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Abstract. Artificial Intelligence systems are characterized by always
less interactions with humans today, leading to autonomous decision-
making processes. In this context, erroneous predictions can have severe
consequences. As a solution, we design and develop a set of methods
derived from eXplainable AI models. The aim is to define “safety regions”
in the feature space where false negatives (e.g., in a mobility scenario,
prediction of no collision, but collision in reality) tend to zero. We test
and compare the proposed algorithms on two different datasets (physical
fatigue and vehicle platooning) and achieve quite different conclusions in
terms of results that strongly depend on the level of noise in the dataset
rather than on the algorithms at hand

Keywords: Reliable AI · Logic Learning Machine · Skope Rules.

1 Introduction

Artificial Intelligence is a very wide discipline which is undergoing an unprece-
dented development in recent years. Algorithmic decision-making is now ubiq-
uitous, with always less human intervention, even in critical contexts such as
automotive, finance or healthcare. For this reason, there is a need for an “Algo-
rithmic Audit” [21] facing the legal, ethical and safety issues derived from such a
growth: technology experts and policy makers should cooperate in order to make
AI trustworthy and responsible for users [23]. To this effort, regulation is being
developed, stating the requirements that AI systems should follow to achieve
such goals. Between that legislation, we must remark the European GDPR 1,
introduced in 2018, which states the need of a “right to explanation” when deal-
ing with automated systems. This has paved the way to the development of a
subfield of AI, referred to as eXplainable AI (XAI), aiming to provide humans
with understanding and trust in models outcomes. Hence, XAI models often
come in the form of intelligible rules, being simpler and generally less accurate
than more sophisticated models (such as those of deep learning) [35], but with
the enormous advantage of being interpretable.

1 https://gdpr.eu/tag/gdpr/

https://gdpr.eu/tag/gdpr/


2 Sara Narteni et al.

Another point of view to trustworthy AI is identifying and handling assur-
ance under uncertainties in AI systems [11]. This means improving reliability of
prediction confidence. The topic remains a significant challenge in machine learn-
ing, as learning algorithms proliferate into difficult real-world pattern recognition
applications. The intrinsic statistical error introduced by any machine learning
algorithm may lead to criticism by safety engineers. This is corroborated even
more by the intrinsic instability of deep learning in the presence of malicious
noise [39,8]. The topic has received a great interest from industry [20], in partic-
ular in the automotive [38] and avionics [9] sectors. In this context, the conformal
predictions framework [3] studies methodologies to associate reliable measures of
confidence with pattern recognition settings including classification, regression,
and clustering.

Keeping in mind these emerging research directions, our work shows how
global rule-based XAI can be used as a warranty of reliability. In particular, we
give the following contributions:

– We define reliability from outside (Section 5.1) and reliability from inside
(Section 5.2) methodologies, through which Logic Learning Machine charac-
teristic value ranking becomes an instrument to achieve “safety regions” in
the feature space with zero statistical error.

– We show how intelligible rules (Logic Learning Machine and Skope-Rules),
when trained with zero error, can be joined and then perturbed on their
most important features to obtain more complex “safety regions” (Section
5.3).

– We apply the proposed approaches on two different datasets, concerning
different kinds of problems, and demonstrate how our methods may perform
differently according to the data (Section 6).

2 Related Work

In the era of massive automation, a big effort must be put on developing ML/AI
algorithms that should never fail when producing their outcomes: erroneous pre-
dictions may lead to severe consequences in many safety-critical fields [2]. Many
different approaches have been carried out to this purpose, which will be sum-
marized in the following subsections.

