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Abstract

An algorithm to guide the capture of a tumbling resident space object by a spacecraft equipped with a robotic manipula-

tor is presented. A solution to the guidance problem is found by solving a collection of convex programming problems. As

convex programming offers deterministic convergence properties, this algorithm is suitable for onboard implementation

and real-time use. A set of hardware-in-the-loop experiments substantiates this claim. To cast the guidance problem as a

collection of convex programming problems, the capture maneuver is divided into two simultaneously occurring sub-

maneuvers: a system-wide translation and an internal re-configuration. These two sub-maneuvers are optimized in two

consecutive steps. A sequential convex programming procedure, overcoming the presence of non-convex constraints and

nonlinear dynamics, is used on both optimization steps. A proof of convergence is offered for the system-wide translation,

while a set of structured heuristics—trust regions—is used for the optimization of the internal re-configuration sub-man-

euver. Videos of the numerically simulated and experimentally demonstrated maneuvers are included as supplementary

material.

Keywords

Computational guidance and control, convex programming, space robotics, on-orbit servicing, space debris

1. Introduction

The capture of a tumbling resident space object (RSO) by a

spacecraft equipped with a robotic manipulator is envi-

sioned for many on-orbit servicing missions (Flores-Abad

et al., 2014; Nanjangud et al., 2018; Shan et al., 2016).

Guiding the chaser spacecraft during these capture maneu-

vers is challenging, because the chaser is a multibody sys-

tem with nonlinear dynamics and the maneuver is

constrained by limited actuation capabilities as well as sub-

ject to collision avoidance constraints.

Given the problem’s relevance, multiple guidance

approaches have been proposed. Some authors assume that

the chaser initiates the capture maneuver from a hold posi-

tion where the target’s grapple fixture is within the chaser’s

manipulator reach. In this scenario, guidance strategies that

only actuate the manipulator joints and minimize the base

reaction during the pre-grappling, grappling (impact), and

post-grappling phases are preferred. Prime examples of this

work can be found in Yoshida et al. (2006) and more

recently in Flores-Abad et al. (2016).

The time-varying, and often large, keep-out zones

imposed by the tumbling target and its appendages (e.g.,

solar panels) may rule out the existence of a safe holding

position in the immediate vicinity of the target. In general,

the chaser must initiate the capture maneuver from a hold

position sufficiently far away and execute a full roto-

translation maneuver, actuating both the manipulator and

the base-spacecraft. In addition, the rotational state of a

tumbling object cannot be accurately predicted well in

advance if the initial conditions or inertia properties are not

precisely known (Hanßmann, 1999). This limitation indi-

cates that a guidance approach, suitable for onboard
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implementation and capable of (re-)planning these maneu-

vers in real-time, can be advantageous for a wide range of

targets and applications.

Sampling-based motion-planning techniques are a pro-

mising approach to solve this type of problem (Karaman

and Frazzoli, 2011). In particular, Persson and Sharf (2015)

achieved substantial success in their experiments using off-

board computation and relatively simple vehicle geome-

tries, and target motions. Although optimization-based

approaches have traditionally appeared to be too computa-

tionally intensive to be embedded in onboard computers

and used for real-time motion planning, they have also

received considerable attention. Jacobsen et al. (2002) and

Lampariello (2010) frame the capture problem as a non-

linear optimization problem and require ample time to find

a solution. In an effort to reduce the computation time, an

off-line generated look-up table is used by Lampariello and

Hirzinger (2013) to seed the optimizer, but their approach

falls short of producing an algorithm suitable for onboard

implementation.

In this paper, an optimization-based guidance algorithm

suitable for onboard implementation and real-time use is

presented. The proposed algorithm can handle complex col-

lision avoidance and line-of-sight constraints, satisfies con-

trol limitations, and minimizes the control effort. The use of

this algorithm is illustrated through numerical simulations

and evidence of its real-time capabilities is obtained by

hardware-in-the-loop experiments on a planar air bearing

test bed (Zappulla II et al., 2017b). Videos of the numeri-

cally simulated and experimentally demonstrated maneu-

vers are included as supplementary material.

The complexity of the presented experimental demon-

stration surpasses previous experimental work known to the

authors, significantly advancing the demonstrated state-of-

the-art related to the capture of tumbling RSOs by space-

craft equipped with robotic manipulators. Previous work

using planar air bearing test beds (Schwartz et al., 2003)

includes Alexander and Cannon (1989), Umetani and

Yoshida (1989), Ullman and Cannon (1993), Chen and

Cannon (1994), Russakow et al. (1995), Yoshida (1994),

Nahon et al. (1995), Menon et al. (2007), Toglia et al.

(2011), Wilde et al. (2016), Virgili-Llop et al. (2016b), and

Sabatini et al. (2017). Other relevant experimental work on

orbit or on other types of experimental facilities (Xu et al.,

2011) includes Oda et al. (1996), Ogilvie et al. (2008),

Aghili (2008), Xu et al. (2009), and Persson and Sharf

(2015) among others.

To obtain a computationally tractable guidance algo-

rithm, the capture maneuver is first divided into two simul-

taneously occurring sub-maneuvers: a system-wide

translation and an internal re-configuration. The sub-

maneuvers are then solved in two consecutive optimization

steps, the combination of which provides a solution to the

original guidance problem. To overcome the presence of

non-convex constraints and nonlinear dynamics, a sequen-

tial convex programming procedure is used on both optimi-

zation steps. As a result, a solution to the guidance problem

is obtained by solving a collection of convex programming

problems, which are computationally tractable, offer deter-

ministic convergence properties, and can be solved in

polynomial-time by interior-point algorithms (Boyd and

Vandenberghe, 2004; Nesterov and Nemirovskii, 1994).

The proposed guidance algorithm is thus able to rapidly

generate a solution, allowing to repeatedly solve the gui-

dance problem as the maneuver progresses.

The use of convex programming techniques in

embedded systems to solve aerospace guidance and control

problems in real-time has recently shown remarkable prom-

ise (Liu et al., 2017), particularly in the areas of powered

soft-landing (Acxıkmesxe et al., 2013; Szmuk and Acikmese,

2018), and spacecraft proximity operations (Lu and Liu,

2013; Watterson et al., 2016). Of special relevance is the

work by Verscheure et al. (2009) and Misra and Bai (2017)

applying convex programming techniques to robotic

manipulator control problems. Verscheure et al. (2009)

introduced a convex relaxation for the minimum-time tra-

jectory tracking problem whereas Misra and Bai (2017)

found a convex formulation for the control of a manipula-

tor mounted on a free-floating spacecraft (i.e., internal re-

configuration).

In this paper, a convergence proof for the sequential

convex programming procedure used during the system-

wide translation optimization is offered. This proof extends

the work of Lu and Liu (2013) and Morgan et al. (2016) to

non-convex keep-out zone constraints. The convergence of

the sequential convex programming procedure for the inter-

nal re-configuration sub-maneuver is not guaranteed and

relies on structured heuristics, namely trust regions. Within

this optimization step, an explicitly convex line-of-sight

constraint expression, similar to that reported by Kim et al.

(2010), is provided.

The material presented here builds upon previous

research by the authors and provides, for the first time, a

complete and comprehensive overview of the proposed gui-

dance approach. A primitive version of the guidance

approach and preliminary experimental results were

included in Virgili-Llop et al. (2017a,b). An improved gui-

dance algorithm is used here, with its derivation and prop-

erties presented in details. Additional new contributions

include the convergence proof, an explicitly convex line-

of-sight formulation, extensive numerical simulations, and

comprehensive experimental results.

Although the work presented in this paper exclusively

focuses on the maneuver’s guidance, a navigation system

providing relative state estimates is indispensable for the

success of the capture maneuver. The interested reader is

referred to Opromolla et al. (2017) for a recent survey on

relative navigation for spacecraft proximity maneuvering.

The rest of this paper is organized as follows. The origi-

nal optimal control problem and the high-level guidance

approach are presented in Section 2. The optimization of

the two sub-maneuvers is discussed in Sections 3 and 4. In

Section 5, a numerical simulation case study is presented,

illustrating the performance of the proposed guidance.
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Then, the results of a set of hardware-in-the-loop experi-

ments are reported in Section 6. Finally, concluding

remarks are offered.

2. Problem statement and approach

In this section, the original guidance problem is presented,

followed by a high-level description of the proposed

approach as well as the considered assumptions and their

implications. The capture maneuver involves a chaser

spacecraft, equipped with a robotic manipulator, capturing

a tumbling RSO. The maneuver has to satisfy various con-

straints while minimizing the control effort. A notional

overview of the problem is shown in Figure 1.

When formulating the guidance problem, the following

underlying assumptions are made.

A.1 Both the chaser and target RSO are composed of rigid

bodies moving in three-dimensional space.

