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ABSTRACT In this work, we examine an intelligent reflecting surface (IRS) assisted downlink non-
orthogonal multiple access (NOMA) scenario intending to maximize the sum-rate of users. The
optimization problem at the IRS is quite complicated, and non-convex since it requires the tuning of
the phase shift reflection matrix. Driven by the rising deployment of deep reinforcement learning (DRL)
techniques that are capable of coping with solving non-convex optimization problems, we employ DRL
to predict and optimally tune the IRS phase shift matrices. Simulation results reveal that the IRS-assisted
NOMA system based on our utilized DRL scheme achieves a high sum-rate compared to OMA-based
one, and as the transmit power increases, the capability of serving more users increases. Furthermore,
results show that imperfect successive interference cancellation (SIC) has a deleterious impact on the data
rate of users performing SIC. As the imperfection increases by ten times, the rate decreases by more
than 10%.

INDEX TERMS Intelligent reflecting surfaces (IRS), non-orthogonal multiple access (NOMA), deep
reinforcement learning (DRL), 5G and beyond, 6G, phase shift design.

I. INTRODUCTION

AS WIRELESS technologies have grown exponentially
over the last few decades, wireless communications

are promising to meet the demand for the enormous num-
ber of connections. The next-generation networks will be an
end-to-end ecosystem to enable a fully connected and sus-
tainable community. The main purpose of these networks is
to provide seamless and ubiquitous communications for users
with higher throughput, low latency, low energy consump-
tion and support the escalation in mobile data consumption
for hundreds of thousands of connections. As 5G networks
are being deployed, technologies for 6G networks are being
researched and examined to attain more reliable and faster
communication systems [1].
Among these technologies, are the intelligent reflecting

surfaces (IRS)s, which are considered as key enablers for

the next generation networks including beyond 5G (B5G)
and 6G communication networks. IRS regulates the wireless
environment to boost the energy and spectral efficiencies [2].
IRS consists of a huge number of passive elements or IRS
units where each unit can passively reflect the incident elec-
tromagnetic wave signal and manipulate it in terms of phase,
frequency, amplitude, or polarization [3]. Thus, it enables the
electromagnetic waves to be propagated and controlled in an
energy-efficient manner [2]. IRS is capable of reconfiguring
the wireless propagation environment via a programmable
controller that electronically controls the reflective elements
to modify the phase of the reflected signals which allows
for either constructive or destructive addition of the reflected
signals [4], [5]. Most of the research papers in the liter-
ature [6]–[12] are considering passive IRS where only a
phase shift to the incident signal is applied. Thus, the IRS
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will not consume any transmit power. Consequently, the IRS
optimization problem is focused on optimizing the phase
shift matrix.
Furthermore, the IRS serves as a relay between the trans-

mitters and receivers, especially where there is no line of
sight (LOS) between the transmitting antenna and the receiv-
ing antenna, or if the direct link suffers from shadowing and
deep fading rendering the quality of the channel for direct
communications unreliable. Thus, deploying IRS aids the BS
to serve multiple users, and improves the system sum-rate
significantly [13]. IRS is a transformational relaying tech-
nology that solely relies on large number of signal reflecting
elements that are able to collect wireless signals from the
transmitter and passively reflect these incident signals inde-
pendently with an adjustable phase shift [14]. IRS received a
lot of attention because of its ability to act as a controller of
the wireless propagation environment as opposed to the clas-
sical approach where the wireless channel was an imposed
component in the communication system. Every IRS element
can be intelligently controlled to modify the phase of the
incident electromagnetic wave signal. Therefore, it renders
the strength and direction of the signal highly controllable at
the receiver side. This merit can be employed to add various
signals constructively at the receiver to improve the sum-
rate. Therefore, IRS can be utilized to optimize the signal to
interference plus noise ratio (SINR), coverage probability,
and data rate [15]. Compared to decode and forward and
amplify and forward, IRS demands less energy and power
consumption because of its passive features. Thus, the energy
and rate efficiency of the wireless communication channels
can be optimized significantly [16]. Hence, IRS is antici-
pated to be a promising solution for future communication
systems [17]. Compared to massive or large multiple input
multiple output (M-MIMO) antenna networks that utilize a
large number of antennas to increase the energy and spec-
trum efficiency, IRS is considered a potential energy-efficient
component for 6G networks by regulating the propagation
in the wireless environment [7].
Recently, non-orthogonal multiple access (NOMA) has