2.1 Safety Engineering-based Methods

In the context of autonomous driving, safety assessment has been studied in re-
cent years by considering typical safety engineering approaches (safety-by-design,
safe fail, safety margins) and extending them to ML paradigm [40,25], with major
focus on neural networks and the most advanced Deep Learning solutions. These
certification approaches include formal verification [37], transparent implemen-
tation [1], uncertainty estimation [22], error detection [16], domain generaliza-
tion [43] and adversarial approaches based on data perturbation and corruption
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[17,13]. Furthermore, AI certification may rely on training data quality as in [7],
where authors introduced metrics such as scenario coverage for ensuring that
the data used in training has possibly covered all important scenarios. Also,
[15] proposed a Feature Space Partitioning Tree (FSPT) method which splits
the feature space into multiple parts with different training data densities, in
order to identify those where there is lack of training samples. Another work
[33] adopted the same safety engineering approach to identify safety hazards
related to each different phase of a typical ML pipeline and propose product-
oriented (i.e. technical requirements) and process-oriented (i.e. processes to be
followed) methodologies for the mitigation of such risks. In [36], authors focus on
autonomous driving and review the existing machine learning safety assurance
methods, categorizing them by following the system’s life-cycle. Here, DNNs are
massively recurrent in all the collected works, with no mention to XAI. Nowa-
days, most autonomous systems are based on Deep Neural Networks (DNNs),
since they guarantee very accurate performance on high-dimensional data. A lot
of literature exists on safety of deep models: in [13], a DNN analyzer based on
abstract interpretation is introduced to enhance reliability. Safety engineering
approaches are also adopted in healthcare [4] to assess Convolutional Neural
Networks safety for pattern recognition using a medical device, combining the
known approach of error correcting memory with the introduction of default
values to use in case of uncorrectable errors. Safety of DL models is also consid-
ered in [12] by using Bayesian neural networks to quantify uncertainty of CNN
models in image segmentation tasks.

Moreover, some methods integrate safety assurance into reinforcement learn-
ing (RL) framework, by making predictions to guide the agent towards safe
decisions [19].

2.2 Classification with abstension

A different branch of methodologies to achieve reliability of AI consists in al-
lowing classifiers to abstain from making predictions when they are considered
uncertain according to a given loss function. Classification with abstension is
achieved in [41], where a pointwise-competitive selective classification method
was introduced to look for classifiers that minimize the true risk by using a se-
lection function with the property of abstaining from predictions if the empirical
risk minimizer does not agree with the true risk minimizer. Moreover, in [10] au-
thors developed an innovative approach for classification with abstension, based
on learning a predictor and the abstaining function simultaneously. Another so-
lution is to perform a three-way decision, where an “uncertain” category is added
to the task, being chosen if its cost is lower than providing a clear decision: such
an approach is showing promising results either when used a posteriori either
when embedded in the training of traditional ML [5]. However, the evaluation of
such abstension-based methodologies needs to be based on a trade-off between
accuracy of prediction and the rate of abstension, which cannot be too high to
have useful models. In contrast, our XAI-based methods to handle uncertainty
do not need such consideration.
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2.3 Explainable AI-based methods

While AI systems certification is widely investigated for black-box deep learning
models, it’s not the same for explainable AI (XAI) models. Many XAI techniques
are now available [2] with application in critical systems, e.g. in medicine [18].
In [34], the role of XAI is recognized as a way to achieve the verification of the
system and the legislation compliance, but the proposed framework is based on
explanations of black-boxes. Only a few works exist on the usage of XAI methods
to address reliability in autonomous driving [27,29,26,28] or medicine [14]. Based
on this, we investigate the role of global rule-based models and apply them to
vehicle platooning and physical fatigue detection cases.

3 Logic Learning Machine

Logic Learning Machine (LLM) is an innovative global explainable supervised
method; it is an efficient implementation of Switching Neural Networks [30]. LLM
has the aim of building a classifier g(x) described by a set of rules structured as
follows: if <premise> then <consequence>. The <premise> is a logical product
(∧) of conditions on the input features, whereas <consequence> corresponds to
the output class. The model is built by following a three-step process:

1. Discretization and Latticization: each variable is transformed into a string
of binary data in a proper Boolean lattice, using the inverse only-one code
binarization. All the strings are then concatenated in one unique large string
per each sample.

2. Shadow Clustering : a set of binary values, called implicants, are generated,
allowing the identification of groups of points associated with a specific class.

3. Rule Generation: all the implicants are transformed into a set of simple
conditions and eventually combined into a collection of intelligible rules.

An implicant is defined as a binary string in a Boolean lattice that uniquely
determines a group of points associated with a given class. It is straightforward
to derive from an implicant an intelligible rule having in its premise a logical
product of threshold conditions based on the cutoffs obtained during the dis-
cretization step. In LLM all the implicants are generated via Shadow Clustering
by looking at the whole training set: in this way, resulting rules can overlap and
represent different relevant aspects of the underlying problem [32],[31].

3.1 Feature and Value Ranking

Being a rule-based method, it is possible to inspect LLM results through feature
and value ranking.

