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Abstract 

Carbon nanotubes, and synthetic organic nanotubes more generally, have been explored 

in many applications in electronic devices, energy storage, catalysis, and biosensors over 

past decade. Despite noteworthy progress made in the synthesis of nanotubular 

architectures with well-defined lengths and diameter, purely covalent bonded organic 

nanotubes have remained somewhat challenging to prepare. Here, we report the 

synthesis of covalent bonded porous organic nanotubes (CONTs) by Schiff base reaction 

between a tetratopic amine-functionalized triptycene and a linear dialdehyde. The 

spatial orientation of the functional groups promotes the growth of the framework in 

one-dimension, and the strong covalent bonds between C, N, and O impart the resulting 

CONTs with high thermal and chemical stability. Upon ultrasonication, the CONTs 

form intertwined structures that go on to coil and form toroidal superstructures. 

Computational studies give some insight into the effect of the solvent in this assembly 

process.  

 

 

Main Text:  

In the construction of reticular frameworks of any dimension the geometry and bonding 

capability of the building units, as well as the self-correction capability of the reversible 

linkages between them, are crucial aspects.
1,2

 Through dynamic covalent chemistry, a wide 



variety of organic cages (zero-dimensional)  as well as two- and three-dimensional  covalent 

organic frameworks (COFs) have been synthesized.
3-6

 However, controlling the periodic 

arrangement of covalent bonds in extended one-dimensional solids is still in infancy. 

Nanotubes are one group of such covalent bonded structures where limited synthetic 

approaches have been developed.
7,8

 These one-dimensional hollow tubular nanostructures are 

attractive for applications in electronic devices, energy storage, catalysis, membrane 

separation, and biosensors.
9-11

 Carbon nanotubes (CNTs) are the most explored members of 

this family due to their electronic and mechanical properties. They are generally synthesized 

by rolling two-dimensional graphite sheets around the edges following various methods such 

as arc discharge, electrolysis, chemical vapor deposition (CVD), plasma torch, and 

hydrothermal techniques.
12-18

  These methods demand harsh reaction conditions and high 

temperature. Furthermore, the incorporation of pre-designed functionalities is difficult due to 

the CNTs’ insolubility in common organic solvents.   

 

Although self-assembly and disassembly have been shown to lead to such nanotubular 

architectures,
19-21

 it has remained challenging to control their size on the nanoscale, as well as 

their morphology and composition. One of the main challenges in the bottom-up synthesis of 

such self-assembled nanostructures is the need to simultaneously control their structure and 

their morphology. In particular, a variation in composition of the building blocks can alter the 

system's nanoscopic assembly and in turn the overall morphology of the resulting structures 

— making the systematic tuning of their size or shape difficult.
22,23 

The supramolecular 

strategy also often leads to significant structural alterations during functionalization, as 

functional groups alter the interactions between the building blocks.   

Herein, we present the synthesis of covalent bonded porous organic nanotubes, using organic 

building blocks designed to assemble into one-dimensional covalent organic nanotubes 



(CONTs) through dynamic covalent chemistry. A tetratopic triptycene derivative with a 

dihedral angle of ~120º was combined with linear ditopic ligands by a reversible Schiff base 

reaction, leading to the formation of CONTs. The formation of either the thermodynamically 

or the kinetically stable product was favoured by adjusting the reaction conditions. The 

reversibility of the Schiff base reaction imparts error-correction capability to the system, 

which under thermodynamic control  allowed the selective formation of the ordered porous 

covalent 1D tubular framework over a random polymeric structure. Due to the high strength 

and stability of the covalent bonds, the synthesized CONTs display excellent chemical and 

thermal stability. These extended nanotubes (up to several microns in length) with sub-

nanometer diameter exhibit porosity as high as 321 m
2
g

-1
. This one-pot reaction strategy of 

CONT synthesis may also be suitable for large-scale synthesis.  

A time-dependent electron microscopic study into the morphological evolution of these 

CONTs showed that the isolated tubular morphologies go on to form intertwined toroidal 

structures. 

