 3z 0 x − y + 3z −x − 3y + z −x + z 2x − 2y y − z

−z −x + y − 3z 0 x + y + z 0 y −y
−y − z x + 3y − z −x − y − z 0 z −3z z

−x x − z 0 −z 0 0 0
x −2x + 2y −y 3z 0 0 0
0 −y + z y −z 0 0 0

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.

Its 6 × 6 Pfaffians generate the apolar ideal f ⊥. Orthogonal to this is the rank 6 quartic

f = x4 + y4 + z4 + (x + y)4 + (y + z)4 + (z + x)4.

The upper right 4× 3-block of A has rank 2 precisely on these six points �1, �2, �3, �12, �13,

�23. Here, q1 = (−1:1:1), q2 = (1: − 1:1), q3 = (1:1: − 1), q12 = (0:0:1), q13 =
(0:1:0), q23 = (1:0:0). The theta characteristic θ on the Aronhold quartic S( f ) is defined by
the contact cubic (x+y)(x+z)(y+z). This is the lower right 3×3-minor in the determinantal
representation

S( f ) = det

⎛

⎜⎜
⎝

5x + 5y + 5z x − y x − z y − z
x − y x + y + z x −y
x − z x x + y + z z
y − z −y z x + y + z

⎞

⎟⎟
⎠ .

This matrix is constructed from the contact cubic by the method in [32, Proposition 2.2].

We write VSP( f )Muk for the subvariety of VSP( f ) given by Mukai decompositions (27).
Mukai [29] showed that VSP( f )Muk is a finite set with eight elements. We are interested in

VSP( f )Muk
R

:= VSP( f )Muk ∩ VSP( f )R and SSP( f )Muk
R

:= VSP( f )Muk ∩ SSP( f )R.

One idea we had for certifying rkR( f ) = 6 is to compute the eight points in VSP( f )Muk. If
(27) is fully real for one of them then we are done. Unfortunately, this algorithm may fail.
The semialgebraic set of quartics with real Mukai decompositions is strictly contained inR4:

Proposition 4.11 There exist quartics f of real rank 6 such that SSP( f )Muk
R

is empty.

Proof Consider the eight Mukai decompositions (27) of the following quartic of real
rank 6:

f = (21x + y + 9z)4 + (14x − 13y + 14z)4 + (13x + 5y − 7z)4

+ (2x − 5y − 13z)4 − (12x + 15y − 9z)4 − (12x + 21z)4.

The lines �i and � j in (27) intersect in the point qi j ∈ S( f ). If both lines are real then so is
qi j . But, a computation shows that S( f ) has no real points. This implies SSP( f )Muk

R
= ∅.

�	

Example 4.12 We close this section by discussing the Blum–Guinand quartics in [11]. Set

fa,b,m := (x2 + y2 − a2z2 − b2z2)(m4x2 + y2 − m2(a2 + b2)z2) + a2b2(m2 − 1)2z4.

The parameters a, b,m satisfy 0 < b < a and
√
b/a < m <

√
a/b. Blum–Guinand quartics

have 28 real bitangents, so they consist of four ovals. Figure 5 shows this for a = 20, b = 8
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(a) (b)

Fig. 5 Left picture shows a Blum–Guinand quartic in blue and its Aronhold quartic in red. The Aronhold
quartic does not meet the sextic covariant, shown in black on the right (color figure online)

and m =
√

20
8 − 0.1. The diagram on the left has fa,b,m in blue and S( fa,b,m) in red. The

sextic covariant, defined by (25) but with S replaced by the sextic invariant T , is shown on
the right in black. The cubic ∂p( fa,b,m) has real rank 4 for all p ∈ S( fa,b,m); cf. Remark
3.3. For the chosen parameters, for each direction there exists a line that meets the Blum
quartic at 4 real points. We can conclude that rkR( fa,b,m) ≥ 7. In general, the signature
is (4,2) if

√
2 − 1 < m <

√
2 + 1 and (3,3) otherwise. The picture seen in Figure 5 can

change. For instance, the Aronhold quartic S( fa,b,m) has no real points when a = 70, b = 8,
m = 6/5. ♦

5 Quintics and septics

A general ternary quintic f ∈ R[x, y, z]5 has complex rank R(5) = 7. The decomposition

f = �51 + �52 + �53 + �54 + �55 + �56 + �57 (28)

is unique by a classical result of Hilbert, Richmond and Palatini. Oeding and Ottaviani [30]
explained how to compute the seven linear forms �i by realizing them as eigenvectors of a
certain 3×3×3-tensor. Inspired by [33, §1.5],we propose the following alternative algorithm:

Algorithm 5.1 Input: A general ternary quintic f . Output: The decomposition (28).

