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ABSTRACT10

The energy coming from the motion of the waves of seas and oceans could be an important
component in the solution of the energy problem related to the pursuit of alternatives to fos-
sil fuels. However, wave energy is still technologically immature and it has not reached the
economic feasibility required for economy of scale. One of the major technological challenges15

for the achievement of this goal is the development of control strategies capable of maximizing
the extracted energy, adapting to the conditions of the seas and oceans that surround the Wave
Energy Converter (WEC) devices. To perform this task, control systems often adopt explicitly
control-oriented models, that are by nature affected by uncertainties. On the contrary, to ad-
dress the problem a data-driven solution is proposed here. The presented strategy applies an20

optimization approach based on a Gaussian Process Regression (GPR) metamodel to learn the
control strategy to be applied. In order to accelerate the learning process, we present a novel
method that exploits in the initial phase a previous knowledge given by simulations with the
system model and based on the co-kriging concept. To test this approach the Pendulum Wave
Energy Converter has been adopted as a case study. To differentiate the previous knowledge and25

the real system behaviour, a simplified linear model is used to obtain the prior knowledge, while
a complex nonlinear one acts as the environment in which simulate the behaviour of the real
system. A month-long simulation is used to validate the effectiveness of the proposed strategy,
showing the ability of adapting to a real system different from the simplified model on the basis
only of data, and overcoming the model-based strategy in terms of performance.30

1. Introduction
In the present context, characterized by a growing awareness for issues such as global warming, energy exploitation,

and rising CO2 levels, a remarkable amount of research is directed towards new approaches for electricity generation
from different renewable sources. Among the studied technologies related to renewable energy sources, wave energy35

is one of the most promising (Mattiazzo, 2019). Unlike other types of energy conversion technologies, such as photo-
voltaic plants or wind turbines, wave energy converters (WECs) have not reached a sufficient level of technological
maturity, nor the proposed solutions to the problem of extracting energy from sea and oceans have managed to con-
verge to a definitive concept and design (Guo and Ringwood, 2021), (Trueworthy and DuPont, 2020). Indeed, several
challenges have to be faced in the wave energy context to effectively capture the energy coming from this type of40

source. Among them, one of the most crucial is the development of suitable advanced control strategies for WEC
devices (Ringwood, 2020).

Suitable control systems for a WEC should be able to adapt to the different sea conditions that the device will face
after being deployed, providing the optimal action able to maximize the absorbed power. Usually, the control strategies
that are adopted aremodel-based. This means that the computation of the control action relies on a simplified model of45

the system. This type of model is usually a linearized version that neglects system nonlinearities in the system itself and
possible nonlinear phenomena arising from its interaction with the environment, like nonlinear Froude-Krylov forces
(Giorgi et al., 2020). To overcome possibly too strong simplifications, some novel techniques have tried to reformulate
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Data-driven GPR control of PeWEC

more complex nonlinear models in a control-oriented form (Faedo et al., 2020). However, one of the issues related to
model-based control strategies remains the need of dealing with uncertainties related to the differences between the50

adopted model and the real system (Ringwood et al., 2020), especially the ones associated to the formulation of the
hydrodynamic contributions. Moreover, since this type of plants is supposed to work for a long period of time, it is
reasonable that, because of aging phenomena like biofouling growing on the hull or eventual faults, the differences
between the actual deployed system and the simplified model adopted in the control computation will increase with
time. This has motivated the adoption of data-driven, model-free control approaches.55

1.1. Motivation and paper positioning
Based on the reasons described above, in this paper we experiment with data-driven control design for the Pendu-

lum Wave Energy Converter (PeWEC) (Pozzi et al., 2018a), (Sirigu et al., 2020) as a case study. The proposed control
strategy is based on surrogate optimization and Gaussian Process Regression (GPR), which is an extension of tradi-
tional Krigingmetamodels, (Forrester and Keane, 2009). The general idea is to learn a surrogate model (also known as60

a metamodel) by exploiting control experiences, directly linking control design parameters with expected performance.
One of the advantages of this strategy is that it does not necessarily rely on a previously built model of the system,
avoiding the related uncertainties and modelling errors. However, there are disadvantages too. On the one hand, it
might be unwise to start operations on the actual system without any pre-learned control strategy, possibly based on a
simplified and tentative system model, which is supposed to be available. On the other one, sea state occurrences are65

not uniform, and learning in some sea states might be overly slow. Then, the problem arises of merging two sources
of knowledge: what we can learn from simplified simulations, and what we can learn online, from the physical system
operation. To this aim, we adopt aMulti-Fidelity (MF) surrogate model (Forrester et al., 2007). The MF approach has
a wide range of potential applications, where we want to merge multiple sources of knowledge. On the one hand, when
a suitable but expensive simulation model is available, we may improve speed of learning by merging computer-based70

simulations relying on an simplified, but efficient, model with simulations of the more realistic, but time consuming,
model. On the other one, we may merge knowledge based on a simplified simulation model with online experiments
with the physical system. Indeed, the main contribution of the paper is the experimentation and validation of MF
surrogate models to WEC control design. We will adopt a very simple control approach, essentially based on reactive
control (Maria-Arenas et al., 2019; Ringwood et al., 2014), taking the specific sea-state occurrence into account.75

Since actual experience with a physical WEC would be prohibitive, in order to validate the approach and show its
potential, we will take a twin-model approach. We simulate both a simple linearized model of PeWEC and a nonlinear
one, which will play the role of the model and the actual physical system in operational conditions, respectively. To
add further verisimilitude to the adopted model, instead of adopting a regular wave assumption, the forces acting on the
hull have been modeled as characterized by random amplitude and phase, as presented in (Merigaud and Ringwood,80

2018). This framework is actually quite relevant when dealing with model-based control. Consider, for instance, the
selection of weights in a Model Predictive Control (MPC) approach (Faedo et al., 2017). The simulation of an MPC
strategy on a complex nonlinear system is quite expensive, and a surrogate model could become necessary for an
accurate optimization. In that case too, a MF based approach may be helpful.

Hence, the reported experience aims at more general purposes within the control design for WECs. The spe-85

cific WEC system and the specific control strategy that we adopt should be just regarded as a suitable testbed for the
application of data-driven learning of control strategies, based on MF surrogate models.
1.2. Plan of the paper

The remainder of the paper is organized as follows. In Sect. 2 the model of PeWEC is presented in its nonlinear
and linearized forms, together with the main parameters characterizing the PeWEC under study. In Sect. 3 the optimal90

control problem is presented, together with a brief description of the state-of-the-art of WEC control and the actual
control strategy adopted in PeWEC applications. In Sect. 4 the algorithm based on GPR optimization adopted in the
optimal control computation is described, while in Sect. 5 some considerations have been made to choose the proper
kernel behind this type of approach. In Sec. 6 the settings adopted in the learning experience simulations are presented,
together with the discussion of the obtained results. Finally in the conclusions section, some considerations are made95

about the proposed control strategy.
The reader will find a list of the adopted symbols in Table 2 and Table 3, regarding the Gaussian Process Regression

notation and the PeWEC device respectively.
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Figure 1: Graphical representation of the PeWEC device.

2. PeWEC Device
PeWEC is a pitching-resonant floating WEC, that is able, by means of a pendulum system, to extract energy from100

the pitching motion generated by the action that the waves exert on the hull. Other concepts of pendulum-based WECs
can be found in (Alevras et al., 2015; Yurchenko and Alevras, 2018). The main components besides the pendulum and
the floater are the Power Take-Off (PTO) and the mooring system (Pozzi et al., 2018b). The PTO and the pendulum are
responsible of the conversion process, and are enclosed in the hull, making them protected against the corrosive action
of the water, and guaranteeing an higher durability. More in particular, the pendulum hinge is connected directly to105

the shaft of the PTO itself, which is integral with the hull structure, by means of a gearbox. In this way, the oscillating
motion of the pendulum due to the pitching motion of the floater is directly converted into electrical energy by means
of the generator.