A.2 Environmental forces (gravity gradient, solar radiation

pressure, etc.) as well as the relative orbital dynamic

effects are neglected. This can be justified by the short

duration of the maneuver and close proximity of the

two vehicles. This assumption implies that an orbiting

reference frame can act as an inertial reference frame.

A.3 The state and inertia properties of the chaser and tum-

bling RSO are known.

A.4 The target RSO has a designated grapple fixture.

A.5 The manipulator’s grappling configuration and its

motion during the final seconds of the maneuver,

tøtps, is pre-set (as discussed further later). The tps
time is fixed and marks the transition to the pre-set

manipulator motion.

A.6 The chaser’s mass remains constant during the maneu-

ver, i.e., the amount of propellant used for the maneu-

ver is small when compared with the chaser’s mass.

2.1. Nonlinear optimal control problem

The equations of motion of a spacecraft with a robotic

manipulator can be written, in canonical form, as

H _u+Cu= t ð1Þ

where u denotes the generalized velocities, t the general-

ized forces, H the generalized inertia matrix, and C the gen-

eralized convective inertia matrix.

The generalized coordinates can be divided between

those coordinates referring to the base-spacecraft j�j0 and

those referring to the manipulator j�jm:

u=
u0
um

� �
t=

t0
tm

� �
ð2Þ

The number of degrees of freedom of the manipulator is

denoted by nDoF and, thus, um, tm 2 R
nDoF . The angular or

linear displacements of the manipulator joints are denoted

by um 2 R
nDoF.

Without lack of generality, all vectors—unless specified

explicitly—are projected into the inertial Cartesian coordi-

nate system (CCS) I , so, in general, for a vector ~a, the

3× 1 column matrix containing the components of the pro-

jection of ~a into I is denoted by a 2 R
3. Note that non-

bold, italic symbols with an arrow (or hat) are strictly

reserved for physical vector quantities (or unit vectors).

Bold symbols are used for matrices, including the projec-

tion of vectors in a particular reference frame (i.e., a 3× 1

matrix).

Fig. 1. Illustration of the problem.
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The base-spacecraft generalized velocities with respect

to the inertial frame, u0 2 R
6, contain the base-spacecraft’s

linear ( _r0 2 R
3) and angular (v0 2 R

3) velocity.

Equivalently, the base-spacecraft generalized forces,

t0 2 R
6, contain the forces (f0 2 R

3) and torques

(n0 2 R
3) applied to the base-spacecraft:

u0 =
_r0
v0

� �
t0 =

f0
n0

� �
ð3Þ

Finally, let r0 2 R
3 denote the base-spacecraft position

and q0 2 S3 denote a unit quaternion (q0 2 Hjkq0k= 1f g),

representing the orientation of the base-spacecraft CCS B
with respect to the inertial CCS I . The differential kine-

matics of the attitude quaternion can be expressed as

follows:

_q0 =
1

2
v0 � q0 ð4Þ

where v0 is promoted to a pure quaternion (i.e., with zero

scalar part) and with � denoting the quaternion product.

The function to be minimized by the optimization proce-

dure is formulated as the following quadratic cost:

J =

Z tf

0

tTWtdt ð5Þ

with W denoting a 6+ nDoF× 6+ nDoF positive-definite

weight matrix and tf the maneuver duration, or final time.

During the capture maneuver the manipulator displace-

ments and torques are constrained to lie within certain

limits:

umminł um ł ummax ð6Þ
tmminł tm ł tmmax ð7Þ

The forces and torques of the base-spacecraft are also

bounded:

kf0kł f0max ð8Þ
kn0kł n0max ð9Þ

with �k k denoting the L2 norm.

To avoid a collision with the target, a keep-out zone is

enforced. Let the chaser’s body be defined by the closed set

Schaser, and the target RSO by the closed set SRSO. The

keep-out zone constraint can then be formulated as follows:

Schaser \ SRSO =[ ð10Þ

A line-of-sight constraint is imposed throughout the man-

euver, as it is assumed that the chaser needs to keep track

of the target’s grapple fixture for navigation purposes. If

this constraint is not required, or if it is only needed for a

portion of the maneuver, the constraint can be removed or

only enforced during the applicable period. The line-of-

sight constraint is formulated considering that a body-

mounted sensor, with boresight v̂, needs to be within a

cone, with half-angle f, that points towards the grapple

fixture G. Figure 2 illustrates this line-of-sight constraint,

formulated using the following equation:

rTd v̂ø rdk k cosf ð11aÞ

rd = rg � rs ð11bÞ

with rs denoting the projection of the position vector from

the origin of the inertial CCS to the point S, where the sen-

sor is located.

Assumption A.5 imposes a known manipulator motion

from tps until the end of the maneuver at tf :

um(t)= upsm (t) for t 2 tps, tf
� �

ð12Þ

For a successful capture, the location and velocity of the

end-effector re and the grappling fixture rg must match:

re(tf )= rg(tf ) ð13Þ

_re(tf )= _rg(tf ) ð14Þ

v0(tf )=vRSO(tf ) ð15Þ

with vRSO 2 R
3 denoting the RSO’s angular velocity with

respect to the inertial frame.

Finally, the complete optimal control problem is written

as follows.

Problem 1. Original nonlinear optimal control

problem.1

min :

Z tf

0

tTWtdt ð5Þ

s:t: : H _u+Cu= t ð1Þ

_q0 =
1

2
v0 � q0 ð4Þ

umminł um ł ummax ð6Þ

tmminł tm ł tmmax ð7Þ

kf0kł f0max ð8Þ

kn0kł n0max ð9Þ

Schaser \ SRSO=[ ð10Þ

rTd v̂ø rdk k cosf ð11aÞ

um(t)= upsm (t) for t 2 tps, tf
� �

ð12Þ

re(tf )= rg(tf ) ð13Þ

_re(tf )= _rg(tf ) ð14Þ

v0(tf )=vRSO(tf ) ð15Þ

Problem 1 is a nonlinear optimal control problem that

is, in general, difficult to solve. The multibody dynamics

(1) and quaternion differential kinematics (4) are nonlinear,

and the keep-out zone constraint (10) is non-convex.
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2.2. Proposed guidance approach

To make Problem 1 more tractable, the capture maneuver

is divided into two sub-maneuvers: a system-wide transla-

tion and an internal re-configuration. The system-wide

translation concerns only the motion of the chaser system

center of mass. The internal re-configuration focuses on

the manipulator motion and chaser re-orientation around

the system’s center of mass. These two sub-maneuvers are

individually optimized in a two-step process. Figure 3 illus-

trates the division.

Despite being dynamically coupled through Equation

(1), the two concurrent sub-maneuvers can be decoupled,

allowing one of them to be optimized first and

independently from the other. Afterwards, the remaining

sub-maneuver is optimized using the results of the first opti-

mization step to restore the dynamic coupling. Recombining

both solutions forms a full capture maneuver, and an admis-

sible point of the original optimal control problem.

In the proposed approach, the first optimization step

solves the system-wide translation and the second one

solves the internal re-configuration. The system-wide trans-

lation sub-maneuver is subjected to the simple whole-body

translational dynamics and can be easily decoupled from

the internal re-configuration. With the system-wide transla-

tion solved, the more complex internal re-configuration can

be solved, forcing this second sub-maneuver to accommo-

date the effects caused by a moving center of mass.

Remark 1. Consecutively optimizing these two sub-

maneuvers decouples their cost functions. The proposed

optimization order implicitly prioritizes the minimization

of the system-wide translation cost, at the expense of a

higher internal re-configuration cost. This prioritization

can be justified by the fact that translational maneuvers

make use of the spacecraft’s limited supply of propellant,

whereas internal re-configuration maneuvers can be com-

pleted using momentum exchange devices and the manipu-

lator’s joint actuators.

In summary, the proposed approach consists of two opti-

mization steps. Step 1: Optimize a decoupled system-wide

translation sub-maneuver. Step 2: Optimize the internal re-

configuration sub-maneuver, using the results of Step 1 to

restore the dynamic coupling. The complete capture maneu-

ver is obtained when the solutions of the two optimization

steps are combined. In the next two sections these two opti-

mization steps are detailed.

3. Step 1: system-wide translation

optimization

In this section, the details of the first optimization step are

presented and discussed. This optimization step results in

an optimal control problem, which is solved using a

sequential convex programming procedure with guaranteed

convergence to a locally optimal solution.