1. Compute the apolar ideal f ⊥. It is generated by one quartic and four cubics g1, g2, g3, g4.
2. Compute the syzygies of f ⊥. Find the unique linear syzygy (l1, l2, l3, l4) on the cubics.
3. Compute a vector (c1, c2, c3, c4) ∈ R

4\{0} that satisfies c1l1 + c2l2 + c3l3 + c4l4 = 0.
4. Let J be the ideal generated by the cubics c2g1 − c1g2, c3g2 − c2g3 and c4g3 − c3g4.

Compute the variety V (J ) in P
2. It consists precisely of the points dual to �1, �2, . . . , �7.

To prove the correctness of this algorithm, we recall what is known about the ideal J
of seven points in P

2. The ideal J is Cohen–Macaulay of codimension 2, so it is generated
by the maximal minors of its Hilbert–Burch matrix T . According to [1, Theorem 5.1], this
matrix has the following form if and only if no six of the seven points lie on a conic:

T =
⎛

⎝
q1 l1
q2 l2
q3 l3

⎞

⎠ . (29)
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Here l1, l2, l3 are independent linear forms and q1, q2, q3 are quadratic forms in x, y, z.

Proposition 5.2 Algorithm 5.1 computes the unique decomposition of a general quintic f .
In the resulting representation (28), no six of the seven lines �i are tangent to a conic.

Proof Let f be a general quintic. The apolar ideal f ⊥ in S is generated by four cubics
g1, g2, g3, g4 and one quartic h. This ideal is Gorenstein of codimension 3. The Buchsbaum-
Eisenbud structure theorem implies that the minimal free resolution of f ⊥ has the form

0 −→ S(−8) −→ S(−4) ⊕ S(−5)4
A−→ S(−4) ⊕ S(−3)4

B−→ S −→ 0.

The matrix A is skew-symmetric of size 5 × 5, i.e.,

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 q12 q13 q14 l1
−q12 0 q23 q24 l2
−q13 −q23 0 q34 l3
−q14 −q24 −q34 0 l4
−l1 −l2 −l3 −l4 0

⎞

⎟
⎟
⎟
⎟
⎠

. (30)

Here the li ’s are linear forms and the qi j ’s are quadrics. As described above and in Section 2,
we should find a 5× 5 matrixU such that the lower right 2× 2 submatrix ofU · A ·Ut is the
zero matrix. Since f is general, we may assume that the li span R[x, y, z]1. After relabeling
if necessary, we can write c1l1 + c2l2 + c3l3 + l4 = 0 for some scalars c1, c2, c3. Setting
c4 = 1, these are the scalars in Step 3 of Algorithm 5.1. Let

U =

⎛

⎜⎜⎜⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
c1 c2 c3 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟
⎠

.

We perform row and column operations by the following right and left multiplication:

A′ = U · A ·Ut =

⎛

⎜⎜⎜⎜⎜
⎝

0 q12 q13 q ′
14 l1

−q12 0 q23 q ′
24 l2

−q13 −q23 0 q ′
34 l3

−q ′
14 −q ′

24 −q ′
34 0 0

−l1 −l2 −l3 0 0

⎞

⎟⎟⎟⎟⎟
⎠

.

The inverse column operation on the row vector B of minimal generators of f ⊥ gives

B ′ = (
g1 g2 g3 g4 h

)

⎛

⎜⎜⎜⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−c1 −c2 −c3 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟
⎠

= (
g1−c1g4 g2−c2g4 g3−c3g4 g4 h

)
.

