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Age class structure in SIRD models for the COVID-19
– An analysis of Tennessee data

Giuseppe C. Calafiore and Giulia Fracastoro

Abstract— The COVID-19 pandemic is bringing disruptive
effects on the healthcare system, economy and social life of
countries all over the world. Even though the elder portion
of the population is the most severely affected by the coron-
avirus disease, the counter-measures introduced so far by the
governments do not take into account age structure, and the
restrictions act uniformly on the population irrespectively of
age. In this paper, we introduce a SIRD model with age classes
for studying the impact on the epidemic evolution of lockdown
policies applied heterogeneously on the different age groups of
the population. The proposed model is then applied to COVID-
19 data from the state of Tennessee. The simulation results
suggest that a selective lockdown, while having a lighter socio-
economic impact, may bring benefits in terms of reduction of
the mortality rate that are comparable to the ones obtained by
a uniform lockdown.

I. INTRODUCTION

Governments across the globe are struggling to face the
global COVID-19 pandemic, enacting rules aimed at limiting
the spread of the contagion and at safeguarding the capacity
of the healthcare systems, ultimately protecting the popula-
tion from the most adverse outcomes of the disease. To date
(January 2021) the coronavirus disease has produced a total
of about 95 million cases worldwide, and 2 million deaths
[1]. The United States have been one of the most severely
hit countries, with a total of over 24 million cases and 4
hundred thousand deaths to date [2]. The counter-measures
enforced for controlling the contagion have been of diverse
intensity in different countries, ranging from bland (e.g.,
in Sweden) to medium (e.g., USA) and strong (e.g., Italy
and China) [3], [4], [5]. In all cases, the control measures
included bans of various degree in personal mobility and
travel, closures of commercial activities, bars, shops and
restaurants, interdiction of gathering in public places such as
parks and beaches, closure of schools and, in extreme cases,
the shut down of industrial activities. One common aspect
of these restrictions, however, was that they acted over the
population irrespective of age. This somehow contrasts with
the fact that the effects of the coronavirus disease appear
to have increasing severity with the age of the infected
individuals, the elderly unfortunately accounting for a large
portion of the fatal cases [6], [7], [8]. Figure 1, for instance,
shows the percent mortality from the coronavirus disease in
the USA in function of the age class of the population: the
mortality of the elder class of individuals aged 85 or more
is 300 times higher than that of individuals in the 25–34
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Fig. 1. Mortality of the coronavirus disease in USA per age class.
Based on COVID-19 data from https://data.cdc.gov/NCHS/
Provisional-COVID-19-Death-Counts-by-Sex-Age-and-S/
9bhg-hcku, updated Dec. 9, 2020, and on demographics data
from https://www.statista.com/statistics/241488/
population-of-the-us-by-sex-and-age.

years range. This heterogeneity in the age distribution of
mortality has been observed also in other countries, with
similar trends [9], [10]. Clearly, in principle, heterogeneity
in the mortality distribution can be attributed to (i) the age
dependency in susceptibility to the infection and/or to (ii)
the age dependency of the severity of the symptoms and
outcome of the disease. A recent study [11] on COVID-
19 cases in Italy, Japan and Spain, however, indicates that
the contribution of age-dependency to susceptibility is not
supported by existing data, while the age-dependencies of
the mortality rate seems to determine the age distribution in
mortality from COVID-19.