Results and Discussion 

Design and synthesis of CONTs: We have focused on a tetratopic tetraamine and a linear 

dialdehyde to construct the nanotubular covalent organic architecture (Fig. 1). The 

tetraaminotriptycene (TAT) features two opposite terminal amine pairs at a dihedral angle of 

~120º (Fig. 1b), and it is this orientation of amine functionalities in the TAT units that 

promotes the formation of covalent linkages in one dimension. The building blocks (Fig. 1b) 

were chosen for their geometry and energy optimization, which on aldehyde–amine 

condensation favour the formation of two geminal imine bonds that are trans to each other. 

This in turn ensures the framework's formation in one dimension, as the non-functionalized 

benzene rings are kept towards the inner wall of the resulting nanotube.  



To check the reaction's feasibility, we first synthesized a monomeric unit by reacting the TAT 

with 2-methoxy benzaldehyde (MB). High-resolution mass spectrometry (HRMS) analysis 

indicates that the stoichiometric condensation of TAT and 2-methoxy benzaldehyde results in 

a mixture of three products. These products are monomer-1 (diimidazole-triptycene); with 

two imidazole rings, monomer-2 (diimine-monoimidazole-triptycene); with one imidazole 

ring and two imine bonds; and monomer-3 (tetraimine-triptycene); with four imine bonds 

(Supplementary Section 2). By carefully examining the monomers, we concluded that 

imidazole formation is the competitive reaction preventing the nanotube formation. Thus, 

imine bond formation was optimized to reduce the imidazole formation with sequential 

modifications of the synthetic conditions (Supplementary Table 1, Supplementary Figures 3-

8). 

We then synthesized two CONTs (CONT-1 & CONT-2) via imine condensation reactions by 

combining a mixture of one equivalent of TAT (15.7 mg, 0.05 mmol) and two equivalents of 

either 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMDA) (19.4 mg, 0.1 mmol) for 

CONT-1 or terephthalaldehyde (TA) (13.4 mg, 0.1 mmol) for CONT-2. The dropwise 

addition of amine solution in dichloromethane (DCM) into the aldehyde solution (in DCM) in 

the presence of 0.5 mL 6 (M) acetic acid results in the cloudy precipitate (Supplementary 

Section 1). The resulting precipitate was collected by centrifugation followed by washing 

with anhydrous THF and then evacuated at 120 °C for 12 hours to yield 25.05 mg of CONT-

1 and 13.3 mg of CONT-2 [78%, and 51% yield of CONT-1 and CONT-2 respectively based 

on TAT] as off-white solid.  

Structural characterization : The FTIR spectra of both CONTs show the characteristic 

peaks at 1610 cm
-1

, which are characteristic -C=N- stretching modes for imine bonds (Fig. 

2a, Supplementary Figure 9). Solid-state Cross-Polarization Magic angle Spinning (CPMAS) 

NMR spectroscopy of the 
13

C and 
15

N nuclei was performed to validate the formation, 



connectivity, and atomic level construction of the CONT-1 backbone (Fig. 2b, 

Supplementary Figure 10). Solid-state 
13

C CP-MAS NMR spectroscopy shows the 

characteristic peaks of the imine (−C=N−) bonded carbon atoms at 155.5 ppm, whereas the 

methyl carbon appears at 53.5 ppm. The NMR spectrum also displayed discrete resonances in 

the aromatic region between 150 and 110.5 ppm (Fig. 2b). Solid-state High-Power Decoupled 

(HPDEC) 
13

C spectrum quantifies the number of different carbon atoms in the tube backbone. 

