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A B S T R A C T   

Several contrasting effects are reported in the existing literature concerning the impact assessment of the COVID- 
19 outbreak on the use of energy in buildings. Following an in-depth literature review, we here propose a GIS- 
based approach, based on pre-pandemic, partial, and full lockdown scenarios, using a bottom-up engineering 
model to quantify these impacts. The model has been verified against measured energy data from a total number 
of 451 buildings in three urban neighborhoods in the Canton of Geneva, Switzerland. The accuracy of the en-
gineering model in predicting the energy demand has been improved by 10%, in terms of the mean absolute 
percentage error, as a result of adopting a data-driven correction with a random forest algorithm. The obtained 
results show that the energy demand for space heating and cooling tended to increase by 8% and 17%, 
respectively, during the partial lockdown, while these numbers rose to 13% and 28% in the case of the full 
lockdown. The study also reveals that the introduced detailed occupancy scenarios are the key to improving the 
accuracy of urban building energy models (UBEMs). Finally, it is shown that the proposed GIS-based approach 
can be used to mitigate the expected impacts of any possible future pandemic in urban neighborhoods.   

1. Introduction 

The COVID-19 pandemic has introduced an unexpected and signifi-
cant impact on the energy sector. Moreover, it has caused an unprece-
dented crisis that has affected the human and social capital, institutions, 
communities (Saif-Alyousfi & Saha, 2021), industrial processes (Zhou 
et al., 2021), energy use, as well as the financial investments of in-
dividuals (Giovannini et al., 2020). As a result of the uncertainties that 
have arisen from the duration and intensity of the COVID-19 pandemic, 
its impacts on the energy sector and policy responses have opened a 
wide range of possible future energy scenarios. Energy policies should 
consider the complexities and interconnections of this crisis when 
defining measures to achieve the energy and climate targets set for 2030 
and 2050. 

The daily life and behavioral patterns of individuals have changed 
drastically during the pandemic. These changes have had a significant 
impact on the energy demand of buildings because people, and in 

particular those over 65 or anyone advised to shield for health reasons, 
now spend much more time at home (Balest & Stawinoga, 2022; Saadat 
et al., 2020). Moreover, many workers and students have been encour-
aged to work or study at home, which may involve using a computer or 
tablet (Cuerdo-Vilches et al., 2021; Mouratidis & Papagiannakis, 2021). 
As a result, an increase in domestic energy consumption, especially 
electricity, and a reduction of electricity in industrial and commercial 
sectors has been observed (Bahmanyar et al., 2020; Zhang et al., 2021). 
Reports and research publications have also highlighted the impact of 
the COVID-19 pandemic on the energy demand of buildings and the 
behavioral patterns of users around the world. The International Energy 
Agency (IEA) has estimated that the global energy demand and CO2 
emissions decreased by 5% and 7% in 2020 (International Energy 
Agency (IEA), 2020). In March and April 2020, during the COVID-19 
pandemic, electricity consumption decreased by 10% in the United 
States and in European countries, compared to the same period in 2019 
(IAEE, 2020; Ruan et al., 2020). Italy and Spain are the countries that 
have been affected the most with reductions of about 30% and 20% in 
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the electricity demand, respectively (IAEE, 2020). A different trend has 
been observed in Northern Europe. The total electricity consumption has 
remained almost constant in Denmark, Finland, Norway, and Sweden. 
The only exception is Switzerland, which has shown an 8% increase in 
the total electricity demand (IAEE, 2020). 

Countries have controlled the pandemic in different ways by 
imposing various restrictive measures. In addition, the perception of risk 
varies from country to country, which can affect the effectiveness of the 
imposed measures (Siegrist & Bearth, 2021). Nevertheless, such mea-
sures have led to significant changes in the lifestyles of people. It is 
well-known that the users’ behavior has a major impact on the energy 
demand, in part related to the amount of time they use electricity and 
heating and in part related to the status of window and door openings 
(Delzendeh et al., 2017). There is a close correlation between the oc-
cupants’ behavior and energy demand in buildings (Ahn & Park, 2016). 
The occupancy profiles of buildings play a crucial role in energy con-
sumption (Buttitta & Finn, 2020; Motuzienė et al., 2022). Human 
behavior, different occupancy densities, and variations in thermal and 
lighting preferences contribute significantly to the gap between simu-
lated and real energy performance in buildings (Dong et al., 2021; 
Martinaitis et al., 2015; Wu et al., 2020). However, the literature on 
defining occupancy scenarios during the COVID-19 pandemic is still 
scarce, and contrasting effects have been observed in different sectors 
and countries. It is important for research to define a methodology that 
is able to model future energy scenarios during pandemic phenomena, 
given the possibility of the emergence of other pandemics in the future 
(Thoradeniya & Jayasinghe, 2021). 

This study addresses this gap by introducing a flexible GIS-based 
approach, which is readily applicable to other contexts and can 
consider the effect of the users’ behavior during the pandemic on the 
energy performance of residential urban neighborhoods. 

1.1. Research background and gap 

The current state of the art of the impact assessment of the COVID-19 

outbreak on the energy demand has focused chiefly on electricity con-
sumption. During the COVID-19 pandemic, there has been a reduction in 
electricity consumption for the industrial and commercial sectors and an 
increase in the residential sector. The reviewed literature has been 
categorized according to the type of building (e.g., residential, com-
mercial, industrial, municipal, or educational) and the type of energy 
use (e.g., electricity, heating, cooling, or DHW). The studies that have 
focused on the impacts of the pandemic on the electricity demand are 
mainly based on analyzing measured electricity data or on question-
naires. In Italy, a reduction of up to 37% in the national electricity sector 
has been observed, and the daily load profile has changed significantly 
(Ghiani et al., 2020). Furthermore, a significant reduction in the overall 
use of electricity was noted in the UK (Liu & Lin, 2021) during the 
lockdown. Madurai Elavarasan et al. (Madurai Elavarasan et al., 2020) 
found that the residential electricity demand in India increased during 
the lockdown, while they also observed a substantial decrease in com-
mercial and industrial consumption. 

Analogous results were observed in the province of Ontario in Can-
ada, where a reduction in the overall electricity demand of 14% was 
observed in April 2020, as well as a flattening of the load demand, 
especially during peak hours (Abu-Rayash & Dincer, 2020). A similar 
trend has been reported for South Asia (Lowder & Leisch, 2020) and 
Romania (Soava et al., 2021). Analyzing the types of users indepen-
dently, the residential electricity demand increased, showing a shift and 
change in the shape of the load profiles, while the electricity in the 
commercial and industrial sectors decreased. Geraldi et al. (2021) found 
that the electrical consumption of administrative buildings in Flo-
rianópolis (Brazil) decreased by 38%, and that of elementary and 
nursery schools decreased by around 50% during the lockdown. 

In Lagos (Nigeria), the electricity data of 259 residential, commer-
cial, and industrial users were analyzed before and during the lockdown 
(partial and full lockdown). No significant changes between the baseline 
scenario and the partial lockdown figures were observed in the resi-
dential sector, while consumption decreased in the commercial sector 
(Edomah & Ndulue, 2020). Burleyson et al. (2020) analyzed electricity 

Nomenclature 

Symbols and units 
A Area m2 

ACH Air change rate h− 1 

Bn Beam irradianceW/m2 

BCR Building coverage ratio m2/m2 

BD Building density m3/m2 

BH Building height m 
C Effective heat capacity of a conditioned space J/K 
F Reduction factor - 
G Global radiation W/m2 

D Diffuse irradiance W/m2 

H/Havg Relative height m/m 
H/W Height-to-width ratio or canyon effect m/m 
Isol Solar irradiance W/m2 

ML Machine learning 
MAPE Mean absolute percentage error % 
NBH Neighborhood 
RH Relative humidity % 
S Scenario 
SD Standard deviation 
S/V Surface-to-volume ratio m2/m3 

SVF Sky view factor - 
T Temperature ◦C, K 
U Thermal transmittance W/m2/K 
V Volume m3 

WWR Window-to-wall ratio % 
α Solar radiation absorption coefficient 
ξ Percentage of shadow on the vertical wall % 
ρ Solar reflectance of the external environment - 
τ Total solar energy transmittance- 
Φ Heat flow rate, thermal power W 

Subscripts 
a Air 
C Cooling 
H Heating 
h Horizontal 
I Internal heat gains 
sol Solar 
t Transmission 
v Ventilation 

Acronyms 
CDD Cooling degree days 
DHW Domestic hot water 
DSM Digital surface model 
GIS Geographic information system 
HDD Heating degree days 
RF Random forest 
TS Thermodynamic system 
UBEM Urban building energy model  
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consumption data pertaining to 3.8 million residential and 
non-residential buildings in Illinois (the USA). In April 2020, the elec-
tricity demand for the non-residential sector decreased by 16%, while 
residential consumption increased by 12%. Ding et al.(2021) developed 
energy signature curve models to assess the annual electricity use in 
Norway and found that the annual electricity demand decreased in 
educational buildings (kindergartens and schools) during the lockdown, 
while the electricity use increased in residential buildings, with signif-
icant differences related to the building typology (apartments 

underwent an increase of 27% and townhouses of 1.3%). In New York, 
the electricity demand of residential users during the lockdown 
increased over the weekdays, with higher morning peaks between 8 and 
10 am (Chen et al., 2020). A similar trend was observed in Warsaw, 
where dwellings showed a higher daily electricity use on weekdays, but 
without any increment in the average daily peak demand, and a flat-
tened profile in the morning hours (Bielecki et al., 2021). 

