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Summary. This paper discusses the general form of the
transfer functions of linear lumped circuits. It is shown that
an arbitrary transfer function defined on such circuits has a
functional dependence on individual circuit parameters that
is rational, with multi-linear numerator and denominator.
This result is then used to introduce a suitable model for the
uncertainty quantification of this class of circuits, namely a
rational polynomial chaos expansion in place of the conven-
tional single expansion.

1 Introduction

In recent years, the polynomial chaos expansion (PCE)
method [1] received a wide attention by the macro-
modeling and model-order reduction community thanks
to its superior computational efficiency over blind
and brute-force Monte Carlo (MC) in the uncertainty
quantification of stochastic circuits [2]. While in many
application scenarios the method was demonstrated to
provide very high accuracy with a very limited ex-
pansion order, the modeling of resonant and/or dis-
tributed circuits may require large orders and the ac-
curacy of the calculated PCE coefficients may be im-
paired by the large variability of the outputs.

In this paper, we show that the general form of
any transfer function defined for a linear lumped cir-
cuit is rational w.r.t. both frequency and element val-
ues, and specifically that both the numerator and de-
nominator are multi-linear with the latter. Recently,
this feature motivated the introduction of a rational
PCE model [3], as opposed to the conventional sin-
gle expansion that is used in most of the applications,
including the ones in electrical engineering. The pro-
posed model turns out to be exact for lumped circuits
and, by extension, more accurate also for distributed
ones. While the aforementioned theoretical result is
somewhat well-known in electrical engineering [4],
it is not accessible explicitly and unambiguously in
the desired form. A rigorous and formal derivation is
therefore provided in this paper.

2 General Form of the Transfer
Functions of Linear Lumped Circuits

The main objective of this section is to prove that a
transfer function defined for a linear lumped circuit

is a rational function in which both the numerator and
denominator are polynomial functions of the complex
frequency s and multi-linear functions1 of the element
values, generically denoted with vector ξ ∈ Rd .

The derivations are exemplified based on the impedance
matrix of a generic multi-port circuit. Starting from
a modified nodal analysis (MNA) formulation of the
circuit equations [5], the impedance matrix is ex-
pressed as

Z(s;ξ ) = BTY −1(s,ξ )B =
N(s;ξ )

D(s;ξ )
, (1)

where matrix Y includes the static and dynamic MNA
matrices, whereas matrix B contains the incidence
matrix of the port inputs. In (1), the scalar denomina-
tor D coincides with the determinant of Y , whereas
each element of the numerator N is a linear combina-
tion of the determinants of the submatrices (minors)
obtained from Y by deleting one row and one col-
umn.

After some manipulations, it is possible to show
that each entry of the impedance matrix can be ex-
pressed as

Zi j(s,ξ ) =
Ni j(s,ξ )
D(s,ξ )

=
∑k nk(s)∏

d
m=1 ξ

αkm
m

∑k dk(s)∏
d
m=1 ξ

αkm
m

, (2)

where αkm = {0,1} ∀k,m, whereas nk and dk are poly-
nomials in s.

3 Polynomial Chaos Expansion

In the uncertainty quantification of electrical circuits,
a single PCE is normally used to model stochastic out-
puts of interest (see, e.g., [2]):

Z(s,ξ )≈
L

∑
`=1

Z`(s)ϕ`(ξ ), (3)

where ϕ` are multivariate polynomials in the param-
eters ξ . However, given the functional form (2) of

1 A multi-linear function is a multivariate polynomial in
which each term in the monomials has degree at most
one.
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the transfer functions, it is argued that a rational PCE
model, i.e.,

Z(s,ξ )≈ ∑
L
`=1 N`(s)ϕ`(ξ )

1+∑
L
`=2 D`(s)ϕ`(ξ )

(4)

provides a better model than (3).2 This was effectively
demonstrated based on a number of application exam-
ples in [3]. In particular, the model is exact for lumped
circuits, provided that the polynomial basis {ϕ`}L

`=1
includes all the multi-linear terms appearing in (2).
By extension, the model turns out to be more accu-
rate, albeit not exact, also for distributed circuits.

4 Numerical Results

As an example, the proposed model is applied to
the stochastic characterization of scattering parame-
ters S11, S21, S31, and S41 in the distributed circuit of
Fig. 1, which includes three sections of coupled mi-
crostrip lines. In the first scenario, the variability is
assumed on lumped components, i.e., the three capac-
itors and the inductor. Hence, the proposed rational
model is in this case virtually exact. Indeed, the max-
imum errors on the standard deviation collected in the
first part of Table 1 shows that the rational model ex-
hibits an accuracy that is about four orders of magni-
tude better than the conventional PCE model.
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Fig. 1. Example test case: distributed circuit with coupled
microstrip lines.

In the second scenario, the uncertainty is assumed
to be on two geometrical parameters of the microstrip
lines, namely the trace gap and the trace length. The
results of the stochastic analysis are illustrated in
Fig. 2 and are obtained with a conventional PCE of
order six and with a rational PCE of order three. Data
collected in Table 1 show that the proposed rational
model is one to two orders of magnitude more accu-
rate than the conventional PCE.

2 The first coefficient in the denominator of (4) is set to
one to remove indeterminacy.
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Fig. 2. Mean and standard deviation of the four scattering
parameters under study for the scenario with uncertainty in
the microstrip line geometry.

Table 1. Maximum errors on the standard deviation over
frequency obtained with the conventional and proposed
models.

First scenario
conventional model rational model

S11 9.803×10−4 1.601×10−8

S21 6.236×10−4 1.606×10−8

S31 1.966×10−4 1.459×10−8

S41 3.000×10−4 6.139×10−9

Second scenario
conventional model rational model

S11 1.154×10−1 4.699×10−3

S21 5.538×10−3 2.310×10−4

S31 1.556×10−1 1.600×10−3

S41 3.687×10−2 4.461×10−3
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