drawn a great amount of attention in many scenarios in
5G wireless networks because of the high spectrum effi-
ciency it provides in addition to its support for massive
connectivity [18]–[20]. In the previous cellular systems,
many multiple access technologies were adopted such as the
time division multiple access (TDMA), frequency division
multiple access (FDMA), spatial division multiple access
(SDMA), and orthogonal frequency division multiple access
(OFDMA). Based on their design, these technologies are
considered orthogonal multiple access (OMA) techniques,
since the wireless resources are allocated to multiple users
orthogonally. The users are separated in the chosen access
domain whether it is in frequency, time, or space. If orthog-
onality is violated, the users will suffer from interference,
and the quality of communication links will degrade leading
to loss of information and/or inefficient resources utiliza-
tion. Nonetheless, OMA schemes cannot satisfy the massive

connectivity requirements for future communication systems
which causes the need for NOMA [21]. NOMA achieves a
high sum-rate capacity as compared to the traditional orthog-
onal multiple access (OMA) techniques. The reason is that
it enables multiple users to transmit simultaneously in the
same set of shared resources. This results in an interference,
but NOMA utilizes a method called successive interference
cancellation (SIC) to eliminate the resulting interference [18].

A. RELATED WORK
Many research studies based on IRS in 5G and 6G networks
are being conducted [22]–[26], but all of these studies are
based on OMA scheme. However, several recent research
studies [27]–[32] started investigating IRS for NOMA
networks to increase the system performance. The authors
in [31] examined an uplink scenario for IRS NOMA to
maximize the sum-rate for all users taking into consideration
the power constraint for each user. The non-convex problem
was solved using semi-definite relaxation (SDR) that pro-
vides a near-optimal solution. In this study, the authors
assumed that the channel state information (CSI) of all chan-
nels is perfectly known at the BS and IRS. Furthermore, the
authors in [32] maximized the total signal power received at
the user side by optimizing the transmit beamforming at the
access point (AP) and reflect beamforming at the IRS. They
proposed an algorithm based on SDR to solve the non-convex
problem, which obtains a sub-optimal solution and assumes
that the CSI is known at the IRS. Moreover, machine learn-
ing techniques were employed in [24] and specifically DRL,
which have much lower complexity than SDR, to solve the
non-convex problem. They inspected the scenario of IRS for
multiple-input single-output (MISO) systems to optimize the
phase shift matrix at the IRS to maximize the signal-to-noise
ratio (SNR), and the DRL-based scheme almost achieved the
upper bound of the received SNR. However, the scheme did
not include NOMA, and the channels were assumed to be
available at both the BS and IRS.
Nonetheless, the above studies [27]–[32] utilized mathe-

matical methods to solve their problems, and they assumed
that the channels between the IRS and users are known. Such
assumption contradicts the practical case, where IRSs are
passive elements incapable of perfectly estimating channels.
In the case where we have limited channel state information
(CSI), the use of machine learning techniques can add value
to the problem.

B. CONTRIBUTIONS
In our research work, we address the aforementioned gap in
the surveyed literature by leveraging reinforcement learning
(RL), in particular, deep reinforcement learning (DRL), to
optimize the sum-rate of a NOMA downlink system utilizing
IRS. The major challenge in our scenario while optimizing
the phase shifts at the IRS lies in the unit modulus constraints
(because the IRS can reflect the signal without amplify-
ing it), which are fundamentally non-convex. Therefore, the
problem is an NP-hard problem, and it is not easy to obtain
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an optimal solution in closed form [12], [24], [31]. Moreover,
in our system we take into consideration the practical situ-
ation where the instantaneous CSI of the channel between
the IRS and the users is unknown, while its long-term aver-
age is known. In particular, we exploit Deep Deterministic
Policy Gradient (DDPG) due to its suitability for our sce-
nario to investigate the phase shift design and to tackle the
non-convexity caused by the constant modulus constraints.
DDPG algorithm, which is a DRL technique, is very effi-
cient when coping with complex non-convex, and intractable
optimization problems. It eliminates the need for gathering a
large dataset for training, and it provides a solid and robust
performance. Simulation results reveal that DDPG powered
IRS NOMA outperforms the IRS OMA-based one in terms
of sum-rate and approaches the upper bound.
Our contributions in this work can be summarized as

follows:
• First, we formulate the IRS NOMA downlink phase
shift optimization problem to maximize the sum-rate
for NOMA users taking into consideration the limited
CSI knowledge (we only assume knowledge of first and
second order statistics of CSI) between the IRS and
users, which prevents SIC order adaptation and NOMA
power adaptation.

• Second, we incorporate imperfect interference cancel-
lation in practical NOMA within our system model
formulation.

• Third, DDPG based solution is proposed for predicting
the best phase shift matrix in which the IRS learns the
best way for reflecting the incident signals by modifying
the phase.

• Fourth, numerical results reveal the effectiveness of the
DDPG algorithm since the sum-rate value for the DDPG
based IRS-assisted NOMA system produces sum-rates
almost close to a discretized exhaustive search upper-
bound approximation. Moreover, the studied DDPG
based IRS-assisted NOMA outperforms the IRS OMA
scheme system with minimum training overhead.