Consider a set of m rules rk, k = 1, . . . ,m, each including dk conditions
clk , lk = 1k, . . . , dk. Let X1, . . . , Xn be the input variables, s.t. Xj = xj ∈ X ⊆
R ∀j = 1, . . . , n. Let also ŷ be the class assigned by the rule and yj the real
output of the j − th instance.
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A condition clk involving the variable Xj , can assume one of the following
forms [29]:

Xj > s, Xj ≤ t, s < Xj ≤ t, (1)

being s, t ∈ X .

For each rule generated by the algorithm, it is possible to define a confusion
matrix associated to the rule. It is made up of four indices: TP (rk) and FP (rk),
defined as the number of instances (xj , yj) that satisfy all the conditions in rule
rk with ŷ = yj and ŷ 6= yj respectively; TN(rk) and FN(rk), defined as the
number of examples (xj , yj) which do not satisfy at least one condition in rule
rk, with ŷ 6= yj and ŷ = yj , respectively.

Consequently, the following useful metrics can be derived [6]:

C(rk) =
TP (rk)

TP (rk) + FN(rk)
(2)

E(rk) =
FP (rk)

TN(rk) + FP (rk)
(3)

The covering C(rk) is adopted as a measure of relevance for a rule rk; as
a matter of fact, the greater is the covering, the higher is the generality of the
corresponding rule. The error E(rk) is a measure of how many data are wrongly
covered by the rule. Both covering and error are used to define feature ranking
and the subsequent value ranking.

Feature ranking (FR) provides a way to rank the features included into the
rules according to a measure of relevance. In order to obtain such measure of
relevance R(clk) for a condition, we consider the rule rk in which condition
clk occurs, and the same rule without condition clk , denoted as r′k. Since the
premise part of r′k is less stringent, we obtain that E(r′k) ≥ E(rk), thus the
quantity R(clk) = (E(r′k)− E(rk))C(rk) can be used as a measure of relevance
for the condition of interest clk . Each condition clk refers to a specific variable
Xj and is verified by some values νj ∈ X . In this way, a measure of relevance
Rŷ(νj) for every value assumed by Xj is derived by the following equation 4 [29]:

Rŷ(νj) = 1−
∏
k

(1−R (clk)) (4)

where the product is computed on the rules rk that include a condition clk
verified when Xj = νj . Since the measure of relevance Rŷ(νj) takes values in
[0, 1], it can be interpreted as the probability that value νj occurs to predict
ŷ. The same argument can be extended to intervals I ⊆ X , thus giving rise to
Value Ranking (VR). Relevance scores are then ordered, thus giving evidence of
the most sensitive interval of the feature with respect to each class.
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4 Skope-Rules

Another global explainable supervised method is Skope-Rules 2, a Python ma-
chine learning module built on top of scikit-learn. Like LLM, Skope-Rules is
an interpretable rule-based model consisting of a series of if <premise> then
<consequence> rules; the difference between the two models lies in the way these
rules are generated, selected and finally filtered. The three-step process for rules
generation in Skope-Rules is as follows:

1. Bagging estimator training : rules generation is done from a set of decision
trees and/or regressors. Each path or sub-path of a branch of a tree is trans-
formed into a decision rule. Trees are trained to predict the output class of
interest. This ensures that the splits are made in such a way as to guarantee
that they are meant for the prediction task.

2. Performance filtering : from this set of rules an initial screening is carried
out based on precision and recall thresholds.

3. Semantic deduplication: the last filter applied for the choice of rules is based
on a criterion of similarity between terms, whereby term is meant the feature
associated with the comparison operator with which it appears in the rule.
The measure of similarity of two rules is determined by how many terms
they have in common.

5 Reliability Assessment Methods

Considering a binary classification problem, we refer to the positive class (y = 1)
as the unsafe one. In contrast, class y = 0 is referred to as the safe class. Based
on this, we call “safety regions” those regions in the feature space where false
negatives tend to zero. In this work, we developed three different methods to
look for such regions.

5.1 Reliability from Outside

Let X be a D × N matrix of all the input vectors xi ∈ RN , with the total
number of features N and i ∈ [1, D]. Let g(xi) = y be the function describing
the LLM classification. For binary classifications, we consider g(xi) = 1 for the
positive class, while g(xi) = 0 for the other. Let D1 be the number of instances
belonging to class y = 1 and D0 the number of instances in class y = 0, so that
D1 +D0 = D.

