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Abstract
Companies are increasingly adopting decentralized manufacturing strategies to manage multiple, geographically scattered 
manufacturing centers that are characterized not only by similar types of equipment, working methods, and productions, but 
also by variable mixes and volumes. This trend also applies to additive manufacturing, a well-established technology that 
allows the flexibility and customization of production to be increased, without significantly increasing the per unit cost. Thus, 
the need arises to monitor the performance of individual centers in a structured way, and to make practical comparisons of 
such centers. However, achieving this task is not so straightforward, given the inevitable differences in the characteristics 
of manufacturing centers and their productions. This paper presents a methodology that can be used to analyze and com-
pare the production performance of a plurality of manufacturing centers from two different viewpoints: (i) quality, through 
a multivariate statistical analysis of product data concerning conformity with geometrical specifications, and (ii) process 
sustainability, with the aim of achieving a reduction in energy consumption, carbon dioxide emissions, and manufactur-
ing time, through regression models pertaining to the selected metrics. The proposed methodology can be adopted during 
regular production operations, without requiring any ad hoc experimental tests. The description of the method is supported 
by an industrial case study.

Keywords Decentralized manufacturing · Additive manufacturing · Sustainable manufacturing · Quality · Product 
specifications · Energy consumption

1 Introduction

In today’s highly competitive global marketplace, more 
and more companies of all sizes are adopting decentralized 
manufacturing solutions [1–3]. The main advantages of such 
solutions are flexibility, proximity with the customers, more 
accurate/timely information, highly customized products, 
and a greater both quantitative and qualitative adaptability 
to fluctuations in demand [4, 5]. On the other hand, decen-
tralized manufacturing suffers from some weaknesses, such 
as the need of larger capital investments to set up multiple 
production facilities, reduced exploitation of economies of 
scale, higher per unit costs, and greater complexity of the 

coordination and management of production processes than 
traditional centralized manufacturing. Nevertheless, the 
ongoing technological growth contributes to making the 
arguments in favor of decentralized manufacturing prevail 
over those against it [6]. One of the most important emerging 
technologies in the last few decades is additive manufactur-
ing (AM), a process which makes it possible to achieve high 
levels of customization, and which marks the epochal transi-
tion from the so-called “mass production” to “job produc-
tion”, also defined as “mass customization” [7].

The present research considers AM processes from the 
realistic perspective of companies that have to manage/coor-
dinate a plurality of similar, though not identical, decentral-
ized AM centers. Such centers may include, for example, 
similar types of equipment although with (i) different tech-
nological solutions (e.g., heated/cooled chambers/plates, 
deposition technology), (ii) different work parameters (e.g., 
layer thickness, infill patterns/densities, deposition rates), 
and/or (iii) different materials (for either the parts or the 
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support bases) and different feedstock suppliers [8, 9]. Addi-
tionally, AM centers manufacture product units with simi-
lar (geometrical and structural) characteristics, even though 
they may often be of different quantities and/or production 
mixes, depending on the local demand [6, 10, 11]. In such a 
scenario, a company may need to monitor and compare the 
production performance of its individual AM centers from 
multiple perspectives, including (i) the quality of the manu-
factured products, in terms of conformity with specifications, 
and (ii) the sustainability of both the products and processes. 
The former aspect refers to the ability of individual AM cent-
ers to manufacture products with the required characteristics. 
As for the latter aspect, the three (environmental, economic, 
and social) pillars of sustainable development should be con-
sidered and balanced simultaneously [12]. Among others, 
the energy efficiency of the unit processes, the cumulative 
energy demand, and the related carbon dioxide emissions, 
as well as the productivity and the financial costs, are all fac-
tors of influence that are important for comparative analyses 
concerning industrial manufacturing approaches [13].

Analyzing the quality and sustainability of the produc-
tion of decentralized AM centers may be useful for (at least) 
three practical reasons: (i) to assess the “state of health” of 
individual AM centers, (ii) to facilitate comparisons (in rela-
tive terms) between different AM centers, in order to show 
their strengths and/or weaknesses, and (iii) to stimulate the 
improvement of each AM center by identifying and shar-
ing the most successful solutions. However, conducting the 
above evaluations in a structured and rigorous way is not so 
straightforward, because of the inevitable differences that 
exist among decentralized AM centers, not only in terms 
of manufacturing equipment but also in terms of the quan-
titative characteristics (i.e., production quantity, geometric/
functional characteristics) and of the qualitative ones (i.e., 
production mix) of the production output.

1.1  Research gaps and the aim of the paper

Additive manufacturing technologies have received increas-
ing attention from both academic and industrial communities 
in the last few decades. AM processes offer the particular 
features of being able to produce components in an additive 
way by depositing material layer by layer, together with their 
digital nature. Hence, customized and complexity-for-free 
parts can be produced within a new production paradigm 
that is characterized by decentralized manufacturing, with 
different impacts on time and energy consumption from 
those of conventional industrial contexts. The technological, 
environmental, and economic outcomes resulting from the 
employment of AM processes are still fields of investigation.

On the one hand, the importance of monitoring the qual-
ity of AM processes has grown, as evidenced by the numer-
ous papers and extensive reviews on the subject [14, 15]. 

Apart from the research on the development of in situ moni-
toring systems for defect identification, numerous assess-
ments were aimed at analyzing the quality of AM produc-
tion using statistical process control techniques and process 
capability analyses. For example, Günay et al. [16] focused 
on the reproducibility issue of a polymer-based AM technol-
ogy, identified the optimal process parameters, and analyzed 
the capability of the process to achieve repeatable minimum 
deviations from the target dimensions. Udroiu and Braga 
[17] proposed a methodology for the analysis of system and 
process capabilities in a polymer-based AM technology, 
using statistical quality tools for production management 
(i.e., the Gage R&R methodology and process capability 
analysis).

Many other studies have instead focused on the sustain-
ability of AM processes, approaching this subject from dif-
ferent viewpoints, i.e., from the environmental, economic, 
and/or social perspectives. Among the many studies on this 
topic, the one by Taddese et al. [18] proposed a literature 
review of AM sustainability performance indicators based 
on product life cycle assessments. Kadir et al. [19] focused 
on the economic sustainability of AM production by propos-
ing a classification review of cost estimation models. Niaki 
et al. [20] explored the key determinants for the adoption 
of additive manufacturing, while considering the economic, 
environmental, and social motive roles in the decision-
making field. AM processes have also been assessed from 
a sustainability perspective within comparative frameworks 
involving traditional manufacturing processes. For example, 
Priarone et al. [21] compared wire arc additive manufactur-
ing (WAAM)-based integrated additive/subtractive manufac-
turing approaches with conventional machining, considering 
such metrics as the cumulative energy demand,  CO2 emis-
sions, the manufacturing time, and product cost, as well as 
the mechanical performance of the materials. Jiang et al. 
[22] focused on a comparison between laser-based additive 
manufacturing and CNC machining through an energy-based 
life cycle assessment methodology.

Therefore, although several studies have investigated 
either (i) the quality of the components made by means of 
AM or (ii) the process sustainability, a methodology that 
combines both these aspects is still lacking in the literature. 
In fact, only a few studies have assessed quality, efficiency, 
and sustainability in AM production in a combined way. 
Camposeco-Negrete [23] and Galetto et al. [24] carried out 
the optimization of quality and sustainability outputs of 
products made by means of the fused deposition modeling  
(FDM) technology, employing design of experiments (DoE)  
and statistical analyses for this purpose. A structured meth-
odology which not only combines quality- and sustainability- 
related aspects pertaining to a single AM center but which 
also enables the performance evaluation and a comprehen-
sive comparison of different decentralized AM centers is 
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needed. The present paper aims to contribute to filling this 
research gap. Quality is here assessed through a multivari-
ate statistical analysis on the conformity of different types 
of products, considering multiple quality characteristics to  
estimate the nonconforming fraction of the production out-
put of individual production centers. As far as process sus-
tainability is concerned, the environmental impact of AM 
centers is evaluated considering their energy demand and 
the related equivalent carbon dioxide emissions  (CO2) [25]. 
The latter indicator could affect both the decision-making 
and marketing strategies, considering the growing attention 
to global warming and resource depletion [26, 27]. A par-
ticular feature of the proposed analysis is that it does not 
require any ad hoc experimental tests, but is based solely  
on information collected directly during regular production 
processes. Furthermore, apart from the metrics assumed here 
for practical and explanatory purposes, the methodology 
presented in this paper can easily be extended to consider  
other economic and environmental impact categories. The 
remainder of this paper is organized in five sections. Sec-
tion 2 presents a real-life case study of a company special-
ized in the design and manufacturing of automotive tooling 
components, which are produced in several decentralized 
AM centers. The description of the proposed methodology 
focuses on the case study to exemplify its application. Sec-
tion 3 contains a quality analysis, which is based on a multi-
variate statistical approach to estimate the conformity of the 
products in each AM center. Section 4 details the analyses 
on the energy requirements, carbon dioxide emissions, and 

manufacturing times. A practical tool to synthesize quality 
and sustainability, and which results in a holistic and struc-
tured framework, is proposed in Sect. 5. The conclusions are 
summarized in Sect. 6, where the practical implications and 
limitations of the approach are specified, as well as insights 
for future research. The Appendix section provides further 
information on the achieved results to deepen the discussion.