Assuming a properly designed mooring system, PeWEC can be considered to be self-orienting with respect to the
incoming wave. In this way, its main floater motions are pitch, surge and heave. Because of that, being sway, roll
and yaw negligible, they will not be considered in the formulation of the PeWEC models used in the simulations. A
schematic representation of PeWEC is presented in Fig. 1. With these assumptions, the vector of the coordinates that
describe the floater motion is formulated in (1),

Xf (t) =
[

x(t), z(t), �(t)
]T (1)

where x(t) and z(t) are the floater surge and heave, while �(t) is the rotation of the floater with respect to the inertial
axis y. Assuming the principles of linear wave theory valid, together with small floater oscillations, the equation that
regulates the floater motion is the Cummins’ one in (2),

(

M + A∞
)

Ẍf (t) + ∫

t

0
Kr

(

t − �
)

Ẋf (t)d� + Bv|Ẋf (t)|Ẋf (t) +KℎXf (t) = Fext(t) (2)

where M is the inertia matrix that takes into account of both the hull and the internal components of PeWEC, A∞is the added mass at infinity frequency, Kr is the radiation impulse response functions matrix, Kℎ is the hydrostatic
stiffness matrix, and Fext(t) are the external forces acting on the different degrees of freedom of the floater. The
coefficients Bv related to the nonlinear viscous forces has been computed by means of fully-viscous Computational
Fluid Dynamics (CFD) simulations of the PeWEC structure (Fontana et al., 2020). The convolution term and the
added mass contribution constitute the radiation forces. In particular, the convolution term may be approximated by a
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state-space representation:

∫

t

0
Kr

(

t − �
)

Ẋf (t)d� = Fr(t) ≃

{

�̇r(t) = Ar�r(t) + BrẊf (t)
Fr(t) = Cr�r(t) +DrẊf (t)

, (3)

where �r(t) is an array of additional states used to represent the convolution term Fr of the radiation forces acting
on the hull. The system state space matrices Ar, Br, Cr, and Dr have been computed in this work by means of the
Finite Order Approximation by Moment-Matching (FOAMM) toolbox (Faedo et al., 2018). The external forces Fext(t)include contributions from the wave, the mooring, and the reactions that the pendulum and PTO system discharge onto
the hull axes:

Fext(t) = Fwave(t) + Fmoor(t) + Fpend(t). (4)
In (4), the first term Fwave(t) has been computed considering the wave forces as the superposition of several sinusoidal
components that follows a JONSWAP (Joint North Sea Wave Observation Project) wave spectrum. More in particular,
considering a spectrumS�(!) ofN components and component amplitudes that follows theRandomAmplitude scheme
presented in (Merigaud and Ringwood, 2018), the wave elevation can be written as:

�(t) =
N
∑

n=1
An sin (!nt + �n), (5)

where the n-th component has frequency!n, amplitudeAn that follows aRayleigh distributionwith variance 2S�(!n)Δ!,and a random phase �n chosen following a uniform distribution between 0 and 2�. In this way, the wave force acting
on the i-th axis of the hull Fwave,i(t) is given by:

Fwavei (t) =
N
∑

n=1
|fei,n |An sin

(

!nt + �n + ∠fei,n
)

. (6)

In (6), fei,n is the excitation force n-th geometry-dependent coefficient, at frequency !n and computed with respect
to the i-th axis, by means of NEMOH Babarit and Delhommeau (2015), an open-source tool for Boundary Element
Method (BEM) computations. It is important to notice that the presence of the random contributions in the wave force
will affect the power absorbed by the PeWEC device, making its value non deterministic.
The mooring system that has been considered in this work is composed of 4 lines, each one having a contribution in
the term Fmoor(t) in (4) that has been modelled following the Quasi-static (QS) approach presented in (Paduano et al.,
2020). This has been done because of the strong influence that the mooring has on the productivity in the real systems
(Niosi et al., 2021; Paduano et al., 2021).
The force terms Fpend(t) in (6) related to the pendulum dynamics are generated by the oscillation of the pendulum
itself around the hinge, as it can be seen from the scheme in Fig.2. Defined the global, the floater and the pendulum
reference frames as , , and respectively, "(t) represents the pendulum oscillation angle with respect to the floater
axis y1 set in its center of mass (CoM), while the distance between the latter and the pendulum hinge has been defined
d, and the length of the pendulum is l. With this configuration, the equation that regulates the pendulum motion is 1:
(

Iy+ml2
)

"̈−ml cos(�+")ẍ+ml sin(�+")z̈+
(

Iy+ml2−mdl cos(")
)

�̈−mdl sin(")�̇2+mgl sin(�+")+Tctrl = 0, (7)
where Iy and m are the inertia around the baricentric axis of the pendulum mass and the mass itself, while g is the
gravity acceleration constant. The torque Tctrl is the control torque applied on the pendulum oscillation axis. In this
work, we supposed of working with an ideal PTO, able to directly exert the torque profile described by the control law
that regulates Tctrl. Under this ideal assumption, no losses that could affect the PeWEC productivity in the electrical
conversion or given by the gearbox are considered. These, in a real PTO assumption will lead to further power losses
(Sergiienko et al., 2022). Thus, the power absorbed by the PeWEC device is directly the mechanical one and it is given
in its general formulation by:

Pabs = −Tctrl"̇. (8)
1From now on, the dependence on t is dropped when clear from the context.
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Figure 2: Scheme of PeWEC device.

It is worth noting that, in (8), being the Tctrl acted at damping the pendulum motion, the power absorbed will have
negative sign. The control torque Tctrl is also related to the torque effectively generated by the PTO torque TPTO by
means of the gearbox ratio constant �gear:

TPTO =
Tctrl
�gear

. (9)

It is important to notice that, being the PTO a real generator, in the nonlinear case, it has been modelled with saturations
on the maximum torque TPTO,max and on the maximum power PPTO,max. Having described the pendulum dynamics,
the pendulum forces Fpend acting on the hull can be defined as:

Fpend,x = −md cos(�)�̈ − ml cos(� + ")
(

�̈ + "̈
)

+ md sin(�)�̇2 − ml sin(� + ")
(

�̇ + "̇
)2

Fpend,z = +md sin(�)�̈ − ml sin(� + ")
(

�̈ + "̈
)

+ md cos(�)�̇2 − ml cos(� + ")
(

�̇ + "̇
)2

Fpend,� = Tctrl + Fpend,xd cos(�) − Fpend,zd sin(�)

(10)

It is important to highlight that the whole model of the PeWEC device has been extensively validated in (Pozzi et al.,
2018b) and (Pozzi et al., 2017). As it is possible to notice, the equations that regulates the PeWEC dynamics are char-
acterized by several nonlinearities. This type of models are not suitable for control applications, being computationally
expensive and time consuming. For this reason, a Jacobian linearized version is often adopted for control purposes.
In the PeWEC case, the linearization assumes small oscillations around the pitch and the pendulum axis, i.e. � ≃ 0
and " ≃ 0. With this type of assumptions, considering a state vector Xtot = [x, z, �, "]T the system equations can be
reduced in a matrix form to:

MtotẌtot + BtotẊtot +KtotXtot + Fr,tot(Ẋtot, �r) = Fext,tot, (11)
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where the total inertiaMtot, the total damping Btot and the total stiffness Ktot matrices are respectively:2

Mtot =

⎡

⎢

⎢

⎢

⎢

⎣

Mx,x + A∞x,x
0 A∞x,�

+ m(d − l) −ml
0 Mz,z + A∞z,z

0 0
A∞�,x

+ m(d − l) 0 M�,� + A∞�,�
− 2mdl Iy + ml2 − mdl

−ml 0 Iy + ml2 − mdl Iy + ml2

⎤

⎥

⎥

⎥

⎥

⎦

, (12)

