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Abstract
Objectives The purpose of this study was to externally validate algorithms (previously developed and trained in two United 
States populations) aimed at early detection of severe oliguric AKI (stage 2/3 KDIGO) in intensive care units patients.
Methods The independent cohort was composed of 10'596 patients from the university hospital ICU of Amsterdam (the 
“AmsterdamUMC database”) admitted to their intensive care units. In this cohort, we analysed the accuracy of algorithms 
based on logistic regression and deep learning methods. The accuracy of investigated algorithms had previously been tested 
with electronic intensive care unit (eICU) and MIMIC-III patients.
Results The deep learning model had an area under the ROC curve (AUC) of 0,907 (± 0,007SE) with a sensitivity and 
specificity of 80% and 89%, respectively, for identifying oliguric AKI episodes. Logistic regression models had an AUC of 
0,877 (± 0,005SE) with a sensitivity and specificity of 80% and 81%, respectively. These results were comparable to those 
obtained in the two US populations upon which the algorithms were previously developed and trained.
Conclusion External validation on the European sample confirmed the accuracy of the algorithms, previously investigated 
in the US population. The models show high accuracy in both the European and the American databases even though the 
two cohorts differ in a range of demographic and clinical characteristics, further underlining the validity and the generaliz-
ability of the two analytical approaches.
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Introduction

Acute kidney injury (AKI) is a sudden loss of excretory 
kidney function which represents a worldwide concern in 
high, middle, and low-income countries. In developed coun-
tries, AKI mostly occurs in elderly hospitalized patients and 
particularly in individuals admitted to intensive care units 
(ICUs). The clinical management of AKI in ICU patients 
is challenging and requires appropriate volume control, 
nephrotoxic drug tailoring, and the timing and type of renal 
replacement therapy (RRT). As AKI has a poor prognosis 
in ICU patients, early identification of patients at risk can be 
useful to reduce the adverse clinical consequences associated 
with AKI. Thus, early detection of the disease is essential 
to plan appropriate clinical surveillance in patients at risk.

As indicated in the International Society of Nephrology 
initiative program, the ability to predict the development 
of AKI through mathematical models could be an impor-
tant tool to decrease preventable deaths due to AKI [1]. In 
our previous study [2], we focused on artificial intelligence 
analysis using deep-learning (DL) and logistic regression 
methods, and we demonstrated the accuracy of these tools 
to predict the development of oliguric AKI. The study was 
based on two clinical databases collected in the United 

States (US), the MIMIC-III [3] and electronic ICU (eICU) 
[4]. The limiting factors were the retrospective design and 
the need for external validation. For this reason, we con-
ducted the same analysis on a different European database, 
i.e. the AmsterdamUMC [5], with the aim to externally vali-
date the algorithms that had been previously developed and 
trained in the United States population, and to verify their 
accuracy and ability to predict the onset of AKI in hospital-
ized patients.

Methods

Data sources

The AmsterdamUMC database [5] contains anonymized 
data of 20'109 European patients admitted to the University 
hospital ICU of Amsterdam, in the Netherlands between 
2003 and 2016, for a total of 23'106 admissions.

The inclusion and exclusion criteria used to determine 
the final patients' population information are described in 
our previous study [2].

The endpoint was defined as “Oliguric AKI stage 
2/3” (from KDIGO classification), characterized by a 
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simultaneous reduction in urine output and an increase in 
serum creatinine [6] that developed during the ICU stay. 
For each patient, baseline creatinine was calculated as the 
lowest recorded value and, in case of readmissions, the low-
est available value was considered the baseline value. Urine 
output trend was normalized by ideal body weight (IBW). 
Regarding the IBW computation, in the absence of exact 
values of height due to the de-identifying process adopted in 
the AmsterdamUMC database, a mean value of the indicated 
height range was used.

Data extraction and imputation of missing values

For patients who met the inclusion criteria of the study, 
raw data of serum creatinine values, urine output trend and 
demographic characteristics were extracted and processed. 
Urine output observations were manually reported by nurses 
with random sampling frequencies, whereas the creatinine 
values were automatically entered into the database by the 
laboratory when the measurement was carried out.