2  Case study

A company specialized in the design and manufacturing of 
a variety of tooling solutions for the automotive industry, 
such as inspection fixtures, and production and assembly 
jigs, was considered. These kinds of products can be used 
as support tools, both for design/prototyping and in the pro-
duction/assembly phases [28]. Figure 1 shows three fixtures 
with different geometries (labeled “Part A”, “Part B”, and 
“Part C” hereafter) that were assumed as the case study for 
the purposes of this research.

These components, which are used to facilitate the correct 
positioning of bent-sheet metal automotive components dur-
ing various in-line tests and assembly operations, have overall 
dimensions of a few centimeters. The nominal volumes of the 
three fixtures are of the same order of magnitude (as detailed 
hereafter), although their precise geometries are not disclosed 
for confidentiality reasons. Each part type is characterized, 
among others, by three quality characteristics – i.e., features 
that are critical for functionality of the product [29] – with 

A.1

A.2

A.3

B.2

B.1

B.3

C.2

C.1

C.3

Part C

Part A

Part B

Fig. 1  Three fixtures used in the automotive industry as support structures during assembly and/or dimensional inspection, with their related 
quality characteristics
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the relevant specifications. The quality characteristics for part 
A are A.1, A.2, and A.3, while those for part B are B.1, B.2, 
and B.3, and those for part C are C.1, C.2, and C.3. Table 1 
collects the nominal values (NV), as well as the lower and 
upper specification limits (LSL and USL) for each quality 
characteristic. In general, the specification ranges are not 
very stringent since they are of the order of a few tenths of 
a millimeter.

Some other technical requirements that characterize the 
production of the fixtures are as follows:

• The parts must be produced with a variable production 
mix that changes according to the customers’ demands. 
For instance, a production order characterized by a few 
dozen total product units could be placed every 48 h with 
a variable mix (e.g., four type A parts, three type B parts, 
three type C parts).

• The parts do not have any particular structural property, 
as they are mainly used as baselines for the correct posi-
tioning of specific automotive components during assem-
bly/inspection operations.

• The parts, being in contact with metallic automotive 
components, should be made of a softer material to pre-
vent scratching the components themselves.

In line with the above requirements, the company decides 
to produce the fixtures by means of dedicated AM processes, 
using acrylonitrile butadiene styrene (ABS) polymeric mate-
rial. The production of the parts takes place in three different 
decentralized centers, using three different AM machines, the  
details of which are not disclosed for confidentiality reasons 
and which are here referred to as “Machine X”, “Machine Y”,  
and “Machine Z”. The three AM centers adopt the same tech-
nology, i.e., fused deposition modeling (FDM), although there  
are some equipment-related differences (e.g., concerning the 
dimension of the plate surfaces and build volumes, the cold/
heated plates, the cold/heated chambers, the extrusion-head 

purge operations). However, to ensure a certain uniformity of  
the manufactured products, all the machines are fed with fila-
ments of (namely) the same material. Moreover, two variants  
of the material are used to facilitate the manual separation of  
the support bases from the parts (after production). Similar 
process parameters are set on the three machines: e.g., the 
layer thickness is within the 180 to 200 μm range, the infill 
density is from 40 to 45%, and a “sparse” infill pattern was 
chosen. The corresponding mass of each part (i.e., net mass), 
and the additional mass of the support bases, may differ 
slightly from AM center to center, due to the inevitable dif- 
ferences between the machines and their operating parameters  
[30]. Conventionally, the gross mass is here defined as the sum  
of the net mass (of the component) and the mass of the sup-
port bases. The nominal mass values were estimated using a  
dedicated software application for each of the three machines,  
according to the geometries of the parts being manufactured.  
The production of each AM center was monitored and sam-
pled for a certain period to collect a certain number of prod-
uct units, i.e., about twenty for each part type. Table 2 con-
tains some synthetic data related to the sampled productions.  
Experienced technicians supervised the production processes  
during the data collection to verify their regular functioning 
and the absence of accidents/malfunctions or any systematic  
faults [29]. Table 2 highlights that the production of each AM  
center is organized into several jobs, each of which contains 
a certain mix of parts A, B, and C; this aspect is explained  
in more detail in Sect. 3. Furthermore, the number of units 
produced in each job may vary from machine to machine, as 
the number is related to the dimensions of the plate surface. 
For example, Machine X can produce up to twelve fixtures per  
job, about twice as many as Machine Z, while Machine Y has  
an intermediate capacity. Data concerning (i) conformity with  
the specifications (listed in Table 1) and (ii) energy and time 
consumption were collected during the job-by-job production.  
These data are used for the quality and process sustainability 
analyses in the following two sections.

Table 1  Geometric quality characteristics of the components (labeled as “Part A”, “Part B”, and “Part C” in Fig. 1)

Code Type Description NV LSL USL

Part A A.1 Dimensional External diameter of the pin (mm) 10.00 9.85 10.15
A.2 Dimensional Internal diameter of a reference hole (mm) 5.00 4.90 5.10
A.3 Form Cylindricity of the pin (mm) - - 0.15

Part B B.1 Dimensional Spacing between two reference holes (mm) 25.00 24.85 25.15
B.2 Dimensional Pin thickness considering the two opposite flat surfaces (mm) 18.50 18.35 18.65
B.3 Dimensional Pin width considering the two opposite rounded surfaces (mm) 15.00 14.88 15.12

Part C C.1 Dimensional Width of the major axis of the elliptical pin (mm) 10.00 9.88 10.12
C.2 Dimensional Width of the minor axis of the elliptical pin (mm) 5.00 4.88 5.12
C.3 Orientation Flatness of the inclined surface (mm) - - 0.16
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3  Quality analysis

In line with the general definition of quality — i.e., the 
“degree to which a set of inherent characteristics of an object 
fulfils the requirements” [31] — the quality of a generic 
manufacturing process is here understood as the “ability to 
produce products that meet the relevant specifications”. The 
case study of interest considers distinct AM centers that pro-
duce the same types of products, albeit in different quantities 
and mixes. In general, each AM center represents a unique 
combination of three factors:

• Production machines/equipment and corresponding pro-
cess parameters.

• Feedstock materials with specific characteristics.
• Operators and relevant working practices.

These factors contribute to generating variability in the 
production output, here meant as the “inability to produce 
identical production units” [29]. Variability is classified as 
“natural” when referring to a manufacturing process that 
operates regularly, that is, without anomalies that can be 
systematically ascribed to at least one of the above three 
factors (e.g., machine failures, imperfect materials, or human 
errors). In the presence of accidents or anomalies, this vari-
ability tends to increase as does the propensity to produce 
products that do not comply with the specifications [29]. 
However, this does not mean that processes governed exclu-
sively by natural variability cannot generate nonconforming 
products. In fact, this depends on how stringent the specifi-
cations are with respect to the corresponding natural vari-
ability. This section proposes a methodology to qualitatively 
assess the degree of “compatibility” of different decentral-
ized manufacturing processes with their corresponding 
productions. Scientific literature has dealt with this prob-
lem in a very extensive and in-depth manner, within the 
so-called process capability analysis [32, 33]. The proposed 

methodology is inspired by some popular approaches, 
although it has been ad hoc built with reference to the prob-
lem of interest. In detail:

1. The production of each manufacturing center is divided 
into jobs, in which product units of various types (parts 
A, B, and C) are produced simultaneously. A job can be 
defined as “an elementary production run that generates 
a ‘macro-product,’ that is given by the composition of 
product units of various types, according to the custom-
ers’ demands” [34].

2. Each part type has a plurality of quality characteristics, 
with their relevant specifications. In the case study, each 
part type has three geometric quality characteristics, 
with their respective specifications (Table 1).

3. The jobs may vary, according to the current demand, in 
terms of (i) the total number of parts and (ii) the cor-
responding assortment (subdivided into various part 
types).

4. The capacity of each AM center should be saturated 
as much as possible, job by job, to reduce the produc-
tion times and costs. However, the number of products 
that have to be manufactured in a certain job naturally 
depends on the geometric characteristics of the machine 
(e.g., on the dimension of the plate surface) and of the 
parts.