Btot =

⎡

⎢

⎢

⎢

⎣

Bv,linx,x 0 0 0
0 0 0 0
0 0 Bv,lin�,� 0
0 0 0 0

⎤

⎥

⎥

⎥

⎦

, (13)

Ktot =

⎡

⎢

⎢

⎢

⎣

0 0 0 0
0 Kℎz,z 0 0
0 0 Kℎ�,� − mg(d − l) mgl
0 0 mgl mgl

⎤

⎥

⎥

⎥

⎦

, (14)

where in (13) the terms Bv,linx,x and Bv,lin�,� are viscous parameters obtained by the linearization of the nonlinear
viscous terms. The force contributions Fr,tot(Ẋtot, �r) and Fext,tot are respectively:

Fr,tot(Ẋtot, �r) =
[

Fr
0

]

, (15)

Fext,tot =
[

Fwave
−Tctrl

]

. (16)

As it is possible to notice from the previous equations, in the linearized version of the PeWEC model the mooring
contribution is approximated for the sake of simplicity. We introduce this last linear version of the PeWEC model to110

present a model with lower accuracy with respect to the nonlinear one. This enable us to include the data coming from
this computationally efficient model (in which the nonlinearities are approximated, and they are acting like an wrongly
modelled behaviour of the real system, represented in our case study by the nonlinear model) as an incomplete and
partially wrong knowledge of the system. The low-fidelity data are going to be produced offline and used by the strategy
before starting the real learning process that is going to be performed online (and simulated on the nonlinear model in115

this work). It is also important to highlight that the linearized model is not used to perform power assessment. In fact,
the nonlinear model is adopted to compute the real power in the control test. The only way in which the linearized
model has been adopted is to produce approximated data used to speed up the convergence, by means of the multi-
fidelity kriging approach able to deal with data with low fidelity (from the linearized model) and with higher fidelity
(the real ones, represented in this case by the nonlinear simulations results) at the same time. The same approach could120

be adopted in a real world setting by substituting the previous ’wrong knowledge’, played by the linear model, with
data coming from models with higher fidelity, and next using experimental data coming from the real WEC as the
source of highest fidelity data.
2.1. Case of study

We considered a PeWEC device with main characteristics defined in Tab. 1, coming from the previous works125

(Sirigu et al., 2020; Carapellese et al., 2021). This device has been designed to have a resonance frequency around 6
[s], as it can be seen from the ResponseAmplitudeOperator (RAO) in Fig. 3 allowing it to work effectivelywhen placed
in climates similar to the Mediterranean one. For this reason, we decided to simulate the effectiveness of the proposed
control strategy adopting as site of deployment Alghero, in Sardinia, Italy. The data regarding the occurrences of
the different sea-states have been taken from the data-set of RON (Rete Ondametrica Nazionale) on the Linked ISPRA130

website. A graphical representation of the percentage of occurrences in Alghero can be seen in Fig. 4. This percentage
2The notationMi,j is related to theM contribution of the j-th axis on the i-th one. The same is valid for A∞ and Kℎ.
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Table 1
Adopted PeWEC device: main characteristics.

Symbol Quantity Value

Lf Floater Length 14.8 [m]
Wf Floater Width 22.5 [m]
Hf Floater Height 7.4 [m]
Rf Floater Radius 7.4 [m]
Df Floater Draft 4.8 [m]
Mf Floater Mass 1120000 [kg]
npend Number of Pendulums 1
m Pendulum Mass 71700 [kg]
l Pendulum Length 2.4 [m]
d Distance between Hinge and Hull CoM 2.5 [m]
Iy Pendulum Inertia around y Axis 5100 [kgm2]

TPTO,max PTO Maximum Torque 38 [kNm]
PPTO,max PTO Maximum Power 1000 [kW]
�gear Gearbox Ratio 30

Figure 3: Response Amplitude Operator of pitch degree of freedom.

of occurrences corresponds to a probability distribution that was used to generate a month-long succession of sea states.
Each sea state was assumed to last 30 minutes. This type of succession was then adopted to test the learning process
that the proposed strategy is able to implement.

3. The Optimal Control Problem135

In order to make PeWEC, and other WEC devices in general, feasible from an economic point of view, one of
the fundamental problems to be solved is the development of a suitable control strategy (Ringwood, 2020). In fact,
the control systems for WEC applications are responsible for the process of maximization of the absorbed energy,
while also adapting to the different wave conditions that could occur in an environment like the sea or the ocean. A
classical approach to do that in the unconstrained case is the so-called impedance-matching principle (Faedo et al.,140

2022). Moreover, a key factor for the reduction of the cost of energy is the minimization of human intervention for
maintenance purposes, since WECs are usually placed offshore. For this reason, one of the aims of the suitable control
strategy to be employed should be to avoid exceeding the structural limits imposed by the internal components ofWECs.
As it can be seen from the above objectives, the optimization process leading to the calculation of the optimal control

First Author et al.: Preprint submitted to Elsevier Page 7 of 27
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action is a constrained optimization process, commonly called WEC Optimal Control Problem (OCP) (Faedo et al.,145

2017). Models of the system are usually adopted to solve the OCP. By assuming that the adopted model is close to the
real system behaviour and by means of model-based solutions, it is easier to compute directly the control force/torque
to be employed. In wave energy field, different model-based optimal control strategies have been developed. Among
them, the most popular are: model predictive control (MPC) (Li and Belmont, 2014; Hals, Falnes and Moan, 2011),
moment-based control (Faedo et al., 2021b,a), spectral and pseudo-spectral methods (Garcia-Violini and Ringwood,150

2021), and energy-maximizing linear time invariant controller (LiTe-Con)(Garcia-Violini et al., 2020; Carapellese
et al., 2022). The control-oriented model adopted for in this type of optimization is a trade-off between the accuracy of
system description, and the low complexity for optimality computation in real-time. As a result, the model adopted to
describe the behaviour of the WECs to be controlled is characterized by a certain degree of inaccuracy and uncertainty
(Ringwood et al., 2020). This type of problem can be solved by adopting a robust control approach (Garcia-Violini155

and Ringwood, 2021) or by pursuing a model-free strategy. In WEC control different model-free solution have been
adopted, like extremum-seeking control (Parrinello et al., 2020; Garcia-Rosa et al., 2012; Moens de Hase et al., 2021),
reinforcement learning (Anderlini et al., 2016, 2018, 2020; Zou et al., 2022), or neural-network control (Anderlini
et al., 2017; Pasta et al., 2021a). It is worth noting that the work in Anderlini et al. (2020) offers a first example of
using prior knowledge of a system model in a model-free control context. More in particular, the authors adopted160

a previously developed MPC based on a linear model of the system to accelerate the learning of a control based on
reinforcement learning, avoiding also unpredictable WEC behaviour during the initial learning stage.