Let NFR be the number of the most significant features obtained through
the feature ranking for class y = 1. For each feature j ∈ [1, NFR], we can use the
LLM value ranking to define the most significant interval for y = 1 as [sj , tj ]. Our
method consists in expanding such intervals as follows: [sj − δsj · sj , tj + δtj · tj ].

Being ∆ = (δ1, . . . , δNFR) a matrix, with δj = (δsj , δtj ), the optimal ∆ is
computed through the following optimization problem. Let P(∆) be the hyper-
rectangle under the expanded intervals and let V(P(∆)) be the inherent volume.

2 https://github.com/scikit-learn-contrib/skope-rules

https://github.com/scikit-learn-contrib/skope-rules
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Then, the optimization problem identifies the best fit from the outside of
class y = 1, namely, it finds the most suitable shape, in terms of rule-based
intervals, of safe points around the unsafe ones. It is as follows:

∆∗ = arg min
∆:N1=D1

V(P(∆)) (5)

being N1 the number of elements in X classified as y = 1 and included into
V(P(∆)).

For instance, if we fix NFR=2, the hyper-rectangle P becomes a rectangle S.
The optimization process let us find out the matrix ∆∗ = (δ∗1, δ

∗
2). The related

optimal intervals are I1 = (s1−δ∗s1 ·s1, t1 +δ∗t1 · t1), I2 = (s2−δ∗s2 ·s2, t2 +δ∗t2 · t2),
corresponding to the features j = 1 and j = 2 respectively: their logical union
(∨) defines a surface S.

Then, the “safety region” is defined as the complementary bi-dimensional
surface of S, which can be written as follows:

S1 = ((−∞, s1 − δ∗s1 · s1) ∨ (t1 + δ∗t1 · t1,∞))∧
((−∞, s2 − δ∗s2 · s2) ∨ (t2 + δ∗t2 · t2,∞))

(6)

5.2 Reliability from Inside

An alternative way to perform the same search for “safety regions” consists in
considering the NFR most important features for safe (y = 0) class instead and
reducing their most relevant intervals (again, provided by LLM value ranking)
until the obtained region only contains true negative instances.

In this case, with the same notation as for the previous definition (section
5.1), the reduced intervals are: [sj + δsj · sj , tj − δtj · tj ]. Being ∆ defined in
the same way as for equation 5 and P0 the hyper-rectangle under the reduced
intervals, the optimal ∆ is found by enlarging as much as possible the hyper-
rectangle from inside the non-fatigue class, until a fatigued point is reached. It
is as follows:

∆∗ = arg max
∆:N1=0

V(P0(∆)) (7)

For NFR = 2, the “safety region” is the following rectangle S0:

S0 = (s1 + δ∗s1 · s1, t1 − δ
∗
t1 · t1) ∨ (s2 + δ∗s2 · s2, t2 − δ

∗
t2 · t2) (8)

5.3 Rules with Zero Error

As the sharp angularity of hyper-rectangles may be not fine enough to follow
the potential complex shapes of the boundaries between the classes, a more
refined approach would ask for more complex separators, still preserving the
zero statistical error constraint and by starting from the available rule baseline.
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Given a rule-based model, it can be trained so to define a set of m rules
rk, k = 1, . . . ,m denoted by E(rk) = 0 ∀k ∈ [1,m]. Suppose that this procedure
provides a set of m0 rules r0k, k = 1, . . . ,m0 for the safe class (y = 0). Also,
let c0lk , l

0
k = (1, . . . , d0k) be the set of d0k conditions inside of each rule r0k. We

can join all the obtained rules r0k in logical OR operation (∨), thus building a
new predictor r̂. Our goal is to assess its ability of classifying new test set data
with statistical zero error (FNR=0). This implies to further tune r̂, by tuning
a subset of its conditions c0lk , chosen as those containing the first NFR features
obtained from the rules feature ranking for class y = 0. In mathematical terms,
for each feature j ∈ [1, NFR], we add the thresholds of the chosen conditions
by applying δ = (δs, δt), being δs and δt the perturbation applied to s and
t thresholds, respectively, as defined in equation 1. Let r̂(δ) be the resulting
perturbed predictor, our goal is then to find the optimal δ as follows:

δ∗ = arg max
δ:E(r̂(δ))=0

C(r̂(δ)) (9)

This procedure can be applied to any rule-based model, provided that it is
possible to train it with zero error.

As regards the LLM model, zero error classification (for the safe class) is read-
ily available by the shadow clustering adopted by LLM. The clustering process
is applied with the further constraint of building clusters without superposition
of points of more than one class [27] (LLM 0%, in the following).