In short, the proposed methodology includes two macro-
phases, which are detailed in the following two subsections: 
(i) collection of the production data and (ii) determination 
of the quality-related data.

3.1  Collection of the production data

For convenience and economic reasons, the data collec-
tion can be carried out during regular production opera-
tions, without requiring any ad hoc experimental tests. A 

Table 2  Job-by-job sampled 
production of each AM center. 
The mix of parts produced (type 
and number) is reported for 
each job

Job Machine X Machine Y Machine Z

A B C Row tot A B C Row tot A B C Row tot

1 8 3 1 12 2 4 3 9 - - 6 6
2 3 9 - 12 8 - - 8 - - 6 6
3 - 2 10 12 3 3 3 9 2 3 1 6
4 7 - 5 12 - 4 5 9 1 3 2 6
5 3 5 3 11 4 5 - 9 3 2 1 6
6 - - - - 3 5 1 9 2 3 1 6
7 - - - - 1 - 8 9 4 2 - 6
8 - - - - - - - 5 1 - 6
9 - - - - - - - 1 4 1 6
10 - - - - - - - 1 2 3 6
Col. total 21 19 19 59 21 21 20 62 19 20 21 60
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fundamental requirement is to ensure that production takes 
place in the absence of any kind of accident/anomaly; oth-
erwise, the whole analysis will be distorted. To this aim, it 
is appropriate that technicians and operators with in-depth 
experience carefully monitor the manufacturing process dur-
ing the data collection. A job-by-job production of each AM 
center can then be carried out. Sampling continues until an 
adequate quantity of production units has been collected, 
indicatively at least fifteen/twenty units are necessary for 
each part type. This amount of data is considered acceptable 
for the proposed statistical analysis. Of course, increasing 
the number of collected units would increase the accuracy 
of the statistical analysis, but also the corresponding cost 
[29]. Table 2 shows details about the job-by-job configura-
tions related to the production carried out in the three AM 
centers considered in the case study. Machine X, which has 
the widest plate, can produce about a dozen units per job. 
On the other hand, Machine Z is in the smallest AM center 
since, having a roughly halved capacity, it requires about 
twice as many jobs to produce a similar overall output. Sub-
sequently, parts of the same type are aggregated indepen-
dently of the jobs in which they were produced at each AM 
center. This aggregation is reasonable under the assumption 
(which should be verified) that the job factor has no system-
atic effects.

Finally, the quality characteristics of each part type are 
measured. For this purpose, it is convenient to use a rela-
tively accurate measuring instrument, whose measurement 

uncertainty is negligible with respect to the variability of 
the quality characteristics that have to be measured. If this 
is not possible, the measurement uncertainty should be esti-
mated carefully, and thus could make the analysis more com-
plicated. Since parts are produced through AM processes 
based on FDM technology, the intrinsic variability of the 
dimensional quality characteristics is of the order of one-
tenth of a millimeter (Table 1). In the present case, the qual-
ity characteristics have been measured using a DEA Global 
Image coordinate measuring machine (CMM), which has a 
maximum permissible error (MPE) of 3 μm, i.e., about two 
orders of magnitude lower than the intrinsic variability of 
the measurands [35]. A measurement cycle is constructed 
for each part type and performed automatically. In order to 
obtain a more accurate estimate and to avoid possible meas-
urement errors, three replicated measurements are made for 
each quality characteristic and then aggregated considering 
the arithmetic mean. The measurement results for each AM 
center are reported in Tables 9, 10, and 11 (in Appendix 1), 
respectively.

The box plot in Fig. 2 shows that the job factor does not 
seem to determine any systematic differences in quality 
characteristic A.1, with reference to the parts produced by 
Machine X: in fact, the four boxes related to the four jobs 
overlap each other [36]. The same result can be extended 
to all the quality characteristics of all the different types of 
parts produced by any AM center, thus justifying the previ-
ous assumption.

Table 3  Mean values and covariance matrices related to the data reported in Tables 9, 10, and 11 (in Appendix 1).

Machine X 
Geometric quality 

characteristic 

Part A  Part B  Part C 

A.1 A.2 A.3  B.1 B.2 B.3  C.1 C.2 C.3 

Mean values 9.978 5.012 0.054  25.033 18.469 14.929  9.976 5.012 0.083 

Covariance 

matrix 

 A.1 A.2 A.3  B.1 B.2 B.3  C.1 C.2 C.3 

A.1 0.0032 0.0002 0.0005 B.1 0.0012 0.0005 0.0002 C.1 0.0013 0.0005 0.0000 

A.2 0.0002 0.0023 0.0003 B.2 0.0005 0.0012 0.0003 C.2 0.0005 0.0008 0.0000 

A.3 0.0005 0.0003 0.0004 B.3 0.0002 0.0003 0.0004 C.3 0.0000 0.0000 0.0008 

Machine Y 
Geometric quality 

characteristic 

Part A  Part B  Part C 

A.1 A.2 A.3  B.1 B.2 B.3  C.1 C.2 C.3 

Mean values 10.044 5.001 0.086  24.951 18.540 15.048  10.030 4.993 0.093 

Covariance 

matrix 

 A.1 A.2 A.3  B.1 B.2 B.3  C.1 C.2 C.3 

A.1 0.0020 -0.0001 0.0012 B.1 0.0028 -0.0005 -0.0007 C.1 0.0013 0.0010 -0.0003 

A.2 -0.0001 0.0027 -0.0002 B.2 -0.0005 0.0017 0.0011 C.2 0.0010 0.0017 -0.0002 

A.3 0.0012 -0.0002 0.0013 B.3 -0.0007 0.0011 0.0015 C.3 -0.0003 -0.0002 0.0012 

Machine Z 
Geometric quality 

characteristic 

Part A  Part B  Part C 

A.1 A.2 A.3  B.1 B.2 B.3  C.1 C.2 C.3 

Mean values 10.000 5.027 0.076  25.043 18.470 14.975  10.032 4.971 0.048 

Covariance 

matrix 

 A.1 A.2 A.3  B.1 B.2 B.3  C.1 C.2 C.3 

A.1 0.0021 0.0010 0.0008 B.1 0.0029 0.0002 0.0001 C.1 0.0016 0.0008 0.0007 

A.2 0.0010 0.0021 0.0004 B.2 0.0002 0.0009 0.0005 C.2 0.0008 0.0012 0.0003 

A.3 0.0008 0.0004 0.0006 B.3 0.0001 0.0005 0.0007 C.3 0.0007 0.0003 0.0014 
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3.2  Quality‑related data

The proposed analysis is based on a hypothesis that is com-
monly adopted in multivariate process capability analysis, 
i.e., that the quality characteristics related to the same prod-
uct can be modeled as correlated random variables, distrib-
uted according to a normal multivariate distribution [36–40]. 
Considering the case study, Anderson–Darling (AD) nor-
mality tests, related to the individual quality characteristics 
of each product type and AM center, do not contradict this 
hypothesis (see the data in Table 12 in Appendix 1). Using a 
sample of collected measurements, it is possible to estimate 
the parameters of the relevant normal multivariate distribu-
tions. Precisely, (i) the vector of the mean values and (ii) 
the covariance matrix of the quality characteristics can be 
estimated for each product type and AM center. Although 
the mean and covariance of the sample are unbiased estima-
tors of the mean and covariance of the process, the sample 
variance is a biased estimator of the process variance, since 
it systematically underestimates it [36]. This bias can be 
corrected through the c4 parameter — cf. Cochran’s theo-
rem [41] — which depends on the size (n) of the sample of 
measurements used to determine the sample variance and is 
available from the scientific literature [29, 42]. The unbiased 
estimates of the multivariate normal distribution parameters 
are defined in Eq. 1,

where n is the size of the sample selected to estimate the pro-
cess parameters; “ˆ” is the “hat” operator, which denotes the 
estimates of the process parameters; �̂x is the estimate of the 
mean value of the generic quality characteristic x, through 
the sample mean; sx is the standard deviation of the sample 

(1)

�̂x =

∑n

i=1
xi

n

�̂x =
sx

c4
=

1

c4
⋅

�

∑n

i=1 (xi−�x)
2

n−1

côv(x, y) =

�

∑n

i=1 (xi−�x)⋅(yi−�y)
n−1

,

which, after being corrected using the c4 parameter, provides 
an unbiased estimate of the process standard deviation of x 
(i.e., �̂x ); and côv(x, y) is the sample covariance between two 
generic quality characteristics x and y.