As stated before, the main objective of the control system in the WEC applications is the maximization of the
energy extracted over a certain time interval  = [a, b] ⊂ ℝ+. Having defined the instantaneous absorbed power Pabsas in Eq. (8) in its general formulation, the control objective  may be formulated as:


(

Tctrl
)

= 1
L ∫

Tctrl(�) "̇(�) d�, (17)

where L = b − a. The optimization process performed in the computation of the optimal control action is subject
to the constraints that may be necessary to enforce on the device motion or on the control input, like the bound on the
control action TPTO,max in the case of PeWEC. Hence, the optimal control action becomes the solution of the OCP:

T opt
ctrl = argmaxTctrl

{


(

TPTO
) s.t. : WEC dynamics, Motion and input constraints} . (18)

The control strategy is responsible to solve such an optimization problem.
In the PeWEC application case, even if some initial attempts have been performed tomove towards an optimization-

based solution of the OCP (Pasta et al., 2021b), the current control strategy is the so-called reactive control (Maria-
Arenas et al., 2019; Ringwood et al., 2014). The law adopted in this type of configuration is a feedback control law, in

0 5 10
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Figure 4: Occurrences scatter of the Alghero site (from RON data-set found on Linked ISPRA website).
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which the control action is a linear combination of velocity and position on the conversion axis. In the PeWEC case
this becomes:

Tctrl = C"̇ +K", (19)
where the parameters C and K behave like a damping and stiffness contributions respectively. In real conditions,
the constraints on the control action are not directly implemented with this type of simple control. For this reason,
the torque Tctrl is saturated when it exceeds the maximum allowed value. The optimal pair of parameters (C,K) is
computed for each sea state by means of simulations that use the linear version of the PeWEC, checking a posteriori if
the TPTO exceeds the constraint, and discarding the control configurations that do not respect this bound. In particular,
the chosen parameters for each sea-state are computed bymeans of a genetic algorithm aimed at maximizing theAnnual
Energy Production (AEP):

AEP = 3600 ⋅ 24 ⋅ 365
100

Nw
∑

w=1
Occ%wPabsw (Cw, Kw), (20)

where w is the index spanning the Nw sea-states with non-zero occurrence percentage Occ%w , while Pabsw (Cw, Kw)is the average absorbed power in that wave condition when the control configuration (Cw, Kw) is applied. It is worth165

noting that also in the genetic optimization of the (Cw, Kw) parameters for each sea-state, the pair of damping and
stiffness that lead to constraints violation are discarded. This optimization is based on the linear version of the PeWEC
model to avoid overly long optimization times.

4. Optimization based on Gaussian process regression
Surrogate models are a popular solution to cope with optimization based on expensive computer simulations (For-170

rester and Keane, 2009; Jones, 2001). Their aim is to approximate a black-box function evaluated through deterministic
or stochastic simulations, relying on a limited number of points and assuming some mild hypotheses on the analyzed
phenomena. Among the widely used metamodeling (also known as surrogate model building) approaches we may
mention low-order polynomials (Kleijnen, 2015), Radial Basis Functions (RBF) (Regis and Shoemaker, 2007), and
Gaussian Process Regression (GPR), which may be considered as an extension of the Kriging approach, originally175

developed by Krige (1951) within the context of geostatistics applications. The application of GPR to a plethora of
different scientific environments is continuously evolving and widening in scope (Kleijnen, 2009); indeed, GPR has
also become a common tool in machine learning (Rasmussen and Williams, 2005). In this paper, we apply GPR
metamodels to optimize the parameters of the control strategy of PeWEC.

Global optimization of black-box functions relies on metamodels (surrogate models) in different ways that differ180

with respect to both the specific kind of response surface adopted and the strategy to select search points in an effective
way, to learn while keeping the computational effort to a reasonable level. A famous taxonomy of existing approaches
was provided in Jones (2001); see also Forrester and Keane (2009) and Forrester et al. (2008) for a more recent and
practical guide.

In order to outline our control approach, we first describe a simple GPR Bayesian approach, following the function-185

space oriented notation of Rasmussen and Williams (2005), in order to provide a glimpse of how the selected method
accomplishes regression and prediction tasks.3 Then we will present a generalization based on Multi-Fidelity (MF)
data (also known as co-kriging), based on Forrester et al. (2007). This approach, referred to as MF-GPR, will be
useful to exploit the simplified version of the system model when less common sea-states are encountered. Lastly, we
will introduce the optimization framework, based on Forrester and Keane (2009) and Jones et al. (1998), that will be190

implemented with both GPR and MF-GPR metamodels.
4.1. Gaussian Process Regression

Let us consider a set of n joint observations
 = {(xi, yi) ∶ i = 1,… , n}. (21)

3Several different perspectives are possible to deal with GPR methodologies. This notation has been selected because the MATLAB imple-
mentation of GPR in the Statistics and Machine Learning Toolbox, which has been extensively used and adapted for the experiments of this project,
follows this reference.
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of the extracted power yi for a set of control parameter settings xi ∈ ℝd . In our specific case study, d = 2 and each xidenotes a pair of control parameters (C,K), for a proportional-derivative control. However, the idea is more general
and the d parameters could be the coefficients of a functional to be optimized within a Model Predictive Control
strategy. We aim to infer a (meta-)model F (x), where we assume that the observed amounts of extracted power are
random variables with a jointly Gaussian distribution. Formally, we assume that the nonlinear model of PeWEC will
generate a sample of noisy responses, the extracted power, according to a data-generating process like

Y (x) = F (x) + �, � ∼ N(0, �), (22)
where Y (x) is the random variable underlying the observations yi, whereas F (x) is a Gaussian process defined as

F (x) ∼ GP(m(x), k(x, x′)), (23)
which is completely characterized by the mean function

m(x) = E[F (x)], (24)
and the covariance function

k(x, x′) = E[(F (x) − m(x))(F (x′) − m(x′))]. (25)
The essential idea behind Gaussian processes is that any sample of observations xi, i = 1,… , n, has a joint normal
distribution with expected values m(xi) and a covariance matrix with entries k(xi, xj), i, j = 1,… , n. Specific assump-
tions on m(x) lead to different flavors of kriging, i.e., ordinary or universal kriging. Ordinary kriging relies on a fixed195

(deterministic) mean function m(x) = �, typically estimated through maximum likelihood, whereas in the universal
version a regression model is built for the mean function. This distinction is well discussed in Kleijnen (2009) and For-
rester and Keane (2009) from a viewpoint based on maximum likelihood estimation, and in Rasmussen and Williams
(2005) from a Bayesian point of view. Given the lack of useful prior information, we will consider only the ordinary
version. It is important to realize that the assumption of a constant mean is not a limitation, as predictions of a new200

value is actually dependent on the covariance function, which expresses the relationship between observations taken
for similar values of x.

The covariance function in classical kriging is

k(x, x′) = �2 exp
(

−
d
∑

l=1

|xl − x′l|
pl

�l

)

, (26)

where each of the d components of x is associated with a scale parameter �l and an exponent pl, whereas � is related
with the variance of the target variable. Such a large number of parameters makes the approach quite flexible, but
calls for possibly difficult estimation procedures. Moreover, in engineering applications we may assume smoothness205

properties that are not guaranteed by every parameter setting. An alternative approach is common in kernel-based
machine learning methods, and relies on kernel functions (Rasmussen and Williams, 2005; Stein, 1999).

In this paper, we experiment with the following three kernels:
1. The squared exponential kernel

k(x, x′) = �2 exp
(

−
(x − x′)2
2�

)

. (27)
2. The Matérn52 kernel

k(x, x′) = �2
(

1 +

√

5r
�

+ 5r2

3�2

)

exp

(

−

√

5r
�

)

, r = ‖x − x′‖. (28)

3. The ARD-Matérn52 kernel

k(x, x′) = �2
(

1 +
√

5r + 5r
2

3

)

exp
(

−
√

5r
)

, r =

√

√

√

√

d
∑

l=1

(xl − x′l)
2

�l
, (29)

where ARD stands for Automatic Relevance Determination and entails a separate length scale �l for each vari-
able.210

First Author et al.: Preprint submitted to Elsevier Page 10 of 27



Data-driven GPR control of PeWEC

The first kernel consists of an infinitely differentiable radial basis function, and a very regular metamodel is obtained
as a consequence. This kernel is the simplest version of the classical kriging, where the scale parameter � is the same
for each space direction and the exponent is fixed. A possible objection against such a simple kernel is that it implicitly
assumes strong and possibly unrealistic hypotheses about the underlying physical phenomena. As an alternative, the
use of of theMatérn family is proposed, e.g., in Stein (1999). Wewill compare the performance of the three alternatives215

in Section 5.
Given a structure for the covariance function, let us consider how the set of observations (21) can be used to predict

performance. For a given kernel, we may consider the joint distribution of variables Yp and Yq , with covariance
cov(Yp, Yq) = k(xp, xq) + �2�pq . (30)

Here �pq is a Kronecker delta that takes into account a Gaussian noise, assumed independent identically distributed
with a standard deviation �, estimated by maximum likelihood and representative of the noise magnitude.