In the case of Skope-Rules (Section 4), the same zero error for safe class
rules can be obtained by training the model with precision min parameter fixed
to 1.

6 Applications and Results

The methods described in the previous Section 5 have been applied and tested on
two different classification problems: physical fatigue detection in working task
simulation (Section 6.1) and collision detection in vehicle platooning (Section
6.2).

6.1 Physical Fatigue

The data used in this test phase belong to an open-source dataset 3. Data were
collected through wearable sensors, i.e. Inertial Movement Units (IMUs), from
15 participants who were asked to perform a simulation of an industrial task
for 180 minutes and provide a fatigue level every 10 minutes using RPE [42].
According to such scale, RPE≥13 corresponds to a fatigued state (class y = 1),
otherwise to non-fatigued (class y = 0). From sensors raw data, a list of features
is derived (see Table 2 in [24]). We removed heart-rate related features as well
as gender, since it is not numerical, and standardized data by applying z-score
transformation.
3 https://github.com/zahrame/FatigueManagement.github.io/tree/master/Data

https://github.com/zahrame/FatigueManagement.github.io/tree/master/Data
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We then trained LLM model with standard 5% maximum error allowed for
rules on a 67% training set. We evaluated it on a 33% test set using common
metrics, namely an accuracy of 82%, sensitivity of 71%, specificity of 95% and
F1-score of 0.81.

Reliability from Outside In order to test this method, we considered the first
two most important intervals for fatigued class that we got from LLM value
ranking: back rotation position in sagittal plane > 0.03 and wrist jerk coefficient
of variation > 0.03. We applied the optimization algorithm (Eq. 5) on such
intervals and obtained δ∗s1 = −13, δ∗s2 = 28. For such values, we got FNR=0 and
TNR=0.20. Therefore, the “safety region”, which we call “non-fatigue region”
in this context, can be expressed as follows (for brevity, let f1 and f2 be the two
above mentioned features):

S1 = ((f1 ∈ (−∞, 0.42)) ∧ (f2 ∈ (−∞,−0.81))

The resulting region was then validated in order to take into account that the
involved feature values should vary in a limited range, so to reflect real human
movement capabilities and correspond to proper execution of the task. In general,
we cannot assume that a subject who stays still will not ever get fatigued, but
the nature of the task in which the subject is involved should provide indications
on the ranges of parameters assessing the required movements. Since the dataset
documentation does not drive in this direction and the inherent literature lacks
of standard ranges, we chose to consider maximum and minimum values for the
features based on two age groups (age≤40 and age>40). This helps to highlight
the further stratification readily available from the sensitivity analysis.

Doing so, we were able to redefine two “non-fatigue regions” by limiting the
previous one according to the ranges we found; such new regions are expressed
as follows:

S1 = ((f1 ∈ (−2.52, 0.42)) ∧ (f2 ∈ (−1.78,−0.81)) for age ≤ 40 y.o

S1 = ((f1 ∈ (−1.86, 0.42)) ∧ (f2 ∈ (−2.0,−0.81)) for age > 40 y.o

In Figure 1 a visual representation of the obtained regions is provided.
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Fig. 1. Scatter plot of the first two features (back rotation position in sagittal plane
and wrist jerk coefficient of variation) with representations of the “non-fatigue region”
(FNR=0) individuated for age ≤ 40 group (pink) and age > 40 (violet).

Reliability from Inside We considered the problem of identifying non-fatigue
regions starting from the non-fatigued class too, thus adopting the reliability
from inside approach. The value ranking shown back rotation position in sagittal
plane ≤ 0.03 and chest acceleration mean > -0.47 as the two most relevant
intervals for predicting non-fatigued class. On such conditions, we applied the
optimization problem (Eq. 7), which led us to individuate δ∗t1 = 57, δ∗s2 = 8.78.
For these values, we got FNR=0 and TNR=0.06. The “non-fatigued region” S0
is then found (with f1 and f2 being back rotation position in sagittal plane and
chest acceleration mean respectively):

S0 = (f1 ∈ (−∞,−1.68) ∨ f2 ∈ (3.65,∞))

Just as for the outside approach, we limited such region in function of the two
group ages (up to and over 40 years old). This procedure redefines S0 for the
two age groups as follows (see Fig. 2 for the graphical representation):

S0 = (f1 ∈ (−2.52,−1.68) ∨ f2 ∈ (3.65, 3.99)) for age ≤ 40 y.o.