Although the electricity consumption during the COVD-19 pandemic 
has been studied widely, only a few works have investigated the use of 

Table 1 
Overview of the effects of the COVID-19 pandemic on the energy use in the building sector.  

Ref. Energy 
simulation 

Energy use Users Case study Main findings 

(Ghiani et al., 2020) Real measured 
data 

Electricity All the users Italy A reduction in the electricity consumption of up to 37% was 
observed during the full lockdown period, 

(Liu & Lin, 2021) Machine learning 
model 

Electricity All the users The UK A reduction in the overall electricity consumption was observed 
during the lockdown period 

(Madurai Elavarasan 
et al., 2020) 

Real measured 
data 

Electricity Residential, 
commercial, 
industrial users 

India A significant increase in the residential electricity demand and a 
reduction in industrial and commercial consumption were 
observed during the lockdown period 

(Abu-Rayash & 
Dincer, 2020) 

Real measured 
data 

Electricity All the users Ontario, Canada The overall electricity demand for the Ontario province 
decreased by 14% in April 2020 during the lockdown. 

(Lowder & Leisch, 
2020) 

Real measured 
data 

Electricity Residential, 
commercial, 
industrial users 

South Asia An increase in the residential electricity consumption and a 
reduction in the commercial and industrial usage were observed 
during the lockdown and this led to a shift and change in the 
shape of the load profiles 

(Soava et al., 2021) Real measured 
data 

Electricity Residential, 
commercial, 
industrial users 

Romania An increase in the residential electricity consumption and a 
reduction in non-residential electricity consumption were 
observed during the lockdown. 

(Geraldi et al., 2021) Real measured 
data 

Electricity Municipal users Florianópolis, 
Brazil 

A reduction in the electricity consumption of municipal buildings 
was observed during the lockdown: 11.1% in health centers, 
38.6% in administrative buildings, 50.3% in elementary schools, 
and 50.4% in nursery schools. 

(Edomah & Ndulue, 
2020) 

Real measured 
data 

Electricity Residential, 
commercial, 
industrial users 

Lagos Nigeria, 
Africa 

An increase in the residential electricity consumption, from 3.72 
MW/week to 3.87 MW/week, and a reduction in the industrial 
and commercial electricity consumption, from 2.54 MW/week to 
1.41 MW/week and from 3.07 MW/week to 2.63 MW/week, 
respectively, were observed during the lockdown. 

(Burleyson et al., 
2020) 

Real measured 
data 

Electricity Residential, 
commercial, 
industrial users 

Illinois, The 
USA 

The electricity consumption for the non-residential sector 
decreased by 16%, while residential consumption increased by 
12%. The weekday load profiles in the residential sector became 
very similar to those of the weekends during the lockdown (April 
2020). 

(Ding et al., 2021) Energy signature 
curve models 

Electricity Residential, 
educational users 

Norway An increase in the residential electricity consumption of 27% was 
observed for apartments and 1.3% for townhouses during the 
lockdown. The electricity consumption for the education sector 
decreased. 

(Chen et al., 2020) Household 
surveys 

Electricity Residential users New York, The 
USA 

It emerged, from the interviews, that the electricity consumption 
of households was higher during the lockdown; only a few 
households reported a lower energy usage. 

(Bielecki et al., 2021) Real measured 
data 

Electricity Residential users Warsaw, Poland An increased daily electricity consumption was observed on 
weekdays, but the average daily peak demand did not increase, 
while the profiles were flattened in the morning during the 
lockdown. 

(Mehlig et al., 2021) Real measured 
data 

Electricity, 
heating, DHW 

All the users The UK The electricity consumption of non-residential users in the first 
lockdown reduced by 15.6%, while heat consumption reduced by 
12.0%, and then by less than half in the second lockdown. The 
energy consumption of residential users did not change during 
the first lockdown but increased by 6.1% in the second one. 

(Rouleau & Gosselin, 
2021) 

Real measured 
data 

Electricity, 
heating, DHW 

Residential users Canada The average daily electricity consumption increased by 2%, and 
the DHW consumption increased by 17%, but no significant 
change in space heating use was observed during the lockdown. 

(Cheshmehzangi, 
2020) 

Real measured 
data 

Electricity, 
heating, cooling 

Residential users China A 40% increase in energy consumption for cooking, a 60% 
increase for cooling and heating, and a 40% increase for lighting 
were observed during the lockdown. 

(Ivanko et al., 2021) Energy signature 
curve models 

Heating, DHW School, kindergarten, 
university users 

Norway Consumption was reduced by up to 54% (21 kWh/m2 per year) 
during the lockdown 

(Zhang et al., 2020) UMI tool, Rhino 
6 

Electricity, 
heating, cooling, 
DHW 

Residential, school, 
office users 

Sweden An increase in residential electricity consumption and a reduction 
in heating consumption were observed, due to more internal heat 
gains during the lockdown. Schools and offices needed less 
energy for electricity and heating 

(Cvetković et al., 
2021) 

EnergyPlus 
software 

Electricity, 
heating, DHW 

Residential users Kragujevac, 
Serbia 

The heating consumption increased by 21.3% during a partial 
lockdown, electricity consumption increased by 54% during the 
partial lockdown and 58.4% during a full lockdown (a similar 
trend was observed for DHW consumption)  
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heat in non-residential and residential buildings. The literature on 
assessing the heating demand in buildings during the COVID-19 
pandemic can be divided into two major groups, that is, measured 
data and simulated data. In the UK, the consumption of electricity and 
heat in the non-residential sector (industrial and commercial) decreased 
by 15.6% and 12%, respectively, during the first lockdown, while the 
second lockdown led to reductions of 6.3% for electricity and 4.1% for 
heat. The use of thermal energy in residential buildings did not change 
during the first lockdown but increased by 6.1% in the second one 
(Mehlig et al., 2021). In Canada, the energy demand of 40 social housing 
buildings was investigated during the lockdown (Rouleau & Gosselin, 
2021). The average daily electricity increased by 2%, the domestic hot 
water (DHW) consumption increased by 17%, while the space heating 
consumption showed minimal variations, mainly due to the increase in 
window openings. Cheshmehzangi (2020) reported an increase in the 
energy use of 352 households in China during the lockdown. The author 
observed an increase of 40% in the energy demand for cooking between 
January and March 2020 and an increase of 60% in the energy demand 
(cooling and heating) and of 40% in lighting from January to February 
2020. An analysis of the use of heat was carried out in educational 
buildings in Norway before and during the lockdown using a model 
based on the energy signature curve (Ivanko et al., 2021). The authors 
hypothesized different scenarios assuming lockdown conditions. From 
their results, it emerged that the consumption of schools, kindergartens, 
and universities could be reduced by up to 54% during the lockdown. 
They also hypothesized that about 77 Wh/m2 per day (equal to 21 
kWh/m2 per year) could be saved. 

Energy simulation tools have also been widely used to assess the 
impact of restriction measures on energy demand. Non-residential en-
ergy use decreased during the lockdown, while residential consumption 
showed different trends, depending on the input setting. For example, 
Zhang et al. (Zhang et al., 2020), adopting the urban modeling interface 
(UMI) tool (Reinhart et al., 2013), investigated the energy demand in 
Sweden by simulating different scenarios. The use of electricity in resi-
dential buildings increased during the full lockdown, and the heating 
decreased due to the internal gains (no variations in ventilation and 
window openings were considered during the lockdown). Schools and 
offices needed less energy for electricity and heating during the lock-
down period (Zhang et al., 2020). Cvetković et al. (2021) simulated the 
energy consumption of a residential building in Kragujevac (the fourth 
largest city in Serbia) using EnergyPlus software. Their results showed 
an increase of over 21.3% in the heating demand during a partial 
lockdown, and a higher use of electricity of over 54% and 58.4% during 
a partial lockdown and full lockdown, respectively. Table 1 offers an 
overview of the effects of the COVID-19 pandemic on energy use in 
buildings. 

The main findings of the literature review can be categorized as 
follows:  

- The electricity consumption of all the users (industrial, commercial 
and public) tended to decrease during the lockdown period, except 
for the residential sector.  

- By analyzing the electricity consumption of different users during the 
lockdown period, it is possible to confirm that: (i) there was an in-
crease in the residential electricity consumption, and the weekday 
load profiles became very similar to those of the weekend; (ii) there 
was a reduction in industrial and commercial electricity 
consumption.  

- The heat demand of residential buildings tended to increase during 
the lockdown, but not markedly, due to higher internal gains.  