Let us collect the responses into the random vector Y (y when observed) and the control settings into matrix
 = [x1,… , xn]. Then we have

cov(Y) = ( ,) + �In, (31)
where In is the n × n identity matrix and  is an operator associated with the selected Kernel function, such that
 ∶ ℝd×n ×ℝd×n → Sn++, where Sn++ denotes the space of the n× n symmetric positive definite matrices.4 Practically220

speaking, this boils down to the covariance matrix itself.
Denoting by fi = f (xi) the observed values of the Gaussian process (differing from y because the noise is sub-

tracted) and assuming m(x) = 0 at this stage, when we have to predict a new value corresponding to a control setting
x∗, we arrive at the Gaussian process regression core

[

y
F∗

]

∼
(

0,
[

( ,) + �In ( , x∗)
(x∗,) k(x∗, x∗)

])

. (32)

Notice that k(x∗, x∗) is a scalar value, whereas (x∗,), with a slight abuse of notation, returns a vector in ℝd .
Moreover, F∗ is now a random variable associated with the value of interest f ∗, i.e., the prediction corresponding to
x∗.

The multivariate Gaussian random variable has a well-known analytical formula for the distribution of a subset
of variables, conditional on the realization of the remaining ones [a clear explanation is reported in (Rasmussen and
Williams, 2005, Appendix A.2)]. By applying this formula, it is possible to retrieve the prediction of the model as

F∗|x∗, , y ∼ ((x∗,)[( ,) + �In]−1y,
k(x∗, x∗) −(x∗,)[( ,) + �In]−1( , x∗).

(33)

Hence, the required prediction is obtained as the mean value of F∗:
f̄ ∗ = (x∗,)[( ,) + �In]−1y. (34)

Incorporating a fixed mean function m(x) = �, estimated by maximizing the log-likelihood function, the predictive
mean becomes

f̄ ∗ = � +(x∗,)[( ,) + �In]−1(y − 1�), (35)
where 1 = [1,… , 1]T ∈ ℝn. Besides the mean, the prediction of the model in (33) provides the covariance of f ∗.225

This further value is related to one of the key advantages of the GPR, namely an analytical estimation of the errors
associated with the Gaussian hypothesis.

4The positive definiteness and the symmetry of this matrix depends on the kernel function. If the latter is radial and strictly positive definite,
these two properties, required for a covariance matrix, are fulfilled. The Bochner’s theorem and the Schoenberg’s one ensure this conditions for our
selected kernels. For further details we refer to Fasshauer (2007).
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4.2. Multi-Fidelity GPR
In our case study, we have two different levels of accuracy of the data, namely a linear and a nonlinear one. Let

us consider two families of nl and nnl observations l and nl, linear and nonlinear respectively, and let us rename the
observation matrix, collecting control settings, and the corresponding responses as

 = (l,nl), y = (yl, ynl). (36)
The typical assumption on multi-fidelity model can be traced back to Kennedy and O’Hagan (1998), who consider an
auto-regressive model driven by a scaling factor � estimated by maximizing the log-likelihood.230

If we denote by Fl and Fnl the Gaussian processes that represent the local features of the linear and nonlinear
models, respectively, according to (23), we may combine the models by using the autoregressive-like process

Fnl(x) = �Fl(x) + FΔ(x), (37)
where FΔ(x) represents the process of the differences between �Fl and Fnl. This model assumes that:

• The control designs evaluated by the nonlinear model are a subset of those evaluated by the linear model5, i.e.,
nl ⊆ l.

• If we have the nonlinear observations for a given configuration, no more information can be extracted about
them from the corresponding linear. Thus,

cov(Yl(x), Ynl(x)|Ynl(x)) = 0. (38)

Let us adopt a different kernel for each fidelity l and nl and also different noise terms �l, �nl respectively. We will
now have a new covariance matrix C ∈ S(nl+nnl)++ , similar to when we deal with a single model, that we can introduce
by its blocks:

cov(Yl(l),Yl(l)) = l(l,l) (39)
cov(Ynl(nl),Yl(l)) = �l(nl,l) (40)
cov(Ynl(nl),Ynl(nl)) = �2l(nl,nl) +nl(nl,nl) (41)

from which we obtain

C( ,) + � =

⎡

⎢

⎢

⎢

⎢

⎣

l(l,l) + �lInl �l(l,nl) + �l

(

0nl−nnl×nnl
Innl

)

�l(nl,l) + �l
(

0nnl×nl−nnl Innl
)

[

�2(l(nl,nl) + �lInl )
+ (nl(nl,nl) + �nlInnl )

]

⎤

⎥

⎥

⎥

⎥

⎦

. (42)

Following the same structure of the single-fidelity case, the predictor will now be
f̄ ∗ = � + C(x∗,)[C( ,) + �]−1(y − 1�). (43)

A deeper explanation of the analytical steps and the properties of the kernel matrix C is not presented here for the sake
of brevity, and the interested readers are referred to Forrester et al. (2007).235

4.3. The optimization framework
The general framework that is typically adopted for the surrogate optimization can be divided in the following

steps:
Step 1. Some initial points on the control space are selected to provide an explorative view. This step is based on a

initial sampling strategy where the only available information is the problem domain.240

Step 2. The initial surrogate model is built by using the initial points and the selected metamodel features.
5If the data do not satisfy this condition, it can be tackled by using kriging estimates to complete the structure.
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Step 3. One or more new points are selected according to an acquisition strategy that exploits all the points of the
surrogate model involved so far and the current model features.

Step 4. The simulation is run on the selected points, obtaining new observations that are used to update the surrogate
model. The new surrogate model is estimated on the basis of all of the previous observations and the new245

one/ones.
Step 5. The procedure is iterated from Step 3. until an exit criterion (typically a time constraint) is reached.
The first matter that must be clarified concerns the acquisition strategy. As previously mentioned, we will follow Jones
et al. (1998), whose Efficient Global Optimization (EGO) algorithm exploits Gaussian Process Regression, providing
an automated balancing of exploration and exploitation in the search of the new point to be evaluated, avoiding the
local minima that may be generated by a pure exploration strategy. The idea relies on selecting the point with the
highest expected improvement with respect to the available information about the Gaussian Process. More specifically,
assuming a standard minimization problem,6 we can predict the response for a point x∗ in our metamodel by f̄ ∗ and
our setting will also provide an associated standard deviation s∗ of the predictor based on the Gaussian assumptions.
If we introduce a new random variable

I(x) = ymin − Y (x) (44)
that models the improvement with regards to our actual observed minimum ymin, by exploiting the Gaussian assump-
tion, the expected improvement of a selected x∗ will be

E[I(x∗)] =
{

(ymin − f̄ ∗) Φ
(

ymin−f̄∗

s∗

)

+ s �
(

ymin−f̄∗

s∗

)

s∗ > 0

0 s∗ = 0
, (45)

where Φ and � are the cumulative and probability density functions of the Gaussian distribution, respectively.
Regarding the initial sampling, we have adopted Latin Hypercube Sampling (LHS) in two flavors. When we

consider a single fidelity environment, LHS is used in their common form, but, when two fidelities are available, the250

sampled points of the nonlinear fidelity model will be a subset of the linear one and they will be selected according to
the Morris and Mitchell criterion. A deep explanation of these methods is available in Forrester et al. (2008).