The system-wide translation, solely focusing on the

motion of the system’s center of mass, exploits the simple

whole-body translational dynamics. If m denotes the chas-

er’s mass, rc 2 R
3 the projection of the center of mass posi-

tion vector, and fc 2 R
3 the forces applied to it, then the

equation of motion can be written as fc =m€rc. However,

because the thrusters on the chaser’s base-spacecraft are the

only actuators capable of imparting linear momentum (i.e.,

f0 = fc), the equation of motion can be written as

Fig. 2. Line-of-sight constraint.
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f0 =m€rc ð16Þ

To formulate the optimal control problem, the quadratic

cost

J1 =

Z tf

0

fT0W1f0dt ð17Þ

with W1 2 R
3× 3 denoting a positive-definite weight matrix

is used.

Remark 2. A quadratic cost function is chosen because it

generates smoother maneuvers, leading to more numeri-

cally stable solutions. An L1-norm-based cost function,

minimizing the amount of propellant used, produces more

aggressive maneuvers with a bang-off-bang control profile.

This sub-maneuver is constrained with the relevant con-

straints of Problem 1. These are: maximum force (Equation

8), keep-out zones (Equation 10), and the terminal condi-

tions (Equations 13 and 14). The maximum force con-

straint can be applied as-is, but the others need to be

modified to decouple them from the internal re-

configuration sub-maneuver.

As the chaser’s internal configuration is undefined dur-

ing this first optimization step, Schaser needs to enclose all

admissible manipulator configurations, um, and base-

spacecraft orientations q0. Such an enclosing set can be

modeled as a sphere of radius R, centered at the center of

mass C:

Schaser = r 2 R
3jkr � rckłR

� �
ð18Þ

As illustrated in Figure 3(b), there is a configuration uKO
m

that defines the maximum sphere’s radius RKO. This radius

is defined by the maximum possible distance between any

part of the chaser and its center of mass for all admissible

manipulator configurations, and it is equivalent, in the

absence of any large chaser appendages, to the free-floating

reachable workspace radius (Umetani and Yoshida, 2001).

The fixed and constant radius RKO is then used to define

Schaser during the initial period of the maneuver t 2 0, tps
� �

.

Assumption A.5 imposes a manipulator motion during

the last period of the maneuver t 2 tps, tf
� �

, as expressed in

Equation (12). During this final period the manipulator

configuration is known and thus a smaller radius for Schaser
can be used, as illustrated in Figure 4:

R
ps
KO(t)łRKO for t 2 tps, tf

� �
ð19aÞ

R
ps
KO(tf )=Rf ð19bÞ

In conclusion, the chaser’s closed set Schaser is defined,

during the two periods, as follows:

Schaser =
r 2 R

3jkr� rckłRKO

� �
, t 2 0, tps

� �
r 2 R

3jkr� rckłR
ps
KO(t)

� �
, t 2 tps, tf

� �	
ð20Þ

In contrast, the target RSO’s closed set, SRSO, is directly

defined by the RSO’s geometry, as shown in Figure 2.

The keep-out zone constraint in Equation 10 can be re-

formulated using the signed distance d between Schaser and

SRSO (Schulman et al., 2014) (see Figure 5):

d= d+ � d� ð21aÞ

d+ = inf ~d



 


j Schaser +~d

� �
\ SRSO 6¼ [

n o
ð21bÞ

d� = inf ~d



 


j Schaser+~d

� �
\ SRSO=[

n o
ð21cÞ

where inf denotes the inferior of a set and ~d the vector

between the two closest supporting points Pchaser 2 ∂Schaser
and PRSO 2 ∂SRSO, as illustrated in Figure 5:

~d=
vector from PRSO to Pchaser for d.0

vector from Pchaser to PRSO for d\0

	
ð22Þ

Fig. 3. Sub-maneuvers: (a) system-wide translation; (b) internal re-configuration.
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The signed distance d is positive when the two sets are not

in contact and negative when they intersect. Using d, the

keep-out zone constraint can be expressed as

dø0 ð23Þ

In a general case, the Gilbert–Johnson–Keerthi algorithm

(Gilbert et al., 1988) can be used to obtain d+, whereas the

expanding polytope algorithm (Bergen, 1999) can be used

to efficiently compute d�.

The terminal constraint also relies on assumption A.5.

The manipulator’s final configuration upsm tf

 �

is assumed to

be known, allowing to pre-compute the distance Rf from

the center of mass to the end-effector (see Figures 3 and 4).

The terminal constraint on the center of mass then becomes

rg(tf )� rc(tf )k=Rf



 ð24Þ

To ensure a zero relative velocity between the chaser and

the target’s center of mass, the following terminal constraint

is imposed:

_rc(tf )=v×
RSO(tf ) rc(tf )� rRSO(tf )


 �
ð25Þ

with rRSO 2 R
3 denoting the projection of the RSO’s center

of mass position vector and the �j j× operator representing

the left-hand side matricial equivalent of the vector cross-

product:

v× =
0 �v3 v2

v3 0 �v1

�v2 v1 0

2
4

3
5 ð26Þ

The optimal control problem related to the system-wide

translation sub-maneuver is now formulated as follows.

Problem 2. System-wide translation optimal control

problem.

min: J1 =

Z tf

0

fT0 W1f0dt ð17Þ

s:t: : f0 =m€rc ð16Þ
kf0kł f0max ð8Þ

Fig. 4. Transition of chaser’s enclosing sphere.

Fig. 5. Signed distances d+ and d� between Schaser and SRSO.
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dø0 ð23Þ
krg � rck=Rf for t= tf ð24Þ

_rc =v×
RSO rc � rRSOð Þ for t= tf ð25Þ

For the problem to be feasible, the end-effector—not

any other part of the chaser—must also define the chaser’s

keep-out sphere at capture t= tf , as shown in Figure 3.

3.1. Convexification of Problem 2

Problem 2 is non-convex and, thus, needs to be convexified

before it can be solved using convex programming tech-

niques. To cast it as a convex programming problem, the

final time needs to be fixed and the optimal control prob-

lem transcribed. Then, the non-convex keep-out zone con-

straint in Equation (23) needs to be convexified, and the

nonlinear terminal (equality) constraint in Equation (24)

relaxed to a convex inequality constraint.

Let us for the moment assume that the final time tf is

fixed and focus on the other remaining issues. The implica-

tions of converting the problem into a fixed-final-time one

are discussed later.

An optimal control problem can be transcribed using a

wide variety of methods (Conway, 2012; Hull, 1997). For

simplicity, a direct transcription method with N1 nodes is

used here, keeping the forces f
½n�
0 constant between the n

and n+ 1 nodes and making the components of f0,

f0 =
f0, 1
f0, 2
f0, 3

2
4

3
5 ð27Þ

piecewise constant, as illustrated in Figure 6.

With this assumption, the sub-maneuver’s cost is

obtained as follows:

J1 =
XN1�1

n= 1

f
½n�T
0 W1f

½n�
0 Dt½n� ð28aÞ

Dt½n� = t½n+ 1� � t½n� ð28bÞ

The dynamics of the system-wide translation can be

expressed in a canonical, discrete-time, state-space repre-

sentation as

x½n+ 1� =F½n�
r x½n� +C½n�

r f
½n�
0 ð29aÞ

x½n� =
r½n�c

_r½n�c

� �
ð29bÞ

with the state transition matrix F½n�
r and the control matrix

C½n�
r defined as follows:

F½n�
r =

I3 Dt½n�I3
03× 3 I3

� �
C½n�

r =
1

m

Dt½n�ð Þ2
2

I3
Dt½n�I3

" #
ð30Þ

with I3 and 03× 3 denoting a 3× 3 identity and zero matrix,

respectively.

The non-convex terminal equality constraint on

Equation (24) can be relaxed to the following convex

inequality constraint:

krg tf

 �

� rc tf

 �

kłRf ð31Þ

Proposition 1. Problem 2 formulated, either with Equation

(24) or with Equation (31), are equivalent if rg lies at the

boundary of SRSO.

Proof. Any point meeting

krg tf

 �

� rc tf

 �

k\Rf

is infeasible, as it violates the keep-out zone constraint

defined in Equation (23). h

At this point, Problem 2 can be formulated as the fol-

lowing non-convex, fixed-final-time parameter optimiza-

tion problem.

Problem 3. Non-convex fixed-final-time parameter opti-

mization problem.

min:
XN1�1

n= 1

f
½n�T
0 W1f

½n�
0 Dt½n� ð28aÞ

s:t: x½n+ 1� =F½n�
r x½n� +C½n�

r f
½n�
0 n= 1 . . .N1 � 1 ð29aÞ

kf ½n�0 kł f0max n= 1 . . .N1 � 1 ð8Þ

d½n�ø0 n= 1 . . .N1 ð23Þ

kr½n�g � r½n�c kłRf n=N1 ð31Þ

_r½n�c =v
½n�×
RSO r½n�c � r

½n�
RSO

� �
n=N1 ð25Þ

To overcome the non-convex constraint in Equation

(23), a sequential convex programming procedure is used.

