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Abstract—We present AnaCoNGA, an analytical co-design
methodology, which enables two genetic algorithms to evaluate
the fitness of design decisions on the layer-wise quantization
of a neural network and the allocation of hardware (HW)
resources. We embed a hardware architecture search (HAS)
algorithm into a quantization strategy search (QSS) algorithm
to evaluate the hardware design Pareto-front of each considered
quantization strategy. We harness the speed and flexibility of
analytical HW-modeling to enable parallel HW-CNN co-design.
With this approach, the QSS is focused on seeking high-accuracy
quantization strategies which are guaranteed to have efficient
hardware designs at the end of the search. Through AnaCoNGA,
we improve the accuracy by 2.88 p.p. with respect to a uniform
2-bit ResNet20 on CIFAR-10, and achieve a 35% and 37%
improvement in latency and DRAM accesses, while reducing
LUT and BRAM resources by 9% and 59% respectively, when
compared to a standard edge variant of the accelerator.

I. INTRODUCTION

Accelerating modern convolutional neural networks (CNNs)
for embedded applications presents challenges across multiple
domains. The constrained nature of embedded hardware places
tight budgets on memory and compute resources, while safety-
critical applications place minimum bounds on task-related
prediction accuracy. These hardware (HW) and software (SW)
constraints can lead to contrasting design targets.

An example of such a HW-SW co-design scenario is the
numerical quantization of CNNs and the HW design of a
bit-serial accelerator. Quantization is a standard approach to
reduce the bitwidth of operands and the complexity of the
arithmetic operations of a CNN [1]–[3]. The advantages of
quantization extend to simpler arithmetic HW, higher data
movement efficiency, lower energy requirements, and lower
latency. Moreover, CNNs have been shown to benefit from
layer-wise and datatype variable numerical precision [4]. To
extract the mentioned benefits of variable numerical precision,
a HW accelerator can employ bit-serial computation units [5].
Such an accelerator can have an array of spatially distributed
computation units and a distributed on-chip buffer to efficiently
provide the computation array with data.

For the CNN designer and the HW engineer to effectively
arrive at a solution that meets an application’s constraints,
a large and complex solution space must be explored. This
motivates the design of a lightweight, easily reconfigurable

HW-model, which can be used to evaluate design choices
in this complex space [6]–[8]. Harnessing the speed and
flexibility of such models can enable development of the
HW parallel to the CNN design phases without prohibitive
synthesis or cycle-accurate simulation bottlenecks.

In this paper, we embed HW architecture search (HAS)
into quantization strategy search (QSS), in a nested genetic
algorithm (GA) formulation. The main contributions of this
work can be summarized as follows:
• Formulating an analytical HW-model for the execution of

CNN workloads on a state-of-the-art bit-serial accelera-
tor [5], allowing fast exploration and evaluation of HW
performance and resource utilization, without the need
for costly synthesis or simulation.

• Compressing CNNs through layer-wise, datatype-wise
quantization strategy search (QSS) and automating the
design of a bit-serial accelerator through HW architecture
search (HAS), by formulating two multi-objective GAs,
circumventing the need for handcrafted reward functions.

• We insert the HAS loop into the QSS loop. For each
potential quantization strategy proposed by QSS, the HAS
loop efficiently evaluates a 4-D HW design Pareto-front.
After synthesis, the HW-CNN co-designed pair achieve a
35% and 37% reduction in latency and DRAM accesses,
while achieving 2.88 p.p. higher accuracy compared to a
2-bit ResNet20-CIFAR-10 executing on a standard edge
variant of the accelerator.

II. RELATED WORK

A. HW-aware CNN Design

The authors of HAQ [4] propose a reinforcement learning
(RL) exploration scheme to determine HW-aware, layer-wise
quantization levels for weights and activations of a CNN
model. The reward function is evaluated after executing the
inference of the quantized CNN on a fixed, pre-synthesized
FPGA design. AutoQ [9] is an incremental improvement
of [4], with the RL-agent exploring quantization levels
in a layer-wise manner for activations and channel-wise
for weights. Inference performance is estimated using a
model of a bit-serial accelerator. In APQ [10], a joint



model architecture-pruning-quantization search is proposed.
Pre-trained and pruned sub-networks are extracted from a
once-for-all network, mixed-precision quantization is applied
thereafter. An energy/latency look-up table is used to provide
the HW feedback during the search. The works in this section
are analogous to our standalone quantization strategy search
(QSS) loop, presented in Sec. III-C.