C. PAPER ORGANIZATION
The rest of the paper is structured as follows. Section II intro-
duces the problem formulation and outlines the system model
along with practical considerations. Section III explains the
proposed solution using DDPG-based phase control for IRS.
Section IV discusses the performance benchmarking. In
Section V the numerical results are presented, while the
paper is concluded in Section VI.

II. PROBLEM STATEMENT
A. SYSTEM MODEL
We consider the downlink of an IRS-assisted NOMA system
with K users as shown in Fig. 1. All users have a single
antenna each as well as the BS. Without loss of generality,
the users are ordered according to their distance from the IRS
such that user 1 is the farthest user from the IRS and user k
is the nearest user to the IRS. Consequently, the users can be

FIGURE 1. IRS assisted downlink NOMA, where the wireless communication
between the BS and the endusers is accomplished through the IRS.

considered as ordered based on the expected value of their
channel gains assuming |hr,1|2 < |hr,2|2 < · · · < |hr,k|2.
The users are assumed to be moderate to slowly move such
that their ordering (ordered distances from the IRS) is quasi-
static (i.e., changes slowly with time) and as this happens
the system will trigger power allocation reconfiguration and
adapt accordingly. There is no direct LOS link between the
users and the BS. Thus, the communication between the BS
and users is performed through the IRS which is deployed
with M = MxMy reflecting elements, where Mx and My rep-
resent the number of passive elements in the IRS in every row
and column, respectively. Further, in the considered system,
the following practical aspects are assumed:
1) We are using DRL with IRS for both equal power

allocation OMA and average-based power allocation
NOMA while instantaneous CSI is difficult to attain
with the existence of IRS. The power allocation factors
for NOMA, βi, are allocated such that β1 > β2 >

· · · > βK , where βββ = [β1, β2, . . . , βk] is the vector
of coefficients of the users’ power allocated such that
β1 + β2 + · · · + βk = 1. When we mention power
allocation in NOMA configuration, we are referring
to power allocation to the different users according
to their distances from the IRS, which depends on the
long-term average of the random channel gains instead
of using instantaneous CSI.

2) Users perform SIC based on the long-term channel
statistics since we have limited knowledge about the
instantaneous CSI between the IRS and users.

3) The end-to-end channel (equivalent base station to user
channel combining the effects of ht and hr,k) channel
can still be estimated by the base station1 [33].

Equivalently, our system model operation can be thought
of as using static power allocation while optimizing the
NOMA sum-rate performance through adapting the channel

1. The overall channel estimation can be performed through pilot
transmission by BS/user since both are active nodes.
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(using IRS phases) to compensate for random channel vari-
ations as well as compensating for using long-term SIC
ordering instead of the classical approach which changes
the SIC order with every channel realization.
The transmitted signal at the BS is

x =
K∑

k=1

√
Pksk, (1)

where sk represents the signal for user k with unit power (i.e.,
E[|sk|2] = 1, k ∈ {1, . . . ,K}, and E[.] denotes the expecta-
tion). The power allocated to each user is Pk = βkP, where P
is the BS total transmit power. The power allocation satisfies
the following relationship: P1 > P2 > · · · > PK [34].
The received signal for user k can be written as:

yk = hHr,k�htx+ n,

yk = hHr,k�ht
K∑

k=1

√
Pksk + n, (2)

where ht ∈ C
M×1 is the channel between the BS and the

IRS, hr,k ∈ C
M×1 is the channel between the IRS and users,

and � = diag(ejθ1 , ejθ2 , . . . , ejθM ) is the phase shift reflection
matrix that satisfies the constant modulus constraint |φi|2 =
|ejθi |2 = 1, ∀i ∈ {1, 2, . . . ,M}, because the IRS reflects the
signal without amplifying it, and diag(.) denotes the diagonal
matrix. Further, the phase shift of the ith passive reflecting
element is denoted by θi, where the value of θi is between
0 and 2π , and n ∼ CN (0, σ 2) represents the additive white
Gaussian noise (AWGN). Both channels follow the Rician
fading model:

ht =
√

K1

K1 + 1
h̄t+

√
1

K1 + 1
h̃t, (3)

hr,k =
√

K2

K2 + 1
h̄r,k +

√
1

K2 + 1
h̃r,k, (4)

where K1 is the rician factor of ht, h̄t ∈ CM×1 and
h̃t ∈ CM×1 are the LoS component and non-LoS (NLoS)
component, respectively. Similarly, K2 is the rician factor of
hr,k, h̄r,k ∈ CM×1 and h̃r,k ∈ CM×1 are the LoS component
and NLoS component, respectively.
Hence, the received SINR at user k can be represented by

the following equation:

γk =
⎛

⎜⎝

∣∣∣hHr,k�ht
∣∣∣
2
Pk

∣∣∣hHr,k�ht
∣∣∣
2 ∑K

i=k+1 Pi + σ 2

⎞

⎟⎠. (5)

We note that when k = K, the term |hHr,k�ht|2 ∑K
i=k+1 Pi

is equal to 0.
Furthermore, the data rate of user k is represented by:

Rk = log2(1+ γk). (6)

The feedback and signaling model for our IRS NOMA
system is shown in Fig. 2, where the BS allocates power

FIGURE 2. IRS NOMA feedback and signaling model.