S0 = (f1 ∈ (−1.86,−1.68) ∨ f2 ∈ (3.65, 3.99)) for age > 40 y.o.
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Fig. 2. Scatter plot of the first two features (back rotation position in sagittal plane,
Chest Acceleration Mean) from value ranking of non-fatigued class, with representa-
tions of the “non-fatigue regions” (FNR=0) based on the age group (violet for age ≤
40, pink otherwise)

Zero Error LLM Both the previous approaches have the limitation of individuat-
ing optimal solutions to the identification of “non-fatigue regions” characterized
by relatively low values of TNR, i.e. number of instances included in such sur-
faces.

In order to assess if such values could be increased, we trained the LLM 0%
and built a new predictor by joining the first four highest coverage rules in logical
OR (see below).

if (0.51 < HipACCMean ≤ 1.98 and ChestACCcoefficientofvariation ≤ 1.11
and -1.73 < averagestepdistance ≤ 0.81 and backrotationpositioninsagplane ≤

0.52) ∨
(WristjerkMean > 0.55 and -1.35 < Back rotation position in sag plane ≤

0.04) ∨
(-1.73 < averagestepdistance ≤ -0.22 and backrotationpositioninsagplane ≤

-0.25 and -0.44 < numberofsteps ≤ 3.75 and -1.73 <
Wristjerkcoefficientofvariation ≤ 0.55) ∨

(ChestxpostureMean > -0.033 and HipzpostureMean > 0.43 and
WristACCMean > -0.83 and -0.88 < backrotationpositioninsagplane ≤ 0.29)

then non-fatigued

By evaluating the joining before any perturbation, we got FNR=0.06 and
TNR=0.75. To further decrease the FNR, we conducted the optimization process
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described in equation 9 by tuning the thresholds for the first NFR = 2 features
from non-fatigued feature ranking, namely HipACCMean and WristjerkMean.
We obtained δ∗s1 =1.848 and δ∗t2 =0.027 for such features respectively: these
thresholds perturbations brought FNR=0.02, with TNR=0.42.

Skope-Rules To ensure that we obtained rules with zero errors on the non-fatigue
classification task, we trained several models with a precision min = 1, where
precision min is the parameter that defines the minimum precision of a rule to
be selected in the performance filtering. Trained models differ in n estimators
and max depth duplication, where n estimators is the number of base estimators
to use for prediction and max depth duplication is the the maximum depth of
the decision tree for semantic deduplication (Section 4). For each model thus
obtained, we calculated precision and recall by varying the number of rules
applied (from 2 up to the maximum number of rules generated by the model)
and then chose the one that maximised precision and recall. This led us to use
a model trained with the following parameters:

1. n estimators = 200
2. precision min = 1
3. max depth duplication = 5

We then chose the first 3 rules generated by this model which correspond to the
following logical OR (∨):

if (backrotationpositioninsagplane ≤ 0.08 and HipjerkMean > -1.03 and
HipACCcoefficientofvariation ≤ 0.75 and HipypostureMean ≤ 1.12 and

HipzpostureMean > -1.78) ∨
(backrotationpositioninsagplane ≤ 0.17 and Wristjerkcoefficientofvariation ≤

0.05 and HipACCMean > -0.47) ∨
(backrotationpositioninsagplane ≤ 0.22 and Wristjerkcoefficientofvariation ≤

0.06 and HipACCMean > -0.10 and ChestjerkMean > -1.36) then
non-fatigued

This new predictor, before applying any perturbation, leads to FNR=0.11 and
TNR=0.69. As in the previous case, let’s see what happens in terms of FN by
perturbing two features. The features we are going to perturb are backrotation-
positioninsagplane and Wristjerkcoefficientofvariation and they are respectively
the first and second most present features in the rules derived from the perfor-
mance filtering (Section 4). To carry out the perturbation we used the procedure
as described in Section 5.3, applying the method of Eq. 9 and perturbing only
the most restrictive thresholds when the same features appeared in more than
one rule. This leads us to the following suboptimal solution, with an FNR=0.07
and TNR=0.67, corresponding to δt1 = 1.717 for backrotationpositioninsagplane
and δt2 = 15.845 for Wristjerkcoefficientofvariation.