The data were analysed following the same procedural 
steps adopted in our previous study [2]. Regarding the urine 
output values, starting from the original recordings with 
an unfixed sampling frequency, we applied the following 
imputation technique to obtain a time series with a constant 
sample rate of 1 h:

– If a subject presented consecutive urine output measure-
ments in a time interval shorter than 9 h, we calculated 
a cumulative total value of the measurements and then 
divided by the number of hours without available records 
and assigned it to each hour.

– If no measurement of serum creatinine was available 
for a time interval < 4 days, a carry-forward imputation 
method was employed to fill the missing hour with the 
last available measurement.

Missing value imputations allow to have a standardized 
method to provide the measurements in the algorithm.

Fig. 1  Residual ICU stays after the application of exclusion criteria 

Table 1  Summary statistic of 
the patients’ characteristics of 
the AmsterdamUMC and eICU 
databases

AmsterdamUMC eICU

Patients 10'596 7'080
Oliguric-AKI 2/3 442 (4,2%) 216 (3,0%)
Gender (M) 7529 (71,1%) 4'476 (63,2%)
Age groups
 18–39 718 (6,8%) 548 (7,7%)
 40–49 776 (7,3%) 526 (7,4%)
 50–59 1'640 (15,5%) 1'156 (16,3%)
 60–69 2'987 (28,2%) 1'652 (23,3%)
 70–79 3'240 (30,6%) 1'662 (23,5%)
 80 and above 1'235 (11,7%) 1'536 (21,7%)

Length of ICU stay (h) 34,6 [22,9- 87,8] 145,7 [96,7- 230,2]
In-hospital deaths 949 (8,9%) 631 (8,9%)
Min diuresis value (ml/h/kg) 0,33 [0,15- 0,56] 0,29 [0,14- 0,49]
Max diuresis value (ml/h/kg) 3,60 [2,10- 5,90] 3,95 [2,35- 6,.34]
Min serum creatinine value (mg/dL) 0,93 [0,74- 1,15] 0,86 [0,69- 1,17]
Max serum creatinine value (mg/dL) 1,02 [0,84- 1,29] 1,07 [0,84- 1,50]
Basal serum creatinine levels (mg/dL) 0,84 [0,68- 1,06] 0,8 [0,64- 1,05]
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Mathematical models and analysis

The task of our prediction model is to predict in advance 
whether a patient will experience an AKI episode or not 
during the ICU stay. In our previous study [2], two sepa-
rate machine learning techniques were compared in order to 
build a model able to predict the onset of hospital-acquired 
oliguric AKI (stage 2, 3 KDIGO).

Logistic regression is one of the simplest and most widely 
used models for dealing with ICU-related problems [7–9]. 
The input includes a series of data-dependent variables that 
are used to find relationships with the outcome and returns 
a probability of risk of being part of a class, which in our 

case results in the probability of the risk of developing or 
not oliguric-AKI 2/3 within the following 24 h.

The deep learning model is a much more complex algo-
rithm compared to the logistic regression one. It is the evolu-
tion of artificial neural networks (ANN) where an increas-
ing number of learning hidden layers have been included 
in its architecture. It is based on parallel one-dimensional 
(1D) convolutional layers that analyse time-series of hourly 
urine output in such a way to allow automatic extraction of 
informative characteristics from the raw data given as input 
and compute the probability of developing oluguric-AKI 2/3 
within the following hours.

Fig. 2  Area under the ROC 
(± standard error) achieved 
by the LR model. AMST AUC  
AmsterdamUMC database, 
Area Under ROC Curve, EICU 
AUC  eICU database, Area 
Under ROC Curve

Table 2  Numerical results for the multi-feature logistic regression model over the two testing datasets

auROC area under receiving operator curve, LR + positive likelihood ratio, LR −  negative likelihood ratio

Model Dataset Working point auROC (avg) Sensitivity (%) Specificity 
(%)

LR + LR −

Logistic Regression Amsterda-
mUMC

Sensitivity = 80% 0,88 80 81 4,21 0,25

Knee-point 81 80 4,05 0,24
Logistic Regression eICU Sensitivity = 80% 0,85 80 75 3,20 0,31

Knee-point 77 78 3,52 0,29
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Pre‑Trained models

Logistic regression and deep learning models were pre-
trained on a cohort of 21'681 patients from the MIMIC-III 
(10,824 patients) and eICU (10'857 patients) databases. In 
detail, the entire MIMIC-III database was used to train both 
mathematical models, while only a portion of the eICU pop-
ulation (44%) was employed for that purpose (the residual 
was split and used to validate and to test the model perfor-
mances in the previous publication).

