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Abstract—Fast and accurate resolution of electromagnetic
problems via the boundary element method (BEM) is oftentimes
challenged by conditioning issues occurring in three distinct
regimes: (i) when the frequency decreases and the discretization
density remains constant, (ii) when the frequency is kept constant
while the discretization is refined and (iii) when the frequency
increases along with the discretization density. While satisfac-
tory remedies to the problems arising in regimes (i) and (ii),
respectively based on Helmholtz decompositions and Calderón-
like techniques have been presented, the last regime is still
challenging. In fact, this last regime is plagued by both spurious
resonances and ill-conditioning, the former can be tackled via
combined field strategies and is not the topic of this work. In
this contribution new symmetric scalar and vectorial electric
type formulations that remain well-conditioned in all of the
aforementioned regimes and that do not require barycentric
discretization of the dense electromagnetic potential operators are
presented along with a spherical harmonics analysis illustrating
their key properties.

Index Terms—electric field integral equation, condition num-
ber, Helmholtz decomposition, high frequency simulation

I. INTRODUCTION

The boundary element method (BEM) is one of the most
widespread schemes for solving problems of electromagnetic
scattering by perfectly electrically conducting (PEC) objects.
Its popularity stems from the relatively low number of un-
knowns that need to be solved for, because it only requires
discretization of the surface of the scatterer, from its automatic
enforcing of radiation condition and from its immunity to
numerical dispersion. Since the system matrices obtained via
BEM are dense, fast algorithms have been introduced to
linearize the complexity of the resolution process.

For handling complex simulation scenarios, the integral
operators making up the electromagnetic formulation must
be well-conditioned. However, most integral operators are ill-
conditioned in at least one regime: (i) in the low frequency
regime characterized by a fixed discretization and a decreasing
frequency and (ii) in the dense discretization regime in which
the frequency is kept constant while the discretization density
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increases. Several solutions have been proposed to stabilize the
conditioning of standard electromagnetic integral equations in
these two regimes. However, a third regime (iii) in which the
frequency increases along with the discretization density also
causes an unbounded increase of the condition number.

Remedies for problems (i) and (ii) of the electric field
integral equation (EFIE) have been the focus of numerous
studies. Its low frequency behavior is typically cured through
an independent frequency re-scaling of the solenoidal and
non-solenoidal parts of its solution permitted by a Helmholtz
decomposition, such as Loop-Star/Loop-Tree, or through the
computation of auxiliary variables. Both methods do however
suffer from limitations, the former further degrades the dense
discretization breakdown while the latter has a significant
computational overhead. The dense discretization breakdown
has also been extensively investigated and several of its cures
leverage the Calderón identities that demonstrate that the
electric field integral operator (EFIO) can potentially precon-
dition itself. A new EFIE formulation combining the Calderón
identities and the quasi-Helmholtz projectors has more re-
cently been introduced to simultaneously address issues (i)
and (ii) [1]. An equivalent technique that does not require
barycentric refinement of the discretized geometry has also
been introduced [2]. However, neither of these techniques is
able to address the high frequency breakdown (iii).

The high frequency breakdown should not be confused
with the spurious internal resonance problem plaguing certain
integral operators on closed structures in high frequency sim-
ulations. It is a well known issue which is traditionally cured
by using a combined field integral equation (CFIE). These
resonances are not treated in this paper to focus specifically
on the second problem which is an unbounded increase of
the condition number (after removing the resonances) as the
frequency increases along with the discretization density.

In this contribution two new formulations, one scalar and
one vectorial, capable of handling problem (i), (ii) and (iii)
on a large class of geometries are presented. Both schemes
are symmetric and neither requires the discretization of the
dense electromagnetic operators on the barycentric mesh. The
frequency regularization, both at low and high frequency, is



performed by leveraging on the quasi-Helmholtz projectors
and Helmholtz operators while the refinement-related ill-
conditioning is treated using a Calderón-like scheme. The new
formulations will be presented along with a spherical harmon-
ics analysis confirming the theoretically predicted behavior of
the new schemes.