Let J = 〈gi − ci g4 : i = 1, 2, 3〉 denote the ideal generated by the first three cubics.
This is the ideal in Step 4 of the algorithm. We claim that V (J ) consists of seven points in
P
2.
By construction, we have B ′ · A′ = 0, and the columns of A′ span the syzygies on B ′. The

entries of B ′ are the 4×4 sub-Pfaffians of A′. The first three entries are the sub-Pfaffians that
involve the last two rows and columns. These three 4 × 4 Pfaffians are the 2 × 2-minors of
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T =
⎛

⎝
q ′
14 l1

q ′
24 l2

q ′
34 l3

⎞

⎠ .

This is a Hilbert–Burch matrix for the ideal J . Hence J is an ideal of seven points in P
2.

Moreover, since l1, l2 and l3 are linearly independent, no six points of them lie on a conic.
Dually, this means that no six of the seven lines �i used in (28) are tangent to a conic. �	

It is easy to decide whether the real rank of a given ternary quintic f is 7 or not. Namely,
one computes the unique complex decomposition (28) and checks whether it is real. The real
rank boundary corresponds to transition points where two of the linear forms in (28) come
together and form a complex conjugate pair. The following is our main result on quintics.

Theorem 5.3 The algebraic boundary ∂alg(R5) of the set R5 = { f : rkR( f ) = 7} is an
irreducible hypersurface of degree 168 in the P

20 of quintics. It has the parametric represen-
tation

g = �51 + �52 + �53 + �54 + �55 + �46�7, where �1, . . . , �7 ∈ R[x, y, z]1. (31)

Proof The parametrization (31) defines a unirational variety Y in P
20. The Jacobian of this

parametrization is found to have corank 1. Thismeans that Y has codimension 1 inP
20. Hence

Y is an irreducible hypersurface, defined by a unique (up to sign) irreducible homogeneous
polynomial 
 in 21 unknowns, namely the coefficients of a ternary quintic.

Let g be a real quintic (31) that is a general point in Y . For ε → 0, the real quintics
(�6 + ε�7)

5 − �56 and (i�6 + ε�7)
5 + (−i�6 + ε�7)

5 converge to the special quintic �46�7 in
P
20
R
. Hence any small neighborhood of g in P

20
R

contains quintics of real rank 7 and quintics
of real rank ≥ 8. This implies that Y lies in the algebraic boundary ∂alg(R5). Since Y is
irreducible and has codimension 1, it follows that ∂alg(R5) exists and has Y as an irreducible
component.

We carried out an explicit computation to determine that the (possibly reducible) hypersur-
face ∂alg(R5) has degree 168. This was done as follows. Fix the field K = Q(t), where t is a
new variable. We picked random quintics f1 and f2 in Q[x, y, z]5, and we ran Algorithm 5.1
for f = f1 + t f2 ∈ K [x, y, z]5. Step 4 returned a homogeneous ideal J in K [x, y, z] that
defines 7 points in P

2 over the algebraic closure of K . By eliminating each of the three vari-
ables, we obtain binary forms of degree 7 in K [x, y], K [x, z] and K [y, z]. Their coefficients
are polynomials of degree 35 in t . The discriminant of each binary form is a polynomial in
Q[t] of degree 420 = 12 × 35. The greatest common divisor of these three discriminants is
a polynomial �(t) of degree 168. We checked that �(t) is irreducible in Q[t].

By definition, 
 is an irreducible homogeneous polynomial with integer coefficients in
the 21 coefficients of a general quintic f . Its specialization 
( f1 + t f2) is a non-constant
polynomial in Q[t], of degree deg(X) in t . That polynomial divides �(t). Since the latter is
irreducible, we conclude that 
( f1 + t f2) = γ ·�(t), where γ is a nonzero rational number.
Hence 
 has degree 168. We conclude that deg(Y ) = 168, and therefore Y = ∂alg(R5). �	

Theorem 5.3 was stated for a very special situation, namely ternary quintics. We shall
now describe a geometric generalization. Let X be any irreducible projective variety in the
complex projective space P

N that is defined over R and whose real points are Zariski dense.
We set d = dim(X). The generic rank is the smallest integer r such that the r th secant
variety σr (X) equals P

N . Given f ∈ P
N , we define VSPX ( f ) to be the closure in the Hilbert

scheme Hilbr (X) of the set of configurations of r distinct points in X whose span contains
f . Now, VSP stands for variety of sums of points. This object agrees with that studied by
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1048 M. Michałek et al.