In a sequential convex programming procedure a convex

approximation of the original non-convex programming

problem is repeatedly solved until the cost of two

Fig. 6. The components of f0 are piecewise constant.
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consecutive solutions, k and k+ 1, converges below a cer-

tain threshold e1.

½k�1�J1
H�½k�J1

H


 



1
łe1 ð32Þ

The notation �j jH denotes the solution of a programming

problem.

The convex approximation of the problem is obtained

by linearizing the keep-out zone constraint in Equation (23)

around the previous iteration solution, ½k�1�fH0 . Using this

previous solution, a reference trajectory ~rc is obtained,

½k�1�fH0 !½k�1�rHc = ½k�~rc ð33Þ

which is used to obtain a reference signed distance ~d and

the vector projection ~d at every node n:

~rc ! ~d½n�, ~d
½n� ð34Þ

A linear approximation of the signed distance d can then be

obtained (Schulman et al., 2014):

d½n� ’ ~d½n� + n̂
½n�T
~d

r½n�c � ~r½n�c

� �
ð35aÞ

n̂
½n�
~d
=

~d
½n�

~d
½n�


 


 ð35bÞ

Ultimately, the non-convex keep-out zone constraint in

Equation (23) can be approximated by the following linear

inequality constraint, as shown in Figure 7:

~d½n� + n̂
½n�T
~d

r½n�c � ~r½n�c

� �
ø0 ð36Þ

The convex approximation of Problem 3 is written as

follows.

Problem 4. Convex approximation of Problem 3

min:
XN1�1

n= 1

f
½n�T
0 W1f

½n�
0 Dt½n� ð28aÞ

s:t : x½n+ 1� =F½n�
r x½n� +C½n�

r f
½n�
0 n= 1 . . .N1 � 1 ð29aÞ

k f ½n�0 kł f0max n= 1 . . .N1 � 1 ð8Þ

~d½n� + n̂
½n�T
~d

r½n�c � ~r½n�c

� �
ø0 n= 1 . . .N1 ð36Þ

kr½n�g � r½n�c kłRf n=N1 ð31Þ

_r½n�c =v
½n�×
RSO r½n�c � r

½n�
RSO

� �
n=N1 ð25Þ

The reference trajectory, ~rc, required to linearize the

keep-out zone constraints is not available when attempting

to solve Problem 4 for the first time (k= 1). To generate a

solution to seed the sequential convex programming proce-

dure, Problem 4 can be solved, replacing the keep-out zone

constraint in Equation (36) with the following linear

inequality constraint:

r½N1�
c � r½N1�

g

� �T

n̂½N1�
g ø0 ð37Þ

with n̂g 2 R
3jkn̂gk= 1

� �
denoting a unitary vector defin-

ing a plane that, according to Equation (37) and as illu-

strated in Figure 8, ensures that Schaser remains outside

SRSO at the end of the maneuver, i.e., n=N1.

Remark 3. The constraint in Equation (37) is equivalent to

the keep-out zone constraint in Equation (36) at n=N1.

This constraint is added to force the chaser to grapple the

RSO from the correct side.

Fig. 7. Convexification of the keep-out zone constraint.
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3.2. Convergence properties with SRSO

approximated as a single convex hull

To begin exploring the convergence properties of the

sequential convex programming procedure, let us assume

that the target RSO is modeled using the convex hull of

SRSO,

CRSO=Conv SRSOð Þ ð38Þ

Remark 4. If SRSO is convex, then CRSO= SRSO.

The convex hull of an arbitrary non-convex set is notion-

ally shown in Figure 9, along with a visualization of the lin-

earized keep-out zone constraint of Equation (36).

If CRSO is used, the sequential convex programming of

Problem 4 can be shown to be a recursively feasible des-

cent algorithm that converges to a locally optimal Karush–

Kuhn–Tucker (KKT) point (Boyd and Vandenberghe,

2004) of the non-convex Problem 3. The proposition and

its proof are included here for completeness. Variations of

this proof have been reported by other authors (Lu and Liu,

2013; Morgan et al., 2016), and the proof can also be seen

as a particular case of the more general convex–concave

programming procedure (Lipp and Boyd, 2016; Yuille and

Rangarajan, 2003).

Proposition 2. The sequential solutions to the convex

Problem 4 converge to a KKT point of the non-convex

Problem 3 if: SRSO is approximated by its convex hull

CRSO, an initial admissible trajectory ~rc is used to seed the

sequential convex programming procedure, and

rg 2 ∂CRSO.

Proof. Linearizing the non-convex keep-out zone con-

straints in Equation (23) with Equation (36) and using

CRSO to model the RSO keep-out zone, ensures that the

entirety of SRSO remains within the inadmissible region, as

shown in Figure 9. This guarantees that the solution ½k�fH0
to the convex Problem 4 is an admissible point of the non-

convex Problem 3.

In addition, a solution to the convex Problem 4 at itera-

tion k, ½k�fH0 , is an admissible point of the convex Problem 4

Fig. 8. Visualization of the constraint in Equation (37).

Fig. 9. (a) Convex hull of a non-convex set and (b) linearized keep-out zone constraint.
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at iteration k+ 1, as the solution at iteration k is used to lin-

earize the non-convex inequality constraint (Equation 23).

It then follows that the cost of successive solutions ½k�JH1 is

non-strictly decreasing:

½k�JH1 ø½k+ 1�JH1

As Problem 4 is lower bounded, the infinite sequence of

solutions ½k�fH0 converges to ½‘�fH0 with cost ½‘�JH1 ø0:

½‘�fH0 = ½‘+ 1�fH0

The converged solution ½‘�fH0 , being the solution to the con-

vex Problem 4, automatically satisfies the stationarity, com-

plementary slackness, primal feasibility, and dual feasibility

conditions for Problem 4.

Then, as ½‘�fH0 represents an admissible point of the non-

convex Problem 3 it satisfies the primal feasibility condi-

tion of the non-convex Problem 3.

The only difference between Problems 3 and 4 is the

non-convex keep-out zone constraint (23). This constraint

is linearized (36) at k=‘ using the converged solution to

the convex Problem 4,

½‘�fH0 !½‘�rHc = ½‘+ 1�~rc

thus,

½‘+ 1�rHc = ½‘�rHc = ½‘+ 1�~rc

Therefore, at k ! ‘ the following equalities hold:

d½n� = ~d½n� = ~d
½n�
+ n̂

½n�T
~d

r½n�c � ~r½n�c

� �� �

rd½n� =r ~d
½n�
+ n̂

½n�T
~d

r½n�c � ~r½n�c

� �� �

implying that ½‘�fH0 also meets the stationarity, complemen-

tary slackness and dual feasibility conditions of the non-

convex Problem 3. h

Using this proof, two remarks on the problem’s feasibil-

ity can be offered.

Remark 5. If the keep-out zone constraints are not

enforced in Problem 4—as proposed to obtain an initial

~rc—and the problem is found to be infeasible, then the

non-convex Problem 3—having a reduced set of admissi-

ble points—is infeasible.

Remark 6. It follows from Proposition 2, that if an ~rc is

found such that the convex Problem 4 is feasible (enforcing

the keep-out zone constraints), then the non-convex

Problem 3 is feasible.

3.3. Convergence properties with a non-convex

SRSO

The guaranteed convergence properties are extended here

for a generic non-convex keep-out zone SRSO, advancing

the current state-of-the-art.

First, the non-convex SRSO is decomposed, as shown in

Figure 10, in nc overlapping convex sets:

SRSO=
[nc
i= 1

Ci, RSO ð39Þ

Then, the keep-out zone constraint in Equation (23) is

applied to all nc convex sets Ci, RSO:

diø0 for i= 1 . . . nc ð40Þ

It is clear that Problem 3 with the keep-out zone con-

straints formulated using SRSO and Equation (23) or using

Ci, RSO and Equation (40) are equivalent.

Fig. 10. Non-convex keep-out zone SRSO linearized by multiple convex keep-out zone constraints: (a) decomposition of a non-convex

set; (b) linearized keep-out zone constraints.
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For the convex approximation (Problem 4) the constraint

set in Equation (40) is linearized, resulting in

~d
½n�
i + n̂

½n�T
i, ~d

r½n�c � ~r½n�c

� �
ø0 for i= 1 . . . nc ð41Þ

Proposition 3. The sequential solutions to the convex

Problem 4 converge to a KKT point of the non-convex

Problem 3 if: SRSO is modeled as a collection of nc convex

sets Ci, RSO, the keep-out zone constraints are enforced

using Equation (41), an initial admissible trajectory ~rc is

used to seed the sequential convex programming proce-

dure, and rg 2 ∂SRSO.