II. NOTATION AND BACKGROUND

Given a simply connected PEC object of surface Γ living
in a background medium of permitivity ε and permeability
µ, the electric surface current density j induced on Γ by a
time-harmonic incident electric field Ei of frequency f can
be obtained by solving the EFIE

η (T j) (r) = −n̂(r)×Ei(r) , (1)

with

(T j) (r) = −jk (Tsj) (r)− 1

−jk
(Thj) (r) , (2)

(Tsj) (r) = n̂(r)×
∫

Γ

e−jk|r−r′|

4π|r − r′|
j(r′)dS′ , (3)

(Thj) (r) = n̂(r)×∇
∫

Γ

e−jk|r−r′|

4π|r − r′|
∇′ · j(r′)dS′ , (4)

where η =
√
µ/ε, k = 2πf

√
µε and n̂ is the normal to

Γ. This equation can be numerically solved via the BEM
by first expanding the unknown as a linear combination of
N Rao-Wilton-Glisson (RWG) basis functions {fi} (j =∑N
i=1 [j]i fi) and forming a system matrix by testing the

resulting discretized equation with rotated RWG functions
{n̂× fi}

ηTj = ei , (5)

where
[
ei
]
i

=
〈
n̂× fi,−n̂×Ei

〉
, T = −jkT s −

(−jk)−1Th, [T s]ij = 〈n̂× fi , Tsfj〉 and [T h]ij =
〈n̂× fi , Thfj〉. In addition to these discretized operators we
denote the Gram matrices and mix-Gram matrices as

[Gab]ij = 〈ai , bj〉 , (6)

where a and b can be any valid combination of the following
basis functions: the RWG f and Buffa-Christiansen (BC) f̃
[3] basis functions, the rotated RWG n̂ × f functions, the
pyramid λ and dual pyramid λ̃ basis functions and the patch
p and dual patch p̃ basis functions. A detailed definition of
these functions can be found in [3].

III. NEW HIGH FREQUENCY STABLE ELECTRIC TYPE
EQUATIONS

In the contribution we present two different formulations:
one adapted for the preconditioning of the EFIE after a
Loop-Star decomposition, the other suited for preconditioning
directly the un-decomposed EFIE operator.

A. Scalar Formulation

In the new scalar formulation, the Loop and the Star
components of the n̂× T operator

TΛ = ∇ · n̂× (n̂× T ) n̂×∇ , (7)

TΣ = ∆−1∇ · (n̂× T )∇∆−1 , (8)

are independently preconditioned with the corresponding
scalar Helmholtz operators to form Loop and Star blocks that
are immune from breakdowns (i) to (iii)

k−2TΛ∆−1
(
∆ + k2

mI
)

∆−1TΛ , (9)

k2TΣ∆
(
∆ + k2

mI
)−1

∆TΣ , (10)

where ∆ denotes the Laplace-Beltrami operator on Γ and
km = k+ 0.4jk1/3R−2/3 is a modified wave number capable
of stabilizing the norm of T once multiplied with the Laplace-
Beltrami operator on a sphere of radius R [4]. These block
operators can then be discretized in a Galerkin setting to form
the stable discretized block operator

Z s = TT
LS

[
L+

L H LL+
L 0

0 G−1

λ̃p
LSH +

S LSG−1

pλ̃

]
TLS , (11)

where

LL = −ΛTGffΛ , (12)

LS = −ΣTG f̃ f̃Σ , (13)

H L = LL + k2
mGλλ , (14)

H S = LS + k2
mG λ̃λ̃ , (15)

Σ̃ = Σ
(

ΣTΣ
)+

Gpp , (16)

TLS =

[
(−jk)−1ΛT

Σ̃
T

]
T
[
Λ −jkΣ̃

]
. (17)

In addition, for this operator to be stable until arbitrarily low
frequencies the terms ΛTT h and T hΛ must be explicitly set
to 0. The preconditioned system (11) still exhibits a nullspace
of dimension 2 that corresponds to the all one vectors that are
in the nullspaces of Λ and Σ , both of which can be removed
by deflection but these passages are not detailed here for the
sake of brevity.