6.2 Vehicle Platooning

Vehicle platooning is one of the most important challenges in autonomous driv-
ing, dealing with a trade-off between performance and safety. In our analysis
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we considered a scenario of cooperative adaptive cruise control (CACC) as de-
scribed in [27], where the platoon is in a steady state of speed and reciprocal
inter-vehicular distance when a braking force is applied by the leader of the pla-
toon. For the application of our safety assessment methods we used simulation
data generated by Plexe simulator 4. For each of the 4744 generated samples,
5 features were computed within the following ranges: the number of vehicles,
N ∈ [3, 8] the braking force F0 ∈ [−8,−1] × 103 N the Packet Error Rate
PER ∈ [0.2, 0.5] the initial distance between vehicles d(0) ∈ [4, 9] m (supposed
equal for all of them); the initial speed v(0) ∈ [10, 90]km/h. The system registers
a collision when distance between two vehicles is lower than 2 m.

Applying the default LLM with maximum error of 5% on a 30% test set,
we obtained 85,9% of accuracy, 75.4% sensitivity, 86.8% specificity and 0.46 F1-
score. We then performed the safety analysis to find out regions were collisions
are avoided with no error.

Reliability from Outside From the value ranking for the collision class (y = 1), we
obtained PER >0.43 and F0 ≤ −7.50 × 103N as the first two most important
intervals. We then applied the optimization approach as in Eq. 5 and found
δ∗s1 = −0.034, δ∗t2 = −0.416, which correspond to reach FNR=0 with TNR=0.34.
Thus, according to the definition in Eq. 6, the safety region we obtain is the
following:

S1 = ((PER ∈ (0.2, 0.4154)) ∧ (F0 ∈ (−4.37,−1)× 103)

A visual representation of such region is in Figure 3. Also, we performed a
search for safety regions by considering three features, including the third most
important interval from value ranking too, i.e. N > 6. We got δ∗s1 = −0.184, δ∗t2 =
−0.166 and δ∗s3 = −0.1 with FNR=0 and TNR=0.19. In this case, the safety
region is tridimensional, corresponding to the following volume (Fig. 4):

V1 = ((PER ∈ (0.2, 0.3509)) ∧ (F0 ∈ (−6.255,−1)× 103) ∧ (N ∈ (3, 5.4)

Reliability from Inside Following the optimization approach in Eq. 7, we first
chose the first two intervals from the value ranking of the safe class (y = 0):
PER ≤ 0.33 and F0 > −3.50 × 103N. Then, we computed the optimal thresh-
old perturbations δ∗t1 = 0.356, δ∗s2 = 0.686, for which we got FNR=0 with
TNR=0.13. The safety region is then individuated by the following surface (Fig.
5):

S0 = (PER ∈ (0.2, 0.2125) ∨ F0 ∈ (−1.1001,−1)× 103)

Zero Error LLM By lowering the LLM maximum error allowed to 0% we were
able to look for more complex safety regions. After training the LLM model with
0% error, we joined the first 4 rules for safe class with the highest coverage. This
corresponded to the following logical OR (∨):

4 https://github.com/mopamopa/Platooning

https://github.com/mopamopa/Platooning
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Fig. 3. Scatter plot of the first two features (PER and F0) with representations of the
safety region

Fig. 4. 3D scatter plot of the first three features (PER,F0,N): the safety region is
represented by the volume (in violet)
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Fig. 5. Scatter plot of the first two features (PER and F0) for safe class with repre-
sentations of the safety region

if (N ≤ 5 and v(0) ≤ 54.50)∨
(PER ≤ 0.295 and N ≤ 7 and v(0) ≤ 86.50) ∨

(v(0) ≤ 28.50 and PER ≤ 0.445) ∨
(v(0) ≤ 28.50 and N ≤ 6 and d(0) ≤ 7.86) then safe

This new predictor, before applying any perturbation, leads to FNR=0.05 and
TNR=0.55. We then exploited the feature ranking to individuate which features
we should tune in order to lower FNR as much as possible. The two most influent
features resulted to be v(0) and PER in this case. Then, by applying the method
in Eq. 9 we perturbed such features: in this case, we were able to achieve only
a suboptimal solution, with FNR=0.02 and TNR=0.45, corresponding to δt1 =
0.000877 for v(0) and δt2 = 0.277 for PER. Where the same feature was present
in more than one joined rule, we perturbed only the most stringent threshold.