- The heat demand for the non-residential sector tended to decrease in 
schools, offices (since they were closed) and retail buildings (since 
they were open fewer hours per day). 

1.2. Research objective and contribution 

The unprecedented impact of the pandemic has caused the energy 
consumption trend to change unexpectedly. As a result, it is essential to 
develop energy models to evaluate future energy trends. Only a few 
studies have evaluated the impacts of the lockdown on the energy heat 
demand. As measured energy data are not always available, energy 
simulation tools are often used to assess the impact of the pandemic on 
the energy demand. Several contrasting results have been reported in 
the existing literature regarding urban energy use simulations and oc-
cupancy profiles. The definition of occupancy scenarios is fundamental 
to take into account the behavior of residents during the pandemic. This 
study introduces detailed scenarios that take into account different oc-
cupancy behavioral patterns. As the GIS-based approach presented here 
is flexible, the input data can readily be updated according to the sce-
narios that has to be analyzed. In addition, the presented model allows 
energy assessments to be conducted at the urban scale, and the simu-
lation runtime is much less than that of the existing simulation engines. 

The aim of this study has been to address the research gaps presented 
in the literature review by using measured and simulated data to analyze 
the energy trend during the COVID-19 pandemic. More specifically, the 
aims of the study are:  

(i) To develop and verify a bottom-up approach in order to explore 
the impacts of the COVID-19 pandemic on the space heating and 
cooling demands of residential buildings using a "GIS-based en-
gineering model".  

(ii) To develop and analyze detailed occupancy scenarios that 
describe the behavior of the occupants during the partial and full 
lockdowns.  

(iii) To develop a data-driven model in order to improve the accuracy 
of the GIS-based energy model using a machine learning 
approach. 

2. Methodology 

This work investigates the impacts of the COVID-19 pandemic on the 
space heating and cooling energy performances of three residential 
neighborhoods located in the Canton of Geneva, Switzerland. The pro-
posed methodology consists of three main phases (Fig. 1). In the first 
phase, the input data are processed. This methodology combines 
different types of data. Climate data, building data, occupancy profiles, 
and morphological parameters are processed and elaborated with the 
support of GIS tools. The energy demand of urban neighborhoods is 
investigated using a GIS-based engineering model (Mutani et al., 2020, 
2021; Todeschi et al., 2021). The GIS-based model is verified in the 
energy simulation phase, and the simulated annual energy consumption 
is compared with the measured data. We use a machine-learning algo-
rithm to improve the accuracy of the model. In the third phase, the 
impact of the COVID-19 pandemic on the space heating and cooling 
demand is assessed by investigating three scenarios that consider the 
occupancy scenarios, that is, pre-pandemic, partial lockdown, and full 
lockdown. 

2.1. Studied area 

The proposed GIS-based approach is here implemented for the 
Canton of Geneva. The climate in this canton is temperate with cold 
winters, warm summers, adequate precipitations, and a north-easterly 
wind (Köppen climate classification: Cfb (Peel et al., 2007)). Fig. 2 
shows the hourly weather data of Geneva collected from Meteonorm 
8.0.4 for the "contemporary" period from 2000 to 2019. The relative 
humidity (%) and external air temperature ( ◦C) refer to a weather 
station in Geneva (46◦25′N, 6◦12′E). During the winter season, the air 
temperature drops to − 6.9 ◦C in January, while the temperature rises to 
34.8 ◦C in July. The coldest months are January and December, with 

V. Todeschi et al.                                                                                                                                                                                                                               



Sustainable Cities and Society 82 (2022) 103896

5

average monthly air temperatures of 2.2 and 2.9 ◦C, respectively. The 
hottest months are July, with an average monthly air temperature of 
20.8 ◦C, and August, with an average temperature of 20 ◦C. 

2.2. Case studies 

The urban morphology affects the energy performance of buildings 
to a great extent due to the relationship between the building and its 
surroundings (e.g., shading, heat exchanges between buildings) and the 
type of outdoor surfaces (Ahn & Sohn, 2019; Javanroodi et al., 2018; 
Mangan et al., 2021). It is possible to reduce the space heating and 
cooling energy demand of buildings by optimizing the urban 
morphology (Perera et al., 2021, 2021). The urban morphology also 
modifies the microclimate conditions in urban areas, particularly in 
extreme weather conditions (Javanroodi & Nik, 2020). It is thus essen-
tial to consider the impact of the urban morphology when developing a 
sound energy simulation model at the urban scale. In this study, the 
urban morphology of the three neighborhoods in the Canton of Geneva 
was retrieved from the GIS database, focusing on the urban form and 
density. The 2D building characteristics and the digital surface model 
(DSM) were acquired from the Swisstopo (Federal Office of Topography) 
database at a resolution of 0.5 × 0.5 m. 

Several parameters, referring to the urban form and urban density, 

have been considered in the literature to describe the urban morphology 
of a location. In this study, six major parameters have been considered to 
define the morphology of the neighborhoods: (i) the building height 
(BH), that is, the average height of the buildings in the sample area, (ii) 
the relative height (H/Havg), that is, an index to describe the solar 
exposition concerning the building heights (Chatzipoulka et al., 2016), 
(iii) the building coverage ratio (BCR), that is, the total built area in the 
sample area divided by the sample area (Mohajeri et al., 2016; Wei et al., 
2016) (iv) the building density (BD, m3/m2), that is, the total building 
volume in the sample area divided by the sample area (Mohajeri et al., 
2016; Quan et al., 2020), (v) the height-to-width ratio (H/W) (Jav-
anroodi et al., 2019; Martin et al., 2017), which is the ratio of the 
building height to the distance between buildings, and (vi) the sky view 
factor (SVF), which is used to measure the portion of sky visible from a 
given point (Javanroodi et al., 2022; Middel et al., 2018). SVF is used in 
the GIS-based engineering model to account for the solar exposition of 
the urban morphology and to quantify the thermal radiation lost to the 
sky considering a 200 × 200 meter grid size. 

A total number of 18 urban neighborhoods were assessed in the 
Canton of Geneva using the procedure mentioned above, in which three 
neighborhoods were selected on the basis of the urban density (i.e., BH 
and BD) and the urban form (i.e., H/Havg, BCR, H/W, and SVF). In this 
regard, a BH range of 10 to 25 m was considered for the urban density, 

Fig. 1. Flowchart of the GIS-based workflow.  

Fig. 2. An example of the hourly weather data of Geneva: relative humidity (in red) and external air temperature (in blue). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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for which neighborhood 1 (hereafter referred to as NBH1) was 10.8 m, 
neighborhood 2 (hereafter referred to as NBH2) was 23.7 m, and 
neighborhood 3 (hereafter referred to as NBH3) was 15.6 m, while BD 
varied from 1.6 to 8.2 m3/m2. A range of 0.15 to 0.4 m2/m2 for BCR and 
a range of 0.25 to 0.8 m2/m2 for H/W were considered for the urban 
form; the BCR values were 0.16, 0.38 and 0.15 m2/m2 for neighbor-
hoods 1, 2 and 3, respectively, while the H/W values were 0.25, 0.81 and 
0.30 m2/m2. Although the H/Havg and SVF values were found to be 
similar across the studied neighborhoods, they were considered in the 
assessments due to their importance in modifying the urban climate. 

This investigation focused on the residential sector, and the neigh-
borhoods with a high percentage of residential buildings were therefore 
identified. Thus, three neighborhoods were selected considering the 
characteristics of the residential building stocks. In these neighbor-
hoods, 90% of the buildings are residential, and most of the energy data 
for annual heating consumption is known for these buildings. Fig. 3 
shows a map of the Canton of Geneva with the location of the three 
selected neighborhoods (the locations of the neighborhoods are marked 
in red). NBH1 (46◦ 24′ N, 6◦ 20′ E) and NBH2 (46◦ 21′ N, 6◦ 15′ E) are 
small urban areas in the Vésenaz district and Pâquis district, respec-
tively, while NBH3 (46◦ 19′ N, 6◦ 11′ E), which has a larger total area, is 
located in the Lancy and Onex districts. 

Table 2 presents the values of the morphological parameters 
considered for each neighborhood. The morphological parameters that 
have the most significant variability are BH and BD, which were used to 
describe the urban density, and the canyon effect, which was evaluated 
as a function of the H/W ratio. Neighborhoods 1 and 3 are less dense 
than NBH2, which has higher BH, BCR, BD, and H/W values. 

Around 1800 buildings with heating/cooling systems were selected 
from over 3200 buildings in the three neighborhoods. These buildings 
were then classified into seven categories: assembly (church, public, 
sports center, temple), business (service, government, offices, post of-
fice, police), commercial (commercial, retail), educational (kinder-
garten, school, university), industrial (manufacture, atelier), 
institutional (hospital), and residential (condominium, detached house, 
retail). Fig. 4 depicts the buildings classified on the basis of their 

function in the selected neighborhoods. 
The residential buildings were classified, according to their year of 

construction, into eight classes: before 1945 (class 1), between 1946 and 
1960 (class 2), between 1961 and 1970 (class 3), between 1971 and 
1980 (class 4), between 1981 and 1990 (class 5), between 1991 and 
2000 (class 6), between 2001 and 2010 (class 7), and after 2010 (class 
8). The characteristics of the residential buildings in these three neigh-
borhoods are described in Table 3 (for further information, see (Perez, 
2014)). 