B. CNN-aware HW Design

AutoDNNchip [11] proposes a framework for automated
ASIC/FPGA design of a HW accelerator for a given perfor-
mance target and a specific CNN model. The design space is
explored with a performance model to select candidate HW
architectures, followed by a run-time simulation to optimize
their pipelines. MAGNet [12] is an accelerator generator for
CNNs based on a reconfigurable, tile-based spatial array. A
baseline accelerator is iteratively mapped and evaluated for
a target CNN and then tuned using Bayesian search. Both
[11] and [12] support mixed-precision computation, but do not
explore the layer-wise quantization search space. The works
which fall under this category resemble our HW architecture
search (HAS) optimization loop presented in Sec. III-D.

C. Joint HW-CNN Co-design

NHAS [13] aims to find an optimal quantized CNN ar-
chitecture using an evolutionary algorithm. An efficient HW
dimensioning for the compute array and on-chip memory is
searched to accelerate a pool of CNN workloads used as
a benchmark. After the HW is configured, the CNN search
space is explored. The HW evaluation follows a look-up table
approach due to the smaller quantization search space consid-
ered. This sequential approach of co-design can be enhanced
by including the HW design search within the CNN search
loop. Other works which target joint HW-CNN co-design are
[14] and [15], both of which include the HW’s performance in
the reward function of an RL-agent and iteratively tune both
the CNN and HW architectures. Fine HW-level details, such as
scheduling schemes and quantized execution, are not explored
in [14], as the optimization loop targets optimally partitioning
the CNN workload over a pool of FPGAs. In [15], layer-wise
quantization is not supported.

In this work, we propose a nested co-design approach
to perform HW design parallel to the quantization search,
leading to a tight coupling between the HW and CNN, without
iteratively or sequentially switching between the two domains.
The classification of the mentioned works is shown in Tab. I.

TABLE I
CLASSIFICATION OF HW-CNN OPTIMIZATION METHODS.

Classification HW Metrics CNN HW Design Parallel
Compression Co-design

QSS [4], [9], [10] 3 3 7 7

HAS [11], [12] 3 7 3 7

QSS+HAS [13]–[15] 3 3 3 7

AnaCoNGA 3
3

3
3(Nested) (Nested)

III. METHODOLOGY

In this section, we present three main components of this
work, (1) the analytical accelerator model, (2) the quantization
strategy search (QSS) algorithm, and (3) the hardware archi-
tecture search (HAS) algorithm, followed by AnaCoNGA.

A. Bit-Serial Accelerator Modeling for BISMO

Convolutional and fully-connected layers can be lowered
into a general matrix multiplication (GEMM) by representing
the weight tensor W l and activation tensor Al−1 of layer l as
2-D matrices MatW and MatA (Eq. (1)). The dimensions m
and n represent the rows and columns of each matrix.

MatW ∈ RmW×nW , MatA ∈ RmA×nA

Al = Conv(W l, Al−1) = MatW × MatA
(1)

Note that transposing both matrices and switching their
order would also produce the convolution result. Therefore,
we will refer to the matrix positions instead of the datatype
for the remainder of the text. LHS is the left-hand side matrix,
while RHS is the right-hand side. For readability, m rows and n
columns will appear as subscripts of the corresponding matrix
when referring to its dimensions, e.g., LHSn is the number of
columns of the left-hand side matrix.

The BISMO accelerator [5], abstracted in Fig. 1, is com-
posed of a Dm × Dn array of processing elements (PEs).
Each PE is responsible for the dot-product of one row of
the LHS against one column of the RHS. Due to the bit-serial
decomposition of the GEMM operation, the same row and
column must be computed as many times as the bitwidths
of its operands necessitate. This decomposition is elaborated
in [5]. Typically, the Dm×Dn is much smaller than the layer’s
LHSm × RHSn. The computation must be broken down into
smaller Dm×Dn sized tiles. Furthermore, each PE can perform
Dk binary dot-products in parallel, whereby the row-column
dot-product is computed in tiles of Dk, if the inner product
of LHS and RHS is greater than Dk. To maintain structured
parallelism across the computation array, the LHS and RHS

matrices are padded to obtain matrices that are divisible by
the dimensions of the array. With the padded matrices, the
number of tiles necessary to complete the computation can be
expressed in Eq. (2).