Returning to the case study, Table 3 lists the estimated 
mean values and covariance matrices related to the qual-
ity characteristics of each part type for each manufactur-
ing center. It is interesting to notice that the quality charac-
teristics related to the same part type are often correlated. 
For example, with reference to Machine Y, quality char-
acteristics B.1 and B.3 are negatively correlated — i.e., 
cov(B.1, B.3) = -0.0007, which corresponds to a Pearson 
correlation coefficient ρB.1, B.3 =  − 36.9% [36] — while 
quality characteristics B.2 and B.3 are positively correlated, 
i.e., cov(B.2, B.3) = 0.0011, and correspond to a Pearson 
correlation coefficient ρB.2, B.3 = 69.2%. The above param-
eters make it possible to reconstruct the normal multivariate 
distributions, which describe the quality characteristics of 
each part type for each AM center. The next step is to esti-
mate the fraction of nonconforming products (p) produced 
by the AM centers, comparing the normal multivariate dis-
tributions with the respective specifications. A preliminary 
estimate of the nonconforming fraction, from the one-and-
only-one quality characteristic perspective, can be obtained 
by integrating the univariate normal distribution of the qual-
ity characteristic with the two “tails” beyond the relevant 
specification limits (LSL and USL1). Only the right tail was 
considered for quality characteristics A.3 and C.3, which 
have one-sided specifications that are only given by USL.

Next, the overall fraction of nonconforming products 
(i.e., the fraction of parts that do not meet at least one of the 
corresponding quality characteristics) can be estimated by 
integrating the normal multivariate distribution externally 

Fig. 2  Box plot of quality char-
acteristic A.1 related to the type 
A parts produced by Machine 
X (see the data in Table 9 in 
Appendix 1)

Job 1 Job 2 Job 4 Job 5

A
.1

[m
m
]

Q(3)

Q(2) = median

Q(1)

highest datum

lowest datum

mean

1 For example, the nonconforming fraction related to quality char-
acteristic A.1 for type A parts manufactured by Machine X can be 
determined as pA.1 = P(xA.1 < LSLA.1) + P(xA.1 > USLA.1) = 0.58%.
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with respect to the hyper-rectangular region delimited by the 
specification limits of the respective quality characteristics. 
Considering the present case study, a Monte Carlo numeri-
cal integration has been carried out for each part type and 
each machine, thus generating 10,000 multivariate random 
realizations of some variables, which are compatible with 
the respective mean value vectors and covariance matrices. 
The “Calc>Random Data>Multivariate Normal Distribu-
tion” function of Minitab [43] was used for this purpose. The 
results of the integration are shown in Table 4 and Fig. 3. 
The overall nonconforming fractions of a certain AM center 
and a certain part type (e.g., A) are systematically lower than 
the sum of the nonconforming fractions related to the respec-
tive quality characteristics (e.g., pA<pA.1+pA.2+pA.3); this is 
not surprising, since the individual quality characteristics are 
not statistically independent of each other (see the covariance 
matrices in Table 3). With reference to the specific case study 
(see the data in Table 4), Machine X is in the AM center with 
the lowest nonconforming fraction values, while Machine Y 
is in the AM center with the highest ones. This result is even 
more evident when considering a synthetic indicator associ-
ated with the entire production of a certain AM center (Eq. 2),

where mi is the mass of material of the i-th part type, manu-
factured by the AM center of interest. This mass can be 
classified as net as it does not include the additional mate-
rial for the support bases or for the purge operation of the 
extrusion-head. This additional material is not taken into 
account since (i) it is not part of the finished product, (ii) it 
is destined to be scrapped, and (iii) its mass can vary sig-
nificantly, depending on the construction strategy adopted 
by each AM center (e.g., infill pattern, infill density); wi is 

(2)p =

∑

i∈{A,B,...} pi ⋅
�

wi ⋅ mi

�

∑

i∈{A,B,...}

�

wi ⋅ mi

� ,

an indicator of a portion of i-th type products for a given 
production mix (e.g., wA=1/3, wB=1/2, wC=1/6).

Equation 2 can be interpreted as a weighted sum of the 
pi values, with respect to the net masses of the products, 
related to each part type. This kind of weighting is neces- 
sary since the production mix may change from AM center to 
AM center. Additionally, p can be seen as the ratio between 
the estimated mass of the nonconforming products and the 
net total mass produced by a certain manufacturing center. 
A uniform production mix has here been considered for  
each manufacturing center: wi=1/3 ∀i∈{A, B, C}; the mi 
values are estimated as a function of the AM system and 
are reported in the last columns of Table 5. The resulting p 
values (which are shown in the last row of Table 4 and in 
the graph of Fig. 3) confirm that Machine X has the lowest 
p value, while Machine Y has the highest one. On the other 
hand, Machine Y has greater net masses (of around 10%), 
but lower masses for the support bases (around 25–30%).

The results of the quality analysis show relatively pronounced 
differences between the AM centers, in terms of dimensional 
accuracy. Since these centers manufacture similar parts using 
similar materials (Sect. 2), it is not trivial to justify these differ-
ences. They are likely attributable to the different characteris-
tics of the machines/equipment and the slightly different process 
parameters [44]. Overall, it is worth noting that the results of the 
quality analysis refer to the specific types of analyzed products, 
with their respective specifications and production mix; these 
results do not necessarily have a general validity.

4  Process sustainability analysis

The concept of sustainability of a manufacturing process 
is broad and has several practical implications, ranging 
from the need to reduce the consumption of raw materials, 

Fig. 3  Estimation of the 
nonconforming fraction of the 
production output related to the 
three AM centers at the level of 
(i) the individual quality charac-
teristics (e.g., pA.1, pA.2), (ii) the 
single parts (e.g., pA, pB, pC), 
and (iii) the overall production 
output (p)
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energy, resources, and water, to the selection of convenient 
end-of-life strategies, with the maximization of the recy-
cling/reuse of the products and/or components [45, 46]. As 
already introduced in Sect. 1, this study proposes a simpli-
fied sustainability analysis of the process, which focuses 
on the electric energy consumption and manufacturing  
time. The first metric that was chosen is the specific energy 
consumption, as it is one of the major concerns of AM 
processes [47]. The latter is closely related to process pro-
ductivity. Moreover, in addition to the metrics that can be 
measured directly in the field, the equivalent carbon dioxide  
emissions related to the electricity consumption of the AM 
centers are also estimated by assuming an average value of 
0.286 kg/kWh for EU28, according to indications of the 
European Environmental Agency [26]. The sustainability 
analysis of the process relies on the production of the sam-
ples already examined in the quality analysis (in Sect. 3). To 
implement the methodology, the following data have to be 
measured (or estimated), per each produced job (Table 2):

1. Energy consumption. The electric energy demand has to 
be monitored during the production phase, in which the 
layer-wise deposition of the material takes place, as well 
as during the preceding (i.e., setting-up/warm-up of the 
machine) and following operations (i.e., removal of the 
finished products and plate cleaning).

2. Manufacturing time. The total duration of each job has 
to be timed taking into account both the operational and 
stationary/idling modes (the manual operations should 
also be included).

3. Feedstock material flow. The material consumption has 
to be quantified by weighing the total mass of the pro-
duction output, i.e., using a weight scale with a measure-
ment uncertainty of the order of a tenth of a gram.

The total deposited mass (i.e., gross mass) is computed 
while accounting for both the net mass and the mass of the 
support structures (to be scrapped). The mass of the wasted 
material from the extrusion-head purge operation should 
also be included, although this contribution is generally neg-
ligible, compared to the previous two ones [25]. As already 
documented in Table 5, the different AM centers are char-
acterized by a certain heterogeneity of the mass needed for 
the support bases, even when considering the same types of 
manufactured parts. In general, machines that minimize the 
input/output material ratios are preferable from the sustain-
ability viewpoint. This aspect is taken into account in the 
following analysis (in Sect. 5). The data are summarized  
in Table 6. It is not surprising that the masses correspond-
ing to the three total productions are close to each other,  
since the productions themselves are also similar (see the 
row labeled “Col. sums” in Table 6). On the other hand,  
relevant differences among the AM centers can be observed, 

in terms of both total energy consumption and manufactur-
ing time (see the “Col. sums” row in Table 6).

Regardless of the AM center, some common aspects can 
be highlighted:

• Although the mix of manufactured products varies from 
job to job, the production capacity of each machine is 
almost saturated (Sect. 3).

• The different components (A, B, and C) have comparable 
volumes, support bases (Tables 1 and 5), and expected struc-
tural characteristics (e.g., material and infill pattern/density).

• Considering that the different components have z-dimensions 
(i.e., heights in the build direction) and geometrical features 
quite similar to each other, and the layer thickness for deposi-
tion is constant for each AM center, neither the total energy 
consumption (Ej) nor manufacturing time (tj) change dra-
matically from job to job.