During the training phase of the algorithms, to ensure 
the prediction at least 6 h before the event, the urine output 
trend of patients with an episode of oliguric AKI 2/3 was 
truncated 6 h before the event; conversely, the time series of 
non-severe-AKI patients were used from their entry to the 
ICU until their discharge or death.

The same approach was applied to treat the Amsterda-
mUMC database patients.

The metrics that were adopted to assess the models’ pre-
dictive performances included the area under ROC curve 

Fig. 3  Area under the ROC 
(± standard error) achieved 
by the Deep Learning model. 
AMST AUC  AmsterdamUMC 
database, Area Under ROC 
Curve, EICU AUC  eICU data-
base, Area Under ROC Curve

Table 3  Numerical results for 
the deep learning model over 
the two testing datasets

auROC area under receiving operator curve, LR + positive likelihood ratio, LR − negative likelihood ratio

Model Dataset Working point auROC (avg) Sensitivity (%) Speci-
ficity 
(%)

LR + LR −

Deep learning Amsterda-
mUMC

Sensitivity = 80% 0,91 80 89 7,27 0,22

Knee-point 85 85 5,67 0,18
Deep learning eICU Sensitivity = 80% 0,89 80 84 5,00 0,20

Knee-point 82 82 4,50 0,22
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(AuROC), sensitivity, specificity, and the positive and nega-
tive likelihood ratios.

Results

In the analysis we included the data of 10'596 patients out 
of the 20'109 available in the database. This is because 
only 52,7% of the patients met the study inclusion cri-
teria (see Fig. 1). With regard to the exclusion criteria, 
incomplete or absent records of urine output were present 
in 17% of MIMIC III, in 64% of eICU, and in 28% of the 

Fig. 4  Box plots of the distributions of the real acquisition time for serum creatinine among patients of the a AmsterdamUMC and b eICU data-
sets

Table 4  Median acquisition frequency and interquartile range of 
urine output and creatinine for patients of the AmsterdamUMC and 
eICU datasets

eICU AmsterdamUMC p value

Patients 7'080 10'596
Median acquisi-

tion frequency 
of creatinine

23,2 h [18,7–24,6] 16,2 h [13,0–19,1]  < 0,0001

Median 
acquisition 
frequency of 
urine output

2,4 h [1,4–3,8] 1,3 h [1,2–1,5]  < 0,0001

Fig. 5  Box plots of the distributions of the real acquisition time for urine output among patients of the a AmsterdamUMC and b eICU datasets
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AmsterdamUMC patients. Serum creatinine records were 
absent/incomplete in 4,3% of MIMIC III, in 12% of eICU, 
and in 34% of AmsterdamUMC patients. In the Amsterda-
mUMC selected population, we found that 4,2% of patients 
(n = 442) had an episode of hospital-acquired oliguric-AKI 
during their stay, whereas the incidence of the pathology 
in the eICU dataset was equal to 3%. A between-group dif-
ference was observed in the distribution of age categories 
above 60 years (i.e. 60–69, 70–79 and 80 + years): in the 
AmsterdamUMC database, the distribution of patients in 
these categories was 28,2%, 30,6% and 11,7%, respectively, 
whereas in the eICU database it was 23,3%, 23,5% and 
21,7%, respectively (see Table 1). Furthermore, in the first 
database, we observed that 71% were male compared to 63% 
in the eICU dataset. Both cohorts presented the same rate 
(8,9%) of hospital mortality.

Logistic regression model

Using multi-feature logistic regression analysis, AKI pre-
diction score showed good discriminative ability with 
AuROC = 0,877 (see Fig. 2). Sensitivity and specificity were 
80% and 81%, respectively. The same model tested on the 
eICU data reported an AUC of 0,851 with 80% and 75% 
sensitivity and specificity, respectively (see Table 2). The 
positive likelihood ratio (+ LR) was 4,21 and the negative 
(-LR) was 0,25.