Tm = Padded LHSm/Dm, Tn = Padded RHSn/Dn,

Tk = Padded LHSn/Dk
(2)

Knowing the size of the padded matrices and the number
of tiles necessary to complete the GEMM operation, the size
of each tile can be computed in bytes according to Eq. (3),
where LHSbits is the numerical precision of the LHS elements.

LHS Tbytes =
Padded LHSm · Padded LHSn · LHSbits

Tm · 8
(3)

DRAM requests relating to the LHS depend on both Tm and
Tn, whereas RHS elements are only requested Tn times (see
Eq. (4)). This is a function of BISMO’s standard scheduler



Fig. 1. High-level abstraction of a bit-serial accelerator [5]: The dimensions
Dm, Dn, Dk determine the tiling degree of matricies RHS and LHS.

maintaining reuse of the RHS matrix. Since each Tm of the
LHS must be computed against all tiles Tn of the RHS, the
scheduler keeps the RHS tiles on chip until they have been
used exhaustively. When a new tile of RHS is loaded, all Tm
tiles of the LHS must be called again to be computed with it.

DRAMLHS = Tm · Tn · LHS Tbytes, DRAMRHS = Tn · RHS Tbytes

DRAMResult = LHSm · RHSn · 4, 32-bit write-back
DRAMTotal = DRAMLHS + DRAMRHS + DRAMResult

(4)
Finally, looking at the cycles spent for computation, each

bit of each tile of each matrix must be computed against
the bits from the other matrix. Additional cycles are spent
as part of the pipeline for each bit combination on each
Tm computed against Tn. The BISMO accelerator overlaps
data transfers with computation, resulting in Eq. (5) being
sufficiently accurate for design space exploration.

Compute Cycles = (Tm · Tn · Tk · LHSbits · RHSbits)+

Tm · Tn · (8 · (LHSbits · RHSbits + 1) + 3) + 2 · Tn (5)

With this analysis, we are able to evaluate workload execution
metrics with respect to HW parameters such as compute array
dimensions Dm, Dn, Dk, as well as on-chip buffer sizes for LHS
and RHS without having to synthesize the HW each time. We
use the analytical model introduced in this section to perform
fast exploration and design of the HW as an example. It
is important to note that AnaCoNGA is not limited to this
HW analytical model; the optimization loops introduced in
the next sections can potentially be used to harness the speed
and flexibility of more advanced fast analytical HW models in
literature, such as CoSA [6], GAMMA [8], or Timeloop [7].

B. Model Validation & Real HW Measurements

To validate the proposed analytical HW model, we syn-
thesize three differently dimensioned BISMO accelerators,
detailed in Tab. II. HW1 and HW3 represent small and
large accelerators, while HW2 has an asymmetric processing
element array. We run small and large GEMM operations on
all three accelerators by executing all the convolutional and
fully-connected layers of ResNet20 for CIFAR-10 (small) and
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(c) ResNet18-ImageNet 4-bit

Fig. 2. Validation of the HW-model vs. real HW measurements for compute
cycles and DRAM accesses on three BISMO configurations (HW1-3).

ResNet18 for ImageNet (large), with 4-bits for weights and
activations. In Fig. 2, we present the results of our HW-model’s
accuracy and fidelity compared to real, synthesized HW, for
estimating compute cycles and DRAM accesses. The high
accuracy and correlation of the measured and estimated values
make the model well-suited for design space exploration. We
note that this HW-model is used for exploration, however all
the results reported in the final Tab. III are on real, synthesized
HW, after AnaCoNGA concludes its co-design search.

TABLE II
HARDWARE CONFIGURATIONS USED FOR MODEL VALIDATION.