Pk = [P1,P2,P3, . . . ,Pk] for users. The users estimate and
send the rates to the IRS which in turn act as the DRL
agent in our system. The DRL agent in turn will calculate
the reward and adjust the phase accordingly. In fact, our
DRL model is tracing the variation of the magnitude of the
channel by continuously adjusting the phases of the IRS to
maximize the sum-rate. Thus, the system model is based on
utilizing DRL to adjust the phases of the IRS according to
the total sum-rate fed back from the users to learn and reach
optimal sum-rate tuning with limited CSI.

B. PROBLEM FORMULATION
Our objective in this work is to find the values of the phase
shifts of the IRS elements that maximize the sum-rate of all
users given by

Rsum =
K∑

k=1

log2(1+ γk). (7)

However, equation (7) is valid for perfect successive
interference cancellation (SIC), which is an ideal case.
Perfect SIC can happen only under two assumptions: (i)
perfect channel state information is available and (ii) perfect
decoding of information is possible. Both assumptions are
impractical. A more practical scenario is to assume that each
stage of interference cancellation leaves a residual fraction,
0 ≤ ε � 1, of the interfering signal after cancellation [35].
In our system, NOMA power allocation and SIC rely on the
distance (long term channel average) while the DRL based
tuning of IRSs is used to reconfigure the channel to satisfy
the optimal NOMA performance. Thus, the received SINR
in (5) at user k can be rewritten as

γ̃k =
|hHr,k�ht|2Pk

∣∣∣hHr,k�ht
∣∣∣
2(

ε
∑k−1

j=1 Pj +
∑K

i=k+1 Pi
)
+ σ 2

. (8)

When k = 1, the term |hHr,k�ht|2 ∑k−1
j=1 Pj = 0, and when

ε = 0, γ̃k = γk which is the ideal case.
Accordingly, the formulated problem at the IRS is to

obtain the phase shift reflection matrix � that maximizes
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FIGURE 3. DDPG model.

Rsum, can be written as

max
�

K∑

k=1

log2(1+ γ̃k),

s.t. C1: |φi|2 = 1,∀i ∈ {1, 2, . . . ,M},

C2:
K∑

k=1

βk = 1,

C3: βk ≥ 0, (9)

where constraint C1 represents the use of IRS with phase
adaptation only, C2 represents the fact that the summation
of the power of all users equals the power transmitted by
the BS, and C3 represents the fact that the powers cannot be
negative. As stated earlier in the system model, the consid-
ered system adopts static power allocation factors based on
long term channel statistics. Therefore, constraints C2 and
C3 are redundant and can be removed from the optimization
problem.
The optimization problem in (9) can be alternatively

viewed as finding the phase shift reflection matrix � that
maximizes the SINR γ̃k as follows [31]:

max
�

K∑

k=1

∣∣∣hHr,k�ht
∣∣∣
2
Pk,

s.t. |φi|2 = 1,∀i ∈ {1, 2, . . . ,M}. (10)

This is an NP-hard problem because of the non-convexity of
the constant modulus constraint and the objective function.
The authors in [31] and [32] employed the SDR method to
solve this problem which provides a near-optimal solution.
However, the complexity of the SDR is of O(M+1)6 which

is prohibitively expensive [12]. Thus, taking into consid-
eration the non-convexity of the optimization problem, the
practical assumptions that we have limited knowledge about
the CSI for the channels between the IRS and the users,
hr,k, as well as the imperfect interference cancellation, ren-
dering solving the optimization problem in (10) analytically
non-tractable. Considering the dynamics of the system, we
propose the use of reinforcement learning to find the optimal
values of the phase shifts of the IRS which maximizes the
overall sum-rate.

III. PROPOSED DDPG-BASED IRS PHASE CONTROL
In this section, we propose a DDPG-based IRS phase control
method (see Fig. 3), considering the optimization problem
in (9). DDPG is a model-free reinforcement learning tech-
nique that combines the advantages of policy gradients and
Q-learning. Considering that the states in our system are
mainly dependent on channel gains and output sum rate,
while the actions are the IRS phase shift, we are con-
sidering a continuous sate and continuous action system.
DDPG’s main advantage lies in the fact that it uses both the
continuous action and state spaces [36].
DDPG consists of four neural networks; one for actor-

network, one for critic network, one for target actor-network,
and one for target critic network, which ensures stability. The
optimization problem in (9) can be solved using DDPG by
learning the policy.