On the basis of the above considerations, it is reasonable 
to assume the following empirical relationships for each j-th 
job of a given AM center [25]:

1. A linear relationship between Ej and Mj (the energy 
consumption and gross mass deposited in the j-th job, 
respectively), in the Ej = E0 + E1∙Mj form. In parallel, a 
similar model is assumed for  CO2 emissions.

2. A linear relationship between tj (the manufacturing time 
related to the j-th job) and Mj, in the tj = t0 + t1∙Mj form. 
The predominant contribution is expected to be that of 
the deposition time, which in turn depends on the mass 
of the material being deposited and, ultimately, on the 
product size and the relevant structural characteristics 
(e.g., infill pattern/density).

Figure 4a graphically represents the Ej values as a func-
tion of the Mj values (i.e., the gross masses) for each j-th 
job by each machine, consistently with the proposed linear  
model. Moreover, the proportional  CO2 emission values can 
be simultaneously read on the secondary axis. Applying the 
least squares method [36], a regression of the available data 
is performed, using a first-order polynomial (i.e., linear) 
model. In order to improve the accuracy of the estimation of 
the regression line parameters for each AM center, an addi-
tional job (“Addit. job” in Table 6)—with a significantly 
lower Mj value than the other jobs—is considered. Specifi-
cally, this job involves the production of a single product 
unit of type A, for the first two AM centers (Machine X 
and Machine Y), and a single unit of type C for the third 
one (Machine Z). The resulting regression lines are plotted  
in Fig. 4a, together with the equations and R2 values (i.e.,  
the coefficients of determination). The fact that the E0 (or  
CO2 0) values are negative suggests that only the contribu-
tions related to the material deposition phase (which are, 
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in turn, related to the amount of mass being deposited) are 
significant, as formally demonstrated hereafter. The R2 val-
ues, which are all larger than 97%, denote a good fit of the 
regression lines with respect to the input data. The regres-
sion output is examined by means of ANOVA (analysis of 
variance). It can be deduced, through a t test with p < 0.05, 
that the E1 terms (slope) of the various relationships are 
significant, while the E0 terms (intercept) are not. Figures 7 
and 8 (in Appendix 2) report the regression results for all 
the three AM centers. The results indicate that the error  
made by considering Ej (or CO2 j) ∝ Mj (i.e., neglecting the 
intercept, E0 or CO2 0) is statistically insignificant.

Figure 4b presents the tj values as a function of the Mj values 
(i.e., the gross masses) for each job by each machine. A good 
fit of the proposed linear model (tj = t0 + t1∙Mj) can be observed 
and statistically verified. In particular, the machine with the 
lowest regression line is Machine X, which—for a given depos-
ited mass—appears to be faster than Machine Y and Machine 
Z. The regression output is examined by means of ANOVA. 
Again, through a t test with p < 0.05, it is deduced that the t1 
terms (slope) of the various relationships are significant, while 
the t0 terms (intercept) are not. The results in Figs. 9 and 10 (in 
Appendix 2) confirm that the error made by considering tj ∝ Mj 
(i.e., neglecting the intercept, t0) is statistically insignificant. 
The regression models allow a quantitative comparison of the 
performances of the three machines to be made, with reference 
to specific productions. Additionally, these models can be use-
ful to a priori estimate the energy consumption and production 
time required for future production jobs.

5  Quality and process sustainability 
synthesis

A practical tool to synthesize the quality and sustainability anal-
yses is proposed in this Section, although the authors are aware 
that any synthesis, useful and practical as it may be, inevitably 
results in the loss of a part of the initial information [48]. Focus-
ing on process sustainability, the regression model that links the 
energy to the mass can be summarized through Eq. 3:

where the denomination esj stands for the specific energy per 
unit (gross) mass for the j-th job. The choice of accounting for 
the total energy consumption, Ej (and not the energy contribution 
related to only the material deposition), is justified by the fact that 
the other energy contributions (such as the setting-up, the heating 
phase, and the post-deposition part handling) have proved to be 
negligible. Therefore, no significant differences in the results due 
to different modeling choices are expected. An identical approach 
(which is here omitted for the sake of brevity) can be followed 
for  CO2 emissions. Moreover, the regression model that links 
time and mass can be summarized through a similar synthetic 
indicator (Eq. 4) that corresponds to the average manufacturing 
time per unit (gross) mass for a generic j-th job:

(3)esj =
Ej

Mj

,

(4)tsj =
tj

Mj
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Fig. 4  Energy consumption, Ej,  CO2 emissions, CO2 j (a), and time, tj (b), as a function of the gross mass, Mj, deposited in each j-th job by each 
of the three AM centers
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The esj and tsj indicators from the j-th job can be extended 
to the entire production (sampled for a certain machine), 
which results in the two more general indicators in Eq. 5:

Table 7 lists the resulting indicators for each of the three AM 
centers. Figure 5 plots a 2D-map that represents the position-
ing of the AM centers on the basis of the proposed synthetic 
indicators, both at the level of a single job ( esj – or CO2sj

 - and 
tsj , ∀j ) and for the whole production ( es – or CO2s – and ts ). 
Since all the indicators have a negative connotation, the most 
desirable region for AM centers within the 2D-map would be 
around the bottom-left vertex. This would imply two difficult-
to-combine requirements for AM centers: the reduction of the 
overall energy consumption and the reduction of the manufac-
turing time by increasing the mass deposition rate.

The proposed 2D-map facilitates comparisons between dif-
ferent AM centers. The correlation between a single printer 
feature, such as the cold or heated chamber/plate, the build 
chamber enclosure, and the system for controlling the posi-
tioning of the filament extruders, or even a combination of 
these features, and the part quality, energy consumption and 
 CO2 emissions, is not trivial, and has here been excluded from 
the boundaries of the assessment. This study was aimed at 

(5)es =

∑

∀j Ej
∑

∀j Mj

and ts =

∑

∀j tj
∑

∀j Mj

.

developing a general methodology to compare different pro-
duction centers (at the macro level) without focusing on the 
specific machine and its features (at the micro level). It is 
worth mentioning that the main differences could be due to 
the architecture/size of the machine, since Machine X and 
Z are commercial solutions that have already been adopted 
for an industrial production, while Machine Y is a desktop-
oriented solution. In the case study exemplified here, the fol-
lowing considerations can be made:

• Machine X has the lowest overall defectiveness (p) and 
appears to be the best choice in terms of manufacturing 
time, likely due to the higher technological level than pre-
vious generations of FDM 3D printers, such as Machine 
Z. Moreover, the relatively high production capacity 
allows the number of jobs to be reduced. Therefore, the 
overall performance is relatively good.

• Machine Y has the highest overall defectiveness (p), but a 
slightly lower specific energy consumption than Machine 
X (albeit of the same order of magnitude). The manufac-
turing time is, instead, closer to that of Machine Z, which 
is the highest one.

• Machine Z appears to be the least sustainable center, with 
reference to the case study under consideration, and it 
is represented in the top-right region of the 2D-map. It 
exploits an energy-intensive heated chamber technology 

Fig. 5.  2D-map representing 
the specific indicators listed in 
Table 7 at both an individual job 
level and the whole production 
level for each AM center
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during both preparation/setting-up and material extru-
sion/deposition. Moreover, being the machine with the 
lowest production capacity, it requires a relatively high 
number of jobs.

The two synthetic indicators in Eq. 5 can be corrected 
by no longer referring to the gross mass unit but to the net 
mass unit, thus excluding the contribution for support bases, 
according to Eq. 6:

where the Mj’ values represent the net masses of the parts 
produced in the various jobs (Table 6). The corrected indica-
tors related to the three AM centers can be represented in 
the same 2D-map (Table 8 and Fig. 6). Next, the quality and 
sustainability dimensions can be further analyzed by mak-
ing another correction, that is, by referring the energy/time 
consumption to the conforming mass unit (Eq. 7) instead of 
the generic net mass unit:

where M'j is the net mass produced in the j-th job and p 
is the previously estimated nonconforming fraction for the 
production of the machine of interest. The new synthetic 
indicators are defined as in Eq. 8:

(6)e�s =

∑

∀j Ej
∑

∀j M
�
j

and t�s =

∑

∀j tj
∑

∀j M
�
j

,

(7)M
��

j
= (1 − p) ⋅M�

j,

(8)

e
��

s
=

∑

∀j Ej

(1 − p) ⋅
∑

∀j M
�
j

=

∑

∀j Ej

∑

∀j M
��

j

and

t
��

s
=

∑

∀j tj

(1 − p) ⋅
∑

∀j M
�
j

=

∑
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∑

∀j M
��

j

.