Gallet, Ranestad and Villamizar in [23]. It differs from more inclusive definitions seen in
other articles. In particular, if N = (d+2

2

) − 1 and X = νd(P
2) is the dth Veronese surface

then VSPX ( f ) = VSP( f ). In this case, we recover the familiar variety of sums of powers.
The objects of real algebraic geometry studied in this paper generalize in a straightforward

manner. We write VSPX ( f )R for the variety of real points in VSPX ( f ), and we define
SSPX ( f )R to be the semialgebraic subset of all f that lie in an (r − 1)-plane spanned by
r real points in X . Following Blekherman and Sinn [9], we are interested in generic points
in P

N
R
whose real rank equals the generic complex rank. These comprise the semialgebraic

set RX = { f ∈ P
N
R

: SSPX ( f )R �= ∅}. The topological boundary ∂RX is the closure of
RX minus the interior of that closure. If X has more than one typical real rank, then ∂RX

is non-empty and its Zariski closure ∂alg(RX ) is a hypersurface in P
N . This hypersurface is

the real rank boundary we are interested in.

Example 5.4 Let N = 20 and X = ν5(P
2) the fifth Veronese surface in P

20. Then r = 7 and
∂alg(RX ) equals the irreducible hypersurface of degree 168 described in Theorem 5.3.

This example generalizes as follows. Let X ⊂ P
N as above, and let τ(X) denote its

tangential variety. By definition, τ(X) is the closure of the union of all lines that are tangent
to X . We also consider the (r − 2)nd secant variety σr−2(X). The expected dimensions are

dim
(
τ(X)

) = 2d and dim
(
σr−2(X)

) = (r − 2)d + r − 3.

Weare interested in the join of the twovarieties, denotedσr−2(X)�τ(X). This is an irreducible
projective variety of expected dimension rd + r − 2 in P

N . It comes with a distinguished
parametrization, generalizing that in (31) for the Veronese surface of Example 5.4. The
following generalization of Theorem 5.3 explains the geometry of the real rank boundary:

Conjecture 5.5 Suppose rd + r = N and VSPX ( f ) is finite for general f . Then σr−2(X) �

τ(X) is an irreducible component of ∂alg(RX ). Equality holds when VSPX ( f ) is a point.

One difficulty in proving this conjecture is that we do not know how to control interactions
among the distinct decompositions f = f1+· · ·+ fr of a general point f ∈ P

N into r points
f1, . . . , fr on the variety X . Moreover, we do not even know that ∂alg(RX ) is non-empty.
To illustrate Conjecture 5.5, we prove it in the case when X is the 7th Veronese surface.

The parameters are d = 2, N = 35, and r = 12. We return to the previous notation, so f is
a general ternary form in R[x, y, z]7. Here we can show that 13 is indeed a typical real rank.

Proposition 5.6 The real rank boundary ∂alg(R7) is a non-empty hypersurface in P
35 with

one of the components equal to the join of the tenth secant variety and the tangential variety.

Proof For a general septic f , the minimal free resolution of the apolar ideal f ⊥ equals

0 −→ S(−10) −→ S(−6)5
A−→ S(−4)5 −→ S −→ 0. (32)

This is as in (7), but now the entries of the skew-symmetric 5 × 5-matrix A are quadratic.
To find the five rank 12 decompositions of f , we proceed as in Example 2.5: we solve the
matrix equation (13). The matrix entry in position (4, 5) is a homogeneous quadric in x, y, z
whose six coefficients are inhomogeneous quadrics in the unknowns a, b, c, d, e, g. These
coefficients must vanish. This system of six equations in six unknowns defines VSP( f ) in
C
6. It has precisely five solutions. For each of these solutions, we consider the upper right

3 × 2-matrix T . Its entries are quadrics in x, y, z. The 2 × 2-minors of T define the desired
12 points in P

2.
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We apply the above algorithm to the point in σ10(X) � τ(X) given by the septic

f := (11x + 13y − 12z)(−18x + 13y − 16z)6 + (2x − 12y + z)7 + (3x − 13y − 7z)7

+ (−6x + 5y+15z)7 + (16x+5y+14z)7+(18x−19y−9z)7 + (−4x+10y − 18z)7

+ (11x+9y+10z)7+(−19x+15y − z)7+(−4x−20y − 16z)7+(2x + 20y −18z)7.