According to the reaction scheme, the basic unit consists of 20 carbons from TAT and 40 

carbons from DMDA. Out of these, 18 carbons from TAT and 32 carbons from DMDA 

appear in the aromatic and carbonyl region (200 to 100 ppm), two carbons of TAT and eight 

carbons of DMDA appear in the aliphatic region (~55 ppm) (Fig. 2c). Thus, one would 

expect an aromatic to the aliphatic carbon ratio of 5:1 for a complete reaction. The ratio 

obtained from the 
13

C HPDEC spectrum is close to 5:1. The peak at 186 ppm was assigned as 

free aldehyde functionality generated from the defect sites at the nanotube surface 

(Supplementary Figure 10). Although the optimized condition for the model system results in 

no imidazole formation, the nanotube contains a meager percentage (6-8%) of aldehyde 

moieties as defects in the framework. We have recorded multiple solid-state HPDEC 
13

C 

NMR spectra with different synthetic scales (yielding 150 mg and 280 mg of CONT-1) in 

two different instruments to quantify the defect in CONT-1. All the spectra are consistent to 

show 6-8% defect in the nanotube framework (Supplementary Section 4). The 
15

N CP-MAS 

spectrum of CONT-1 displayed two discrete peaks, a resonance at 240 ppm and another at 

148 ppm, indicating two distinct nitrogen sites. The characteristic peak at 240 ppm suggests 

the formation of the imine (−C=N−) bonded nitrogen atoms. The resonance at 148 ppm 

indicates the presence of NH group, which may be due to imidazole ring formation at the 

defect sites (Supplementary Section 16). Thermogravimetric analysis (TGA) of the activated 

CONT-1 under N2 atmosphere indicates that the framework has thermal stability up to 400º 



C, and there is no guest molecule inside the nanotubes (Supplementary Figure 34). The 

porosity of the CONTs was evaluated by measuring N2 adsorption isotherm at 77K (Fig. 2d, 

Supplementary Figure 11). Activated CONTs (after degassing at 140 ºC for 10 hours) showed 

reversible type II N2 adsorption isotherm. The BET surface areas of the activated CONT-1 

and -2 were 321 m
2
g

-1
 and 52 m

2
g

-1
, respectively (Supplementary Figure 11). The pore size 

distribution of both the CONTs was calculated based on the nonlocal density functional 

theory (NLDFT) (Fig. 2d and Supplementary Figure 12). The pore size distribution, which 

indicates two types of pores of 1-2 nm and 3.5-4.5 nm of size, is in good agreement with the 

theoretically predicted structure (Supplementary Figure 12). The 3.5-4.5 nm pore distribution 

refers to the main hollow tubular channels running along the length of the CONTs. The 1-2 

nm pore distribution corresponds to the side pores located on the nanotubes' walls. 

Morphology of nanotubes: Scanning Electron Microscopy (SEM) images of CONTs reveal 

uniform tubular morphology, with an average diameter of ~5 nm (Supplementary Figure 13). 

High-Resolution Transmission Electron microscopy (HRTEM) (Fig. 2e) identifies the hollow 

tubular nature at the interior with a constant diameter of ~5 nm throughout the entire length 

of the nanotube (Supplementary Figure 14). Atomic Force Microscopy (AFM) further 

corroborates this finding (Supplementary Figure 15). The AFM height profile shows the 

uniform diameter of ~5 nm of the single nanotube, which is in good conjunction with the 

TEM results and nanotubes' theoretically predicted structure (Fig. 2f). Additionally, 

electronic microscopic images show that the single-walled CONTs are intertwined, which 

might be due to their high length to width ratio (~avg. 300:1). The microscopic analysis 

further confirms that the individual units of the intertwined nanotubes' diameter having a 

close match (~5 nm) with isolated single nanotubes (Supplementary Figure 15). We have 

isolated the reaction mixtures at different time intervals and characterized them via SEM 

analysis to shed more light on the CONT-1 formation (Supplementary Figure 16). CONT-1 



formation starts within 6 hours of reaction. These CONTs are 100-200 nm in length and ~5 

nm in diameter. After 12 hours, the CONTs grow up to 500-800 nm in length with a diameter 

of ~5 nm (avg. length to diameter ratio 130:1). The intertwining starts after 24-30 hours when 

the length to diameter ratio of the CONTs increases significantly (~avg. 200:1).  