NBH1 has over 420 heated buildings, 95% of which were identified 
as residential users. The residential buildings have an average S/V ratio 
of 0.74 m2/m3 (i.e., detached house). Almost 40% of the buildings were 
built after 1991 and only 16% before 1945. A total of 34 residential 
buildings, for which the measured energy consumption was known, 
were selected from this database to verify the accuracy of the GIS-based 
model. 

There are nearly 650 heated buildings in NBH2, 84% of which were 
identified as residential users. Most residential buildings (42%) were 
built before 1945, 25% between 1946 and 1970, and only four buildings 
(1%) were constructed after 2010. The measured energy consumption of 
283 residential buildings in this district was available for model verifi-
cation purposes. The third neighborhood has over 750 heated buildings, 
92% of which are residential buildings with an average S/V of 0.71 m2/ 
m3. The prevalent construction year is class 6 (21% of the residential 

Fig. 3. Map of the Canton of Geneva using World Imagery from ESRI to show the locations of the three neighborhoods considered as case studies.  

Table 2 
Morphological parameters: the average values of each neighborhood and the 
standard deviation (SD).  

Neighborhood BH H/Havg BCR BD H/W SVF 
(m) (m/m) (m2/m2) (m3/m2) (m2/m2) (-) 

1  10.79 1.32 0.16 1.61 0.25 0.82 
SD 2.14 0.13 0.07 1.03 0.15 0.02 

2  23.69 1.28 0.38 8.15 0.81 0.74 
SD 5.29 0.29 0.17 3.47 0.29 0.18 

3  15.60 1.51 0.15 2.02 0.30 0.81 
SD 6.95 0.46 0.08 1.50 0.27 0.01  
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buildings were built between 1991 and 2000), 17% were built before 
1945, and 7% after 2010 (47 buildings). Overall, 134 residential 
buildings with available energy data were selected from this 
neighborhood. 

It was crucial to verify simulated data by comparing them with the 
measured energy data to improve their reliability. Thus, a total of 451 
buildings out of a possible 1640 were selected on the basis of the 
available data. The measured annual heating consumption and the 
construction year used to define the thermophysical properties of the 

building were known for these buildings. Fig. 5 shows the residential 
buildings selected for the analysis in green (for which the measured 
energy consumption was known), while the rest are highlighted in red. 

2.3. Data pre-processing 

2.3.1. Climate data 
The GIS-based model presented in this work can be applied to 

different urban settings and larger scales than the one considered here 
(city, regional, or national scales). It has been formulated with a view 
toward future pandemics and weather conditions, considering different 
sources of uncertainties. Thus, it is crucial to tune the model considering 
the available coarse weather and GIS dataset in cities (historical weather 
data for a specific location and date with an hourly resolution are not 
always available freely). In the present case, the hourly climate data 
were collected from Meteonorm 8.0.4 for the "contemporary" period, 
that is, from 2000 to 2019. Meteonorm utilizes an urban heat model to 
account for the urban heat island effect on temperature and relative 
humidity, based on the f ERA-Interim/urbclim model (www.urban-c 
limate.be). Subsequently, the climate data are calibrated according to 
the urban morphology (see section 2.4.). Data recorded and statistically 
interpolated by the local weather station (46◦25′N, 6◦12′E in Geneva) 

Fig. 4. Building classification by type of users in the three considered neighborhoods in the Canton of Geneva: (a) NBH1, (b) NBH2, and (c) NBH3.  

Table 3 
Characteristics of the residential buildings in the three considered 
neighborhoods.  

NBH. % of 
residential 
buildings 

No. of 
residential 
buildings 

Average 
height 
(m) 

Average 
S/V(m2/ 
m3) 

Prevalent 
year of 
construction 

1 95 396 9.4 0.74 Class 7 
(2001–2010) 

2 84 542 22.1 0.36 Class 1 
(before 1945) 

3 92 702 11.5 0.71 Class 6 
(1991–2000)  

Fig. 5. Identification of the selected residential buildings (in green) and the other residential buildings (in red): (a) NBH1, (b) NBH2, and (c) NBH3. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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were elaborated for three different locations, one for each of the 
analyzed neighborhoods. Table 4 shows the main characteristics of the 
three locations (cool temperate zones with a sub-maritime climate). It is 
possible to observe, from the annual climate data, that there are no 
significant differences between the three studied areas. 

The following weather profiles were used as input data for the GIS- 
based engineering model: the external air temperature (Ta in ◦C), the 
relative humidity (RH in%), the global horizontal radiation (Gh in W/ 
m2), the beam irradiance (Bn in W/m2), and the diffuse horizontal 
irradiance (Dh in W/m2). This work has not considered the wind effect 
on the convective heat exchange. 

No significant differences emerged when the Heating Degree Days 
(HDD) and Cooling Degree Days (CDD) in the Canton of Geneva were 
compared for 2019 (pre-pandemic period) and for 2020 (pandemic 
period). The HDDs for 2019 and 2020 were 2755 and 2654, respectively; 
the CDDs were 298 in 2019 and 290 in 2020 (source: www.meteoswiss. 
admin.ch). Therefore, the energy simulations in the analysis were car-
ried out using a typical weather year on the basis of historical weather 
data (2000–2019) retrieved from Meteonorm. 

2.3.2. Building data 
The geometrical characteristics of each building (e.g., the building 

footprint, number of floors, height, volume), the surface-to-volume (S/ 
V, m2/m3) ratio, which is a variable that is able to describe the 
compactness of the building, the year of construction, and the user type 
(i.e., residential, school, office, industrial) were identified and processed 
using different databases, that is, Swisstopo (Federal Office of Topog-
raphy), SITG (Système d’information du territoire à Genève), and 
Switzerland’s OSM (Open Street Map). The first step involved identi-
fying the heated/cooled buildings. Garages and low-rise buildings of less 
than 3 m in height and with a total area of less than 50 m2 are classified 
as unheated buildings (without an energy system). After identifying the 
buildings that had an energy system, we selected only the residential 
users. The second step involved developing a comprehensive database of 
the residential buildings located in the neighborhoods using GIS tools. 
We defined the thermophysical properties of the buildings, according to 
the construction year, using a study performed on the city of Neuchâtel, 
Switzerland, (Perez, 2014) as a reference. We identified the thermal 
transmittances and thermal capacity of the windows and opaque ele-
ments, the infiltration rate, the total solar energy transmittance of the 
glazing, and the window-to-wall ratio (WWR, -) values of each building. 

2.3.3. Occupancy scenarios 
One aspect that affects energy consumption is the behavior and 

habits of the inhabitants/users (Buttitta & Finn, 2020; Csoknyai et al., 
2019). We defined three occupancy profiles to evaluate the effect of the 
COVID-19 pandemic on the energy demand of the residential users. 
Three aspects were considered: (i) the hours of operation of the energy 
system, (ii) the internal heat gains, due to the presence and activity of 
people in the buildings, (iii) the heat losses, due to window openings. We 
defined the following scenarios: (i) a baseline scenario (S1), in which the 
energy demand was simulated considering the occupants’ behavior in a 
typical year; according to the SIA 2024 Swiss norm (Zurich, 2006), it is 
assumed that people stay at home 12 h per day; (ii) a partial lockdown 
scenario (S2), in which people stay at home 18 h per day; (iii) a full 
lockdown scenario (S3), in which people stay at home all day (24 h a 
day) (Cvetković et al., 2021; Zhang et al., 2020). In these scenarios, we 

considered that the heating system was switched on/off as a function of 
the building temperature. The heating/cooling system was always 
turned on to achieve a comfortable internal air temperature of 22–20 ◦C 
in winter and 26–28 ◦C in summer. The heating system turned off when 
the internal air temperature reached a comfortable temperature. 

Figs. 6, 7, and 8 show the heating and cooling schedules for the three 
scenarios in blue, where the weekdays are distinguished from the 
weekends. In the graphs, the value 0 indicates that the internal air 
temperature of the building was set at 20 ◦C in winter and 28 ◦C in 
summer, while the value 1 indicates that the internal air temperature 
was set at 22 ◦C and 26 ◦C in winter and summer, respectively. This 
means that the energy system was always in operation to keep the 
building temperature at 22 ◦C or 20 ◦C during the heating season and at 
26 ◦C or 28 ◦C during the summer season, according to the literature 
(Tardioli et al., 2020) and as required by the SIA 2024 Swiss norm 
(Zurich, 2006). 

The internal gains were considered to depend on the number of oc-
cupants per building and the occupants’ activities. The number of oc-
cupants was calculated by referring to the SIA 380–1 Swiss norm 
(Zurich, 2009), which indicates that the surface area per person is 40 
m2/P for residential buildings, with an S/V ratio equal to or less than 
0.71 m2/m3 (typical of condominiums) or 60 m2/P with a higher S/V 
than 0.71 m2/m3 (typical of detached houses). 