This septic f has complex rank 12, but its real rank is larger. The output of our decomposition
algorithm shows that four of the five decompositions are not fully real. This remains true
in a small neighborhood of f . Near the point (11x + 13y − 12z)(−18x + 13y − 16z)6 in
the tangential variety τ(X), some septics have real rank 2 and some others have real rank
3. Hence, the above decomposition of f can change from purely real to a decomposition
that contains complex linear forms. The same holds for all nearby points in the join vari-
ety. We conclude that a general point of the join in a small neighborhood of f belongs
to ∂(R7). �	

Our algorithm for septics f computes the five elements in VSP( f ) alongwith the 12 linear
forms in each of the five decompositions f = ∑12

i=1 �7i . It outputs 60 points in P
2. These

come in 5 unlabeled groups of 12 unlabeled points in P
2. Here are two concrete instances.

Example 5.7 First, consider the septic f =∑12
i=1 �7i of real rank 12 that is defined by

�1 = −7x + 14y + 3z, �2 = −13x − 12y + 20z, �3 = −7x − 5y − 18z,
�4 = 12x − 16y + 17z, �5 = −8x + 16y + 7z, �6 = 15x − 8y + 2z,
�7 = 13x − 7y − 11z, �8 = −x − 3y − 3z, �9 = 18x − 4y − 7z,
�10 = 19x − 9y + 7z, �11 = 15y − 17z, �12 = −19x − 2y + 11z.

Here, all 60 points inP
2 are real. Thismeans that the variety of sumsof powers is fully real, and

the twelve �i in each of the five decompositions are real: VSP( f ) = VSP( f )R = SSP( f )R.
Second, consider the real septic f =∑6

i=1(�
7
i + �̄7i ) defined by the complex linear forms

�1 = 8x + 11y − 15z + i(13x + 15y + 17z), �2 = −16x + 6y + 11z + i(−4x + 19y+16z),
�3 = 5x + 13y − 3z + i(−2x + 4y + 5z), �4 = 8x + 8y − 7z + i(−13x − 12y − 8z),

�5 = −5x − 20y − 15z + i(−8x + 18y + 7z), �6 = −14x − 18y − 7z + i(−9x − 2y + 19z).

This satisfies VSP( f )R �= SSP( f )R = ∅. None of the 60 points in P
2 are real. Our two

examples are extremal. One can easily find other septics f with VSP( f )R �= SSP( f )R.

6 Sextics

We now consider ternary forms of degree six. The generic complex rank for sextics is R(6) =
10. Our first result states that both 10 and 11 are typical real ranks, in the sense of [6,7,16].

Theorem 6.1 The algebraic boundary ∂alg(R6) is a hypersurface in the P
27 of ternary sex-

tics. One of its irreducible components is the dual to the Severi variety of rational sextics.

Proof We use notation and results from [8]. Let P3,6 denote the convex cone of nonnegative
rational sextics and �3,6 the subcone of sextics that are sums of squares of cubics over
R. The dual cone �∨

3,6 consists of sextics f whose middle catalecticant C( f ) is positive
semidefinite. Its subcone P∨

3,6 is spanned by sixth powers of linear forms. It is known as the
Veronese orbitope. The difference �∨

3,6\P∨
3,6 is a full-dimensional semialgebraic subset of

R[x, y, z]6.
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We claim that general sextics f in that set have real rank ≥ 11. Let f be a general sextic
in �∨

3,6\P∨
3,6. Suppose that rkR( f ) = 10. The middle catalecticant C( f ) is positive definite.

Proposition 1.3 tells us that the signature of any representation (1) is (10, 0). This means
that f lies in the Veronese orbitope P∨

3,6. This is a contradiction to the hypothesis, and we
conclude rkR( f ) ≥ 11. Using [6, Theorem 1.1], this means that 11 is a typical rank.