Config Dm × Dn Dk LHS Buffer RHS Buffer

HW1 4× 4 128 128KB 128KB
HW2 4× 8 256 128KB 256KB
HW3 8× 8 256 256KB 256KB

C. Genetic Quantization Strategy Search (QSS)

The quantization search space for a CNN has a size of Q2L,
where Q is the set of possible quantization levels for weights
and activations, and L is the number of layers in the neural
network. It is important to note that quantization strategy
search (QSS) can be applied to any quantization technique
(DoReFa [1], PACT [2], or others), as it only tries to find the
best bitwidths for each layer and datatype. A multi-objective
GA (MOGA) is used to tackle the multi-criteria optimization
problem of maximizing accuracy and minimizing HW-related
costs. No HW design takes place in this search.

An initial population P0 is randomly generated, with each
genome encoding a quantization strategy, i.e., a quantization
tuple (W l

bits , Al−1
bits ) for each layer of the CNN (explicit,

bijective encoding). The genomes of P are briefly fine-tuned
and evaluated based on their task accuracy on a validation
set. When using standalone QSS, the GA must additionally
consider the fitness of the quantized CNNs on HW estimates
(DRAM accesses and computation cycles). Based on the three
fitness metrics, we identify the Pareto optimality of each
individual with respect to the population P . The population
goes through phases of selection, crossover and mutation for
the subsequent generations, producing Pareto-optimal CNN
quantization strategies.

D. Genetic Hardware Architecture Search (HAS)

We formulate a second GA that allocates and optimally
dimensions the HW. Each individual’s genome captures



Fig. 3. AnaCoNGA: Each individual from QSS executes its own HAS
MOGA. Any QSS individual can prove itself efficient on its own HW design
to get a chance for its accuracy to be evaluated. QSS is relieved from
optimizing HW and is transformed to a SOGA (i.e. accuracy focused).

HW design decisions, namely Dm, Dn, Dk, LHS Depth, and
RHS Depth at each genetic locus. The fitness criteria of this
GA are the HW design’s execution performance (compute
cycles and DRAM accesses) of a predetermined quantized
CNN, as well as the amount of FPGA resources (BRAMs and
LUTs) it requires for its allocation. To estimate the FPGA
resource utilization of a genome, we use the model proposed
by Umuroglu et al. [5]. For performance criteria, the model
presented in Sec. III-A is used. NSGA-II is applied to this
4-dimensional solution space as it can return a multitude
of Pareto-optimal solutions for the designer to choose from.
Complex formulation of a reward function is not necessary in
the MOGA, relieving the burden of balancing the 4 criteria in
a single, handcrafted reward value.

E. AnaCoNGA: Nested HW-CNN Co-design

The QSS and HAS loops present a causality dilemma:
what comes first, the optimized HW or the CNN quantization
strategy? In Sec. II, we mention existing methods which
tackle this challenge sequentially or iteratively. To perform
true co-design, both HW and CNN need to be jointly and
concurrently considered.

One approach is to combine HAS genomes with QSS
genomes into one GA. However, this would result in a
prohibitively complex, large search space (4.77 × 1037 for
ResNet20 on the considered bit-serial accelerator), with many
direct and indirect relationships between the HW and quantiza-
tion parameters. This noisy search space would be challenging
for the genetic algorithm, even with well-encoded genomes
and genetic operators. The complex joint search space would
also necessitate larger populations and generations for the GA,
leading to excessive GPU hours. Another approach could be
to iterate between the search spaces, similar to [13]–[15]. An

iterative approach brings us to the same dilemma, since the
HW was initially biased for a different quantization strategy,
and a newly found HW-CNN combination is sub-optimal
with respect to another combination, which had a different
quantization strategy prior.