The situation in most countries is thus such that on the
one hand the part of the population of schooling age and of
working age is the most strongly impacted by the govern-
ments’ restrictions and, on the other hand, the same portion
of the population is the least affected by the infection, at
least in terms of mortality. The importance of the population
age structure in determining the pandemic’s progression and
impact has been well recognized by researchers, see, e.g.,
[6]. Indeed, demographic science shows how the effects
of the pandemic can be dramatically different in popula-
tions with similar sizes but different age structures. Despite
this evidence, however, governments have so far neglected
age structure in the definition of their policies against the
pandemic. Even data on case and fatality disaggregated
by age is scarcely available to researchers, and calls for
countries to provide this data have been repeatedly made,
see, e.g., [6], [12]. Also, in a quite debated and controversial
declaration [13], a group of renowned scientists claimed
that current lockdown policies are producing devastating
effects on short and long-term public health and, recognizing
that vulnerability to death from COVID-19 is very different
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in young-aged subjects than it is in the elder, proposed a
“focused protection” approach, whose philosophy would be
“to allow those who are at minimal risk of death to live their
lives normally to build up immunity to the virus through
natural infection, while better protecting those who are at
highest risk.”

In this paper we explore via an analytical model the effects
on the contagion evolution of control policies that act het-
erogeneously on the different age groups of the population.
First, we propose a modified SIRD model with age classes
for describing the mean-field time evolution of the number
of susceptible, infected, recovered and deceased individuals
in each of the considered age groups. Then, we pose this
model in a suitable regression form which is amenable to
an efficient numerical scheme for the identification of the
key model parameters from real observed data. This model
is trained on COVID-19 data from the state of Tennessee,
covering the period from July 27th to December 16th. This
choice was dictated by the fact that, to the best of our
efforts, this was the only country for which the required
age-class data was publicly available. The considered data
period covers the early stages of the contagion [14]. We used
the parameters estimated for this model to project forward
in time the evolution of the contagion, assuming for this
simulation that no further lockdown measures are taken. This
simulation constitutes the reference baseline for evaluating
the effects of control measures. Control policies are next
introduced in the model, in the form of decreasing time
profiles of the transmission rate parameters of the age classes.
Uniform lockdown policies are simulated by decreasing in
the same way the transmission rates of all age classes, while
selective lockdown policies are simulated by decreasing only
the transmission rates of certain age classes.

The results of these numerical experiments, described in
Section V, suggest that a selective lockdown applied only on
the older portion of the population can significantly reduce
the spread of the epidemic, nearly halving the number of
deaths compared to a scenario where no lockdown policies
are applied. Moreover, the results show that the effects of a
selective lockdown on the mortality rate are similar to the
ones obtained with a uniform lockdown, even though the
latter one has a much stronger impact on the economy.

II. A MODIFIED SIRD MODEL WITH AGE CLASSES

We consider a geographical region, assumed as isolated
from other regions, and within such region we let the
population be divided in K non-overlapping age classes.
For each class i, i = 1, . . . ,K, we define the following
quantities:
• Si(t): the number of individuals in the ith class suscep-

tible of contracting the infection at day t;
• Ii(t): the number of individuals in the ith class that are

alive and infected at day t;
• Ri(t): the cumulative number of individuals in the ith

class that recovered from the disease up to day t;
• Di(t): the cumulative number of individuals in the ith

class that are deceased due to the disease, up to day t.

The following assumptions underpin the model we develop:
(a) individuals do not change age class as t evolves, that is
the age class is assigned at time t = 0 and then remains
fixed for the time range of our study; (b) the region under
consideration is assumed to be isolated from other regions,
so that the total population remains constant in size; (c) the
recovered subjects are no longer susceptible of infection, at
least within the time range of our study; (d) deaths due to
other reasons (different from the disease under consideration)
are neglected. We let

C(t)
.
= S(t) + I(t) +R(t)

denote the total number of circulating individuals in the
population, being

S(t)
.
=

K∑
i=1

Si(t), I(t)
.
=

K∑
i=1

Ii(t), R(t)
.
=

K∑
i=1

Ri(t).