Consider the algebraic boundary of the Veronese orbitope P∨
3,6. One of its two compo-

nents is the determinant of the catalecticant C( f ), which is the algebraic boundary of the
spectrahedron �∨

3,6. The other component is the dual of the Zariski closure of the set of
extreme rays of P3,6\�3,6. That Zariski closure was shown in [8, Theorem 2] to be equal
to the Severi variety of rational sextics, which has codimension 10 and degree 26312976 in
P
27. Every generic boundary point of P∨

3,6 that is not in the spectrahedron �∨
3,6 represents a

linear functional whose maximum over P3,6 occurs at a point in the Severi variety.
A result of Choi, Lam and Reznick (cf. [8, Proposition 7]) states that every general sup-

porting hyperplane of P∨
3,6 touches the Veronese surface in precisely 10 rays. Every form in

the cone spanned by these rays has real rank ≤ 10. Consider the subset of P∨
3,6 obtained by

replacing each of the 10 rays by a small neighborhood. This defines a full-dimensional subset
of forms f ∈ P∨

3,6 that satisfy rkR( f ) = 10. By construction, this subset must intersect the
boundary of P∨

3,6 in a relatively open set. Its Zariski closure is the hypersuface dual to the
Severi variety. We conclude that this dual is an irreducible component of ∂alg(R6). �	
Remark 6.2 The same proof applies also for octics (d = 8), ensuring that the algebraic
boundary ∂alg(R8) exists. Indeed, R(8) = 15 coincides with the size of the middle catalec-
ticant f , and we can conclude that every octic in �∨

3,8\P∨
3,8 has real rank bigger than 15.

However, for even integers d ≥ 10, this argument no longer works, because the generic
complex rank exceeds the size of the middle catalecticant. In symbols, R(d) >

(d/2+2
2

)
. New

ideas are needed to establish the existence of the hypersurface ∂alg(Rd) for d ≥ 9.

We record the following upper bounds on the real ranks of general ternary forms.

Proposition 6.3 Let m(d) be the maximal typical rank of a ternary form of degree d. Then

m(d) ≤ min
( (d + 1

2

)
− 2, 2R(d)

)
.

In particular, typical real ranks for ternary sextics are between 10 and 19.

Proof The same argument as in [6, Proposition 6.2] shows m(d) ≤ m(d − 1) + d . The
binomial bound follows by induction. The bound 2R(d) comes from [10, Theorem 3]. �	

The anti-polar construction in (21) extends to f of degree d = 6 and d = 8. We define

�( f )(a, b, c) = det
(
C( f + �d)

) − det
(
C( f )

)
for � = ax + by + cz.

Lemma 6.4 Let f be a general ternary form of degree d ∈ {4, 6, 8} that is not in the cone
P∨
d spanned by dth powers. If �( f ) has no real zeros than the real rank of f exceeds R(d).

Proof Suppose that f is of minimal generic rank R(d). Since f is not a sum of dth powers
of linear forms over R, by Proposition 1.3, there exists a real linear form � = ax + by + cz
such that the catalecticant matrix of f + �d is degenerate; hence, �( f )(�) = −det

(
C( f )

)
.

On the other hand, there exists �′ such that the catalecticant matrix of − f + �′d also drops
rank, so �( f )(�′) = −�(− f )(�′) = det

(
C( f )

)
. Hence the real curve defined by �( f ) is

non-empty. �	
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Let f ∈ R[x, y, z]6 be general, with rkC( f ) = R(6) = 10. In what follows we derive the
algebraic representation of the K3 surface VSP( f ) and its semialgebraic subset SSP( f )R.
The apolar ideal f ⊥ is generated by nine quartics. The minimal free resolution of f ⊥ equals

S → S(−5)9
A−→ S(−4)9 → S → 0.

Here A is a skew-symmetric 9×9-matrix with linear entries. Its 8×8 sub-Pfaffians generate
f ⊥. We write A = A1x + A2y + A3z where Ai ∈ ∧2 f ⊥

4 � ∧2
R
9. The variety VSP( f )

is a K3 surface of genus 20 and degree 38. See [28,33] for details and proofs. The fol-
lowing representation, found in [33, Theorem 1.7 (iii)], is analogous to Proposition 2.4 and
Lemma 4.5.