A. RL SYSTEM MAPPING
The first step in solving a problem using RL is to map
the problem into the key components of an RL system;
namely, state-space, action-space, and reward function. In
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the following, we discuss this mapping as well as the general
behavior of the RL method using DDPG.

1) STATE-SPACE

The state-space of the DDPG agent at timestep (t) can be
defined as follows

s(t) =
[
h(t)
t , �(t−1), γ̂

(t−1)
]
, (11)

where ht represents the channel gain between the source
which is the BS and the IRS which acts as the agent in the
environment, � is the last phase action taken by IRS, and
γ̂ is the estimated SINR values of the users based on their
data rates for that action (i.e., γ = [γ1, γ2, . . . , γk, . . . , γK]).

2) ACTION-SPACE

The actions are the IRS phase shift values. The real values
of the actions coming from the neural network are used as
the argument value of a complex exponential representing
the actual phase. The output is an array that defines the
phase of each element in the IRS. Thus, the action-space is
defined by the following policy function:

a(t) = μ
(
s(t)|θμ

)
+ n(t) (12)

where μ is the policy function and θμ is parameters
(i.e., weights of neural network), and n(t) is the Ornstein-
Uhlenbeck (OU) process-based action noise [37].

3) REWARD FUNCTION

The reward function is defined based on the current channel
capacity and the maximum capacity ever reached as follows:

r(t) = R(t)
sum − Rsum,max, (13)

where R(t)
sum is the actual sum-rate of the users, while Rsum,max

is the maximum sum-rate achieved.

4) EXPLORATION VS. EXPLOITATION

Since the action-space of the DDPG is continuous, the explo-
ration of action-space is handled with noise generated by the
OU process. OU process samples noise from a correlated
normal distribution.

5) DDPG ALGORITHM

The agent acquires the current CSI of the transmitter to IRS
channel via feedback of estimated channels by the trans-
mitter (base station) to the agent residing at the IRS. It
does not have access to CSI for the IRS to receiver channel
(unknown instantaneous CSI) and compensates this using
the fed back SNR as an indirect indicator. The goal of the
DDPG algorithm is to train the agent IRS to take actions that
maximizes the long-term average reward (sum rate) coping
with changes of unknown environments. The agent basically
learns how to adjust its randomized policy such that it copes
with the random statistical behaviour of the environment to
maintain a long-term average reward (equivalently sum-rate)

Algorithm 1 DDPG-Based IRS Phase Control Training
1: Initialization: Set t = 0 and initialize reply buffer of DDPG

agent D with capacity M.
2: Randomly initializes the weights of actor networks θμ and

critic networks θQ.
3: Initialize target networks: θμ′ ← θμ and θQ

′ ← θQ.
4: for t = 1 to ∞ do
5: Observe state s(t) and select an action with exploration OU

noise a(t) = μ(s(t)|θμ)+ nt
6: Execute action a(t) at IRS.
7: Receive the immediate reward r(t), and observe next state
s(t+1), store transition (s(t), a(t), r(t), s(t+1)) in D.

8: Randomly sample mini-batch transitions from D:
B← {(s(i), a(i), r(i), s(i+1))} ∈ D .

9: Compute the targets:
Q̃(s(i), a(i)|θQ′ ) = r(i) + 
Q(s(i+1), μ(s(i)|θμ′)|θQ′)

10: Update the θQ in critic network by minimizing the loss:
L = 1

|B|
∑|B|

i=1

(
Q̃(s(i), a(i)|θQ′)− Q(s(i), a(i)|θQ)

)2

11: Update the θμ in actor network according to the sampled
policy gradient:
∇θμJ ≈ 1

|B|
∑|B|

i=1 ∇aQ(s(i), a(i)|θQ)∇θμμ(s(i)|θμ)

12: Update the target networks:
θQ
′ ← τθQ + (1− τ)θQ

′

θμ′ ← τθμ + (1− τ)θμ′

13: end for

maximization. It is not meant to provide an optimal instanta-
neous response to the instantaneous random changes of the
channel. In other words, the agent tries to learn the statis-
tical model of the random environment and adjust its own
statistical model of the response policy to provide long-term
reward maximization.
For every iteration, the agent IRS observes the state which

includes the transmitter channel h(t)
t , the last action �(t−1),

and the last estimated SINR γ̂
(t−1) , and calculates the

action �(t) which maximizes the long term reward as stated
in (13); therefore, the total sum-rate. This is done by the
actor network, while the critic network accepts the state and
the action and generates the prediction of the total sum-
rate. After the total sum-rate is received from the users, a
new state is observed, and the IRS will adjust the phases
accordingly. Based on the total sum-rate fed back from the
users, the IRS will modify the policy parameters (θμ) used
to calculate the action till the system learns how to reach the
optimal sum-rate tuning with limited CSI. The actor network,
critic network, target actor network, and target critic network
have the same structure and parameterization. To improve
stability, the target networks will be updated periodically
according to the newest actor and critic parameter values.
As shown in Algorithm 1, we begin initializing the replay

buffer D of the agent with transaction capacityM in step 1. In
step 2, we initialize the weights of actor and critic networks
for the agent. The target networks are initialized by copying
the same weights in step 3. The steps from 4 to 13 are
repeated for every iteration (i.e., timestep t). Thus, in each
iteration (i.e., timestep t), we observe the state s for the
agent (IRS) and determine an action (i.e., phase shift value)
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Algorithm 2 Exhaustive Search for the Phase Shift Matrix