Proof. If a feasible trajectory ~rc is used to start the sequen-

tial convex programming, Equation (41) ensures that the

solution to Problem 4 is an admissible point of Problem 3,

even when using a non-convex SRSO, as shown in

Figure 10.

Using an analogous procedure to that used during the

proof of Proposition 2, it follows that the sequential solu-

tions converge to ½‘�fH0 and that at k ! ‘:

d
½n�
i = ~d

½n�
i = ~d

½n�
i + n̂

½n�T
i, d̂

r½n�c � ~r½n�c

� �� �
for i= 1 . . . nc

rd
½n�
i =r ~d

½n�
i + n̂

½n�T
i, d̂

r½n�c � ~r½n�c

� �� �
for i= 1 . . . nc

therefore, as in the proof of Proposition 2, it follows that
½‘�fH0 is a KKT point of the non-convex Problem 3. h

Remark 7. All successive solutions to the convex Problem

4 are admissible points of the non-convex Problem 3.

Therefore, the iterative process can stop at any time,

Fig. 11. Step 1: System-wide optimization procedure.
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obtaining an admissible control ½k�fH0 and trajectory ½k�rHc of

the original non-convex Problem 3.

3.4. Summary of Step 1

The Step 1 (S1) optimization procedure consists of the fol-

lowing steps, shown schematically in Figure 11.

S1.1. Solve Problem 4 without enforcing the keep-out

zone constraint in Equation (36) and adding the

constraint in Equation (37). This initial solution is

used as the initial reference trajectory ~rc in the

sequential convex programming procedure. If this

convex problem is infeasible the maneuver is

infeasible.

S1.2. If ~rc meets the keep-out zone constraints in

Equation (23) using the non-convex SRSO, the

globally optimal solution to Problem 3 has been

found. Skip the rest of these steps and move to

the internal re-configuration sub-maneuver opti-

mization. Otherwise, continue.

S1.3. Approximate the RSO by its convex hull (CRSO)

and solve Problem 4 (using Equation (36) for the

keep-out zone constraints). If this problem is feasi-

ble, it generates an admissible solution to Problem

3, seeding the sequential convex programming

procedure used for the non-convex SRSO (conver-

gence is now guaranteed).

Remark 8. If Problem 4 is found to be feasible at the start

of S1.3, then the non-convex Problem 3 is feasible.

Solving two convex optimization problems is required to

obtain a sufficient condition of feasibility.

If this problem is infeasible, then two options are

available.

(a) Stop and consider the maneuver infeasible.

(b) Convert the keep-out zone constraint into a penalty

as follows

J1 =
XN1�1

n= 1

f
½n�T
0 W1f

½n�
0 Dt½n�

+
XN1

n= 1

�~d
½n� � n̂

½n�T
~d

r½n�c � ~r½n�c

� ���� ���+ ð42aÞ

xj j+ =
x for xø0

0 for x\0

	
ð42bÞ

where �j j+ denotes the positive part (Schulman et al., 2014).

Then repeatedly solve Problem 4 until a feasible solution is

obtained (no guarantees are available). The use of penalties has

been studied extensively, and when set correctly, they can be

used to form equivalent problems, in what is known as exact

penalties (Lipp and Boyd, 2016; Pillo and Grippo, 1989).

If the grapple fixture lies inside the convex hull,

rg 2 CRSO, and not in its boundary rg 62 ∂CRSO, the S1.3

problem is automatically infeasible. Refer to Section 3.5

for a procedure to circumvent this issue.

S1.4. Repeatedly solve Problem 4, decomposing SRSO

with a collection of convex sets to enforce the

keep-out zone constraints using Equation (41).

S1.5. Stop at any time during S1.4 to obtain an admissi-

ble solution or continue with the sequential pro-

gramming procedure until the desired convergence

level is reached (see Equation (32)).

3.5. Solving Problem 3 when the grapple fixture

is inside the convex hull

If the grapple fixture, rg , lies within—and not on the

boundary of—the RSO’s convex hull CRSO, the terminal

and obstacle avoidance constraints at t= tf of the convex

problem to be solved in S1.3 will be incompatible. This

incompatibility can be successfully circumvented by enfor-

cing a waypoint, xw at n=Nw on the chaser’s trajectory

(i.e., x½Nw� = xw). Up to the waypoint, which must be com-

patible with the chaser’s convex hull, the keep-out zones are

enforced against the convex hull, yet after the waypoint, the

keep-out zone constraints are dropped in favor of an

obstacle-free polytope keep-in constraint, Axł b. The

solution to the resulting optimization problem is a collision-

free trajectory that allows the sequential convex program-

ming procedure to continue to S1.4 and eventually con-

verge to a locally optimal solution. Figure 12 contains a

notional representation of this case and the proposed work-

around, which is similar to the method used by Watterson

et al. (2016).

3.6. Effects of approximating the chaser as a

sphere

Bounding the chaser’s geometry by a keep-out sphere and

using this sphere to enforce keep-out zone constraints is

conservative and guarantees collision-free trajectories.

However, this approximation may potentially reduce the

solution’s optimality and the problem’s admissible set.

For example, any target protrusions that penetrate the

chaser’s bounding sphere in its final configuration produce

incompatible terminal and obstacle avoidance constraints at

t= tf , thus rendering the problem infeasible. A potential

method to overcome this limitation is to omit these protru-

sions from the obstacle avoidance considerations. Once the

full maneuver optimization is complete, including the inter-

nal reconfiguration, collisions against the target’s complete

geometry can be checked. Given that the bounding sphere

is conservative, it is possible that the generated trajectory is

collision-free and usable.

3.7. Setting the initial and final time

To cast Problem 2 as a convex programming problem, it is

converted into a fixed-final-time problem. The final time is

considered a user-defined parameter. As suggested by

Pinson and Lu (2016), a second optimization procedure
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can be wrapped around the sequential convex programming

procedure to determine a locally optimal final time tHf .

A simpler approach to set the final time exploits the fact

that, if the chaser starts at rest, the cost, as a function of

time JH tf

 �

, is largely monotonically decreasing (as shown

in Section 5). This observation prompts the user to select

the largest possible tf , only limited by other considerations

(e.g., illumination conditions or communication windows).

One of these limiting factors may be the available computa-

tional power. Longer maneuvers require a higher number

of nodes to maintain the same level of accuracy, increasing

the computational complexity, and effectively upper-

bounding tf . Shorter maneuvers may also be preferred as

their lower computational load allows for higher refresh

rates, increasing the maneuver’s robustness to uncertainties

and perturbations.

Assuming that the final time is set to its maximum prac-

tical value, then the question becomes: when is the optimal

time to start the maneuver? As the RSO is tumbling, the

maneuver cost ½‘�JH1 tf

 �

oscillates in a periodic fashion, as

shown in Section 5. The oscillation is tied to the RSO’s ini-

tial attitude, which changes as the maneuver starting time

becomes delayed. The maneuver cost is certainly lower

bounded and the bound can be estimated by offline simula-

tions or by having the chaser continuously solving the opti-

mization problem while the target RSO tumbles. Once the

bound has been determined, the chaser, from its hold posi-

tion, can continue to solve the optimal control problem,

and when the cost of the computed maneuver is close to

the estimated lower bound the maneuver is allowed to start.

3.8. Alternative approaches

It is worth acknowledging that alternative approaches to

solve the system-wide translation exist. For example,

inverse dynamic (Sternberg and Miller, 2018; Ventura

et al., 2015; Virgili-Llop et al., 2018; Wilde et al., 2016),

sampling-based (Starek et al., 2016; Zappulla et al.,

2017), model predictive control (Park et al., 2017;

Zagaris et al., 2018), or other convex optimization-based

approaches (Szmuk and Acikmese, 2018; Watterson

et al., 2016) may be able to solve the system-wide trans-

lation and be suitable for onboard implementation and

real-time use. The advantage of the convex programming

approach used here is that it can directly handle non-

convex obstacles while retaining convergence guarantees.

In addition, the proposed approach suitability for onboard

implementation and real-time use has been validated

through hardware-in-the-loop experiments on a planar air

bearing test bed (see Section 6).

4. Step 2: internal re-configuration

optimization

Once the system-wide translation has been optimized, also

setting the final time tf , it is the re-configuration sub-

maneuver’s turn. This second optimization step uses the

results of the system-wide translation to couple the two

sub-maneuvers.