According to the type of activity, the metabolic flux was assumed as 
72 W for a person who is sleeping, 108 W for one who is sitting, 126 W 
for one who is standing, 175 W for one who is cooking, 207 for one who 
is walking, and 210 for one who is cleaning (Cvetković et al., 2021). The 
occupancy schedule for the baseline scenario (S1) is indicated in Fig. 6 
and, according to the SIA 2024 Swiss norm (Zurich, 2006), people stayed 
at home 12 h a day. In Figs. 7 and 8, it is assumed that people stayed at 
home 18 h during a partial lockdown (S2) and 24 h during the full 
lockdown (S3) (Cvetković et al., 2021; Zhang et al., 2020). 

Heat losses were quantified according to the values of the air change 
rate (ACH, h− 1) for the infiltration indicated in Table 5. Constant ACH 
values were assumed during the day (24 h), considering natural venti-
lation through infiltrations. People open windows more often when they 
stay at home longer (Lepore et al., 2021); thus, the ACH values were 
increased in the S2 and S3 scenarios, compared to the baseline scenario. 

2.3.4. Measured energy data 
The measured annual energy data for space heating were used to 

verify the accuracy of the GIS-based engineering model. The measured 
energy data were obtained from the SITG (Système d’information du 
territoire à Genève) database. However, no energy data were available 
in the SITG database for detached houses. Therefore, this building ty-
pology was excluded from the first investigation. After verification of the 
model, the analysis will be extended to the full residential heritage. 

The following information was acquired for each building: the 
annual heat consumption for space heating and domestic hot water, 
expressed in MJ/year and MJ/m2/year, the share of energy used for 
DHW, the heated surface, the measurement year (from 1999 to 2010) 
and the energy vector. 

The model used in this work simulates the energy demand for space 
heating under certain climatic conditions. From the measured data, only 
the share of energy for space heating was considered to verify the model. 
The residential buildings in the three neighborhoods use natural gas as 
the energy vector to heat the buildings. However, as no different values 

Table 4 
Measurements and the annual climate data of the three considered sites.  

Neighborhood Location Elevation Measurement Ta RH Gh Bn Dh 

(m) ( ◦C) (%) (kWh/m2) 

1 46◦24′N - 6◦20′E 406 statistical interpolation 11.2 70 1291 1351 571 
2 46◦25′N - 6◦12′E 420 weather station 11.2 70 1291 1309 591 
3 46◦19′N - 6◦12′E 398 statistical interpolation 11.8 68 1292 1298 603  
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of system efficiency were available, we assumed a system efficiency of 
0.85, which, according to the SIA 380–1 Swiss norm, is typical of gas 
systems (Zurich, 2009), to calculate the energy demand. 

The HDD presented in Table 6 were used to normalize the measured 
energy data, while the typical weather data from Meteonorm 8.0.4 were 
used for the simulations. The HDD for the three neighborhoods can be 

Fig. 6. Occupancy schedules of the baseline scenario (S1): (a) weekday, (b) weekend.  

Fig. 7. Occupancy schedules in the partial lockdown scenario (S2): (a) weekday, (b) weekend.  

Fig. 8. Occupancy schedules in the full lockdown scenario (S3): (a) weekday, (b) weekend.  

Table 5 
Air change rate (ACH, h− 1) per construction year for the three scenarios (Perez, 2014).  

Scenario Before 1945 1946–1960 1961–1970 1971–1980 1981–1990 1991–2000 After 2001 

Baseline 0.70 0.60 0.55 0.50 0.40 0.35 0.30 
Partial lockdown 0.80 0.70 0.65 0.60 0.50 0.45 0.40 
Full lockdown 0.90 0.80 0.75 0.70 0.60 0.55 0.50  
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compared in the last three columns of Table 6, referring to a typical 
Meteonorm year. It can be seen that the relative difference between the 
HDD in the neighborhoods is minimal. 

2.4. Energy simulation model 

The energy demand for the space heating and cooling of residential 
buildings in the three neighborhoods was investigated for one year using 
a bottom-up approach. The "GIS-based engineering model" introduced 
by Mutani et al. (Mutani et al., 2020) is a dynamic urban building 
thermal balance based on three thermodynamic systems (TSs) . The 
model is based on an hourly calculation and considers the influence of 
hourly variations in the weather and operation. Energy balance equa-
tions are used to assess the temperatures of the three TSs per hour using 
an iterative method or to solve other variables if these temperatures are 
known. The model was verified in detail against the actual energy data 
of residential buildings in Turin and Fribourg (see (Mutani et al., 2020, 
2021; Todeschi et al., 2021) for more information on the validation 
study). In this study, the validated model has been used to simulate the 
hourly energy demand of 451 residential buildings located in neigh-
borhoods with different urban morphologies. 

2.4.1. Urban building thermal balance 
The GIS-based engineering model presented in this study is based on 

the ISO 52016–1:2017 (ISO-52016–1:2017(en), 2017) and ISO 
52017:2017 (ISO-52017–1:2017(en), 2017) standards. The dynamic 
model considers a sensible thermal balance that was adapted from the 
building scale to the neighborhood scale using two morphological pa-
rameters: SVF and H/W. The two parameters are calculated, using GIS 
tools, at the mesh-scale for a grid with a dimension of 200 × 200 m. 
According to this methodology, it is possible to include the mutual 
shading and view factors of the surrounding built-up context in the 
energy simulation by evaluating the heat fluxes between the block of 
heated-cooled buildings and the external environment. 

As previously mentioned, this model is based on three TSs: (i) the 
opaque envelope, composed of all the opaque surfaces that separate the 
heated volume of the buildings from the external environment; (ii) the 
glazing component, which separates the heated zone from the external 
environment; (iii) the inside part of the building, which includes the 
internal partitions and structures, air, occupants, and furniture. 

Eqs. (1) and (2) describe the dynamic balance for the heating and 
cooling seasons, respectively. For each TS, C (J/K) is the heat capacity; T 
is the temperature of the TSs (K); t is the time (s); ∅sol is the heat flow 
rate from solar gains; ∅I is the heat flow rate from internal gains; ∅H− C is 
the heat flow rate from the heating or cooling system; ∅t is the heat flow 
rate from transmission; ∅v is the heat flow rate from ventilation. 

CTS
dTTS

dt
= ∅sol + ∅I + ∅H − (∅t +∅v) (1)  

CTS
dTTS

dt
= ∅sol + ∅I − (∅t +∅v +∅C) (2) 

The computational model used to calculate ∅sol is improved, 
compared with the previous version of the model (Mutani et al., 2020; 
Todeschi et al., 2021). In this version, the direct solar irradiation, diffuse 
solar irradiation and reflected solar irradiation components are used 
(Eqs. (3a) and 3b). 

Eq. (3) shows the heat flow rate from solar gains (∅sol), which is 
obtained from absorption (Eq. (3a)) or from transmission (Eq. (3b)), 
considering the solar irradiation observed and transmitted through the 

opaque and transparent building elements (k). 

∅sol = ∅sol,α + ∅sol,τ (3)  

∅sol,α =
∑

αk⋅Ak⋅
[(

Isol,Bh⋅ξ⋅Fk + Isol,Dh⋅Fr
)
⋅(1+ ρsol)

]
(3a)  

∅sol,τ =
∑

τG⋅Ak⋅
[(

Isol,Bh⋅ξ⋅Fk + Isol,Dh⋅Fr
)
⋅(1+ ρsol)

]
(3b) 

The first term in Eq. (3a), αk (-), is the solar absorption coefficient and 
the first term in Eq. (3b), τG (-), is the total solar energy transmittance. 
The second term, Ak (m2), is the opaque and transparent envelope area 
exposed to the sun. 

The incident solar irradiance on walls is assessed considering: (i) the 
direct solar irradiance Isol,Bh (W/m2) calculated according to the orien-
tation and the inclination of the surfaces of the building envelope, (ii) 
the hourly variation in the sunlight percentage ξ (-) calculated as a 
function of the solar height and the aspect ratio H/W, (iii) and the 
reduction factor Fk (-), which considers the percentage of the area 
exposed to the sun. 

The quota of the diffuse solar irradiance Isol,Dh (W/m2) is multiplied 
by the reduction factor Fr (-), which is the form factor between a building 
element and the sky, calculated as a function of the SVF and the surface 
inclination (e.g., ½ of the SVF is considered for vertical walls). 

The quota of the reflected solar irradiance is calculated taking into 
account the quota of direct and diffuse solar irradiance reflected by the 
urban canyon surfaces (ρsol is the solar reflectance of the external 
environment, which is assumed equal to 0.20, in accordance with the 
Italian UNI 10349–1:2016 standard (UNI 10349–1:2016, 2016)). 
Reference (Mutani et al., 2020) shows how the other heat fluxes, ∅I, ∅t 
and ∅v, are calculated. 