The ratio Si(t)/C(t) represents the fraction of susceptible
individuals of class i in the circulating population. The
probability of encountering a susceptible individual of class i
can thus be assumed to be proportional to Si(t)/C(t), with a
proportionality factor ci(t) that represents the level of social
activity of individuals in the ith class. An infected individual
(of any class) thus has a probability ci(t)Si(t)/C(t) of
entering into contact with a susceptible individual of class
i, and once such contact takes place, there is a probability
υ that it results in a contagion, where υ is the probability
of infection transmission of the virus. Overall, the average
number of new daily contagions in class i generated by one
infected individual is υci(t)Si(t)/C(t). Consequently, the
average total number of new contagions in class i generated
collectively by all the infected individuals during day t is

δi(t)
.
= I(t)βi(t)

Si(t)

C(t)
,

where we defined the transmission rate parameter for the ith
class as βi(t)

.
= υci(t). Further, during day t a fraction γi(t)

of the infected individuals in class i recovers, and a fraction
νi(t) of them dies from the disease. The above setup leads
to the formulation of the following discrete-time dynamic
equations for the evolution of the contagion: for i = 1, . . . ,K
and t = 0, 1, . . .,

Si(t+1)=Si(t)− βi(t)I(t)
Si(t)

C(t)
(1)

Ii(t+1)=Ii(t)+βi(t)I(t)
Si(t)

C(t)
−γi(t)Ii(t)−νi(t)Ii(t)(2)

Ri(t+1)=Ri(t) + γi(t)Ii(t) (3)
Di(t+1)=Di(t) + νi(t)Ii(t). (4)

The model is initialized at some conventional t = 0 with
values Si(0) > 0, Ii(0) > 0, Ri(0) ≥ 0, and Di(0) = 0, for
i = 1, . . . ,K. Notice that it holds for all i = 1, . . . ,K that

Si(t+ 1) + Ii(t+ 1) +Ri(t+ 1) +Di(t+ 1)

= Si(t) + Ii(t) +Ri(t) +Di(t) = Ni, ∀t,



where Ni = Si(0)+Ii(0)+Ri(0)+Di(0) is the initial total
population for the ith class. The ith class population Ni is
assumed to be a fixed fraction αi of the total population N
exposed to the contagion. The fractions αi, i = 1, . . . ,K,
are obtained from demographic data. The total exposed
population N is in turn assumed to be only a portion of
the actual population Pop of the region of interest. Denoting
by ω ∈ [0, 1] the (unknown) coefficient of proportionality in
N = ωPop, we have that

Si(t)+Ii(t)+Ri(t)+Di(t) = Ni = αiN = αiωPop, ∀t ≥ 0,

where αi is given, while ω is one of the model parameters
to be estimated from the observed data. The last equation is
used in the identification phase for obtaining the number of
susceptible individuals in the ith class, since this number is
not directly measurable otherwise:

Si(t) = αiωPop− Ii(t)−Ri(t)−Di(t). (5)

III. MODEL IDENTIFICATION

We first consider a constant-parameter version of the
model; the time varying extension is then discussed in
Section III-B.

A. Regression model with constant parameters
If βj(t) = βj , γj(t) = γj , and νj(t) = νj for all t and

all j = 1, . . . ,K, the model (1)–(4) can be rewritten in the
following regression form, for i = 1, . . . ,K and t = 0, 1, . . .

∆i(t+ 1) = Φi(t, ω)θ, (6)

where

Φi(t, ω)
.
=


−Si(t)

C(t) I(t)e
>
i 0>K 0>K

Si(t)
C(t) I(t)e

>
i −Ii(t)e>i −Ii(t)e>i

0>K Ii(t)e
>
i 0>K

0>K 0>K Ii(t)e
>
i

 ,
θ
.
=
[
β γ ν

]>
,

0K is a vector of zeros of dimension K, ei is a vector of
dimension K with a one in position i and zeros elsewhere,
β>

.
= [β1 · · · βK ], γ> .