The rapid increase in the length of CONTs induces high flexibility, promoting intertwined 

structures. After 36 hours of reaction, almost all CONTs become completely intertwined, and 

no significant morphological changes are observed (Supplementary Figure 16). We speculate 

that the defect centers could trigger this intertwining (Fig. 3). After 6 hours, two nanotubes 

uniformly intertwine, following a particular pattern where the twining pitch is 70 (±10) nm 

(Supplementary Figures 19, 20). The resulting intertwined nanotube thread again entangles 

with the available mesh of CONTs. The width of intertwined nanotubes reaches up to ~100 

nm (maximum) with time (Supplementary Figures 16, 17, and 18). However, the intertwining 

pitch remains constant (~70 nm) irrespective of their size and diameter.  

Stability of CONTs: To our surprise, the nanotubes retain their morphology in a broad range 

of solvents of various polarities (Figs. 4a, b). The N2 adsorption isotherm confirms the 

structural stability in water after seven days (Fig. 4d). We drop-casted the well-dispersed 

CONTs on a silicon wafer and heated it at different temperatures to validate the material's 

temperature stability. The morphology remained unaltered even at 150 ºC (Fig. 4c). However, 

the width of intertwined CONT-1 varied with the solvents' nature, as the solvent environment 

seems to impact the interaction among CONTs. 

Theoretical investigation of the self-assembly: To obtain a deeper insight into the 

molecular factors that drive the CONT self-assembly in different solvents, we used multiscale 

molecular models to simulate the CONTs in different solvent conditions. Following well-

established approaches 
24,25

, we developed an all-atom (AA) model of CONT-1 composed of 

15 TAT layers (Fig. 5a). This AA model was immersed in explicit DCM or THF solvent (Fig. 



4b) and equilibrated via 200 ns of molecular dynamics (AA-MD) at T=20 °C (Supplementary 

Section 26). For comparison, we also equilibrated this CONT-1 model in water and in the gas 

phase (i.e., absence of solvent). The AA-MD simulations showed that in DCM and THF the 

CONT-1 equilibrates to configurations slightly deviating from the initial perfect one (Fig. 

5b), as also demonstrated by the distributions of angles 1 and 2 (Fig. 5c). On the contrary, in 

water, the tubules tend to compress along the longitudinal axis due to strong solvophobic 

effects (Figs. 5b, c, see also Supplementary Section 26). A similar structural compression is 

also seen in the gas phase. In all cases, the diameter of the AA CONT models remains 

compatible with that estimated experimentally (see Figs. 4a, b). We then used these AA 

models as a guideline to develop a minimalistic Coarse-Grained (CG) model
26

 that, while 

more approximated, allowed us to study the behavior and interactions between the CONTs on 

a higher scale. In this CG model, each TAT unit in the CONT-1 structure is represented by a 

single CG particle, interconnected with the other neighbor TAT particles via harmonic bonds 

(Fig. 5d). The CG particles interact with each other via a simple Lennard-Jones (LJ) 

potential. The parameters of this CG model were initially optimized to obtain a behavior 

consistent with that of the AA CONT-1 model in explicit DCM solvent (Supplementary 

Section 26.2). This allowed us to simulate with reasonable accuracy the behavior of long 

CONT models composed of 500 TAT layers (Fig. 5c: tubule length ~820 nm). Starting from 

a system configuration with two separated, initially parallel tubes, we ran CG-MD 

simulations in which the depth of the LJ potential (ɛ) acting between the CG beads was 

systematically varied, modulating the nanotube-nanotube interaction as to model a change of 

solvent in the system (ɛ sets the strength of the non-bonded interaction between the CG 

particles of the CONTs: see SI for details). Comparison with the AA models allowed us to 

relate the stronger/weaker CONT-CONT interactions in the CG models to the effect of 

increased/decreased solvophobicity of the tubules in different realistic solvent conditions. For 



ɛ values <1 kJ mol
-1

, the two CONTs interacted only weakly and intermittently, and no 

intertwining was observed during the CG-MD (weak solvophobicity). Instead, for ɛ≥1 kJ 

mol
-1

, we observed persistent interactions and intertwining of the two CONTs. As indicated 

by umbrella sampling
27

 calculations (Supplementary Section 26), ɛ values in the CG models 

of 2 and 2.5 kJ mol
-1

 provided a CONT-CONT interaction respectively compatible with that 

obtained with the AA models in explicit DCM and THF solvents (Supplementary Figure 38). 