Fig. 6.  2D-map showing the 
average synthetic indicators 
referring to the gross, net, and 
conforming net mass unit for 
each AM center
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Table 4  Estimation of the nonconforming fraction related to (i) the 
individual quality characteristics (e.g., pA.1, pA.2), (ii) the single parts 
(e.g., pA, pB, pC), and (iii) the overall production output of each AM 
center (p), based on 10,000 Monte Carlo simulations for each part 
type

Nonconforming 
fraction

Machine X Machine Y Machine Z

pA.1 0.58% 1.00% 0.13%
pA.2 1.91% 5.33% 5.92%
pA.3 0.01% 4.39% 0.19%
pA 2.47% 9.77% 6.13%
pB.1 0.04% 2.96% 2.52%
pB.2 0.05% 0.47% 0.02%
pB.3 0.68% 3.05% 0.04%
pB 0.77% 5.71% 2.58%
pC.1 0.41% 0.63% 1.63%
pC.2 0.03% 0.39% 0.46%
pC.3 0.38% 3.15% 0.19%
pC 0.82% 4.10% 2.26%
p 1.37% 6.42% 3.66%
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It can be noted that the same quantity ( M′′
j
 ) appears as the 

denominator of both indicators in Eq. 8, which corresponds to 
the estimated mass of conforming product units, i.e., excluding 
the estimated portion of products that do not meet the 

Table 5  Approximate volume 
and mass of the product unit 
(A, B, and C) and the relevant 
support bases

Part type Nominal volume Nominal mass

Machine Product unit 
(net mass)

Support bases Total (gross mass)

A 26.4  cm3 X 23.9 g 9.2 g 33.1 g
Y 26.5 g 6.1 g 32.6 g
Z 23.7 g 7.9 g 31.6 g

B 19.3  cm3 X 17.5 g 8.6 g 26.1 g
Y 19.1 g 5.3 g 24.4 g
Z 17.2 g 7.6 g 24.8 g

C 32.1  cm3 X 28.8 g 10.4 g 39.2 g
Y 32.3 g 6.6 g 38.9 g
Z 28.4 g 8.8 g 37.2 g

Table 6  Job-by-job measurements of the time, energy, and (gross and net) mass for each of the three AM centers

Job Machine X Machine Y Machine Z

tj (min) Ej (kWh) Mj (g) Mj’ (g) tj (min) Ej (kWh) Mj (g) Mj’ (g) tj (min) Ej (kWh) Mj (g) Mj’ (g)

1 1180 10.87 401.2 289.6 1690 6.52 274.0 221.8 1439 13.17 225.1 174.0
2 1010 8.74 341.4 239.4 1633 6.27 257.7 207.4 1439 13.61 220.2 169.0
3 1300 11.52 455.3 333.0 1838 7.15 284.0 230.9 1129 10.42 177.9 131.1
4 1233 11.65 436.7 321.6 1782 6.84 291.6 236.4 1236 11.81 182.9 134.1
5 1026 9.32 351.3 250.9 1537 5.92 252.1 201.5 1188 11.34 181.5 132.4
6 - - - - 1530 6.01 262.0 210.6 1203 11.60 174.9 128.8
7 - - - - 2119 8.30 352.0 292.9 1079 10.26 178.5 132.9
8 - - - - - - - - 1191 11.24 182.7 134.4
9 - - - - - - - - 1111 10.61 168.8 121.7
10 - - - - - - - - 1345 12.32 189.8 140.3
Col. sums 5749 52.10 1985.9 1434.5 12,129 47.01 1973.4 1601.5 12,360 116.38 1882.3 1398.7
Addit. job 73 0.83 33.2 23.8 138 0.57 32.7 26.8 167 1.82 36.5 27.8

Table 7  Average synthetic indicators with reference to the gross mass unit at both a job level and at a whole production level

Job Machine X Machine Y Machine Z

esj (Wh/g) CO2sj
  

(g/g)
tsj (min/g) esj (Wh/g) CO2sj

 (g/g) tsj (min/g) esj (Wh/g) CO2sj
 (g/g) tsj (min/g)

1 27.09 7.75 2.94 23.80 6.81 6.17 58.51 16.73 6.39
2 25.60 7.32 2.96 24.33 6.96 6.34 61.81 17.68 6.53
3 25.30 7.24 2.86 25.18 7.20 6.47 58.57 16.75 6.35
4 26.68 7.63 2.82 23.46 6.71 6.11 64.57 18.47 6.76
5 26.53 7.59 2.92 23.48 6.72 6.10 62.48 17.87 6.55
6 - - - 22.94 6.56 5.84 66.32 18.97 6.88
7 - - - 23.58 6.74 6.02 57.48 16.44 6.04
8 - - - - - - 61.52 17.60 6.52
9 - - - - - - 62.86 17.98 6.58
10 - - - - - - 64.91 18.56 7.09
Whole production 26.23 7.50 2.89 23.82 6.81 6.15 61.83 17.68 6.57
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specifications. On the other hand, the complementary term 
p ⋅

∑

∀j M
�

j
 corresponds to the estimated (net) mass of defective 

product units. Table 8 contains the e′′
s
, CO2

′′

s
 , and t′′

s
 indicators 

associated with each of the three AM centers. Obviously, 
e′′
s
 > e′

s
  > es , CO2

′′

s
 > CO2

′

s
  > CO2s , and t′′

s
 > t′

s
  > ts ; however, 

the differences are relatively small, as typical p values are lim-
ited to a few units in percentage terms (Table 4). The same 
results can be represented graphically by means of the 2D-map 
in Fig. 6, which shows the transition from the ( es, ts ) or ( CO2s

, ts ) values to the ( e′

s
, t′

s
 ) or ( CO2

′

s
, t′

s
 ) values, which reward the 

ability of an AM center to reduce materials for support bases, 
and the further transition to the ( e′′

s
, t′′

s
 ) or ( CO2

′′

s
 , t′′

s
 ) values, 

which reward the AM centers with the highest production 
quality.

In this case, the positioning of the AM centers is not unlike 
that of the map in Fig. 5. In particular, Machine Y– despite being 
the one with the highest p value, i.e., the highest “distance” 
between points ( e′

s
, t′

s
 ) and ( e′′

s
, t′′

s
 ) on the 2D map – continues 

to be by far the best in terms of energy consumption reduction.

6  Conclusions and outlooks

This paper proposes an operational methodology that can be 
used to compare decentralized AM centers that carry out simi-
lar job-by-job productions, in terms of the characteristics of the 
produced parts and of the production mix and quantities. The 
comparison is performed by analyzing the AM centers from  
the dual quality and process sustainability perspective. With 
reference to quality, the nonconforming fraction of each AM 
center is estimated at the levels of (i) the whole production,  
(ii) the individual product types, and (iii) the individual qual-
ity characteristics. The link between energy consumption (and 
the related equivalent carbon dioxide emissions), manufacturing 
time, and deposited mass is analyzed, with reference to process 
sustainability, through regression models and synthetic indica-
tors. The concurrent assessment of quality and sustainability is 
synthesized and graphically represented by a 2D map, which is 
based on indicators of the specific energy consumption,  CO2 
emissions, and time consumption per unit (conforming net)  
mass (i.e., excluding the material for nonconforming units and 
support bases and/or structures). By showing the strengths and 
weaknesses of the compared AM centers, the picture provided in 
the 2D-map can be used to guide possible improvement actions 

[3]. The construction of the synthetic indicators requires a  
preliminary data collection and sampling a part of the actual  
production of each AM center. It is recommended collecting 
at least fifteen/twenty units for each product type to ensure the 
results are statistically accurate. Increasing the quantity would 
improve the accuracy results, but also the times and involved 
costs [29]. Each machine production should be monitored—job 
by job—in terms of time and energy required during sampling. 
The critical quality characteristics of the sampled product units 
should then be measured. In the here presented case study, the 
dimensional quality characteristics have been measured using a 
CMM. However, the proposed methodology can be adapted to 
other typologies of quality characteristics (e.g., micro-hardness, 
surface roughness, residual stresses). It should also be mentioned 
that the suggested methodology suffers from some limitations, 
which are briefly summarized below:

• The production mix of each AM center is hypothesized to 
include products that have a similar geometry (i.e., volume, 
height) and similar constructional characteristics (i.e., type 
of material, infill pattern/density and deposition path).

• The quality characteristics of each product type are 
assumed to follow a multivariate normal distribution. 
Although this assumption is common in the scientific lit-
erature concerning process capability analysis, it should 
be verified case-by-case.

• The measurement uncertainty of the instruments (e.g., 
CMMs) used to measure the quality characteristics is 
neglected.

• Similar materials have been used in the here presented 
case study to manufacture both product units and support 
bases.