Deep Learning model

In the Deep Learning model an AuROC of 0,907 was 
achieved (see Fig. 3) compared to 0,886 in the eICU, at 
80% sensitivity and 89% specificity (Table 3). Albeit not 
significantly different, these increased performances could 
be attributed to the higher frequency of the data collection 
in the AmsterdamUMC database than in the eICU model 
(see Figs. 3 and 4, and Table 4). Indeed, an augmented 
prevalence of AKI episodes of about 4,2%, was observed 
compared to the incidence of 3% of AKI episodes in the 
USA test cohort. In the European database, the + LR was 
7,27 and the -LR was 0,22. Furthermore, the Amsterda-
mUMC database differed from the eICU in that serum 
creatine and urine output were recorded more frequently 
(Figs. 4a, b, 5a, b, and Table 4).

Discussion

In our previously published study, we investigated the 
accuracy of a deep-learning model based on urine output to 
predict oliguric AKI in the ICU [2]. In that study we dem-
onstrated that the analysis of 12-h urine output with a deep 
learning model had good diagnostic performance, with an 

area under Receiving Operator Curve of 0,89 ± 0,01 (sen-
sitivity 80% and specificity 84%). The estimated ability of 
the model to predict AKI stage 2 and 3 was of at least 12 h 
before the development of the event, with a + LR of 4,87 
and 5,06 and a − LR of 0,24 and 0,20 respectively. In that 
study we used the data of the clinical databases collected 
in the US, the MIMIC-III and eICU. The use of retrospec-
tive data represents the main limitation of our investiga-
tion and, furthermore, the results need to be externally 
validated.

For this reason, in the current study we conducted the 
same analysis on a different database with the scope of 
externally validating the algorithms that had previously been 
developed and trained in the US population. The “Amsterda-
mUMC database” contains data concerning 23'106 admis-
sions to the ICU of the University of Amsterdam observed 
and recorded between 2003 and 2016 [5]. By comparing the 
analysed data with the eICU results, we observed a higher 
auROC (0,907 ± 0,007), a better + LR of 7,27 and a − LR 
of 0,22 for the AmsterdamUMC. This analysis allowed us 
to confirm the previous results with an external validation. 
Furthermore, we observed a slightly better performance of 
the deep learning model in the European dataset. Indeed, 
we found that the two databases have some differences and 
this may have led to a higher auROC and + LR. Particularly, 
the European database presented a higher incidence of AKI 
stage 2 and 3 and higher frequency of serum creatinine and 
urine output measurements.

The AmsterdamUMC database reported an AKI inci-
dence of 4,2% vs 3% in the eICU: the most highly repre-
sented age group was 70–79 yrs (355%) in the Amsterda-
mUMC compared to 60–69 years (26,8%) in the eICU.

Serum creatinine was measured with a median acquisi-
tion frequency of 16,2 h instead of 23,2, and, more remark-
ably, the acquisition frequency of urine output in Amster-
damUMC was 1,3 h compared to 2,4 in the eICU (median 
values). Concerning hourly detection of urine output and 
serum creatinine monitoring, the percentage of database 
patients with a decreased frequency of observation is impor-
tant. This fact represents the necessity to improve patient 
monitoring at least in established specific realities or situa-
tions. Nevertheless, considering the patients included in data 
analysis, it appears that the AmsterdamUMC database has 
a greater  precision of variable acquisition and a relatively 
slightly higher number of events.

The possible connection between the higher frequency of 
observations and events and the observed differences on the 
positive likelihood ratio was not tested in our study. How-
ever, some issues may arise from our observations. The first 
aspect is the reason for investigating urine output in terms 
of a predictive outcome. It is known that AKI can develop in 
two different forms, i.e., oliguric (according to the KDIGO 
classification) and non-oliguric disease. Oliguric AKI 
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represents about 40% of the disease, with a relevantly higher 
mortality (50–60%), both in the ICU and in hospital settings, 
than the non-oliguric form (10–20%) [10, 11]. The second 
issue, which is strictly connected to the first, is the definition 
of oliguria. The KDIGO definition of oliguria considers a 
urine output criteria of < 0,5 ml/kg/h for a period of 6–12 h 
(AKI stage 1) or > 12 h (stage 2), and < 0,3 ml/kg/h for a 
period ≥ 24 h or anuria for a time ≥ 12 h, taking into account 
“consecutive” hours (stage 3). However, this classification is 
under debate because the incidence of AKI and related stage 
can differ when considering an average value of urine output 
for a determined period of time or a series of consecutive 
values [12]. Finally, the third aspect is the inverted relation-
ship between the predictivity of the urine output and the 
serum creatinine levels. Vincent et al. observed that oliguria 
on admission is present in about 25% of ICU patients and 
the mortality rate is twice as high compared to non-oliguric 
patients [13]. They also reported differences in mortality 
depending on the ability to restore normal urine output 
within the first 48 h of ICU stay: the mortality rate is no 
different from the values observed in non-oliguric patients. 
They defined these patients as having “transient oliguria” 
and they made up 30% of the oliguric patients at ICU admis-
sion. The authors observed that oliguria averaged over 6 h 
had a greater sensitivity to predict AKI stage 1. Furthermore, 
the predictivity of oliguria on dramatic events, such as AKI 
development or hospital mortality, could be linked not only 
to the time window (how many hours) but also to the volume  
of diuresis, as demonstrated by the study of Ralib et al. [14]. 
In their study the current AKI definition was based on a “too 
liberal” urine output, because the authors observed that “a 
6-h urine output threshold of 0,3 ml/kg/hour best associated 
with mortality and dialysis”.