2.4.2. Input data 
The calculation procedure depends on the availability of input data. 

In the case of existing buildings, the information on the composition of 
building element assemblies is limited. The following primary input data 
are used to apply the GIS-based engineering method:  

- The hourly local climate conditions elaborated by Meteonorm 8.0.4. 
The weather variables are the hourly external air and sky tempera-
tures, the relative humidity, and the horizontal direct and diffuse 
irradiance.  

- The geometrical characteristics of the buildings, such as the S/V 
ratio, the heat loss surfaces, the glazing area that is quantified using 
the WWR ratio, and the heated net volume (80% of the gross 
volume).  

- The thermophysical properties of building elements, which are 
estimated according to the year of construction using values indi-
cated in standards and literature (Le Guen et al., 2018; Perez, 2014; 
Todeschi et al., 2021). 

Table 7 indicates the input values used according to the year of 
construction: the thermal capacity of opaque components (Copaque, 
kJ/m2/K), the thermal transmittances (U, W/m2/K) of the wall, roof, 
ground slab (distinguishing between layers with and without insu-
lation) and glass, the total solar energy transmittance of glazing (g- 
value, -) and the WWR (%). These values are assumed to be repre-
sentative of this area in Switzerland, where window substitution is 
the most common retrofitting intervention. 

Table 6 
Heating Degree Days (HDD, ◦C) in the Canton of Geneva (source: www.meteoswiss.admin.ch).  

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Neighb. 1 Neighb. 2 Neighb. 3 

HDD 3018 2718 2812 2724 3005 2895 3163 2799 2728 2926 2781 3180 2790 2829 2718  
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- The operating and boundary conditions, which are defined according 
to the occupancy behavior.  

- The morphological parameters used as input are SVF and H/W. These 
parameters are used to quantify the heat flow rate from solar gains as 
a function of the urban morphology. 

2.4.3. Output data 
The heat flow components of the urban building energy balance 

(∅sol, ∅I, ∅t, ∅v, ∅H and ∅C) and the temperatures of the three TSs 
(building, envelope, and glazing) are the main outputs of the engi-
neering model. 

As the model is based on GIS, the results are georeferenced and can 
be used to create energy maps. Energy maps can describe the distribu-
tion of energy consumption from the building scale to the neighborhood 
or city scale. Starting from information about the energy consumption at 
different urban levels, it is possible to identify critical areas and then to 
pilot energy efficiency policies to promote sustainable and resilient 
cities. 

Outliers and missing values in the input data, especially in the 
thermal properties of the buildings, decrease the reliability of the re-
sults. A data-driven correction is applied to improve the outcome of the 
model. 

2.5. Data-driven correction to the model 

A machine learning-based method is used to define a data-driven 

correction with a random forest (RF) algorithm to tune the GIS-based 
model results. We use a data-driven model to extract scale factors to 
improve the accuracy of the "GIS-based engineering model". Such scale 
factors are defined as the ratios between the actual energy demand and 
the simulated one. Therefore, we train an RF algorithm (Breiman, 2001) 
(on the sample where we have actual measurements) to make a 
data-driven prediction of the ratio between the actual energy demand 
and the simulated one for buildings where we do not have any measured 
values. This correction is motivated by the fact that the building char-
acteristics used to simulate the consumed energy are sometimes 
approximated in the GIS-based model, together with the fact that the 
model has its intrinsic accuracy. The model is trained using an initial set 
of 25 features extracted from climate databases, simulated energy data, 
building, and urban attributes. 

Fig. 9a depicts the relative importance of each input feature in 
relation to the task, extracted by means of an embedded function in the 
RF model implementation (Breiman et al., 1984). The most relevant 
variables are those that describe the geometric characteristics of the 
building (e.g., S/V, building footprint, heat loss surface) and the energy 
consumption simulated with the GIS-based model. Variables that 
describe the thermal properties of the building, morphological param-
eters, and occupancy behavior (number of people and ACH) have a 
medium/low impact. The HDDs are very similar in the three neighbor-
hoods and do not have a significant impact. Finally, the features related 
to the properties of the transparent building envelope have no mean-
ingful impact. Therefore, the geometrical variables have a significant 
impact on the prediction of the scale factors. This is due to the fact that 
the building database suffers from some geometric errors (e.g., in some 
cases, the geometries of the buildings overlap erroneously) and this in 
turn leads to errors in the calculation of the geometric variables of the 
buildings. 

In a second step, the model is trained using only six of the most 
relevant variables: the S/V ratio, the heat loss surface, the simulated 
annual heating demand, the building footprint, the height, and the 
volume. These variables have the most significant impact on predicting 
the targets (i.e., the scale factor for each building). Fig. 9b shows the 
importance of these six inputs on the performance of the model. 

The dataset composed of 451 buildings is randomly divided into 
training and test subsets by a ratio of 75/25. The hyperparameters of the 
model are tuned using K-fold cross-validation to improve the precision 
of the predictions. The final RF model is validated using the training 

Table 7 
Thermophysical properties of the buildings (Perez, 2014).  

Period Copaque Uwall Uroof Uground Uglass g- 
value 

WWR 

kJ/m2/ 
K 

W/m2/K – % 

Before 1945 660 0.94 0.70 1.60 2.30 0.47 25 
1946–1960 487 1.35 0.70 1.50 2.30 0.47 25 
1961–1970 355 1.03 0.65 1.30 2.30 0.47 25 
1971–1980 356 0.88 0.60 1.10 2.30 0.47 25 
1981–1990 493 0.90 0.43 0.68 2.30 0.47 25 
1991–2000 494 0.69 0.31 0.49 2.30 0.47 25 
2001–2010 495 0.51 0.25 0.35 1.70 0.49 35 
After 2010 507 1.35 0.22 0.25 1.70 0.49 35  

Fig. 9. The importance of the variables: (a) all the variables, (b) six variables.  
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called Out-Of-Bag (OOB) (Liaw & Wiener, 2002), and it has a mean 
absolute error of 15.3%, a mean squared error of 5.2%, and a root mean 
squared error of 22.8%. Table 8 shows the hyperparameters of the RF 
model. 

An example of the decision tree is indicated in Fig. 10. The depth of 
the trees in the forest is limited to three levels to show an understandable 
scheme. The variable (i.e., simulated energy) and the value used to split 
the node are indicated in the root node, where "mse" is the mean square 
error, "samples" is the number of data points in this node, and "value" is 
the prediction (in our case, the scale factor) for all the data points in this 
node. 

3. Results 

This section shows the main findings of the analysis. The purpose of 
the first part of this study was to verify the accuracy of the model used to 
simulate the energy demand of residential users and to improve its 
precision through the integration of a machine learning model. In the 
second part of the results, the impacts of the COVID-19 pandemic on the 
energy demand are described for three different scenarios. 

3.1. Model verification and improvement 

The "GIS-based engineering model" was designed to simulate the 
energy demand of a group of buildings at an urban scale. In this work, it 
has been applied at a building scale, and the energy demand has thus 
been simulated for each building, not for a group of buildings or a 
cluster, but with some urban variables at an urban scale (as they were 
not available at a building scale). The energy consumption for heating 
and cooling of 451 residential buildings has been simulated. Since the 
measured consumption has an annual temporal resolution, an annual 
data verification has been carried out. The results of the annual heating 
demand have been compared with the measured energy data according 
to the baseline scenario (pre-pandemic conditions). 

Despite uncertainties from the input data, the developed model 
shows a reliable energy demand estimation. A comparison of the 
simulated and measured energy data shows that the GIS-based model 
has an average mean absolute percentage error (MAPE) of 26% (the 
median MAPE is 20%). The MAPE varies in the three neighborhoods. 
Neighborhoods 1 (34 buildings) and 2 (283 buildings) have an average 
MAPE of 29%, while NBH3 (134 buildings) has a lower average MAPE 
equal to 18%. The NBH3 results are more accurate than the other ones, 
even though the model slightly overestimates the energy uses. 

A system efficiency of 0.85 has been assumed for all the buildings to 
calculate the energy demand from the measured energy consumption. It 
is possible to define different system efficiencies, depending on the year 
of construction of the buildings, and the average MAPE could on average 
be reduced by 6% (in NBH1 the MAPE remains equal to 29%, while it can 
on average be reduced by 9% and 1%, respectively, in neighborhoods 2 
and 3). 

Fig. 11 shows a comparison of the energy data expressed in kWh/ 
year and the frequency distribution of the MAPE in the three neigh-
borhoods. In neighborhoods 1 and 2, 61–62% of the simulated data have 
a lower MAPE than 30%. More accurate results are obtained for NBH3, 
where 85% of the simulated data have a lower MAPE than 30%, and 
61% of the data have a lower MAPE than 20%. With the GIS tools, the 
MAPE is mapped at the building level in the three neighborhoods 
(Fig. 12). 

The scale factor, calculated as the ratio between the measured energy 
demand and the simulated one, is used to improve the energy simula-
tions. This factor is calculated in two ways:  

- Using a constant scale factor, that is, the average value calculated 
over the data from the 451 buildings.  

- Using an ad-hoc scale factor for each building, calculated from the RF 
model. 