• The comparison of decentralized AM centers does not con-
sider certain costs (e.g., the energy, material and labor costs).

Thus, the present research may be extended with the aim of 
overcoming at least some of the abovementioned limitations.

Appendix 1. Extra tables on quality analysis

This section contains some other tables related to the quality 
analysis conducted in Sect. 3.

See Tables 9, 10, 11, and 12.

Table 8  Average synthetic 
indicators referring to the gross 
mass unit ( es , CO2s , and ts ), 
net mass unit ( e′

s
 , CO2

′

s
 , and t′

s
 ), 

and conforming (net) mass unit 
( e′ ′

s
 , CO2

′ ′

s
 , and t′ ′

s
 ) for each AM 

center

Machine Specific energy demand (Wh/g) Specific time (min/g) Specific  CO2 emissions (g/g)

es e
′

s
e′′
s
   ts t

′

s
t
′ ′

s
   CO2s CO2

′

s
CO2

′ ′

s
  

X 26.23 36.32 36.82 2.89 4.01 4.06 7.50 10.39 10.53
Y 23.82 29.35 31.37 6.15 7.57 8.09 6.81 8.40 8.97
Z 61.83 83.21 86.37 6.57 8.84 9.17 17.68 23.80 24.70

1006 The International Journal of Advanced Manufacturing Technology (2022) 121:993–1014



1 3

Table 10  Dimensional measurements — expressed in mm — related to 
the quality characteristics of the types A, B, and C parts produced by 
Machine Y; each value is the average of three replications performed 

using a 3D coordinate measuring machine (CMM) by DEA Global 
Image. The values in bold do not meet the relevant specification limits 
(Table 1)

Measurements of part A (mm) Measurements of part B (mm) Measurements of part C (mm)

Job Part No A.1 A.2 A.3 Job Part No B.1 B.2 B.3 Job Part No C.1 C.2 C.3

1 1 10.013 4.985 0.038 1 1 24.948 18.647 15.130 1 1 10.065 5.037 0.091
1 2 10.049 4.958 0.078 1 2 24.926 18.536 15.045 1 2 10.002 4.943 0.076
2 3 10.050 4.935 0.058 1 3 24.917 18.541 15.040 1 3 10.050 4.987 0.110
2 4 10.096 4.997 0.106 1 4 24.926 18.517 15.026 3 4 10.024 5.017 0.042
2 5 10.046 5.034 0.059 3 5 24.908 18.588 15.095 3 5 10.098 5.059 0.085
2 6 10.081 4.959 0.163 3 6 24.989 18.547 15.103 3 6 10.045 5.027 0.076
2 7 10.038 5.039 0.049 3 7 24.885 18.536 15.042 4 7 10.007 4.949 0.160
2 8 10.047 4.899 0.085 4 8 24.925 18.557 15.043 4 8 9.941 4.897 0.074
2 9 10.061 5.025 0.092 4 9 24.975 18.504 14.998 4 9 10.021 5.025 0.109
2 10 10.082 5.100 0.104 4 10 24.847 18.551 15.069 4 10 10.052 5.040 0.089
3 11 10.031 5.014 0.087 4 11 24.952 18.548 15.067 4 11 10.021 4.949 0.122
3 12 9.979 5.057 0.073 5 12 24.862 18.571 15.092 6 12 10.058 5.006 0.033
3 13 10.063 4.987 0.106 5 13 24.993 18.464 14.988 7 13 9.998 5.011 0.147
5 14 10.000 5.010 0.082 5 14 25.024 18.572 15.065 7 14 10.082 4.998 0.102
5 15 10.072 5.022 0.103 5 15 24.960 18.489 15.072 7 15 10.010 4.979 0.085
5 16 10.136 5.029 0.156 5 16 24.945 18.482 15.036 7 16 10.009 4.966 0.079
5 17 9.994 4.898 0.073 6 17 25.044 18.537 15.025 7 17 10.031 5.039 0.097
6 18 9.963 5.039 0.039 6 18 25.026 18.541 15.004 7 18 10.003 4.988 0.094
6 19 10.068 5.022 0.086 6 19 24.988 18.497 14.990 7 19 10.061 4.980 0.041
6 20 10.085 4.967 0.138 6 20 24.988 18.532 15.039 7 20 10.017 4.973 0.154
7 21 9.972 5.041 0.030 6 21 24.952 18.583 15.034

Table 9  Dimensional measurements  —  expressed in mm  —  related 
to the quality characteristics of the types A, B, and C parts produced 
by Machine X; each value is the average of three replications per-

formed using a 3D coordinate measuring machine (CMM) by DEA 
Global Image. The values in bold do not meet the relevant specifica-
tion limits (Table 1)

Measurements of part A (mm) Measurements of part B (mm) Measurements of part C (mm)

Job Part No A.1 A.2 A.3 Job Part No B.1 B.2 B.3 Job Part No C.1 C.2 C.3

1 1 9.994 5.013 0.064 1 1 25.046 18.473 14.941 1 1 9.934 4.997 0.136
1 2 10.018 4.945 0.041 1 2 25.061 18.510 14.951 3 2 9.952 5.017 0.101
1 3 10.079 5.049 0.061 1 3 24.995 18.431 14.921 3 3 10.000 5.024 0.116
1 4 9.967 5.075 0.072 2 4 25.006 18.492 14.929 3 4 10.038 5.027 0.100
1 5 9.922 5.013 0.046 2 5 25.001 18.476 14.915 3 5 9.999 5.005 0.093
1 6 10.023 4.956 0.058 2 6 25.059 18.488 14.969 3 6 9.948 5.022 0.078
1 7 9.930 5.031 0.036 2 7 24.986 18.393 14.888 3 7 10.021 5.032 0.081
1 8 10.071 5.050 0.089 2 8 25.019 18.479 14.920 3 8 9.935 4.978 0.049
2 9 9.945 5.054 0.069 2 9 25.028 18.460 14.919 3 9 9.964 5.024 0.037
2 10 10.008 5.021 0.086 2 10 25.048 18.444 14.946 3 10 9.981 5.033 0.099
2 11 9.923 5.068 0.049 2 11 25.004 18.451 14.958 3 11 9.918 5.013 0.126
4 12 9.849 5.009 0.047 2 12 25.069 18.443 14.930 4 12 9.981 4.993 0.099
4 13 9.989 5.008 0.071 3 13 25.090 18.543 14.942 4 13 9.966 4.982 0.086
4 14 9.998 5.049 0.060 3 14 25.111 18.455 14.912 4 14 9.959 5.014 0.061
4 15 10.040 5.036 0.047 5 15 25.025 18.511 14.922 4 15 9.986 5.023 0.068
4 16 9.952 5.052 0.035 5 16 25.002 18.451 14.935 4 16 10.030 5.058 0.047
4 17 10.002 4.984 0.072 5 17 25.007 18.472 14.930 5 17 10.012 5.069 0.081
4 18 9.954 4.904 0.019 5 18 25.030 18.487 14.922 5 18 9.996 4.965 0.084
5 19 9.971 5.034 0.014 5 19 25.038 18.449 14.901 5 19 9.931 4.960 0.037
5 20 9.900 4.942 0.043
5 21 10.012 4.959 0.047
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Appendix 2. Additional data 
on the regression models

This section contains additional data related to the construc-
tion of the regression models shown in the sustainability 
analysis in Sect. 4. Figures 7 and 8 refer to the model linking 

of the (job-by-job) energy consumption with the depos-
ited mass: Ej = E0 + E1∙Mj. Despite the limited number of 
available data, which is equal to the number of production 
jobs in each AM system, the residual plots in Fig. 7 overall 
seem satisfactory. Each regression output is quantitatively 
examined by means of an analysis of variance (ANOVA), 

Table 11  Dimensional measurements — expressed in mm — related to 
the quality characteristics of the types A, B, and C parts produced by 
Machine Z; each value is the average of three replications performed 

using a 3D coordinate measuring machine (CMM) by DEA Global 
Image. The values in bold do not meet the relevant specification lim- 
its (Table 1)

Measurements of part A (mm) Measurements of part B (mm) Measurements of part C (mm)