1: Initialize M = 4, �� = 2π
30 ,

2: for φ1 = 0 : 2π
30 : 2π; do

3: for φ2 = 0 : 2π
30 : 2π; do

4: for φ3 = 0 : 2π
30 : 2π; do

5: for φ4 = 0 : 2π
30 : 2π; do

6: Calculate and store Rsum(φ1, φ2, φ3, φ4)

7: end for
8: end for
9: end for
10: end for
11: Find �∗ = argmaxφ1,φ2,φ3,φ4

Rsum

with exploration noise based on the OU process as shown
in step 5. In step 6, the agent determines and executes the
action. After that, a reward r(t) is received, a new state s(t+1)

is observed, and the transactions are stored in respective
replay memories as explained in step 7. Then a random mini-
batch of transitions is sampled in step 8. By using Bellman’s
equation, the actor and critic networks’ targets are computed
as shown in step 9. Using the computed targets, the critic
network weights are updated in step 10 by minimizing the
loss. The actor-network weights are updated for the sampled
policy gradient in step 11. Finally, in step 12, the agent’s
target networks are updated using the update rate (τ ) to
increase the stability in the learning process.

6) NEURAL NETWORK ARCHITECTURE

DDPG agent’s architecture consists of 4 neural networks
including actor and critic networks and target actor and critic
for stability. Both actor and critic networks consist of 2
hidden layers, with 256 hidden nodes in each layer. The
actor-network input has the size of 2M + K, and the output
is M, thanks to the continuous definition of DDPG. As can
be seen from DDPG agents’ structure, it allows scalability
to a much larger extent with linearly increasing complexity.

B. DISCUSSION ON COMPLEXITY
To reveal the value of DDPG, we provide a quantitative
analysis of the exhaustive search algorithm complexity NE,
versus the complexity of the proposed DDPG based algo-
rithm ND. The complexities can be easily deduced from
the description of the algorithms given in Algorithm 1 and
Algorithm 2. For exhaustive search assuming K users, M IRS
elements and N = 2π

��
phase change steps, we can write the

complexity as

NE = O
(
K × NM

)
. (14)

For the DDPG based system, the complexity for the trained
network (steady-state complexity) depends mainly on the for-
ward network architecture (actor-network). Assume the num-
ber of states (size of (actor-network) input) is S, the number
of hidden layers is n, the number of neurons in each hidden
layer is U, the number of actions (i.e., phase of each IRS
element) which is the size of the output layer A, and the

DDPG algorithm will always provide the action of the high-
est reward for the A distinct actions as output. Therefore,
the complexity of the DDPG can be written as

ND = O(S× n× U × A). (15)

Thus, the complexity of DDPG is much lower than that of
the exhaustive search as the number of users or the number
of IRS elements increases.

IV. PERFORMANCE BENCH MARKING
To measure the performance of our proposed scheme, we
need reference systems to compare with their performance.
To the best of our knowledge, there is no existing tight
upper bound theoretical limit on the considered system in
literature and the mathematical derivation of an upper bound
is cumbersome. Therefore, we provide two benchmarking
reference models; one is based on using exhaustive search
across a discretized grid of the IRS phases, which acts as an
approximated upper bound, while the other is considering
orthogonal multiple access which can act as a lower bound
on performance.

A. UPPER BOUND ON PERFORMANCE
To measure the performance of the DDPG algorithm and to
verify that our sum-rate values approach the upper bound,
a discretized exhaustive search method is used to search for
the optimum phase shift matrix that results in an approxi-
mation to the maximum sum-rate as shown in Algorithm 2.
Further, to avoid the huge complexity of the exhaustive
search scheme, we consider a limited number of IRS reflect-
ing elements as case proof that our DDPG algorithm can
track the upper bound. For every IRS element, we consider
the phases between 0 and 2π with a step size of 2π/30,
this will give us 30M combinations of phase shift matrices.
Then we calculate the sum-rates accordingly for K users.