Before formulating the optimal control problem for this

sub-maneuver, let us derive the equations of motion of the

system (1) on a CCS C attached to chaser’s center of mass

(see Figure 13). The axes of the C CCS are parallel to the

inertial CCS I axes, but the origin of the C CCS is dis-

placed by~rc.
The equations of motion in the C CCS take the equiva-

lent form of

HjC _ujC +CjCujC = tjC ð43Þ

As the orientation of the non-inertial C and inertial CCS I
are the same, the inertia matrices are equivalent:

Fig. 12. Handling grapple fixtures inside the RSO’s convex hull.
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HjC =H ð44aÞ

CjC =C ð44bÞ

The manipulator velocities and accelerations, as well as the

base-spacecraft angular velocities and accelerations are also

equivalent:

umjC = um ð45aÞ

_umjC = _um ð45bÞ

v0jC =v0 ð45cÞ

_v0jC = _v0 ð45dÞ

The base-spacecraft linear velocities in the C CCS are with

respect to the center of mass, resulting in the following

definitions:

_r0jC = _r0 � _rc = _rc, 0 ð46aÞ

€r0jC = €r0 � €rc = €rc, 0 ð46bÞ

Finally, as we are using a non-inertial CCS, a set of gener-

alized inertial forces tI , derived from the frame’s accelera-

tion, appear:

tjC = t+ tI ð47Þ

These inertial forces (tI ) are the reaction to the forces

applied to the center of mass fHc = fH0 mapped into equiva-

lent generalized forces. The mapping is accomplished by

exploiting the kineto-static duality (Siciliano et al., 2009)

as follows:

tI = � JTc f
H

0 ð48Þ

with JTc denoting the Jacobian of the center of mass, which

can be obtained as

Jc =

Pi= nDoF

i= 0 JimiPi= nDoF

i= 0 mi

ð49Þ

and with mi and Ji denoting the mass and geometric

Jacobian of the ith link, respectively.

Although not apparent from Equation (48), it follows

that

f0, I = � fH0 ð50Þ

as _r0 is used for both, the base-spacecraft linear velocity in

joint and operational space, thus making the part of the

Jacobian Jc that maps between these two velocities a 3× 3

identity matrix.

The expression in Equation (50) allows the equations of

motion in C CCS to re-written as

H
€rc, 0
_�u

� �
+C

_rc, 0
�u

� �
=

03× 1

t � J
T

c f
H

0

� �
ð51aÞ

_�u=
_v0

_um

� �
u=

v0

um

� �
t=

n0
tm

� �
ð51bÞ

with t 2 R
3+ nDoF denoting the control variables and J

T

c the

sub-Jacobian, corresponding to the internal re-

configuration sub-maneuver control variable t.

Remark 9. The upper part of Equation (64) can be solved

to obtain the base-spacecraft’s reaction €rc, 0.

With the equations of motion defined, the optimal con-

trol problem can be formulated. The cost is defined by the

following quadratic cost function,

J2 =

Z tf

0

tTW2tdt ð52Þ

with W2 2 R
3+ nDoF × 3+ nDoF denoting a positive-definite

weight matrix.

The constraints for this sub-maneuver are: limited

manipulator joint deflections (Equation 6) and torques

(Equation 7), base-spacecraft torque limits (Equation 9),

line-of-sight constraint (Equation 11a), final pre-set

Fig. 13. CCS used for the internal re-configuration.
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manipulator motion (Equation 12), and the terminal con-

straints in Equations (13) and (15).

These constraints can be applied as-is, except the termi-

nal constraint related to the matching of the end-effector

and the grapple fixture, formally defined in Equation (13).

During the first optimization step, the position of the center

of mass is set so that the grapple fixture is within reach of

the end-effector, yet the orientation of the chaser is let unde-

fined. To ensure that the end-effector is at the grapple fix-

ture at tf , the base-spacecraft attitude must guarantee that

the unit vector pointing from the center of mass towards the

end-effector r̂c, e is aligned with the unit vector from the

center of mass towards the grappling point r̂c, g. This con-

straint, illustrated in Figure 14, is formulated as follows:

r̂Tc, er̂c, g = 1 ð53Þ

Note that the projection of r̂c, e on the body CCS B (r̂ Bf g
c, e )

is known, given the pre-set manipulator configuration at tf .

The projection of r̂c, g on the inertial CCS I (r̂ If g
c, g ) is also

known, in this case from the solution to the system-wide

translation sub-maneuver optimization.

Remark 10. The constraint in Equation (53) is equivalent

to the line-of-sight constraint expressed in Equation (11a),

yet with a half-cone angle of f= 0. The chaser is free to

rotate around the axis defined by r̂c, g while still meeting

the constraint.

The resulting optimal control problem is presented in

Problem 5. Given the nonlinear kinematics and dynamics

this problem is non-convex.

Problem 5. Internal re-configuration optimal control

problem.

min:

Z tf

0

tTW2tdt ð52Þ

s:t: : H
€rc, 0
_u

� �
+C

_rc, 0

u

� �
=

0

t � J
T

c f
H

0

� �
ð51aÞ

_q0 =
1

2
v0 � q0 ð4Þ

ummin ł ułummax ð6Þ

tmmin ł tm ł tmmax ð7Þ

kn0kł n0max ð9Þ

rTd v̂ø rdk k cosf ð11aÞ

um(t)= upsm (t) for t 2 tps, tf
� �

ð12Þ

r̂Tc, er̂c, g = 1 ð53Þ

v0 tf

 �

=vRSO(tf ) ð15Þ

At this point, it is worth discussing why the manipulator

motion is pre-set during the last part of the maneuver

t= tps, tf
� �

(see Equation (12)). If the manipulator motion

during tøtps was subject to optimization, additional con-

straints would be required. For example, it may be desired

to have a final manipulator configuration with a high kine-

matic manipulability—so that the manipulator can quickly

correct any deviations. In addition, during this final phase,

the end-effector must move outwards, R
ps
KO(t)øRf , avoid-

ing collisions with the RSO and ensuring that the first opti-

mization step presents a feasible problem.

A pre-set manipulator motion can provide all the desired

properties without increasing the complexity of the prob-

lem, and, as it only applies at the last segment of the maneu-

ver, it has limited impact on the maneuver’s cost. However,

it is recommended to consider different pre-set motion

approaches, conduct a case-by-case analysis, and select the

one that offers better performance. There is a large amount

of methods and strategies that can be used to generate suit-

able manipulator pre-set motions and a comprehensive

study of their potential impact on the capture maneuver

falls outside the scope of this work.

4.1. Explicitly convex line-of-sight constraint

In Equation (11a), the position of the sensor ~rs can be

expressed as

~rs =~rc +~rc, 0 +~r0, s ð54Þ

with~rc given by the solution of the first optimization step

and with~r0, s being the known position vector of the sensor

from the base-spacecraft.

The dependency of ~rs on ~rc, 0 makes this line-of-sight

constraint a complex roto-translation constraint. Although,

convex formulations of roto-translation line-of-sight con-

straints, requiring the use of dual quaternions, have been

found (Lee and Mesbahi, 2016), a much simpler rotation-

only line-of sight constraint can be obtained if~rc, 0 and~r0, s
are neglected, approximating~rs as

~rs ’~rc ð55Þ

Fig. 14. Terminal attitude constraint.
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Convex formulations of line-of-sight constraints have been

found using semidefinite matrices or quaternion quadratic

formulations (Kim et al., 2010; Lee and Mesbahi, 2016).

The approach proposed by Kim et al. (2010) is used here

to obtain an explicitly convex line-of-sight constraint.

4.1.1. General derivation of an explicitly convex line-of-

sight constraint. In general, a line-of-sight constraint can

be expressed as follows:

~r �~vøk~vkk~rk cosf ð56Þ

where ~v is the sensor’s boresight direction and ~r is the

desired pointing direction.

To compute the scalar product, these two vectors need to

be resolved in a common reference coordinate system. In

general, ~v is known in a body-fixed CCS vfBg and ~r is

known in an inertial CCS rfIg. With the attitude quaternion,

the CCS where the~r vector is resolved can be changed:

rfBg = q�0 � rfIg � q0 ð57Þ

with q�0 denoting the quaternion conjugate of q0 and pro-

moting r If g to a pure quaternion.

By convention, the matricial representation of the qua-

ternion is here defined as follows:

q=
qv
qs

� �
ð58Þ

where qv denotes the ‘‘vector’’ part of the quaternion and qs
its ‘‘scalar’’ part.

The matricial form of the quaternion multiplication is

then defined as

p� q= p½ �Lq= q½ �Rp ð59aÞ

q½ �L = qsI4 +
q×v qv
�qTv 0

� �
ð59bÞ

q½ �R = qsI4+
�q×v qv
�qTv 0

� �
ð59cÞ

When multiplying two pure quaternions a and b (i.e., with

qs = 0), the result provides the cross-product and the scalar

dot product between these two ‘‘vectorial’’ quantities:

a� b=
a×b
�aTb

� �
= kak kbk n̂ sinu

� cosu

� �
ð60Þ

with u denoting the angle between a and b, and n̂ denoting

the components of the unit vector normal to both a and b.