Fig. 13 shows the results pertaining to 113 residential buildings 
located in the three neighborhoods identified as the test set. This group 
of buildings has not been used to train the RF model. It is possible to 
observe that the average MAPE decreases from 26% to 23% when the 
constant correction factor is used. More accurate results are obtained 
when the RF model is applied, with an average MAPE of 16%. The GIS- 
based model tends to overestimate the energy data for buildings that 
have a higher heating demand than 150,000 kWh/year, mainly because 
energy retrofitting interventions are not considered. This trend is less 
marked when the constant correction factor is used. The bias is corrected 
by the RF model. 

Therefore, it is possible, through the use of a data-driven correction 
based on the RF algorithm, to (i) augment the precision of the GIS-based 
model results (increasing the R2 and decreasing the MAPE in Fig. 13b) 
and (ii) improve its accuracy by removing any potential systematic bias 
(see the slope of the linear regression close to 1 in Fig. 13a). 

Fig. 14 shows an example of an hourly profile for the heating and 
cooling demand for one year. These results refer to a building with a 
MAPE close to 0%. This building is a terrace house in NBH3. It was built 
between 1961 and 1970, and therefore has moderate thermal insulation. 
The annual heating demand is 142 kWh/m2/y (the heating season is 
from 7 October to 18 May), and the annual cooling demand is 8 kWh/ 
m2/y (the cooling season is from 19 May to 6 October). The maximum 
daily demand for heating is in January, with an energy demand of 1383 
kWh/day and an average outdoor air temperature of − 1.4 ◦C. During the 
summer season, a maximum daily cooling demand of 354 kWh/day is 
reached with an outdoor air temperature of 28.3 ◦C (on 30 June). 

3.2. Impacts of the COVID-19 pandemic on the energy demand 

As has emerged from the results, in the S1 scenario, the annual en-
ergy demand in the three neighborhoods is 76,024 MWh/y and 5681 
MWh/y for space heating and cooling, respectively. In partial lockdown 
conditions (S2), the energy demand increases, reaching 81,948 MWh/y 
(+8%) for heating and 6625 MWh/y (+17%) for cooling. The energy 
demand during the full lockdown (S3) increases by 13% for heating and 
by 28% for cooling, compared to S1. During S3, the annual heating 
demand is 85,753 MWh/y (+9729 MWh/y with respect to S1 and 
+3805 MWh/y with respect to S2), and the annual cooling demand is 
7286 MWh/y (+1606 MWh/y with respect to S1 and +661 MWh/y with 
respect to S2). Table 9 shows the results for each scenario. What stands 
out in the table is that the energy demand increases more for cooling 
than for heating. The internal gains due to the presence of people during 
the heating season partially compensate for other factors that increase 
the use of heating. During the summer, the internal gains have an 
opposite effect on the cooling demand. In NBH1, the increase in cooling 
demand during the restriction measures is less marked than in the other 
two neighborhoods. This could depend on the year of construction of the 
buildings; in this zone, most of the buildings were built after the year 

Table 8 
Hyperparameters of the RF model.  

Hyperparameter Description Value Tested 
range 

Number of 
estimators 

Number of trees in the forest 
algorithm 

400 200–2000 

Min samples split Min. number of data points placed in 
a node before the node is split 

3 2–6 

Min samples leaf Min. number of data points allowed 
in a leaf node 

4 1–4 

Max features Max. number of features considered 
to split a node 

sqrt auto, sqrt 

Max depth Max. number of levels in each 
decision tree 

85 10–160 

Bootstrap Method used to sample the data 
points 

True True/False  
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2000 and the envelopes and buildings have a lower thermal capacity. 
The annual heating and cooling demand, expressed in kWh/m2/y, 

for 543 residential buildings is indicated in Fig. 15 for the three sce-
narios. What emerged from Table 9 is confirmed. The energy use in 
buildings increases during partial and full lockdown conditions. In 
addition, it can be observed that older buildings consume more in winter 
and less in summer than buildings built in recent years. 

As can be seen in Fig. 15, the specific heat demand for buildings built 
before 1945 increases by 9.7 kWh/m2/y (+7%) during S2 and by 16.9 
kWh/m2/y (+12%) during S3 (compared to S1). The increase is greater 
for new buildings (built after 2000) than for old ones (older buildings 
consume more and the energy demand increase is less noticeable). The 
heat demand increases by 8.1 kWh/m2/y (+11%) and 12.2 kWh/m2/y 
(+17%) during S2 and S3, respectively. 

In the cooling season, the energy demand is higher for new buildings 
due to the thermal properties of the materials, which allow good thermal 
insulation with low inertia, but restrictive measures have a more 

significant impact on old buildings. The specific cooling demand for 
buildings built before 1945 goes from 6.6 kWh/m2/y (S1) to 8.1 kWh/ 
m2/y during a partial lockdown, and to 9.4 kWh/m2/y (S3), which is 
42% more than the initial consumption. The consumption in buildings 
built after 2000 ranges from 21.7 kWh/m2/y (S1) to 23.1 kWh/m2/y 
(S2), and to 25.1 kWh/m2/y during a full lockdown. In this case, the 
cooling demand increases by 6% in S2 and by 16% in S3. These results 
indicate that the thermophysical properties of the building have a sig-
nificant impact, not only on the energy performance but also on to what 
extent the COVID-19 pandemic affects the final consumption. In addi-
tion, the impact of the pandemic on the heating/cooling demand is not 
as marked as could be expected from the electricity consumption. 

Figs. 16 shows an example of two buildings in NBH3 built in the same 
period (between 1961 and 1970) but with different shapes. One is a 
terrace house with an S/V of 0.34 m2/m3 (4 floors), and the other is a 
condominium with an S/V of 0.25 m2/m3 (10 floors). The annual energy 
demand is indicated for each scenario. The energy demand for cooling is 

Fig. 10. Decision tree: maximum depth of the three considered levels.  

Fig. 11. Results of energy simulations in the three neighborhoods: (a) comparison between the measured and simulated heating demand and (b) frequency dis-
tribution of MAPE. 
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significantly lower than that for heating. The compact building with a 
lower S/V (condominium) has lower consumption, and the impact of the 
COVID-19 pandemic is more significant in the terrace house. During the 
partial lockdown, the demand increases by 7–8% for heating and 
18–23% for cooling. An increase from partial to full lockdown is always 
noted but is less marked, 4–5% for heating and 5–9% for cooling. 

The hourly heating and cooling profiles for the three scenarios dur-
ing the coldest/hottest week are indicated in Fig. 17. These results refer 
to the same building described in Figs. 14 and 16a. 

As shown in Fig. 17, before the lockdown and during a partial 
lockdown, there are two peak demands during the 24 h, due to the 
changes in the indoor air temperature settings. The internal air tem-
perature of the building is constant during the day in the full lockdown 
conditions (S3); it is set at 22 ◦C in winter and 26 ◦C in summer. 

The energy intensity for heating is similar for the three scenarios. On 
weekdays, the daily demand for the three scenarios is 1121 kWh/day 
(S1), 1207 kWh/day (S2), and 1273 kWh/day (S3), while on the 
weekend, it is 1172 kWh/day (S1), 1217 kWh/day (S2) and 1290 kWh/ 
day (S3). The heat demand for the entire week increases by 6% under 
partial lockdown conditions and by 12% for full lockdown, compared to 

S1. 
The differences are more pronounced during the hottest week. The 

weekday consumption without any lockdown measures is 156 kWh/day; 
during the weekend, it is 237 kWh/day. The cooling demand becomes 
207 kWh/day (+33%) and 243 kWh/day (+2%) in the partial lockdown. 
With more restrictive measures (full lockdown), energy use reaches 245 
kWh/day and 271 kWh/day (S3). Considering the energy use of the 
week, the cooling demands for the three scenarios are 1326 kWh/week 
(S1), 1588 kWh/week (S2), and 1838 kWh/week (S3). 

The differences in the energy demand mainly depend on the occu-
pancy behavior and the external outdoor conditions. 

Fig. 18 shows the annual space heating demand, expressed in kWh/ 
m2/y at the building level, for the three scenarios. The results refer to a 
block of buildings located in NBH3, in which the GIS-based model is 
accurate with an average MAPE of 18%. In this block of buildings, the 
average heating demand of these 42 residential buildings is 99 kWh/m2/ 
y during S1, 108 kWh/m2/y during S2, and 114 kWh/m2/y during S3. 
Therefore, there is an increase of 15 kWh/m2/y from S1 to S3. 

All together, these results provide important insights into the impacts 
of the COVID-19 pandemic on the energy performance of residential 

Fig. 12. MAPE at a building level: (a) NBH1, (b) NBH2, and (c) NBH3.  

Fig. 13. GIS-based model, constant correction factor, and RF model: (a) comparison between the measured and simulated heating demand and (b) frequency 
distribution of MAPE. 
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buildings. The pandemic has caused an increase in the energy demand 
for heating and cooling. In the three analyzed neighborhoods, the energy 
use increased by 13% and 28% during the full lockdown for heating and 
cooling, respectively. The findings on the peak demand variation can be 
used to manage the energy system. In order to optimize the energy use of 
the entire system, it is fundamental to carry out these analyses at a 
neighborhood scale and not at a building level. 