B. OMA BASELINE SCHEME
The signal model for OMA is assumed such that the
resources (frequency/time) are divided equally between the
K users. This enables OMA users to receive the signal with
free interference, whereas the merit of NOMA is the simul-
taneous transmission and the interference can be controlled.
However, to serve K OMA users, FDMA / TDMA requires
K time slots. The first user will use the first frequency/time
slot, the second user will use the second frequency/time slot,
and user K will use the Kth frequency/time slot accordingly.

The transmitted signal by the BS is given by:

xOMAk = √Psk, (16)

The received signal at the user side can be expressed as:

yOMAk = √PskhHr,k�ht + n, (17)

Hence, the received SNR at user k can be represented as:

γk =
⎛

⎜⎝

∣∣∣hHr,k�ht
∣∣∣
2
P

σ 2

⎞

⎟⎠, (18)
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FIGURE 4. Upper bound on performance vs proposed DDPG algorithm. M = 4,
K = 16, and �� = 2π

30 .

Further, data rate of user k is represented by:

ROMAk = 1

K
log2

(
1+ γOMAk

)
, (19)

Therefore, the sum-rate of OMA can be expressed as:

ROMAsum =
K∑

k=1

ROMAk , (20)

ROMAsum =
1

K

K∑

k=1

log2

⎛

⎜⎝1+
∣∣∣hHr,k�ht

∣∣∣
2
P

σ 2

⎞

⎟⎠. (21)

V. NUMERICAL RESULTS
In this section, we first evaluate the performance of the
DDPG algorithm to make sure that the sum-rate values cal-
culated are close to the upper bound. By using the exhaustive
search algorithm, we calculate the maximum sum-rate by
obtaining the optimum phase shift matrix assuming that the
channel is known. The exhaustive search scheme is highly
complex, so the number of IRS reflecting element used is
M = 4 rather than M = 16. This is to verify that our DDPG
algorithm can approach the upper bound. For each element,
we consider the phases between 0 and 2π with a step size
of 2π

30 . Thus, the total number of combinations of phase shift
matrices is 304. The sum-rates are calculated for 16 users
and Monte-Carlo simulations equal to 1000.
Fig. 4 reveals that the NOMA sum-rate generated by the

DDPG algorithm approaches the upper bound and it is close
to optimal. The complexity of the exhaustive search algo-
rithm can be calculated as 1000 x 16 x 304 which is equal
to 1.2960 × 1010 iterations with an elapsed time equal to
124.86 hours.
Moreover, the result in Fig. 5 verifies the convergence

of our DRL algorithm. It shows the average NOMA rate
versus the iteration plots. The average rate is increasing with
time, which means that the training process is conducted
successfully. Further, the simulation results below reveal the

FIGURE 5. NOMA sum-rate vs iteration plots.

TABLE 1. Parameters used in simulation.

performance of our DRL-based IRS NOMA system with
IRS reflecting elements M = 16. The default parameters
used in the simulation are shown in Table 1. The number
of BS antennas is Nt = 1, the number of antennas per user
is Nr = 1, the distance between the BS and the IRS is
50 m and the distances between the IRS and the users are
randomly generated between 200 and 1500 m. The channel
between the BS and the IRS and the channel between the
IRS and users follow the Rician fading model with rician
factor K1 = K2 = 10. However, the channel between the BS
and the IRS is assumed to be perfectly estimated, whereas
the channels between the IRS and users are assumed to have
limited CSIs. The bandwidth is 10 MHz, the BS transmit
power Pt is 40 dBm, and the noise power spectral density
equals −174 dBm/Hz. Simulation results are generated using
103 Monte-Carlo runs.
In the proposed DDPG algorithm, the actor and critic

networks are both dense neural networks (DNN). The input
of the actor-network is the number of states that contains
128 neurons, while the output is the number of actions that
contains 16 neurons. The hidden layers in the actor-network
are two layers that contain 256 neurons each, followed by
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FIGURE 6. Comparison between IRS NOMA and IRS OMA sum-rates vs a different
number of users. M = 16, and Pt = 40 dbm.

the ReLU activation function. The output layer of the actor-
network uses the tanh(·) function to provide enough gradient.
For the critic network, the input layer is the number of states
and the number of actions. The state input is followed by two
dense layers of 128, and 256 neurons respectively with ReLU
activation functions, and the action input is followed by one
dense layer of 128 neurons. Both outputs are passed via a
separate layer before concatenating to represent the input of
the critic network. After that, two hidden layers are added
each of 256 neurons with ReLU activation functions. This
is pursued by the output layer of the critic network which
contains 16 neurons. Both actor and critic main networks
use Adam optimizer to update parameters. Moreover, we
produce average results by considering the average sum-rate
over 1000 channel realizations, we set the actor learning
rate = 0.0005, the critic learning rate = 0.001, the coefficient
of soft updates τ = 0.05 , the discount factor 
 = 0.99, the
buffer capacity = 100 000. The noise is complex additive
white Gaussian with mean equal to zero and variance equal
to 0.1.
A comparison between IRS NOMA and IRS OMA sum-