Considering these properties, the line-of-sight constraint

can be re-written as follows:

q�0 � rfIg � q0 � vfBg = kvk krk n̂ sinu
� cosu

� �
ð61Þ

These properties allow the line-of-sight constraint to be

expressed as

�½q�0�L½rfIg�L½vfBg�Rq0
� �T 03× 1

1

� �
økvk krk cosf ð62Þ

As

q�½ �TL
0
1

� �
= q ð63Þ

the line-of-sight constraint can be formulated using the fol-

lowing quadratic form:

� qT0Aq0økvkkrk cosf ð64aÞ

A= vfBg
h i

R
rfIg
h i

L
ð64bÞ

Note that q½ �R and q½ �L are skew-symmetric matrices and,

thus, A is a symmetric indefinite matrix.

Skew-symmetric matrices have imaginary eigenvalues

and, when using pure quaternions, a½ �R and a½ �L present two

pairs of complex conjugate eigenvalues with l=6kaki.
As q½ �R and q½ �L commute over multiplication, it is

shown that the eigenvalues of A are the multiplication of

the eigenvalues of the two skew-symmetric matrices.

Therefore, the eigenvalues of A are lA =6kvkkrk.

As kq0k= qT0 q0 = 1, the following identity is readily

apparent:

qT0 A� mI4ð Þq0 = qT0Aq0 � mqT0 q0 = qT0Aq0 � m ð65Þ

If m is chosen to be smaller or equal than the minimum

eigenvalue of A, it follows that A� mI4 is positive

semidefinite,

mømin lAð Þ= � kvk krk ) A� mI4ð Þ � 0 ð66Þ

and the line-of-sight can be re-formulated as follows:

� qT0 A� mI4ð Þq0 � møkvk krk cosf ð67Þ

Choosing

m= � kvkkrk ð68Þ

yields

� qT0 A+ kvkkrkI4ð Þq0 + kvkkrkøkvkkrk cosf ð69Þ

Finally, the line-of-sight constraint can be cast as an expli-

citly convex inequality constraint:

qT0A
+q0 + kvkkrk cosf� 1ð Þł 0 ð70aÞ

A+ = A+ kvkkrkI4ð Þ ð70bÞ

In an equivalent manner, an explicitly convex attitude

keep-out zone constraint can also be formulated:
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� qT0A
�q0 � kvkkrk 1+ cosfð Þł 0 ð71aÞ

A� = A� kvkkrkI4ð Þ ð71bÞ

4.1.2. Explicitly convex line-of-sight constraint for Problem

5. Going back to the specific constraint of the problem at

hand, we can express the line-of-sight constraint in

Equation (11a) as follows:

qT0A
+
LoSq0 + krdk cosf� 1ð Þł 0 ð72aÞ

A+
LoS= A+ krdkI4ð Þ ð72bÞ

ALoS= v̂fBg
h i

R
r
fIg
d

h i
L

ð72cÞ

Analogously, for the terminal constraint in Equation (53):

qT0A
+
Terq0 ł 0 ð73aÞ

A+
Ter= A+ krc, ekkrc, gkI4


 �
ð73bÞ

ATer = rfBgc, e

h i
R
rfIgc, g

h i
L

ð73cÞ

4.2. Convexification of kinematic and dynamic

constraints

To overcome the nonlinear kinematics and dynamics a

sequential convex programming procedure is used. A con-

vex approximation of Problem 5 is obtained by linearizing

the kinematics and dynamics around a reference trajectory,

denoted by ~�u, ~um. The resulting convex programming prob-

lem is repeatedly solved, using the previous iteration’s solu-

tion as the linearization trajectory. A trust region keeps the

solution within a region where the linearization approxima-

tion is valid. Unlike the sequential convex procedure used

during the first optimization step, this proposed procedure

offers no guarantees of recursive feasibility or convergence.

A direct transcription method with N2 nodes is used to

transcribe Problem 5. The optimization variables are the

generalized accelerations _�u
½n�

. Therefore, the components

of the discretized accelerations ( _�u
½n�

) are piecewise constant,

the components of the velocities (�u½n�) piecewise linear, and

the components of the generalized forces (t½n�) piecewise

nonlinear, as illustrated in Figure 15. A trapezoidal integra-

tion scheme is used to approximate the cost:

J2 ’
XN2�1

n= 1

t½n+ 1�TW2t
½n+ 1� � t½n�

T
W2t

½n�

2
Dt½n� ð74Þ

The velocities u can be propagated using state transition

matrices:

�u½n+ 1� =Fu�u
½n� +Q½n�

u
_�u
½n� ð75aÞ

Fu = I3+ nDoF
ð75bÞ

Q½n�
u =Dt½n�I3+ nDoF

ð75cÞ

An analogous approach can be used to propagate the

manipulator joint displacements:

u½n+ 1�
m =Fuu

½n�
m +Q

½n�
u

v½n�
m

_v½n�
m

� �
ð76aÞ

Fu = InDoF
ð76bÞ

Q
½n�
u = Dt½n�InDoF

Dt½n�ð Þ2
2

InDoF

h i
ð76cÞ

The quaternion differential kinematics, shown in Equation

(4), are nonlinear. As the angular velocity is piecewise lin-

ear, the following magnitudes can be defined

v
½n+ 1=2�
0 =

v
½n+ 1�
0 +v

½n�
0

2
ð77aÞ

v̂
½n+ 1=2�
0 =

v
½n+ 1=2�
0

v
½n+ 1=2�
0




 


 ð77bÞ

a½n+ 1=2�
v0

= v
½n+ 1=2�
0




 


Dt½n�
2

ð77cÞ

allowing to approximate the forward integration of the qua-

ternion differential kinematics as follows:

Dq½n� ’
v̂

½n+ 1=2�
0 sina

½n+ 1=2�
v0

cosa
½n+ 1=2�
v0

" #
ð78aÞ

Fig. 15. Discretized internal re-configuration variables.
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q
½n+ 1�
0 ’Dq½n� � q

½n�
0 ð78bÞ

q
½n+ 1�
0 = f ½n�q q

½n�
0 ,v

½n+ 1=2�
0

� �
ð78cÞ

Despite the approximate nature of Equation (78), the qua-

ternion propagation remains nonlinear.

Using a Taylor expansion around a particular trajectory

~v0, and truncating, only keeping the linear terms, a linear

approximation of the function introduced in Equation (78c)

is obtained:

f ½n�q ’ f ½n�q ~q
½n�
0 , ~v

½n+ 1=2�
0

� �
+

+rfq ~q
½n�
0 , ~v

½n+ 1=2�
0

� �
q
½n�
0 � ~q

½n�
0

v
½n+ 1=2�
0 � ~v

½n+ 1=2�
0

" #
ð79aÞ

q
½n+ 1�
0 ’ ~q

½n+ 1�
0 +rfq

q
½n�
0 � ~q

½n�
0

v
½n+ 1=2�
0 � ~v

½n+ 1=2�
0

" #
ð79bÞ

An analogous procedure is used to approximate the non-

linear system dynamics. First, the dynamics are approxi-

mated using a Taylor expansion and then the expansion is

truncated to keep only the linear terms:

H
€rc, 0
_�u

� �
+C

_rc, 0
�u

� �
+

0

J
T

c f
H

0

� �
=

0

t

� �
ð80aÞ

t= ft q0, u, u, _�u

 �

= ft _�u

 �

ð80bÞ

t’ t+rft
~_�u

� �
_�u� ~_�u

� �
ð80cÞ

Given the nonlinear nature of the inertia and convective

inertia matrices, a complete linearization of the dynamics

can be hard to obtain. The following partial linearization,

omitting the linearization of the inertia matrices, is a simple

to obtain—yet less accurate—alternative:

t’ ~t+ ~H
€rc, 0 � ~€rc, 0

_�u� ~_�u

" #
+ ~�C

_rc, 0 � ~_rc, 0
�u� ~�u

� �

+rJ
T

c

q0 � ~q0
um � ~um

� �
fH0 ð81aÞ

_rc, 0 ’ f ~H, u

 �

ð81bÞ

€rc, 0 ’ f ~H, ~C, _�u, u, _rc, 0

 �

ð81cÞ

with ~H and ~C denoting the inertia and convective inertia

matrices constructed using the reference trajectory.

The linearization of the Jacobian can also be dropped to

obtain an even simpler expression:

t’ ~�t+ ~�H
€rc, 0 � ~€rc, 0

_�u� ~_�u

" #
+ ~�C

_rc, 0 � ~_rc, 0
�u� ~�u

� �
ð82Þ

To ensure that the solution remains in a region where

the linear approximations are valid, spherical trust regions

around um and v0 are imposed:

u½n�m � ~u½n�m



 


1
łrum ð83aÞ

v
½n�
0 � ~v

½n�
0




 



1
łrv0

ð83bÞ

with rum and rv0
denoting the radius of the trust region.