Proposition 6.5 The surface VSP( f ) is the intersection of the Grassmannian Gr(5, 9), in
its Plücker embedding in P(

∧5 f ⊥
4 ) � P

125, with the 20-dimensional linear subspace

P
20
A = {U ∈ P

125 : U ∧ A1 = U ∧ A2 = U ∧ A3 = 0
}
.

Inside this space, VSP( f ) is cut out by 153 quadrics, obtained from the Plücker relations.

For any sextic f , we can compute the surface VSP( f ) explicitly, by the method explained
for quadrics in Example 2.5. Namely, as in (11), we introduce local coordinates on Gr(5, 9).
The equations defining P

20
A translate into quadrics in the 20 local coordinates. In analogy to

(13), we transform the 9 × 9-matrix A into

(
� T

−T t 0

)
. Here T is a 5 × 4-matrix of linear

forms whose 4 × 4 minors define the ten points in P
2 in the representation f = ∑10

i=1 �6i .
We can study SSP( f )R and its boundary inside the real K3 surface VSP( f )R by means of
the hyperdeterminant for m = 4 in Corollary 2.8. The following example demonstrates this.

Example 6.6 Consider the sextic ternary f = ∑
i+ j+k=3(i x + j y + kz)6, where i, j, k ∈

Z≥0. It is given by a real rank 10 representation. Consider the 9 × 9 matrix of linear forms
in some minimal free resolution of the apolar ideal f ⊥. We transform this matrix into

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 l1 l2 l3 l4 l5 l6 l7 l8
−l1 0 l9 l10 l11 l12 l13 l14 l15
−l2 −l9 0 l16 l17 l18 l19 l20 l21
−l3 −l10 −l16 0 l22 l23 l24 l25 l26
−l4 −l11 −l17 −l22 0 l27 l28 l29 l30
−l5 −l12 −l18 −l23 −l27 0 0 0 0
−l6 −l13 −l19 −l24 −l28 0 0 0 0
−l7 −l14 −l20 −l25 −l29 0 0 0 0
−l8 −l15 −l21 −l26 −l30 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

where l1 = 6885
631 x − 4050

631 y − 175770
631 z, l2 = − 4050

631 x + 3240
631 y + 37665

631 z l3 = − 810
631 z,

l4 = 324
631 x + 810

631 y + 2025
631 z, l5 = − 5

631 x, l6 = 21
631 x, l7 = − 4

631 x, l8 = 0, l9 = −
67230
631 x − 67230

631 y − 2791260
631 z, l10 = 3240

631 x − 4050
631 y + 37665

631 z, l11 = − 55728
631 x − 70308

631 y −
13446
631 z, l12 = 25

631 x − 25
631 z, l13 = − 1482

631 x + 818
631 y + 251

631 z, l14 = 668
631 x − 852

631 y + z, l15 =
10
631 y − 20

631 z, l16 = − 4050
631 x + 6885

631 y − 175770
631 z, l17 = 70308

631 x + 55728
631 y + 13446

631 z, l18 =
− 10

631 x + 20
631 z, l19 = 852

631 x − 668
631 y − z, l20 = − 818

631 x + 1482
631 y − 251

631 z, l21 = − 25
631 y +

25
631 z, l22 = − 810

631 x − 324
631 y − 2025

631 z, l23 = 0, l24 = 4
631 y, l25 = − 21

631 y, l26 = 5
631 y, l27 =

5
631 z, l28 = − 430

631 z, l29 = 430
631 z, l30 = − 5

631 z.
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The upper right 5 × 4-submatrix of A drops rank precisely on the ten points (i : j : k) ∈ P
2

where i + j + k = 3 in nonnegative integers.
We introduce local coordinates on Gr(5, 9) as follows. LetU be the row span of

(
Id5 V

)
,

where V = (vi j ) is a 5× 4 matrix of unknowns. We transform A into the coordinate system
given by U and its orthogonal complement:

(
� T

−T t 0

)
=

(
Id5 V
V t −Id4

)
· A ·

(
Id5 V
V t −Id4

)
.