Skope-Rules As explained above for the Physical Fatigue case, also for Platoon-
ing, we trained different models by varying the parameters n estimators and
max depth duplication. Again, we chose to set precision min = 1 to obtain rules
with zero errors on the non-collision classification task. Again, for each model
thus obtained, we calculated precision and recall by varying the number of rules
applied (from 2 up to the maximum number of rules generated by the model)
and then chose the one that maximised precision and recall. This led us to use
a model trained with the following parameters:

1. n estimators = 75
2. precision min = 1
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3. max depth duplication = 2

We then chose the first 4 rules generated by this model which correspond to the
following logical OR (∨):

if (PER ≤ 0.41 and v(0) ≤ 45.5)∨
(N ≤ 7.5 andF0 > −7.5 andPER ≤ 0.32) ∨

(N ≤ 5.5 and v(0) ≤ 54.5) ∨
(F (0) > −4.5 and PER ≤ 0.41 and v(0) > 64.5) then safe

This new predictor, before applying any perturbation, leads to FNR=0.04 and
TNR=0.57. To compare the results obtained previously for the Zero Error LLM,
we decided again to perturb two features in the same way as described above
(applying the method of Eq. 9 and perturbing only the most restrictive thresh-
olds). In this case, the first and second most present features in the rules de-
rived from the performance filtering (Section 4) are v0 and PER, the same
obtained from the LLM ranking. This leads us to the following suboptimal so-
lution, with an FNR=0.02 and TNR=0.52, corresponding to δt1 = −0.649 for
v(0) and δt2 = −0.172 for PER.

6.3 Discussion

From a comparison between the obtained results on the two datasets, we can
notice that inferring reliability from the available rules is highly dependent on
the structure of the data under analysis. The inside-outside (Sections 5.2, 5.1)
methods show flexibility in looking at the feature space, alternating good re-
sults (outside in platooning in two dimensions), surprising results (outside in
platooning in three dimensions is outperformed by the same in two dimensions)
and bad results (inside in platooning in two dimensions). The outside approach
finds larger (higher TNR) safety regions than the inside one both in fatigue and
platooning. Inside-outside may be even joined together when the feature ranking
agrees on the most important features for the available classes. As this happens
in the platooning case, we may consider the safety regions involving PER and
F0 (Figures 3 and 5), and, by visual analysis of the overlap of such regions (see
Fig. 6), we could join them to find a larger and more complex (in terms of rules)
safety region.

On the other hand, due to the similarity of the adopted rules optimization
approach (Section 5.3), we can compare the results of LLM 0% and Skope-Rules.
Since we were dealing with more complex profiles than rectangles, results have
shown an increase of TNR for both the models on the two datasets. However,
in the physical fatigue test case, the LLM 0% starts by a much lower FNR
(0.06) than Skope (0.11) before perturbation, reaching a sub-optimal solution
after tuning; in contrast, Skope achieves a suboptimal solution too, with a FNR
(0.07) that is surprisingly higher than the corresponding value of LLM 0% before
optimization (0.06). As regards the vehicle platooning problem, results are more
consistent in the two algorithms, showing the same FNR and a higher TNR with
Skope.
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Fig. 6. Scatter plot of the two most important features in vehicle platooning LLM
classification (PER and F0), with representation of the safety regions found with Inside
(pink area) and Outside (blue area) methods: the overlap of such regions defines a new
safety region, where TNR reaches higher values

7 Conclusions and Future Works

In this work, we have studied how XAI models can represent a solution towards
safety assurance in predictive analytics. We first focused on a global rule-based
model, the LLM, and demonstrated how its characteric value ranking property
can be exploited for the design of “safety regions” in the features space with
zero statistical error. This was achieved by developing our innovative “reliability
from outside” and “reliability from inside” methodologies. Then, we used a third
method to optimize more complex rule profiles and applied it to LLM 0% and
Skope-Rules.

Data and code are available at the following Github repository: https://
github.com/saranrt95/safety-from-valueranking.

By testing and comparing our proposed methodologies on problem instances
of different nature (physical fatigue and vehicle platooning), we have also shown
how their performance varies between the datasets.

Future works may extend the testing through cross-validation in the presence
of a large amount of data, including the adoption of data augmentation tech-
niques and the experimentation on benchmark datasets. The characterization of
the placement of the points deserves further study to understand the optimal
covering of the safety regions. The translation of deep learning logic into rules
with further design of safety envelope is another topic we are going to pursue in
the near future.

https://github.com/saranrt95/safety-from-valueranking
https://github.com/saranrt95/safety-from-valueranking
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