Regarding the accuracy of a predictive model with refer-
ence to the possible occurrence of a given event, the anal-
ysis of the ROC curve is commonly used. This analytical 
approach provides a graph that defines the sensitivity (i.e. 
the true positive rate) versus 1—specificity (i.e. the false-
positive rate) for each possible cut-off of the prediction rule. 
In our analysis, we found areas under ROC curves to be 
consistently high (> 85%) in both cohorts and when using 
the analysis of both logistic regression or deep learning 
models (Tables 2, 3). We defined the results also in terms of 
positive and negative likelihood ratios, which represent the 
indexes that combine sensitivity and specificity. The + LR 
relates to a positive diagnosis in patients with a positive 
test and it is calculated as sensitivity/(1-specificity), with 
a value > 1. The + LR values that were obained by logistic 
regression were 4,21 (at a fixed sensitivity of 80%) and 4,05 
(knee-point) in the Amsterdam cohort, whereas they were 
3,20 (at a fixed sensitivity of 80%) and 3,52 (knee-point) 
in the eICU cohort (see Table 2). Of note, higher + LR val-
ues were observed in both cohorts when the deep learning 

model was applied in the analysis (Table 3). In particular, 
in the Amsterdam cohort the + LR of 7,27 (at a fixed sen-
sitivity of 80%, Table 3) indicated a sevenfold increase in 
terms of odds of having the event in a patient with a positive 
test result. Therefore, the higher the level of + LR, the more 
informative the test.

The − LR gives the indication of having a diagnosis in 
patients with a negative test. It is calculated as (1—sensi-
tivity)/(specificity) and its value is usually < 1. We found a 
− LR of 0,22 in the Amsterdam cohort (at a fixed sensitiv-
ity of 80%, Table 3) that indicated a 4,5-fold decrease in 
terms of odds of having the event of interest in a patient with 
a negative test result. Consequently, the smaller the − LR 
value, the more informative the test.

To date, there is scarce evidence in the literature concern-
ing the accuracy of a predictive model in the urine output 
and AKI events. Macedo et al. reported a + LR of 1,25 and 
a − LR of 0,92 for 12-h oliguria in AKI stage 2, whereas the 
levels reported for 24 h oliguria in AKI stage 3 were 2,0 and 
0,96, respectively [15]. Another study involving cardiac sur-
gery ICU patients indicated a + LR of 2,9 and a − LR of 0,45 
in case of 6-h oliguria in AKI stage 1 [12]. Based on this 
literature, it is important to point out that the accuracy of our 
prediction models is consistently higher than those provided 
by previous prediction rules and is in accordance with our 
previous study [2]. A different approach to AKI prediction 
is the use of furosemide as a bolus and the consequent moni-
toring of diuresis for a 2-h period, i.e., the furosemide stress 
test (FST) [16]. The test investigates the integrity of tubular 
function and predicts the worsening from AKI stage 1 or 2 
to AKI stage 3 or the need for dialysis. The predictive capac-
ity is high, as represented by the AUC equal to 0,87, with a 
sensitivity of 87,1% and a specificity of 84,1%. An increase 
in predictivity was obtained by coupling FST with biomark-
ers [17]. In patients with urine TIMP-2xIGFBP-7 > 0,3, the 
AUC for AKIN stage 3 progression increases up to 0,9, and 
for RRT it increases up to 0,91. Although FST is a reliable 
tool for the prediction of AKI worsening, as both the meta-
analysis by Chen [18] and the review by Coca [19] highlight, 
debate still exists on the heterogeneity of the studies, the 
number of enrolled patients, the type of study design, the 
severity of basal AKI, the role of albumin levels on furosem-
ide sensitivity, the ability of continuous furosemide infusion 
to increase sensitivity and specificity of the test, as Mariano 
suggests [20, 21], and the ability of AUC values to define 
the predictive capacity of a test.