The exit criterion, when we compute expensive simulations or real data, is typically forced by the time or the avail-
ability. Although it is possible to set a tolerance after which the improvement is small enough and meets a satisfaction
criterion, we will perform as many iterations as we can within a reasonable computational budget.255

5. Kernel selection
As we have already mentioned, kernels will be the main players in the regression approach, as they incorporate

our prior assumptions on the smoothness of the metamodel that describes the PeWEC power extraction with respect
to different control designs. There is a huge number of possible kernels and it is also possible to generate more kernels
from existing ones by some specific operations that maintain their required characteristics (Rasmussen and Williams,260

2005). We compare here the three alternatives described in Sect. 4.1. It is possible to test other kernels with the same
methodology and framework, and it is important to test their sensibility with respect to the properties of the PeWEC
device and to understand the effect of the alternative choices. The single or multiple dimensions scale parameters are
estimated by maximizing the log-likelihood; thus, the potential advantages of a larger number of degrees of freedom
is compensated by increasing optimization difficulties.265

5.1. Single sea state example
In order to get a grasp of the effects of kernel selection, let us consider a single sea state w characterized by the

following parameters: Hs = 1.5, Te = 3.5, 30 minutes of power evaluation time. The number of points needed
to find a reasonable surface are a subject of discussion. We refer to Loeppky, Sacks and Welch (2009) for different
experiments on simple kriging, where n = 20 is suggested as suitable choice. Our kernels are different from the270

original methodology, but this number is also bounded by the time needed to carry out the system simulations and it
turns to be a sensible one in our setup too.

6In our problem we seek to extract as much power as possible, thus we minimize the negative value of the extracted power.
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(a) (b)

(c)

Figure 5: Gaussian Process Regression of Linear and Non Linear metamodel with different Kernels (Hs = 1.5 [m],Te = 3.5
[s]).

Our problem involves noisy surfaces for the nonlinear model, whereas the linear one is assumed to be noise-
free. This assumption identifies the two kernel settings for the linear and nonlinear model respectively. They will be
practically the same, except that no noise is modelled for the linear one, thus we force � ≃ 0 in (32).7 The tuning of275

these kind of hyperparameters is a recurring question in machine learning applications and a deeper discussion on this
aspect for PeWEC will be presented in the Sect. 6.

For both the linear and the nonlinear models, we fit their associated metamodel with the same set of 20 simulated
points for all of the kernels. The algorithm will be the GPR, whereas the MF-GPR will become a main player in Sect.
6. The regressions have been performed in MATLAB with the Statistics and Machine Learning Toolbox, where the280

previously presented formulation is implemented.8 In Fig.7, the plot of the different kernel results are shown and we
notice several clear differences between the metamodels. More specifically, a higher dissimilarity is visible among
regressions with the nonlinear simulation model, displayed in red, as is expected because of the noise. On the other
hand, the predictions for the linear simulation model, displayed in green, tend to maintain their shape throughout the

7When no noise is modelled, this value is set to a small positive number to avoid heavily ill-conditioned covariance matrices by a regularization
effect.

8Different implementations of the Gaussian Process Regression algorithm can generate different results (Erickson, Ankenman and Sanchez,
2018). In the description of the methods, we have described a specific algorithm that fits the software implementation.

First Author et al.: Preprint submitted to Elsevier Page 14 of 27



Data-driven GPR control of PeWEC

Figure 6: Box-Plot of the maximum of the Prediction Error Standardized for each kernel

experiments.285

5.2. Kernel selection
Armed with an intuitive and graphical feeling for the impact of kernel choice on modeling in a single sea state,

the next question is how to select the right one. In order to evaluate the fitting properties of regression models, one
of the widely adopted strategies in machine learning is cross-validation, possibly the Leave One Out Cross Validation
(LOO-CV) version. Specifically for GPR models, we can adopt a particular form that takes into account the analytical290

estimation of the prediction of the variance (Kleijnen and Beers, 2019).
Let us define the Prediction Error Standardized (PES)

PESi =
yi − f̄−i

s−i
, i = {1,… , n}, (46)

where yi is the actual extracted power when applying the control setting xi, f̄−i is the prediction of xi by the metamodel
built with n−1 observations, leaving out of the sample the i-th observation, with associated estimated standard deviation
of s−i based on the Gaussian assumptions.

The reader should not be tempted to use these raw values as performance indicators, since they are statistically
dependent, because they use common data. A ready-to-use solution relies their distribution of maximum. For each sea
state w and for each Kernel � we consider

p(w, �) = max
i=1,…n

|PES�i |, (47)
where the set of indices i = 1,… , n depends on sea state w and identifies the set of observations for that specific sea295

state.
In Fig.6, we show some descriptive statistics based on box-plots of (�) =

{

p(w, �),∀w s.t. Occ%w ≠ 0
}

, that
represent the set of the maximum values for each kernel, for all of the available sea states. We may observe that the best
kernel, among the three we consider, is Matérn52, since its empirical distribution of the maximum errors has lower
statistics on the sea states. It must be also remarked that its ARD version, even though more flexible, provides really300

high maximum LOO-CV errors. This could be due to issues in the estimation of the parameters �j , j ∈ 1,… , d. For
the rest of this work we will use only the best kernel according these performance measures. Needless to say, there
is room for further and deeper research on alternative kernels, but our aim is just to assess the value of the overall
methodology.
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6. Design of the learning experiment305

After the specification of the GPR surrogate modeling appproach, we can introduce our control data-driven opti-
mization for PeWEC. In Sect. 6.1 we test the convergence properties of the proposed strategy to the analytical optimal
parameters, testing the strategy under regular wave and linear model conditions. In Sect. 6.2 we will study the perfor-
mance of the optimization itself by assuming a mild limitation on the number of observations per sea state. In Sect.
6.3, on the contrary, we will discuss a more realistic experiment and the suggested methodology, when the observed310

sea states are determined by their occurrence distribution, with no ad hoc selection aimed to explore all the sea state
space uniformly, starting with very little information and exploiting the MF-GPR approach.
6.1. Preliminary convergence analysis of a linear model under regular wave conditions

The first experiment that we perform aims at demonstrating the ability of the proposed strategy at converging to the
optimal parameters in a simpler example, maximizing the extracted power. Here we test the control of a linear model315

of the system when excited by regular waves. Under these assumptions, the optimal control parameters are those
able to ensure the impedance-matching conditions, that, for multi-DoF WEC devices like PeWEC, can be analitically
computed as shown by the authors in (Faedo et al., 2022). Fixing the same sea-state condition employed in Sect. 5.1
(e.g. Hs=1.5[m], Te=3.5[s]), we perform 20 initial explorative actions selected according to LHS. On the basis of
the information thus obtained, adopting the strategy described in Sect. 4 and selecting the Matérn52 kernel, 40 new320

control actions are chosen in the same sea-state conditions. The average power is evaluated every 30 minutes.
The results of the experiment are illustrated in Fig. 7a, 7b, and 7c, where the strategy is able to suitably converge

to the optimal parameters after 10-15 new evaluations. Moreover, as shown in Fig. 7c, around the 7-th evaluation the
expected power by the meta-model and the simulated one converge. Specifically, since the expected power is what the
surrogate model of the power forecasts, the convergence effect entails the goodness of the model itself.325

6.2. Optimization results
Let us now consider a GPR metamodel for each individual sea state, based on 20 points sampled according to LHS

and simulated with the nonlinear model. This initial set of observations comprises an explorative view of the PeWEC
behaviour with different control settingss. The idea is to perform the EGO optimization discussed in Sect. 4.3 with a
fixed number of iteration per sea state. This experiment aims to point out some peculiar characteristics of this kind of330

optimization and to prove that improvement in the extracted power is provided.
For each optimization iteration, we compute the performance through theAnnual Energy Production (AEP), assum-

ing the optimization was stopped and the PeWEC system was launched with the sea states coherent with the presented
distribution (Fig.4), operating according to the control strategy determined so far. In each loop, we add exactly one
point for each sea state according to the EGO strategy.335