In these cases (Figs. 5e-f), the CG-MD showed an average intertwining pitch consistent with 

that observed experimentally (~70±10 nm). These results also demonstrated that the 

interactions between the CONTs in water (stronger solvophobic effects) or in the gas-phase 

are compatible with higher ε values in the CG model. However, at ɛ>2.5 kJ mol
-1

, the 

formation of well-defined helices becomes less favored, and the CONTs tend to interact 

further, generating tighter and less-defined hierarchical assemblies. In general, these CG-MD 

results indicate that the combination of solvophobic effects with the geometric structure and 

flexibility of the CONTs is a determinant factor controlling the intertwining observed 

experimentally. 

Formation of toroids: The intertwined CONTs further self-assemble to form a toroidal 

superstructure upon ultrasonication (Figs. 6a-c).
28-30

 We have observed that tetrahydrofuran 

(THF) is the best solvent to obtain the toroids in high yields (up to 60%) (Supplementary 

Figure 31). Toroidal micro ring formation also proceeds in other solvents like o-xylene and o-

dichlorobenzene (DCB), with a yield of ˂5%. The toroids are purified from the mixture of 

intertwined nanotubes by filtering through a Whatman 42 filter paper (pore size of 2.5 µm) 

(Supplementary Section 17). The Dynamic Light Scattering (DLS) study of the filtrate 

provides the average outer diameter of 600 nm at 20 ºC with a polydispersity index less than 

0.15 (Fig. 6d). FESEM images show that the toroid diameters range from 300 nm to 900 nm 

(Fig. 6f). However, the rings' thickness remains constant (~50 nm) around their 



circumference (Supplementary Figure 27, 28). Topographical analysis using AFM further 

confirms the same toroidal morphology (Supplementary Figure 29). HRTEM images of 

toroids prove that the walls of toroids are composed of intertwined hollow nanotubes with a 

~5 nm individual tube diameter and a constant pitch of ~70 nm (Supplementary Figure 28). 

Detailed SEM, TEM, and AFM analyses reveal that the intertwined nanotubes first bend to 

form non-uniform loops (diameter 100-1000 nm) (Fig. 6f). The most probable mechanism 

involves the creation of bubbles in THF.
31

 We propose that the bubbles would act as the 

template for hydrophobic CONTs, which would eventually orient themselves around the 

bubbles' circumference. Being bent at the bubble–THF interface, nanotubes would form loops 

when the bubble collapses (Supplementary Figure 30). The untied intertwined nanotubes 

would then coil up in both the transverse and longitudinal directions to create a closed and 

coiled loop-like structure of various diameters (0.1-1 µm). These spiral loop structures were 

later transformed into toroidal structures (Fig. 6f). 

 

Conclusion 

In summary, we have designed covalently connected and porous single-walled covalent 

organic nanotubes (CONTs). The efficient synthetic protocol results in porous nanotubes with 

high chemical and thermal stability, that we anticipate will be amenable to functionalization. 

The nanotubes then further assemble into a toroidal superstructure. Our proposed mechanism 

involves the intertwining of the nanotubes, which then coil up to construct toroidal 

superstructures under the influence of solvent and mechanical stimuli. The toroids were 

separated from intertwined nanotubes by their size distribution. The main characteristic 

features of CONTs, including their flexibility, capacity to intertwin and form toroids, are 

similar to those of CNTs. We hope that this work will lead to the synthesis and 

functionalization of other organic nanotubes with high chemical and thermal stability, which 



could facilitate their exploration for application in fields such as catalysis, electrochemistry or 

biochemistry. 
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Figure Captions 

Fig. 1│ Design and synthesis of covalent organic nanotubes: a) Schematic representation of the 

synthesis of cages (0D), 1D (CONTs), 2D and 3D COFs based on the reversible aldehyde–amine 

condensation. b) Structures of the porous CONTs synthesized from a tetra(amine)-functionalized 

triptycene (TAT) and one of linear dialdehydes, DMDA and TA. c Schematic representation of the 

resulting CONTs (left, front and right, side view). 