= [γ1 · · · γK ], ν> .
= [ν1 · · · νK ],

and

∆i(t+ 1)
.
=


Si(t+ 1)− Si(t)
Ii(t+ 1)− Ii(t)
Ri(t+ 1)−Ri(t)
Di(t+ 1)−Di(t)

 .
Our objective is to identify the model parameters ω ∈ [0, 1]
and θ ≥ 0 on the basis of observed data. For a given
time horizon T > 0, the observed data at t = 0, 1, . . . , T ,
are Ii(t), Ri(t), Di(t) for each class i = 1, . . . ,K. From
these data, and for given ω, we construct Si(t) according to
(5). Notice that the transition matrix Φi(t, ω) depends on ω
nonlinearly, through the dependence of Si(t) on ω.

We next define a quadratic cost with forgetting factor w ∈
(0, 1]

f(ω,θ)
.
=

1

T

T−1∑
t=0

wT−t
K∑
i=1

‖∆i(t+ 1)−WΦi(t, ω)θ‖22,

(7)

where W is a diagonal weight matrix, which takes into
account the fact that the elements of ∆i(t+ 1) might have
different orders of magnitude.

The estimation problem amounts to solving
minω,θ f(ω,θ) under constraints that θ ≥ 0, ω ∈ [0, 1], and
that Si(t) ≥ 0 for all t = 0, 1, . . . , T and i = 1, . . . ,K.
These latter constraints are guaranteed to hold if

ω ≥ ωmin
.
= max

i=1,...,K
max

t=0,...,T

Ii(t) +Ri(t) +Di(t)

αiPop
.

We observe that, for fixed ω, the minimization of f with
respect to θ = (β,γ,ν) can be done efficiently by solving a
linearly constrained least-squares problem. We call this the
inner step of the identification algorithm. The dependency of
f on ω is instead non-convex, hence we approach this issue
via an outer gridding on ω ∈ [ωmin, 1] , as detailed in the
following algorithm.

Algorithm 3.1 (Estimation of constant parameters):
1) Grid n values ωi of ω in [ωmin, 1]. For each of these

ωi:
2) Solve the constrained least-squares problem f∗i =

minθ≥0 f(ωi;θ) and let θ∗i be an optimal solution.
3) At the end of the loop, retain the ωi value that yielded

the minimal value of f∗i , and return this ωi along with
the corresponding θ∗i .

B. Model with time-varying parameters

While a constant-parameters model may be appropriate
for describing a specific phase in the evolution of a pan-
demic, it can hardly capture its overall characteristics over
an extended period of time. Clearly, the contagion rates
βi(t) vary with changes in the behavior of the population,
induced, for instance, by restrictive measures on people’s
mobility imposed by authorities. Similarly, the recovery and
death rates γi(t), νi(t) may change due to medical response
policies that improve as knowledge and understanding of the
virus progresses.

To incorporate time-varying coefficients into a tractable
model, we consider the following parameterized families of
time functions for the parameters, for j = 1, . . . ,K:

βj(t) =

n1∑
i=1

βijbij(t) (8)

γj(t) =

n2∑
i=1

γijgij(t) (9)

ν(t) =

n3∑
i=1

νijmij(t), (10)

where bij(t), gij(t), and mij(t), are given basis functions,
and n1, n2, n3 are the basis expansion orders. For each age
class j = 1, . . . ,K, we define vectors βj

.
= (β1j , . . . , βn1j),

γj
.
= (γ1j , . . . , γn2j) and νj

.
= (ν1j , . . . , νn3j) and the

overall compound parameter vectors β .
= (β1, . . . ,βK),

γ
.
= (γ1, . . . ,γK), ν .