To better clarify this approach, which is similar to what we use later, in Fig.8 we provide a graphical scheme of the
overall framework. In the right portion of the scheme, the base framework reflects the algorithm of Sect. 4.3, including
a new point for each sea state observation, whereas, in the left portion, we select the here-and-now optimized control
according to our current metamodel, and then we simulate the AEP. Strictly speaking, the nonlinear model will be
noisy, hence we re-assess the AEP three times for each evaluation.9340

Another quantity of interest is the expected AEP (e-AEP). In fact, we compute the AEP with the deterministic
minimum of the regressed surfaces that will differ from the noisy nonlinear simulation. This index represents the
annual productivity that would be observed if for each sea state characterizing the site in which the PeWEC device is
deployed, the control chosen by the optimization strategy is fixed and adopted for an entire year. It supplies fundamental
information on the discrepancy between what can be extracted according to the metamodel and the actual performance.345

In Fig.9 we use the following representation:
• The black stars are the three simulated AEP for each optimization iteration.
• The blue points are the e-AEP of the metamodel.
• The grey lines are the AEP of a the reactive control optimized by a genetic algorithm using the linear model and
9This approach will not be possible anymore when the simulations are not managed by us at will, but are driven by the distribution of sea state

occurrences.
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(a) (b)

(c)

Figure 7: Convergence of the proposed strategy to the optimal parameters under regular wave conditions (Hs = 1.5
[m],Te = 3.5 [s]).

Figure 8: Experiment framework. In the right side the basic Gaussian process idea is outlined. On the other hand, an
optimized simulation is step-wise provided to catch the performance improvements.

evaluated according to the nonlinear simulation model.10. These lines are three different AEP computations350

and the red one is their mean.
• The magenta line is the linear spline interpolation of the means of the simulated AEP.

10We recall that, due to the model complexity and to the time required for each simulation, the genetic algorithm is not applicable to the nonlinear
model.
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Figure 9: Optimization effect analysis on the simulated AEP and the expected AEP with a genetic control benchmark.

It is easy to note that the very first optimization loop is sufficient to outperform the Genetic benchmark, but the reader
might wonder why the optimization behaviour is not constantly increasing. Two possible answers involve:

• The discrepancy between the AEP and the e-AEP.355

• The noise of the nonlinear model.
Concerning the latter observation, the number of simulations per loop could be increased, but this is beyond of the
scope of the present analysis. The main matter that we want to discuss is the continuous shrinking of the difference
between AEP and e-AEP, showing that the optimization is somehow still learning and improving the metamodel. This
phenomenon is indeed a fundamental feature of this approach, showing how the optimization approach takes into360

account its knowledge of the real phenomena and adapts itself progressively. This peculiarity of the GPR serves well
the need for adjustments in the learning process for plants that are supposed to work for a long period of time, as we
further illustrate in the next section.

For the sake of completeness, we show the optimization effect on the single sea state analyzed in Fig.5b, where the
kernels were discussed. In Fig.10 the updated version of the metamodel is given. The old nonlinear surface is depicted365

in red, together with the LHS points, the updated nonlinear metamodel is depicted in green, and the points selected by
the EGO strategy are depicted in blue. Although some points are near the presumed optimal control, some of them are
placed quite far away, near the boundaries, with the aim of improving the regression. This result is an evidence of the
exploration–exploitation trade-off implicit in the method.

A further comment concerns the initial number of explorative points. Even if the updated overall function shape370

features visible variations, the optimal region was correctly identified on the basis of the 20 initial points.
6.3. MF-GPR control at work

In real applications, it is not possible to simulate the sea states according to the learning necessity, but we are
forced to follow the sea behaviour. Even the prior information of 20 initial nonlinear points could be excessively
restrictive. In the simulation presented here, each control action is evaluated in terms of average power absorption375

every 30 minutes. These observations are very prominent when the role of the nonlinear (expensive) simulation model
is played by real data, so that higher computational power is of no use and we need a methodology that makes the most
of the available data. A low-fidelity model, such as the linear simulation model in our setting, could help avoiding to
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Figure 10: Single sea state optimization effect on the metamodel shape and on the new point selection (Hs = 1.5
[m],Te = 3.5 [s]).

start from nowhere. As an example, in the case of a single sea state with low occurrences (Te=9.5 [s],Hs=3.5 [m]),
we show in Fig.11 the resulting metamodel by MF-GPR with 20 linear points and only 6 nonlinear ones.380

More specifically, we plot the surface obtained by 20 points resulting from simulations of the linear model, the
surface obtained by 20 simulations of the nonlinear model, and the multi-fidelity (CoKriging) with the 20 linear eval-
uations and a subset of 6 points also evaluated by the nonlinear model. What we notice is that the new metamodel is
lifted with respect to the linear regression and lies between the two.

This example considers 6 nonlinear points as the minimum achievable prior explorative information, but this value,385

especially in the real applications, is led by the data and not by a fitting strategy. Moreover, the sea states have deep
differences in their probabilities and sometimes a multi-fidelity approach is even redundant. This strategy is not meant
to deal with an equal number of linear and nonlinear simulation and, when this happens, the linear model acts as
additional noise on the regression.

The above-mentioned problem could be solved by an adaptive number of low-fidelity evaluation with respect the390

expected high-fidelity sea state control data, but this would lead to a big number of points for really common states and
to further issues with the computational cost of large scale optimization. This matter is beyond the scope of this work
and we rather prefer to bridge the initial knowledge of the Gaussian Process Regression control in the very initial phase
of a possible real application, starting from uniform initial conditions for the sea states and dynamically adjusting the
strategy taking data availability into account.395

Let us suppose an initial condition of a set of MF-GPR for each sea state made by 20 low-fidelity simulations and
only 611 high-fidelity control responses chosen according to the sampling methodology explained in Sect. 4.3. We now
simulate a time period of one month, sampling sea states from the distribution presented in Sect. 2. Each high-fidelity
extracted value will be also simulated in the low-fidelity model to fulfill the subset assumption of the auto-regressive
model. When the number of high-fidelity observations is close to the low-fidelity ones, we dynamically switch the400

MF-GPR to a GPR with only the high-fidelity points. In particular, the Regression block of Fig.8 will contain the
following sub-steps:
Step 1. If the the number of high-fidelity points is above a threshold, the GPR is performed.
Step 2. If the the number of high-fidelity points is below the threshold, the new high-fidelity control is simulated also

in the low-fidelity model to maintain the auto-regressive subset hypothesis. Then a MF-GPR is performed.405

11These assumption can be managed in respect of the data availability.
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Figure 11: Single sea state MF-GPR (Hs = 1.5 [m],Te = 3.5 [s]). In green the linear metamodel with 20 points, in blue the
nonlinear one with the same controls and in red a Co-Kriging model with only 6 nonlinear evaluation added to 20 linear
ones, represented as red bubbles.

In this specific example, we still rely on 20 high-fidelity points as a sufficient starting point for the GPR, but we remark
that now these points are not all selected according to LHS, but only 6 of them are full explorative. The metamodel
strategy will adjust itself automatically according to the exploration–exploitation trade-off. With this hypothesis, when
the MF-GPR will be substituted by the full GPR, we have:

• 20+14 = 34 low-fidelity points410

• 20 high-fidelity points ∼ 60% w.r.t. low ones
A summary of the simulation result is given in Fig.12, where the blue line is the AEP, the orange one the e-AEP, and
the grey one is the Genetic benchmark previously considered in Sect. 6.2. The AEP quantities are computed by an
average over a sliding window of length 43 across neighboring elements.12 This representation has been chosen to
deal with noise, since now we assume that the role of the nonlinear simulation model could be replaced by data, where415

controlled re-simulation is impossible. Since each evaluation corresponds to 30 minutes, the overall experiments will
consider 1344 simulations.