B. Vectorial Formulation

Along with the new scalar formulation we present a new
vector formulation that leverages on the quasi-Helmholtz
projectors PΛ = Λ(ΛTΛ)ΛT and PΣ = Σ(ΣTΣ)ΣT

instead of Loop-Star techniques to perform the Helmholtz
decomposition of n̂×T . The decomposed operators are then
preconditioned using vector Helmholtz operators, which for
the solenoidal operator yields

k−2n̂× T
(
∆ + k2

mI
)
n̂× T , (18)

and for the non-solenoidal operator

k2n̂× T
(
∆ + k2

mI
)−1

n̂× T , (19)



where ∆ is the vector Laplacian on Γ. The complete, stabi-
lized, operator can then be discretized as

Z v = TT
ΛΣ

(
G−1

f̃ ,n̂×f
H ΛG−1

n̂×f ,f̃
+ H +

Σ

)
T ΛΣ , (20)

where

L̃Λ = G−1
λp̃Gλλ

(
ΛTGffΛ

)+

GλλG−1
p̃λ , (21)

L̃Σ = G−1

λ̃p
G λ̃λ̃

(
ΣTG f̃ f̃Σ

)+

G λ̃λ̃G−1

pλ̃
, (22)

H Λ = Λ
(
−G−1

p̃p̃ + k2
mL̃Λ

)
ΛT , (23)

H Σ = Σ
(
−G−1

pp + k2
mL̃Σ

)
ΣT , (24)

T ΛΣ =
(
(−jk)−1PΛ + PΣ

)
T (PΛ − jkPΣ ) . (25)

As for the scalar case, the low frequency stability of the
formulation is dependent on the explicit cancellation of the
terms PΛT h, T hPΛ, PΛH +

Σ , H +
Σ PΛ, PΣ G−1

f̃ ,n̂×f
H Λ and

H ΛG−1

n̂×f ,f̃
PΣ . We omit the passages for the sake of brevity.

IV. NUMERICAL RESULTS

To verify the stability of the newly introduced formulations
we perform a spherical harmonics analysis of the continuous
operators in the case of a sphere of radius R for which we
denote as Ylm the spherical harmonic of order l (m ∈ [−l, l]).
It can be demonstrated that Ylm and n̂×∇Ylm are respectively
the eigenvectors of (9) and (18) which also share the same
eigenvalues

σΛ(l, k) = k−2
(
Jl(kR)H

(2)
l (kR)

)2
(
− l(l + 1)

R2
+ k2

m

)
,

(26)
where the subscript m has been omitted because the eigenval-
ues are identical for each m ∈ [−l, l] (they have multiplicity
2l + 1) and where Jl and H

(2)
l are the Riccati-Bessel and

Riccati-Hankel functions. Similarly, Ylm and ∇Ylm are re-
spectively the eigenvectors of (10) and (19) associated to the
shared eigenvalues

σΣ (l, k) = k2
(
Jl
′(kR)H

(2)
l

′
(kR)

)2
(
− l(l + 1)

R2
+ k2

m

)−1

,

(27)

where ′ denotes the derivative.
Careful analysis of these eigenvalues shows that the reg-

ularized operators are both dense discretization and high-
frequency stable (Figures 1 and 2). The dense discretization
stability is characterized by the clustering of the absolute
value of the eigenvalues at 0.25, while the high frequency
stability is a consequence of the fact that their absolute value
remains bounded by 1. These operators will hence be high-
frequency stable after eliminating their spurious resonances.
Finally, the formulation is also low frequency stable since
both σΛ(l, k) and σΣ (l, k) converge to a finite non-zero value
(l(l + 1)/(2l + 1)2) that is independent of the frequency as
k → 0.
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Fig. 1. Absolute value of the eigenvalues of the high frequency stable
operators (solenoidal/loop) for different frequencies, which show a bound at
1 and a clustering at 0.25 for large l.
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Fig. 2. Absolute value of the eigenvalues of the high frequency stable
operators (non-solenoidal/star) for different frequencies, which show a bound
at 1 and a clustering at 0.25 for large l.

V. CONCLUSION

We have presented two new electric integral formulations
that are stable in the high frequency regime (resonances
excluded) in addition to being stable in the low frequency
and dense discretization regimes. These new formulations are
stabilized using Helmholtz operators with modified wavenum-
bers: the first one is based on a Loop-Star decomposition and
leverages the scalar Helmholtz operator while the second one
is based on the quasi-Helmholtz projectors and leverages a
vector Helmholtz operator. In both case, the resulting precon-
ditioned system is symmetric and does not require the use
of dual functions for the discretization of the electromagnetic
potential operators.
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