Nevertheless, the application of a machine learning 
method differs from FST in several aspects.

The first is the target population: we applied the pre-
dictive model to all patients admitted to the ICU, with the 
exclusion of patients in need of continuous RRT (CRRT) 
during the stay, and of those with community-acquired AKI. 
We obtained excellent results in terms of AUC, positive and 
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negative likelihood ratio when oliguric AKI was considered. 
On the contrary, the study by Chawla and Koiner applied 
FST to selected patients with AKIN stage 1 and 2, pres-
ence of granular or epithelial cell casts on urine sediment, or 
FeNa > 1%. In both studies patients were well resuscitated, 
sufficiently clinically stable and euvolemic.

The second difference is the moment of AKI prediction 
and its severity: FST is applied when a patient has AKIN 
stage 1 and 2 to predict AKI stage 3, including the need 
for hemodialysis. Our study continuously analyses the urine 
output in patients without AKI or with AKI stage 1 to pre-
dict AKI stage 2 and stage 3, with the exclusion of patients 
who require dialysis. Patients were included regardless of 
therapeutic intervention or volume cut-off, during all the 
ICU stays and by adopting 12-h periods of observation in 
sliding windows, to predict AKI stage 2 or 3.

The artificial intelligence that analysed the data, which 
included urine production to predict AKI events by 
exploiting the deep learning model, seems to overcome the 
KDIGO classification of urine output in terms of quantity 
and time. Actually, the KDIGO classification presented 
low accuracy in predicting higher stages of AKI develop-
ment. In our study we have tested a mathematical model, 
derived from Artificial Intelligence process, which has a 
high accuracy to predict AKI stage 2/3 future events. In 
our previous analysis, the highest observed + LR was 5,00 
and the lowest –LR was 0,20. As mentioned above, in the 
present study we used a different database with a different 
approach towards urine output analysis, and an artificial 
intelligence application characterized by the deep learning 
process. Furthermore, by comparing the results with the 
current study, a + LR equal to 5,00 demonstrated a mod-
erate increase in the probability of a disease, given by a 
positive test.

This study also presents some limitations regarding the 
design since it relies on a retrospective source of data. 
Indeed, we documented an important difference between 
the two databases in terms of frequency of data acquisi-
tion that can significantly affect the validity of the analy-
sis. The error in the manual determination of urine output 
can be estimated at around 20–26% [21]. Another limiting 
factor is the usefulness of the information derived from 
DL analysis on everyday clinical work. For this reason, 
it appears necessary to develop an observational study in 
which a precise method of urine output recording is well 
established. Based on this consideration, we have already 
designed an observational prospective study which should 
start soon: all institutions interested in participating can 
contact our research group for further information and 
centre enrolment.

Finally, an interventional study designed to compare 
the use of electonic alarm is needed. It should be based 
on a highly accurate prediction model, as the one we have 

provided here, based on the routine clinical procedures of 
ICU mortality, length of stay or AKI development.

Conclusions

In conclusion, through external validation on a European 
sample, we confirmed the accuracy of the algorithms that 
we previously investigated in the US cohort. It is also 
important to underline that, although the two study cohorts 
differ with regard to some demographic and clinical data, 
we observed similar accuracy in both regression models 
(Logistic Regression and Deep Learning). This evidence 
supports the validity and the generalizability of the two 
analytical approaches. Precise monitoring of urine output 
can be obtained by an automatic device, which could be 
interfaced with a predictive algorithm to generate a warn-
ing for the possible development of AKI stage 2 or 3. In 
terms of care opportunity, increased attention by the medi-
cal staff could lead to the diagnosis of an evolving clinical 
condition and thus to the early use of “precision therapy”, 
in an effort to decrease in-hospital mortality, kidney dam-
age, disability and length of hospital stay.
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