From the starting point to around the 400-th evaluation, we observe the AEP/e-AEP discrepancy shrinking effect
already seen in Fig. 9; after that, the optimization effect becomes clearly visible also in term of improvement in extracted
power. At the end of simulated month, the expected improvement is around 12%, even if some sea conditions have been420

observed a couple of times, due to their low occurrence probability. This consideration is observable also in Fig. 13.
There, we plot the set of regression for the discretized sea states (Fig.4), and the states with a relatively high number
of high-fidelity observations coincides with the occurrence distribution, but the MF-GPR controls are good enough to
provide good results by the AEP. However, in the lowest occurrence wave conditions, the amount of real experience is

12This number is the number of non zero sea states of the distribution matrix and it is not particularly meaningful. Similar plots are possible
with different windows.
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Figure 12: One month simulation results presented with a sliding window of length 43 of the AEP and the e-AEP. The
genetic benchmark is represented in grey.

Figure 13: Distribution of the GPR and MF-GPR models after one month of learning.

not enough to totally substitute the previous knowledge. This result suggests that, with additional experiences in those425

sea-states, the productivity could be further increased.
Some additional remarks may be addressed to the comparison of the presented strategy with respect to other data-

driven control applications in wave energy field. First of all, regarding the exploration/exploitation space of the control
action, our strategy modifies the parameters that it is trying to optimize in a continous space (each value inside the
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boundaries could potentially be applied) similarly to (Anderlini et al., 2017; Pasta et al., 2021d; Parrinello et al., 2020).430

This constitutes a difference with respect other reinforcement learning strategies applied to the WEC control problem
(Anderlini et al., 2016, 2018; Zou et al., 2022). Another difference concerns the control and averaging time steps.
The algorithm that we present works with an evaluation every 30 minutes. This may be considered less efficient than
other applications like (Zou et al., 2022), where a new control action is performed every 0.1s, or in (Anderlini et al.,
2017) where the authors design the control such that changes every 20-40s. Our choice of the time length is motivated435

by the inverse proportionality between the evaluation time when a reactive control law is applied and the variability
that the average power measure has, as well analyzed in Merigaud and Ringwood (2018). For this reason, wanting to
reduce the number of evaluations, we designed this evaluation time 30 minutes long. However, this comparison leaves
room for possible future improvements to the MF-GPR strategy, where the evaluation time steps are decreased. In the
synthesis of the data-driven control strategy, the multi-fidelity approach we introduced, allows the use of data from a440

model of the systemwith wrong parameters or evenmissing some dynamics (here played by the nonlinearities that were
approximated in the first-stage linear system). In (Anderlini et al., 2020) a step in this direction with a reinforcement
learning strategy is presented, whereas the rest of the data-driven algorithms typically rely on online data.

7. Conclusions and future work
In this work we developed a novel data-driven approach for the optimization of control parameters for a PeWEC445

device. The main contribution is given by the exploitation of data coming from a previously developed simplified
model of the system. This knowledge, affected by the uncertainties characterizing the adopted model, is used to
increase the initial learning rate when the target system is deployed. The strategy, based on the creation of a surrogate
model following the principles of GPR, requires a limited number of real experiences to adapt prior knowledge based
on an inaccurate and simplified model of the system, while also aiming at the maximization of absorbed power. As450

the simulation results show, the proposed strategy is able to permanently outperform the model-based strategy already
after about 400 evaluations. Moreover, the fidelity of the surrogate model increases during the month-long simulation,
suggesting further improvement as the learning time is extended. It must be highlighted that developing the MF-GPR
approach has a positive impact not only in speeding up the learning process, but also in enhancing the results in the
less frequent sea conditions, that are often the most energetic ones. In this way, the adoption of the proposed solution455

is able to deal with one of the main drawbacks that could characterize learning-based data-driven control in WEC
applications: the need of observing a sufficient number of occurrences of wave conditions that are not frequent enough
for a pure data-driven approach, but constitute a significant part of the energy that could potentially be extracted. The
application of this strategy could be useful in the definition of the control parameters (for the reactive control as done
in this work, or for other strategies, like the MPC one) in the initial phase of the deployment, or when an update is460

necessary due to device aging. Finally, it is worth noticing that the MF-GPR approach is suitable for, but not limited
to, an application in which the objective function is purely constituted by the average absorbed power. For this reason,
since in this work the direct constraints on the control action are not taken into account, further extensions could be
made by adding to the optimization objective, in the form of soft constraints, penalization terms on excessive control
efforts or motions, like what has been done by Pasta et al. (2021c) with another data-driven control.465
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Table 2
Notation Table GPR

GPR Symbols

i, j Observations index 1,… , n

yi and xi
Observations of the extracted power and

corresponding set of control parameter settings with d components each

 Set of n joint observations
F (x) Metamodel Gaussian function
m(x), � Mean function of the Gaussian process and its fixed estimation
k(x, x′) Array based covariance function of the Gaussian process

� Scale parameters of the kernels
Y (x),Y() Noisy extracted power process (scalar and vector format)

� Kronecker delta
� Gaussian distributed noise with standard deviation �
 Control settings into matrix form ∈ ℝd×n

( ,) Matrix based covariance function of the Gaussian process

l, nl and Δ -subscripts
Quantities related to the linear process,

the nonlinear process and their difference process

In n × n identity matrix
Sn++ Space of the n × n symmetric positive definite matrices

fi
Gaussian process observed values
with previously subtracted noise

*-superscript All the value related to a new observation or prediction
� Kernel set iterator
C Covariance matrix of the multi-fidelity process
f̄ Predicted mean according to the Gaussian process

−i-superscript Quantities computed with a reduced sample
without the i element of the original pool of observations

I(x) Random variable of the improvement
with regards to our actual observed minimum

p(w, �) Statistics of the maximum Prediction Error Standardized
for each sea state w and kernel �

s Estimated standard deviation of the prediction computed with Gaussian hypotheses
(�) Sets of the maximum values per kernel with regards to all the available sea states w
w Sea-state index of with non-zero occurrence percentage Occ%w ≠ 0
� Variance multiplier of the Gaussian process kernel
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Table 3
Notation Table PeWEC

PeWEC Symbols

t Time
Xf (t) Vector of the coordinates of the floater motion

x(t) and z(t) Floater surge and heave
�(t) Pitch rotation of the floater with respect to the inertial axis y
M Inertia matrix of both the hull and the internal components of PeWEC
A∞ Added mass at infinity frequency
Kr Radiation impulse response functions matrix
Kℎ Hydrostatic stiffness matrix

Fext(t) External forces
Fr Convolution term of the radiation forces acting on the hull
Bv Coefficients related to the nonlinear viscous forces

Ar, Br and Cr, and Dr Radiation state space matrices

Fwave(t), Fmoor(t), Fpend(t)
Contributions from the wave, the mooring and

the reactions that the pendulum and PTO system discharge onto the hull axes

�(t) Wave elevation
S�(!) Wave spectrum of N superimposed components
!n,An Frequency and amplitude of the n-th wave component
�n Random phase of the n-th wave component

fei,n
Excitation force n-th geometry-dependent coefficient,
at frequency !n computed with respect to the i-th axis

, , and  The global, the floater and the pendulum reference frames

"(t) Pendulum oscillation angle with respect
to the floater axis y1

Iy and m
The inertia around the baricentric axis of the

pendulum mass and the mass itself

C and K Damping and stiffness contributions of the reactive control
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