To tackle this challenge, we nest two genetic algorithms,
as shown in Fig. 3. On the one hand, the HAS GA requires
roughly ∼1.5 minutes to execute for 200 generations and 200
HW genomes and can be parallelized. This is due to the
fast analytical HW-model in Sec. III-A, and the LUT/BRAM
utilization models proposed in [5]. On the other hand, the
QSS genetic algorithm requires some epochs of fine-tuning to
evaluate the accuracy of a potential quantization genome. This
can be a costly fitness evaluation process for larger networks
and datasets. When nesting the HAS GA into the QSS GA,
we can exploit the speed of the HAS loop to evaluate the HW
design Pareto-front for each considered quantization genome
(parallel HAS blocks in Fig. 3). In each HAS experiment, a 4-
D Pareto-front of HW designs is generated for the respective
quantization genome. The solutions in the 4-D HW Pareto-
front are checked to see if any of them meet our target HW
constraints. If no solution in the HAS Pareto-front satisfies our
HW requirements, then the QSS receives a signal to remove
the genome’s fine-tuning step and assign it a null accuracy,
without wasting any GPU training time (feedback line from
HAS to QSS in Fig. 3). With this approach, the QSS is relieved
from optimizing HW metrics and can now be reformulated into
a single-objective genetic algorithm (SOGA), which is solely
focused on improving the accuracy of the quantized CNNs.
The QSS essentially allows each quantization genome
to evaluate its own HW design space before accepting
them into the population. Therefore, two radically different
QSS genomes could meet the target HW constraints (DRAM,
computation cycles, BRAM and LUTs) by finding themselves
specialized HW designs in their respective HAS explorations.
This way, the HW design remains flexible (undefined) on the
scale of the overall experiment, but is guaranteed to exist for
any genome which is eventually chosen by the QSS at the end
of the search. AnaCoNGA’s design loops enable the use of
analytical HW-models such as [6]–[8], harnessing their speed
and flexibility to achieve parallel HW-CNN co-design.

IV. EXPERIMENTS

A. Experimental Setup

AnaCoNGA is evaluated on CIFAR-10, CIFAR-100, and
ImageNet datasets. The 50K train and 10K test images of
CIFAR-10 and CIFAR-100 are used to train and evaluate
the quantization strategies. ImageNet consists of ∼1.28M
train and 50K validation images. After an ablation study,
we set the population size and number of generations to 50
for QSS GAs on ResNet20. Probabilities for mutation and
crossover are set to 0.5 and 1.0, respectively. For ResNet56, we
reduce the running population size |P| to 25. For ResNet18-
ImageNet experiments, |P| is set to 25 and the number of
generations is reduced to 25. The CNNs trained on CIFAR-
10 are fine-tuned for 3 epochs and evaluated on 10K random



samples during the search. For ImageNet, we fine-tune for 1.5
epochs before evaluating on the valid-set. The quantization
method for ResNet20 experiments is DoReFa [1], while deeper
(ResNet56) and higher resolution (ResNet18) experiments use
the PACT method [2]. Results denoted with (2,4-bit) indicate
2-bit weights and 4-bit activations. For comparison, binarized
variants are trained using the XNOR-Net method [3].

We use the Xilinx Z7020 SoC on the PYNQ-Z1 board as
the target platform for all HW experiments in Tab. III and
Fig. 6, with all designs synthesized at 200MHz target clock
frequency. For HAS experiments, we set both the population
size and generations to 200, since no significant improvement
was observed for larger experiments. Mutation and crossover
probabilities are set to 0.4 and 1, respectively. In Tab. III,
AnaCoNGA’s nested HAS GA uses the respective (2,4-bit)
configuration’s HW performance as its HW constraint.

B. The Quantization Strategy Search (QSS) Loop

To evaluate the standalone QSS space, we fix the accelerator
dimensions to measure the HW fitness metrics of each poten-
tial solution considered by the GA. We choose the HW3 con-
figuration in Tab. II, as it is one of the BISMO configurations
proposed in [5] and used as the standard CNN edge accelerator
in [4]. Fig. 5 shows 2-D projections of the 3-D search space
of the QSS loop compressing ResNet20 for the CIFAR-10
dataset. To visualize the progress of the algorithm, we plot old-
generation Pareto-fronts in grayscale (darker points indicate
newer generation Pareto-fronts), while red points belong to the
final Pareto-front. The projections reveal a loose correlation
between DRAM accesses and compute cycles, as well as
a convex Pareto-front between prediction accuracy and HW
efficiency. From this Pareto-front of quantization strategies,
a solution can be chosen to fit the needs of the application.
In Tab. III, we detail the results of standalone QSS solutions
chosen for ResNet20, and the more difficult search problem
of ResNet56 quantization, which has a larger quantization
search space (recall QSS space = Q2L), for both CIFAR-10
and CIFAR-100. The results show standalone QSS producing
non-dominated strategies with respect to uniform quantization,
on the standard BISMO design (HW3).