= (ν1, . . . ,νK).
Several choices are possible for the basis functions, like

piece-wise constant functions, polynomial and exponential



functions, logistic functions, or mixtures thereof. For exam-
ple, a logistic profile describes a smooth transition from one
value of the parameter to another value, around a certain
time instant; a simple two-parameter logistic profile for βj(t)
would then be:

βj(t) = β1jb1j(t) + β2jb2j(t)

= β1j
exp(−(t− t`)/τ)

1 + exp(−(t− t`)/τ)
(11)

+ β2j
1

1 + exp(−(t− t`)/τ)
,

where β1j has the practical meaning of infection rate for
class i in early stages on the infection (i.e., for t� t`), β2j
has the meaning of asymptotic infection rate, t` is the time
at which lockdown measures become effective, and τ tunes
the rapidity of transition from the pre-lockdown rate to the
post-lockdown rate. In this case, we are assuming that t` and
τ are known and fixed in advance. When this is not the case,
we can include in the basis many functions of the form (11),
each with different and suitably gridded values of t` and τ .

The parameters of a time-varying model can be identified
using a regression technique similar to the one presented in
the previous section. However, this is out of the scope of
this paper, where instead we are interested in exploiting the
model with time-varying parameters in order to introduce
control policies that can affect the pandemic evolution.

IV. MODEL IDENTIFICATION ON TENNESSEE DATA

In this section, we apply the proposed constant-parameter
model to the COVID-19 data from the state of Ten-
nessee. To the best of the authors’ knowledge, this was
the only state we found that provides open data with
the required age information. The dataset is publicly
available at https://www.tn.gov/health/cedep/
ncov/data/downloadable-datasets.html. This
dataset covers the period from July 27th to December 16th.
The number of daily cases, deaths and recoveries are sub-
divided in nine age classes: 0-10 years, 11-20 years, 21-30
years, 31-40 years, 41-50 years, 51-60 years, 61-70 years,
71-80 years, and over 80 years. In addition to this dataset,
we retrieved information on the age distribution of the overall
Tennessee population from [15].

We consider the constant-parameter model described in
Sec. III-A. We use the technique illustrated in Algorithm
3.1 to identify the parameters of the model describing the
contagion evolution for the different age classes. Data from
September 4th1 to November 20th were used to fit the model.
This corresponds to 75% of the available data, the remaining
of the available data were used as test data to evaluate the
quality of the model prediction. As described in Algorithm
3.1, we compute the objective cost f(ω,θ) as a function of
ω, in order to select the best value for parameter ω. For the
training data considered in our experiment, the optimal value

1On September 3rd the Tennessee Department of Health updated its
definition of an active case significantly lowering the number of active
cases on that day and moving forward [16]. Therefore, we decided to discard
previously collected data in order to have a coherent count of the recoveries.

TABLE I
OPTIMAL VALUES OF THE MODEL PARAMETERS β, γ AND ν .

Class β γ ν

0-10 years 0.0441 0.0893 0
11-20 years 0.1064 0.0910 0
21-30 years 0.1604 0.0914 2.195 × 10−5

31-40 years 0.1267 0.0899 6.233 × 10−5

41-50 years 0.1292 0.0901 2.061 × 10−4

51-60 years 0.1186 0.0892 8.176 × 10−4

61-70 years 0.0965 0.0874 2.437 × 10−3

71-80 years 0.0921 0.0840 6.658 × 10−3

81+ years 0.1040 0.0740 1.605 × 10−2

TABLE II
PER-CLASS CUMULATIVE NUMBER OF DEATHS.

Class No restriction Selective Uniform
lockdown lockdown

0-10 years 6 6 6
11-20 years 2 2 2
21-30 years 97 77 43
31-40 years 240 186 101
41-50 years 748 571 288
51-60 years 2713 2026 940
61-70 years 6111 4503 2028
71-80 years 10279 3653 3326
81+ years 13069 4618 4195

Total 33265 15642 10929

resulted to be ω = 1. In Table I we list the optimal values of
the model parameters β, γ and ν corresponding to ω = 1.
We can observe that the optimal value of the mortality rate
parameter νi decreases as the age decreases and is equal to
zero in the younger age classes. This is consistent with the
data on the COVID-19 mortality rate by age in Fig. 1.