Job Part No A.1 A.2 A.3 Job Part No B.1 B.2 B.3 Job Part No C.1 C.2 C.3

3 1 9.995 5.026 0.080 3 1 25.116 18.458 14.982 1 1 10.115 4.999 0.160
3 2 9.991 5.002 0.079 3 2 25.015 18.494 14.996 1 2 10.065 5.007 0.084
4 3 10.051 5.051 0.086 3 3 24.982 18.423 14.946 1 3 10.062 4.975 0.002
5 4 10.066 5.083 0.087 4 4 25.035 18.463 14.961 1 4 10.002 4.986 0.002
5 5 9.913 4.936 0.021 4 5 25.010 18.450 14.983 1 5 10.063 4.979 0.090
5 6 10.036 5.114 0.118 4 6 25.084 18.491 14.966 1 6 10.002 4.962 0.013
6 7 10.017 5.039 0.067 5 7 25.105 18.470 14.957 2 7 10.052 5.023 0.058
6 8 10.061 5.020 0.084 5 8 25.019 18.432 14.926 2 8 10.023 4.952 0.010
7 9 10.004 4.983 0.113 6 9 25.022 18.509 14.967 2 9 10.041 4.964 0.058
7 10 9.996 4.956 0.061 6 10 24.986 18.477 14.990 2 10 10.083 4.983 0.075
7 11 10.015 5.013 0.108 6 11 25.092 18.459 14.945 2 11 10.088 5.021 0.039
7 12 10.005 5.053 0.069 7 12 25.153 18.531 15.024 2 12 9.972 4.949 0.023
8 13 9.916 5.017 0.035 7 13 25.007 18.465 14.972 3 13 10.017 4.912 0.023
8 14 9.994 5.065 0.092 8 14 25.003 18.513 14.987 4 14 9.989 4.932 0.028
8 15 9.923 4.993 0.053 9 15 24.978 18.459 14.997 4 15 10.015 5.029 0.056
8 16 9.960 5.092 0.048 9 16 25.097 18.429 14.966 5 16 9.999 4.910 0.036
8 17 10.016 4.999 0.080 9 17 25.036 18.508 15.031 6 17 9.977 4.978 0.049
9 18 10.046 5.053 0.082 9 18 24.971 18.485 14.970 9 18 10.069 4.998 0.015
10 19 9.996 5.021 0.078 10 19 25.046 18.444 14.959 10 19 9.997 4.932 0.086

10 20 25.102 18.449 14.971 10 20 10.036 4.958 0.053
10 21 10.014 4.954 0.046

Table 12  Results of the application of the Anderson–Darling normal-
ity test, with reference to the quality characteristics of the types A, B, 
and C parts, produced by each of the considered AM systems. “AD” 

stands for the so-called Anderson–Darling goodness-of-fit statistic 
[49]. The relatively high p values show that the assumption of nor-
mality is not contradicted for any of the quality characteristics

(a) Machine X (b) Machine Y (c) Machine Z

Mean St. Dev N AD p value Mean St. Dev N AD p value Mean St. Dev N AD p value

A.1 9.978 0.05614 21 0.161 0.937 10.044 0.04434 21 0.329 0.493 10.000 0.04548 19 0.623 0.089
A.2 5.012 0.04695 21 0.690 0.061 5.001 0.05080 21 0.477 0.213 5.027 0.04512 19 0.139 0.969
A.3 0.054 0.01963 21 0.258 0.684 0.086 0.03601 21 0.369 0.394 0.076 0.02489 19 0.360 0.411
B.1 25.033 0.03390 19 0.380 0.368 24.951 0.05209 21 0.189 0.889 25.043 0.05333 20 0.590 0.109
B.2 18.469 0.03346 19 0.258 0.678 18.540 0.04101 21 0.347 0.447 18.470 0.03003 20 0.256 0.687
B.3 14.929 0.01952 19 0.203 0.856 15.048 0.03777 21 0.289 0.580 14.975 0.02527 20 0.351 0.434
C.1 9.976 0.03532 19 0.192 0.883 10.030 0.03524 20 0.360 0.414 10.032 0.03934 21 0.317 0.515
C.2 5.012 0.02845 19 0.354 0.426 4.993 0.04041 20 0.210 0.838 4.971 0.03431 21 0.166 0.929
C.3 0.083 0.02829 19 0.252 0.698 0.093 0.03463 20 0.432 0.276 0.048 0.03737 21 0.502 0.184
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Fig. 7  Minitab residual plots 
resulting from the regression 
analysis (Ej = E0 + E1∙Mj) for 
each of the three considered 
AM centers
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Fig. 8  Results of the regression 
analysis (Ej = E0 + E1∙Mj) for 
each of the three considered 
AM centers

Regression Analysis: Ej [kW∙h] versus Mj [g] 
 
Regression Equation 
Ej = -0.018 + 0.0263·Mj 
 
Coefficients 
Term           Coef   SE Coef      T      P 
Constant    -0.0183    0.3306  -0.06  0.959 
Mj         0.0262689 0.0009054  29.01  0.000 
 
Summary of Model 
S = 0.314401   R-Sq = 99.5%   R-Sq(adj) = 99.4% 
 
Analysis of Variance 
Source          DF      SS      MS       F      P 
Regression       1  83.202  83.202  841.72  0.000 
Residual Error   4   0.395   0.099 
Total            5  83.598 
 

Regression Equation 
Ej = -0.204 + 0.0245·Mj 
 
Coefficients 
Term           Coef   SE Coef      T      P 
Constant    -0.2037    0.2199  -0.93  0.390 
Mj         0.0245300 0.0008279  29.63  0.000 
 
Summary of Model 
S = 0.204963   R-Sq = 99.3%   R-Sq(adj) = 99.2% 
 
Analysis of Variance 
Source          DF      SS      MS       F      P 
Regression       1  36.879  36.879  877.86  0.000 
Residual Error   6   0.252   0.042 
Total            7  37.131 
 

Regression Equation 
Ej = -0.256 + 0.0631·Mj 
 
Coefficients 
Term            Coef   SE Coef      T      P 
Constant     -0.2560    0.6586  -0.39  0.706 
Mj           0.063069  0.003646  17.30  0.000 
 
Summary of Model 
S = 0.566911   R-Sq = 97.1%   R-Sq(adj) = 96.8% 
 
Analysis of Variance 
Source          DF      SS      MS       F      P 
Regression       1  96.156  96.156  299.19  0.000 
Residual Error   9   2.892   0.321 
Total           10  99.048 
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Fig. 9  Minitab residual plots 
resulting from the regression 
analysis (tj = t0 + t1∙Mj) for each 
of the three considered AM 
centers
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which shows that the model fits the experimental data for 
each of the three AM centers (Fig. 8). Additionally, it can be 
deduced, on the basis of the t test at p < 0.05, that all the E1 

terms (slope) are significant, while the E0 terms (constant/
intercept) are not significant. Figures 9 and 10 refer to the 
model that links the production time to the deposited mass: 

Fig. 10  Results of the regres-
sion analysis (tj = t0 + t1∙Mj) for 
each of the three considered 
AM centers

Regression Analysis: tj [min] versus Mj [g] 
 
Regression Equation 
tj = -12.7 + 2.92·Mj 
 
Coefficients 
Term         Coef  SE Coef      T      P 
Constant   -12.72    26.59  -0.48  0.657 
tj         2.92128  0.07281  40.12  0.000 
 
Summary of Model 
S = 25.2827   R-Sq = 99.8%   R-Sq(adj) = 99.7% 
 
Analysis of Variance 
Source          DF       SS       MS        F      P 
Regression       1  1028956  1028956  1609.72  0.000 
Residual Error   4     2557      639 
Total            5  1031513 
 

Regression Equation 
tj = -54.7 + 6.33·Mj 
 
Coefficients 
Term         Coef  SE Coef      T      P 
Constant   -54.70    63.50  -0.86  0.422 
tj          6.3330   0.2391  26.49  0.000 
 
Summary of Model 
S = 59.1892   R-Sq = 99.2%   R-Sq(adj) = 99.0% 
 
Analysis of Variance 
Source          DF       SS       MS       F      P 
Regression       1  2458100  2458100  701.64  0.000 
Residual Error   6    21020     3503 
Total            7  2479120 
 

Regression Equation 
tj = -71.1 + 6.94·Mj 
 
Coefficients 
Term         Coef  SE Coef      T      P 
Constant   -71.09    64.00  -1.11  0.295 
tj          6.9361   0.3543  19.58  0.000 
 
Summary of Model 
S = 55.0892   R-Sq = 97.7%   R-Sq(adj) = 97.5% 
 
Analysis of Variance 
Source          DF       SS       MS       F      P 
Regression       1  1163000  1163000  383.22  0.000 
Residual Error   9    27313     3035 
Total           10  1190314 
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tj = t0 + t1∙Mj. The results are similar to those related to the 
previous model: although the residual plots (Fig. 9) overall 
seem satisfactory, the ANOVA table (Fig. 10) shows that 
the model fits the experimental data for all the AM systems. 
Additionally, it can be deduced, on the basis of the t test at 
p < 0.05, that all the t1 terms (slope) are significant, while the 
t0 terms (constant/intercept) are not significant.
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