4. Discussion 

During the COVID-19 pandemic, the lifestyle of individuals has 
changed drastically. Such changes have led to larger peak loads and 
higher average energy demand intensities in the residential sector. 

Literature shows contradictory impacts of the COVID-19 pandemic 
on the use of energy in residential buildings, mainly when the results are 
based on simulations. Several studies have shown that the total energy 
demand increases, whereas several other studies have shown a decrease. 

Fig. 14. Hourly profiles of the heating (in red) and cooling (in blue) energy demands of a terrace house built between 1961 and 1970. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 9 
Annual energy demand in the three neighborhoods for the three different scenarios.  

Neighborhood S1 - Annual demand (MWh/y) S2 - Annual demand (MWh/y) S3 - Annual demand (MWh/y) 
Heating Cooling Heating Cooling Heating Cooling 

1 2184 511 2406 (+10%) 550 (+7%) 2527 (+16%) 603 (+18%) 
2 54,684 3164 58,784 (+7%) 3773 (+19%) 61,453 (+12%) 4202 (+33%) 
3 19,156 2005 20,758 (+8%) 2302 (+15%) 21,773 (+14%) 2481 (+24%) 
Total 76,024 5681 81,948 (+8%) 6625 (+17%) 85,753 (+13%) 7286 (+28%) 

*The percentage increase in energy demand for the S1 scenario is indicated in brackets. 

Fig. 15. The annual (a) heating and (b) cooling demand (kWh/m2/y) of 543 residential buildings for the three considered scenarios.  
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These contradictory results are primarily due to a lack of input data, 
including information on the occupants’ behavior in residential build-
ings during the pandemic. Thus, we have developed a GIS-based simu-
lation and bias-corrected random forest method to quantify the impacts 
of the pandemic on the hourly energy demand for space heating and 
cooling in three residential neighborhoods. Detailed occupancy sce-
narios have been defined to improve the accuracy of the energy simu-
lation. Since the proposed methodology is based on a bottom-up GIS- 
based engineering model that includes a quick energy simulation pro-
cess, there is no need for computationally intensive models at the 
building scale. 

The results show to what extent the energy demand for heating and 
cooling has changed during the period of restrictive measures (i.e., 
partial and full lockdown). The impact of the pandemic on the energy 
use in residential buildings is influenced to a great extent by the occu-
pancy behavior and by the thermophysical properties of the buildings. 

An increase in energy demand of 15 kWh/m2/y for space heating and 3 
kWh/m2/y for space cooling was observed during the full lockdown 
scenario. This trend may have led to an increase in CO2 emissions and an 
increment in energy bills. 

The results provide important information that can be used for the 
evaluation of the energy trends in Switzerland. According to the Swiss 
Federal Office of Energy, the country’s electricity consumption in 2020 
decreased by 2.6% (Swiss Federal Office of Energy SFOE, 2020). In 
addition to the effects of the lockdown, the economic trend, the weather 
conditions, and the increase in energy efficiency led to a reduction in 
energy consumption (Swiss Federal Office of Energy SFOE, 2020). The 
GIS-based approach presented in this study can be used to evaluate 
thermal consumption, when all the different aspects that affect the en-
ergy performance of buildings are considered. It can also provide more 
reliable information on energy trends at the urban scale than other tools 
at the existing state of the art. Thus, this model could be used to mitigate 

Fig. 16. Annual heating and cooling demand (kWh/m2/y) of two residential buildings built in the 1961–1970 period for the three scenarios: (a) terrace house and (b) 
condominium. 

Fig. 17. Hourly heating and cooling demand (kWh) of a terrace house built between 1961 and 1970 for the three scenarios: (a) the coldest week and (b) the 
hottest week. 
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the energy effects of COVID-19 and other future pandemics in urban 
areas if used as a support decision-making tool. 

The GIS-based simulation method has been developed for the resi-
dential sector. However, the model could also be applied to other sec-
tors, such as offices, commercial, and industrial buildings, in the future. 
A limitation is related to the availability and accuracy of the input data. 
As in all energy simulation models, the accuracy of the results depends 
on the precision of the input data. The input data in this work includes 
the local climate conditions, the geometry of the buildings and the 
thermal properties, occupancy profiles, and morphological parameters. 
The thermal properties of the buildings are defined according to the year 
of construction. However, it is not known whether the considered 
buildings have undergone any energy renovation measures. It is also not 
feasible to update the input data as thermal capacities and thermal 
transmittances of the materials. This limitation could reduce the accu-
racy of the model (Mutani & Todeschi, 2021). To overcome this limi-
tation, a machine learning model was developed to improve the 
accuracy of the GIS-based engineering model. Starting from a limited 
dataset of about 550 buildings, a data-driven error correction was used 
to define the RF model. The precision of the GIS-based model does not 
depend on the urban thermal balance equations, but on the low accuracy 
of the input data. Therefore, the machine learning-based method has not 
been embedded in the GIS-based engineering model equations. The 
method has only been used to apply an a-posteriori, data-driven correc-
tion using the RF algorithm. 

The purpose of the present work has been to show that an ML-based 

method can be used to correct, at a large scale, the intrinsic biases and 
imprecision that the GIS-based model contains, provided there is a suf-
ficiently heterogeneous dataset for its training, thus making the simu-
lation of the heating demand even more realistic. When the RF model 
was applied, the average MAPE in the energy simulation, considering 
the pre-pandemic conditions, was reduced by 10%. The error-corrected 
random forests method can be applied at the national scale, in combi-
nation with the GIS-based model, to obtain more accurate results. 
Although the measured energy data used for model verification may be 
inaccurate in a few cases, the obtained results indicate that the error- 
corrected random forests model does not depend on the occupancy 
behavior variables. Fig. 19 depicts the relationship between the scale 
factor, that is, the ratio between the measured and simulated energy 
data and the occupancy behavior variables. There is no correlation be-
tween the mentioned variables. Therefore, the RF model can also be 
used to improve the results of the COVID-19 pandemic scenarios. 

5. Conclusion 

The purpose of the current study has been to quantify the impacts of 
the COVID-19 pandemic on the energy performance of urban neigh-
borhoods. A GIS-based simulation and a bias-corrected random forests 
method have been developed to quantify the impacts of the pandemic on 
the hourly energy demand in three residential neighborhoods. Detailed 
occupancy scenarios have been defined to take into account the 
behavior of the residents during the pandemic. Detailed occupancy 

Fig. 18. Annual space heating demand of a block of buildings in NBH3: (a) baseline; (b) partial lockdown; (c) full lockdown.  

Fig. 19. Relationship between the scale factor and: (a) internal gains; (b) the heat transfer coefficient resulting from ventilation.  
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behavior significantly improves the accuracy of energy simulations. The 
use of heat in residential buildings in the Canton of Geneva, Switzerland, 
was simulated by investigating three scenarios: pre-pandemic, partial 
lockdown, and full lockdown. 

The hourly energy demand for space heating and cooling was 
assessed for a large number of residential buildings. The analyzed 
buildings, which had different urban forms, were located in three 
neighborhoods and the energy data for the annual heating consumption 
of residential users from 1999 to 2010 were known. 

A dynamic "GIS-based engineering model" was used to simulate the 
energy data for the three scenarios. The accuracy of the model was 
improved by adopting a data-driven correction that was able to predict 
the ratio between the measured energy demand and the simulated 
heating demand. It has emerged that the GIS-based model tends to 
overestimate the energy data for buildings that have a higher heating 
demand than 150,000 kWh/year. Through the application of the data- 
driven error correction, which uses a random forest algorithm, it was 
possible to improve the precision of the energy simulations during the 
pre-pandemic conditions. 

The results regarding the energy simulations of the three scenarios 
indicate that the energy demand for the space heating and cooling of 
residential buildings tends to increase during lockdown conditions. In 
the energy simulations, the hours of operation of the energy system, the 
internal heat gains due to the presence and the activity of people in the 
buildings, and the heat losses due to window openings were adapted for 
the partial and full lockdown scenarios. During the partial lockdown, the 
space heating demand increased by 8% and the cooling demand by 17%. 
During full lockdown conditions, the energy demand increased by 13% 
and 28% for space heating and cooling, respectively (compared to the 
pre-pandemic conditions). However, these percentages differ for new 
and old buildings. 

This work provides some useful insights into the impacts of the 
COVID-19 pandemic on the use of heat in buildings. The method used for 
the energy assessment can be applied to other residential buildings, or to 
other neighborhoods, districts, and cities. The findings of this study have 
important implications on obtaining a better understanding of the en-
ergy performance of urban neighborhoods in the case of unexpected 
events, such as energy price fluctuations, disruptions of the energy 
supply, and any possible future pandemics. The scope of this work has 
been to help make cities more resilient during any future pandemics. 
Further research should be undertaken to explore the energy trend in 
other sectors (such as in the commercial, industrial and educational 
sectors) and to apply the proposed approach at a national scale. 
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