C. The Hardware Architecture Search (HAS) Loop

To evaluate the standalone HAS loop, we execute the HW
search for uniform 8-bit and 4-bit variants of ResNet20. Fig. 4
shows 2-D projections of the final 4-D Pareto-fronts achieved
by HAS, optimizing for computation latency, DRAM accesses,
and BRAM and LUT utilization. We notice a clear shift in the
HW design space when the quantization strategy changes, even
for the tested uniform strategies. Another observation is that
the shift is not only due to the more efficient execution metrics
of 4-bit vs. 8-bit, but also due to new legal scheduling options
on differently dimensioned accelerators. This can be seen in
the non-overlapping red and blue markers of the BRAM vs.
LUTs 2-D projection plot, indicating different HW dimensions
being optimal for the 4-bit and 8-bit CNNs, while respecting
the resource limitations of the Z7020 FPGA.

We present further HAS results in Tab. III, applied to the
strategies found in the QSS experiments of the previous section
(denoted as QSS+HAS). From the resulting Pareto-fronts, we
synthesize candidates with the lowest execution and DRAM
access cycles, without exceeding the resource utilization of the
standard BISMO choice from Tab. II. We note that the GA
finds non-trivial asymmetric HW configurations (Dm 6= Dn),
which exploit the position of the tensors W l and Al−1 into
either LHS or RHS matrices. The asymmetric HW allows the
scheduler to swap the position of weights and activations in the
middle of the CNN execution, to maintain high computation
efficiency and low DRAM accesses, by reusing the datatype
placed in the RHS matrix of the computation. This naturally
reduces the LUT and BRAM requirements of the design.
In Tab. III, the real HW measurements of sequential co-
design (QSS+HAS) show a clear advantage to all standalone
QSS CNNs, dramatically lowering their DRAM accesses and
latency below or equivalent to a 1-bit strategy executing on
standard BISMO dimensions from [4], with less LUT and
BRAM required for the design.

D. Analysis of AnaCoNGA Co-Designed Solutions

In Tab. III, we show the results of all the considered
networks, datasets, and search combinations executed on syn-
thesized hardware. We pair the uniform bitwidth CNNs with
the handcrafted edge BISMO variant used in [4]. We notice
an improvement in task-related accuracy for all AnaCoNGA
solutions over sequential co-design (QSS+HAS). This can be
attributed to the accuracy-focused SOGA implemented in the
QSS of AnaCoNGA, which leaves the HW architecture search
to be handled by the nested HAS MOGA (recall Fig. 3).
Furthermore, the nested HAS allows more diverse, high-
accuracy quantization individuals to survive through QSS, as
each QSS individual can find their own HW design to meet
the application constraints.

The latency and DRAM accesses of AnaCoNGA and
QSS+HAS variants are comparable to or better than a single-
bit network executing on the handcrafted accelerator. All
AnaCoNGA-based HW designs are smaller (fewer peak bi-
nary TOPS) than HW3, but achieve better performance due
to their tightly-coupled dimensioning, which improves their
compute efficiency. To better understand the AnaCoNGA HW
performance, we split the total execution time and measure
the cycles related to compute, as well as the non-overlapping
cycles spent on other parts of the pipeline (stall cycles).
We present this data in Fig. 6. Although the HAS genetic
algorithm is not aware of pipeline stalls, it optimizes for
minimal compute cycles and lower DRAM accesses, where,
particularly the latter, is correlated with lower pipeline stalls.
HW designs with these traits naturally bring down stall cycles,
leading to higher compute and memory access overlap. For
Fig. 6-a, the AnaCoNGA solution indeed has higher compute
cycles than 1-bit due to its higher bitwidths, which results
in a higher accuracy CNN. However, the DRAM accesses
are well-optimized resulting in fewer stall cycles, ultimately
bringing the total latency of the execution below 1-bit on
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Fig. 4. HAS: 2-D projections of a 4-D Pareto-front in a multi-objective search space. The GA optimizes for HW resources (LUTs, BRAMs) and performance
metrics (DRAM accesses, execution cycles) for ResNet20.
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Compute cycles and DRAM accesses are normalized to an 8-bit execution on
HW3. Reward Acc. is before fine-tuning.