After having identified the parameters of the model, we are
now interested in projecting the estimated model forward in
time in order to predict the future evolution of the contagion.
To construct forward predictions, we use the multi-simulation
prediction method described in [17] (Sec. 4.2). Fig. 2 shows
the resulting per-class prediction. We can observe that the
predictions nicely fit the real data for all the age classes.
The data considered in this experiment describe the early
stage of contagion, instead the predictions are constructed
over a period five times longer than the one described by
the data, covering all the contagion evolution until the end
of the epidemic.

V. CONTAGION CONTROL BY FOCUSED RESTRICTIONS

In this section, we are interested in analyzing the effects
on the contagion evolution of focused restrictions that act
only on specific age groups. We thus have to consider a
model with time-varying parameters, as described in Sec.
III-B. In particular, we consider time-varying contagion rates
βi(t). In order to simulate the effect of lockdown policies
applied only to selected age groups, we impose that the
parameters βi(t) corresponding to the two oldest classes
have a two-parameter logistic profile as described in Eq.
(11). For both classes, we set the parameter β1j equal to
the corresponding optimal value of the constant-parameter
model described in the previous section and β2j equal to
zero. All the other parameters of the model, including the
contagion rates βi(t) corresponding to the other age classes,

https://www.tn.gov/health/cedep/ncov/data/downloadable-datasets.html
https://www.tn.gov/health/cedep/ncov/data/downloadable-datasets.html


Fig. 2. Per-class multi-simulation prediction with the constant-parameter model. The red curve describes the multi-simulation prediction, and the blue
circles represent the actual data use for model training.

Fig. 3. Time-varying contagion rates βi(t) as function of time. Selective
lockdown (left), uniform lockdown (right).

are considered constant and their values are set equal to the
optimal values of the constant-parameter model. Fig. 3 (left)
shows the resulting parameters βi(t) as function of time,
where we set tl = 150 and τ = 10 for the two oldest
age classes. In order to evaluate the effects of such type
of restrictions, we compared this scenario against other two
cases: the first one considers a uniform lockdown applied to
the entire population, instead the second one considers the
case where no restrictions are applied. The case of a uniform
lockdown is simulated by imposing that all the contagion
rates βi(t) have a two-parameter logistic profile, where β1j
and β2j are defined as previously described. Fig. 3 (right)

shows the shapes of the parameters βi(t) in this scenario.
The case without restrictions is simulated by considering the
constant-parameter model identified in the previous section.
We now use the multi-simulation technique described in
[17] to project forward in time these three scenarios. Fig.
4 depicts the resulting multi-simulation predictions. We can
observe that in the case of a selective lockdown, even though
the restrictions are applied only to the two oldest classes,
the effects are visible in all the age classes, significantly
reducing the spread of the contagion. Moreover, in Table II
we compare the cumulative number of deaths in the three
scenarios. In particular, it is important to observe that a
selective lockdown applied only to the two oldest age groups
can result in a significant reduction of the total number
of deaths, approximately halving it. In addition, the results
in Table II show that a uniform lockdown, which has a
much stronger socio-economic impact, provides only a slight
reduction in the number of total deaths as compared to a
selective lockdown applied only to the two oldest age groups.

VI. CONCLUSIONS

In this paper we presented a modified SIRD model with
age classes for the COVID-19 infection evolution. This
model allows for introduction and analysis of control policies



Fig. 4. Per-class multi-simulation prediction. The red curve corresponds to the case without restrictions, the purple line corresponds to the case of a
selective lockdown, the yellow line corresponds to the case of a uniform lockdown, and the blue circles represent the actual data used for training.

based on age-selective lockdowns. In particular, we studied
the effects of a selective lockdown applied only to the older
classes of the population. The simulations suggest that such
selective lockdowns may provide a reduction of the mortality
rate similar to the one obtained with a uniform lockdown,
while having a much lighter socio-economic impact.
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