rates versus the number of users is shown in Fig. 6, where the
transmit power Pt is 40 dBm. It is realized that NOMA per-
forms better than OMA since it provides a higher sum rate for
several users less than 16. The reason is that in NOMA there
is resource sharing among users since NOMA multiplexes
users in the power domain, and thus there is no bandwidth
division. Therefore the rate and spectral efficiency are higher.
However, in OMA there is no resource sharing and thus the
bandwidth is divided among users. Further, when the num-
ber of users increases above 16, interference between users
increases, and thus OMA performs better in this case and
provides a higher sum-rate than NOMA. From Fig. 7, we
notice that at low transmit power levels and for 16 users, IRS
OMA performs slightly better than IRS NOMA. The rea-
son is that, at low SINR, IRS NOMA users suffer from the
interference caused by the simultaneous transmission, while

FIGURE 7. Comparison between IRS NOMA and IRS OMA sum-rates vs different
power levels. M = 16, and K = 16.

FIGURE 8. NOMA sum-rate for various power levels. M = 16.

OMA users do not experience any such interference. The
NOMA system, at low SINR, will not have sufficient power
to ensure a significant channel disparity among the users
which restricts the potential gain brought by the NOMA
system. When we increase the power. However, at high
power levels, the sum-rate of IRS NOMA system is better
than the IRS OMA system.
Moreover, Fig. 8 demonstrates the sum-rate of NOMA vs

the number of users for different power levels starting from
10 up to 80 dBm. The lower curve represents the sum-rate
generated at transmit power equals 10 dBm, and the highest
curve depicts the sum-rate generated at transmit power equals
80 dBm. It is realized that as power increases the sum-rate
increases and thus our IRS NOMA system can serve more
users. Fig. 9 reveals the scalability of our DDPG algorithm to
a larger number of IRS elements. However, we cannot show
the exhaustive search approximate upperbound in these cases
due to the computationally prohibitive complexity. It needs
to be noted that the sum-rate performance is enhanced with
a larger number of IRS elements due to the added degrees of
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FIGURE 9. NOMA sum-rate for various number of reflecting elements. Pt = 40 dbm,
and K = 32.

FIGURE 10. Achievable Sum-rate at nearest user with imperfect SIC. M = 16, and
K = 32.

freedom and the increased ability to further focus the signal
at the destination.
Furthermore, figures 10 and 11 shows the sum-rate

of users during imperfect SIC where we have residual
interference of all users’ power in the denominator. Fig. 10
shows the rate for user K, the nearest user to the BS, for dif-
ferent power levels and ε values. It is well known that user 1,
the farthest user from the BS does not perform SIC and thus
our focus will be on the rate for user K. It is obvious from
Fig. 10 that as the imperfection increases, the rate for user
k decreases. The curves are plotted for different values of ε

which represents the fraction of residual interference. When
ε equals 0, SIC is perfect, and thus the rate for user k is the
highest compared to other rates when ε > 0 . As ε value
increases the rate decreases due to increasing the fraction
of imperfectness. Therefore, imperfect SIC has a deleteri-
ous impact on the rate of the users performing SIC. Fig. 11
reveals the performance of the DDPG algorithm compared to

FIGURE 11. Upper bound on performance vs proposed DDPG algorithm with
imperfect SIC. M = 4, K = 16, and �� = 2π

30 .

exhaustive search scheme during imperfect SIC. We calcu-
lated the optimum phase shift which maximizes the sum-rate
taking into consideration that the channel is known, and ε is
greater than zero. It is clear from Fig. 11 that DDPG algo-
rithm can approach the upper bound even during imperfect
SIC.

VI. CONCLUSION
In this paper, we considered the downlink scenario of the
IRS NOMA system. Our main goal was to maximize the
sum-rate of NOMA users. The formulated problem is non-
convex since it involves the constant modulus constraint
and the objective function which is also non-convex. Thus,
the problem is suitable for DRL learning techniques. In
particular, we have used the DDPG which is a DRL algo-
rithm to solve the sum-rate maximization problem for our
IRS NOMA scenario. Simulation results generated revealed
that the sum-rate for NOMA can track the upper bound
obtained through an exhaustive search, and it is superior to
OMA for a specific number of users and predefined trans-
mit power. Moreover, increasing the transmit power results
in increasing the number of users served by the IRS NOMA
system since NOMA multiplexes users in the power domain.
Further, when considering the imperfect SIC scenario, which
is more realistic, results showed that as the imperfection fac-
tor increases, the sum-rate of users decreases. This reveals
the significance of performing SIC perfectly.Further, during
imperfection, DDPG can still approach the upper bound.
Thus, DDPG is a powerful algorithm, which enables us
to include the optimization of dynamic power allocation in
similar problems in the future.
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