Fig. 2│ Characterization of nanotubes: a) FTIR spectra of TAT, DMDA, and CONT-1. b) 13C 

Solid-state CP-MAS NMR spectrum of the CONT-1. c) Solid-state High-Power Decoupled (HPDEC) 
13C NMR spectrum of the CONT-1 for quantitative analysis of carbonyl group. d) N2 adsorption 

isotherm at 77 K of CONT-1. The NLDFT pore size distribution from the N2 adsorption analysis 

(inset) shows the micro (1.2-2.0 nm) and mesoporous (3.5 nm) nature of the nanotubes. e) TEM 

image of isolated single nanotubes. Inset shows the hollow interior of ~5 nm of CONT-1 — this is a 

zoomed portion from another CONT. f) AFM image of a single nanotube, showing the nanotube 

length of ~4.5µm. Height profile indicates a uniform diameter of 5 nm. 

Fig. 3│Intertwining of the CONTs: (a) Graphical representation of the increasing intertwining of 

the nantobues, from top to middle to bottom. (b-d) Characterization by HRTEM (b) SEM (c) and 

AFM of each of the situations represented in panel (a) (d) shows two flexible CONTs interconnect 

first at a single point. This interconnection leads to the formation of intertwined structures with a 

characteristic average pitch. This in turn generates the assemblies shown on panel d, bottom.   

Fig. 4│ Stability of CONT-1: a) TEM and b) SEM images of CONT-1 immersed in water, 

acetonitrile, o-DCB and o-xylene(the dielectric constants are mentioned in the bracket) for 7 days 

indicate its solvent stability. c) SEM images of CONT-1 before and after heat treatment at 150º C 

show the tube's high thermal stability. d) N2 adsorption isotherm of CONT-1 before and after water 

treatment (immersed in water) for seven days.  

Fig. 5│ Multiscale molecular models of the CONT-1 system. a) AA model of CONT-1. The two 

characteristic angles (Angles 1 and 2) formed by the TAT moieties in the CONT structure are 

highlighted in orange and green colours. b) MD snapshots of the AA model of the initially perfect 

CONT-1 (left) and the equilibrated CONT-1 tube (after 200 ns of AA-MD) in different solvents: in 



DCM, THF, vacuum (VAC), and in water (WAT). c) Distributions of the angles 1 and 2 in the 

structure of the equilibrated CONT-1 computed along the AA-MD in the different environments. 

Black lines indicate the value of angles 1 and 2 in the initially perfect conformation of the tube, the 

peaks of the colored distributions indicate the most probable values for the angles in the various 

solvents. d) Mapping of the AA structure of the model into the CG CONT model (interconnected red 

CG beads). e) Spontaneous intertwining of two CONTs during CG-MD simulations. Starting from 

initially parallel CONTs (left), different average intertwining pitches are obtained during the CG-MD 

as a function of the interaction strength (ɛ) between the CG beads (simulation time is expressed in 

CG-MD integration time steps units, 𝜏). f) Average intertwining pitch as a function of CG-MD 

simulation time, measured for different values of ɛ (values of ɛ of 2-2.5 correspond to the CONT-

CONT interaction in DCM and THF, respectively. 

Fig. 6│ Characterization of toroidal structures. a) Schematic representation of toroids. b,c) SEM 

(b) and AFM (c) images of toroids, respectively. d) DLS study of the toroids after separating them 

from the nanotubes. Inset indicates a histogram of contour length of rings measured directly from 

SEM images. e,f) Schematic illustration (e) and characterization by SEM (f) of intertwined nanotubes 

that gradually form toroidal architectures.  
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