We proceed as in Example 2.5. The lower right 4 × 4 block is zero whenever the corre-
sponding 18 quadrics in the 20 local coordinates vanish. The submatrix T is a 3 × 4 × 5
tensor. Its hyperdeterminant Det(T ) is the discriminant for our problem. By Corollary 2.8,
this is a polynomial of degree 120 in the entries of T . The specialization of Det(T ) to the 20
local coordinates has degree ≤ 240. That polynomial represents the algebraic boundary of
SSP(f)R inside VSP( f )R, similarly to Corollary 2.6.

In the paper, we focused on general ternary forms. Special cases are also very interesting:

Example 6.7 Consider the monomial f = x2y2z2. By [14], this has rkR( f ) ≤ 13 because

360 f = 4(x6 + y6 + z6) + (x + y + z)6 + (x + y − z)6 + (x − y + z)6 + (x − y − z)6

− 2
[
(x + y)6 + (x − y)6 + (x + z)6 + (x − z)6 + (y + z)6 + (y − z)6

]
.

The apolar ideal is f ⊥ = 〈x3, y3, z3〉. The radical ideal generated by general cubics in f ⊥,

C1 = αx3 + βy3 + γ z3 and C2 = α′x3 + β ′y3 + γ ′z3, (33)

proves that rkC( f ) = 9. We can replace C1 and C2 by two linear combinations that are
binomials, say C ′

1 = x3 + δz3 and C ′
2 = y3 + εz3. For any choice of δ and ε, at most three

of the nine points of V (C ′
1,C

′
2) ⊂ P

2 are real. This shows rkR( f ) ≥ 10.
We next prove rkR( f ) ≥ 11. Assume that p1, p2, . . . , p10 ∈ P

2
R
give a rank 10 decom-

position of f . Consider a pencil of cubics C1 + t · C2 passing through p1, . . . , p8. We may
assume p10 /∈ V (C1,C2) and C2(p9) = 0. We claim that C2 vanishes also at p10. Indeed,
C2 acts by differentiation and gives C2( f ) = λ10C2(p10)�310 where λ10 ∈ R

∗ and C2(p10)
is the evaluation at p10. However, C2( f ) = C2(x2y2z2) contains none of the pure powers
x3, y3, z3 and so C2 passes through p10 as well. We now know that C1 vanishes at neither
p9 nor p10. Differentiation gives

C1( f ) = α�39 + β�310, where α = λ9C1(p9), β = λ10C1(p10) and λ9, λ10 ∈ R
∗.

Let �9 = a9x + b9y + c9z and �10 = a10x + b10y + c10z. The coefficients of x3, y3, z3 in
the cubic C1( f ) vanish. Hence

αa39 + βa310 = αb39 + βb310 = αc39 + βc310 = 0.

Over R, these equations imply a9 = −(β/α)1/3a10, b9 = −(β/α)1/3b10, c9 =
−(β/α)1/3c10. So, p9 and p10 are the same point in P

2. This is a contradiction and we
conclude rkR( f ) ≥ 11.

At present we do not know whether the real rank of f is 11, 12 or 13. The argument
above can be extended to establish the following result: if rkR( f ) ≤ 12 then there exists a
decomposition (1) whose points (ai : bi : ci ) all lie on the Fermat cubic V (x3 + y3 + z3).

Let us explore the possibility rkR( f ) = 12. Then it is likely that the (ai : bi : ci ) are the
complete intersection of a cubic and a quartic. They can be assumed to have the form:

x3 + y3 + 1 = ax4 + bx3y + cx3 + dx + ey + 1 = 0. (34)
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Hence determining the real rank of f leads directly to the following easy-to-state question:
Can we find real constants a, b, c, d, e such that all 12 solutions to the equations (34) are
real? If the answer is “yes” then we can conclude rkR( f ) ≤ 12. Otherwise, we cannot
reach a conclusion. A systematic approach to this real root classification problem is via the
discriminant of the system (34). This discriminant is a polynomial of degree 24 in a, b, c, d, e.
We would need to explore the connected components of the complement of this hypersurface
in R

5. For further reading on the rank geometry of monomials, we refer to [12,13]. ♦
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