TABLE III
EXPERIMENTS ON CIFAR-10, CIFAR-100 AND IMAGENET DATASETS,
WITH RESNET20, RESNET56 AND RESNET18 WORKLOADS. UNIFORM

AND STANDALONE QSS ARE EXECUTED ON A STANDARD EDGE VARIANT
(HW3) USED IN [4]. LATENCY AND DRAM ARE MEASURED ON HW.

Model Work Acc LUT BRAM Latency DRAM
[%] Util Blocks K. Cycles Acc. MB

R
es

N
et

20
C

IF
A

R
-1

0

XNOR (1-bit) [3] 83.98

32639 135

501 2.26
DoReFa (2-bit) [1] 87.16 659 3.29

DoReFa (2,4-bit) [1] 88.98 817 4.43
DoReFa (4-bit) [1] 89.75 944 5.35
QSS (standalone) 89.44 798 4.17

QSS+HAS 89.44 29687 55 422 1.99
AnaCoNGA 90.04 29671 55 428 2.08

R
es

N
et

56
C

IF
A

R
-1

0

XNOR (1-bit) [3] 85.61

32639 135

1212 5.73
PACT (2-bit) [2] 90.28 1710 8.93

PACT (2,4-bit) [2] 92.97 2172 12.41
PACT (4-bit) [2] 93.27 2585 15.37
QSS (standalone) 91.89 2120 11.98

QSS+HAS 91.89 29643 79 1242 5.44
AnaCoNGA 92.31 29638 79 1315 5.83

R
es

N
et

56
C

IF
A

R
-1

00

XNOR (1-bit) [3] 57.70

32639 135

1212 5.73
PACT (2-bit) [2] 64.66 1710 8.93

PACT (2,4-bit) [2] 70.91 2172 12.41
PACT (4-bit) [2] 71.65 2585 15.37
QSS (standalone) 69.52 2054 11.60

QSS+HAS 69.52 29638 79 1240 5.45
AnaCoNGA 70.68 29643 79 1420 6.23

R
es

N
et

18
Im

ag
eN

et

XNOR (1-bit) [3] 52.51

32639 135

14090 64.93
PACT (2-bit) [2] 60.36 17932 95.23

PACT (2,4-bit) [2] 61.94 18596 102.07
PACT (4-bit) [2] 65.40 25609 155.85

AnaCoNGA 63.94 28035 123 14250 83.07

a handcrafted BISMO design, while maintaining task-related
accuracy higher than a uniform 4-bit solution. Similar trends
can be observed in Fig. 6 for ResNet56 and ResNet18 as
well, achieving lower execution metrics than 2-bit CNNs and
maintaining high task-related accuracies.

V. CONCLUSION

We presented an analytical model for a state-of-the-art bit-
serial accelerator [5] to circumvent the alternatives of co-
design, which resort to synthesis or cycle-accurate simulations.

80

86

92

A
cc

ur
ac

y
(%

)

1-bit 2-bit 2-4-bit 4-bit AnaCoNGA
0

0.2
0.4
0.6
0.8

1

Overlap
Compute

High

C
yc

le
s

[1
0
3

]

Compute Cycles Stall Cycles

0
1.2
2.4
3.6
4.8
6

D
R

A
M

A
cc.[M

B
]

DRAM Transfers Accuracy

(a) ResNet20-CIFAR-10

50

62

74

A
cc

ur
ac

y
(%

)

1-bit 2-bit 2-4-bit 4-bit AnaCoNGA
0

0.5
1

1.5
2

2.5
3

OverlapComputeHigh

C
yc

le
s

[1
0
6

]

0
3
6
9
12
15
18

D
R

A
M

A
cc.[M

B
]

(b) ResNet56-CIFAR-100
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Fig. 6. Breakdown of execution on real, synthesized HW. AnaCoNGA
reduces latency and DRAM accesses while maintaining high accuracy.

We formulate the co-design problem as two GAs, QSS and
HAS, combined in a novel nested framework to eliminate the
need for handcrafted reward functions or iterative switching
between the HW and CNN domains. With AnaCoNGA, we
improve the accuracy of ResNet20-CIFAR-10 by 2.88 p.p.
compared to a uniform 2-bit CNN, and achieve a 35% and 37%
improvement in latency and DRAM accesses, while reducing
LUT and BRAM resources by 9% and 59% respectively, when
compared to an edge variant of the accelerator.
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