The resulting convex approximation of Problem 5 is

shown in Problem 6.

Problem 6. Convex approximation of the internal re-

configuration optimal control problem.

min:
XN2�1

n= 1

t½n+ 1�TW2t
½n+ 1� � t½n�

T
W2t

½n�

2
Dt½n� ð74Þ

s:t: : t½n� = ~�t½n� +rft
~_�u

� �
_�u� ~_�u

� �
n= 1 . . .N2 ð80cÞ

q
½n+ 1�
0 = ~q

½n+ 1�
0 +rfq

q
½n�
0 � ~q

½n�
0

v
½n+ 1=2�
0 � ~v

½n+ 1=2�
0

" #

n= 1 . . .N2 � 1

ð79bÞ

u½n+ 1� =Fuu
½n� +Q½n�

u
_�u
½n�

n= 1 . . .N2 � 1 ð75aÞ

u½n+ 1�
m =Fuu

½n�
m +Q

½n�
u

v½n�
m

_v½n�
m

� �
n= 1 . . .N2 � 1

ð76aÞ

umminł u½n�m łummax n= 1 . . .N2 ð6Þ

tmminł t½n�m ł tmmax n= 1 . . .N2 ð7Þ

kn½n�0 kł n0max n= 1 . . .N2 ð9Þ

q
½n�T
0 A

½n�+
LoS q

½n�
0 + krd ½n�k cosf� 1ð Þł 0 n= 1 . . .N2

ð72aÞ

u½n�m = ups½n�m n= nps . . .N2 ð12Þ

q
½n�T
0 A

½n�+
Ter q

½n�
0 ł 0 n=N2 ð73aÞ

v
½n�
0 =vRSO(tf ) n=N2 ð15Þ

u½n�m � ~u½n�m



 


1
łrum n= 1 . . .N2 ð83aÞ

v
½n�
0 � ~v

½n�
0




 



1
łrv0

n= 1 . . .N2 ð83bÞ

The solution to this convex problem is ½k� _�u
H

, which is

used to generate the new reference trajectory

½k� _�u
H!½k+ 1�~�u, ½k+ 1�~um ð84Þ

The newly formed convex Problem 6 is repeatedly solved

until the cost converges below a certain convergence thresh-

old e2:

½k�1�JH2 �½k�JH2


 



1
łe2 ð85Þ
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4.3. Initialization of the sequential convex

programming procedure

The convex approximation of the problem relies on a line-

arization around a set trajectory ~�u, ~um. The first time the

problem is solved there is no previous solution to rely on

and an initial guess is required. To initialize the sequential

convex programming procedure for system-wide transla-

tion, the non-convex constraints are dropped and the result-

ing convex problem solved, with its solution seeding the

sequential procedure. Unfortunately, the non-convexities of

the re-configuration sub-maneuver are in the kinematics

and dynamics, which cannot be dropped. Another method

to generate an initial guess is then required.

An initial guess for the base-spacecraft attitude can be

generated by assuming that the chaser’s attitude follows a

trajectory that keeps the chaser’s sensor perfectly pointing

towards the grapple fixture, thus meeting the line-of-sight

constraint. Starting from an initial orientation q
½0�
0 that has

the chaser’s sensor pointed towards the grapple fixture, the

rest of the attitude’s initial guess can be constructed as

follows:

q
½n+ 1�
0 =Dq½n� � q

½n�
0 ð86aÞ

ê½n� =
n̂½n�
h i×

n̂½n+ 1�

n̂½n�
h i×

n̂½n+ 1�



 


 ð86bÞ

a½n� = arccos n̂½n�T n̂½n+ 1�
� �

ð86cÞ

Dq½n� = ê½n� sin (a½n�=2)
cos (a½n�=2)

� �
ð86dÞ

Using this approach results in an attitude motion that may

violate the terminal angular velocity constraint in Equation

(15). This potential violation can be corrected during the

first iteration of the sequential convex programming proce-

dure, as long as the trust region on the angular velocity, ru,

is large enough to allow a full correction (if ru is not large

enough, Equation (15) cannot be met and the convex pro-

gramming problem becomes infeasible).

An initial guess for the manipulator’s motion can be

obtained assuming that the manipulator moves from its ini-

tial state to its final state following a linear trajectory in

joint space (i.e., minimum deflection from initial pose to

final pose) with two periods of constant acceleration:

um(t)= um(t0)+vm(t0)t+ _vm

t2

2
ð87aÞ

_vm, i for t= ½t0,Dt�
_vm, i for t= ½Dt, tps�

� �
=A�1b, for i= 1 . . . nDoF

ð87bÞ

A=
3Dt2

2
Dt2

2

Dt Dt

� �
ð87cÞ

b=
um, i(tps)� um, i(t0)� vm, i(t0)Dt

vm, i(tps)� vm, i(t0)

� �
, for i= 1 . . . nDoF

ð87dÞ

Dt=
tps � t0

2
ð87eÞ

Although this procedure to obtain an initial guess is not the

only possible one, it suffers from the same shortcomings as

all other methods that do not explicitly enforce the problem

constraints, namely: it may be infeasible (i.e., not meeting

the control bounds).

4.4. Adjusting the trust regions

Adjusting the trust regions between iterations improves the

robustness of the procedure while accelerating its conver-

gence (Conn et al., 2000). As the kinematics and dynamics

are nonlinear, the true cost of the trajectory ½k�J true differs

from the cost predicted by the optimization ½k�JH:

j½k�J true2 �½k�JH2 j 6¼ 0 ð88Þ

The difference between the two costs can be made arbitra-

rily small by tightening the trust region. A smaller trust

region ensures that the linear approximation is more accu-

rate, at the expense of a slower convergence rate.

To achieve a balance between robustness and speed of

convergence, the trust region can be expanded or contracted

as required. The following function is used to update the

trust regions radius as a function of the cost difference:

½k+ 1�r= k
½k�JH2

½k�J true2 �½k�JH2
�� ��½k�r ð89Þ

with k denoting a tunable gain. The inflation/deflation rate

is capped to avoid dramatic changes to the radius. A wide

range of gains could be used or even other update laws

conceived. As the gain or the update law may have a large

influence on the speed of convergence a comprehensive

analysis may be desired, yet such analysis falls outside the

scope of this work.

Another issue with this sequential convex programming

procedure is that the solution may violate the maximum

torque, t, constraints (as t is nonlinear). If that is the case,

that particular solution can be disregarded, the trust region

tightened and the convex problem re-solved. This approach

is used by Mao et al. (2017), in conjunction with penalties

and a trust region update law, to derive a sequential convex

programming procedure with converge guarantees, yet

potentially converging to an infeasible point.

Remark 11. The proposed sequential convex programming

procedure to solve the internal re-configuration sub-man-

euver does not guarantee convergence (no recursive feasi-

bility guarantees) or that the solutions are admissible

points of the original problem.
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4.5. Overview of Step 2

The Step 2 (S2) optimization procedure consists of the fol-

lowing steps.

S2.1 Generate an initial guess to serve as a reference

trajectory.

S2.2 Using the reference trajectory generate and solve

the convex programming Problem 6.

S2.3 With the solution obtained from solving Problem 6

then:

(a) check whether the solution meets the manipula-

tor’s torque constraints; if not, disregard this

solution, tighten the trust regions, and repeat

step S2.2;

(b) evaluate the solution’s cost difference and adjust

the trust region for the next iteration (see

Section 4.4);

(c) proceed to the next iteration, repeat steps S2.2–

S2.3.

Remark 12. If the Step 2 sequential convex programming

procedure converges, the converged solution is a local opti-

mal solution to the original non-convex problem. At the

convergence point, the dynamics, linearized around the

converged solution, are an exact representation.

A solution to the original guidance problem is obtained

when the results of the two consecutive optimization steps

S2 and S1 are combined.

5. Numerical simulations

To illustrate the proposed approach, a numerical simulation

case study is provided. For added insight, a Monte Carlo

analysis was conducted for 21 maneuver times (tf ) and 21

initial RSO angular velocity magnitudes (vRSO t= 0ð Þk).

For each pair of tf and kvRSO t= 0ð Þk, 100 simulations with

randomized RSO initial orientations (as proposed by

Shoemake (1995)) and angular velocity directions was

conducted. A total of 21× 21× 100= 44, 100 capture

maneuvers were simulated, allowing the robustness of the

proposed guidance to be assessed.

The chaser and target RSO used in these simulations are

shown in Figures 16 and 17. The chaser has a three-degree-

of-freedom manipulator and a base-spacecraft mass fraction

of 77% with respect to the total mass of the system. The

target RSO convex hull, conv SRSOð Þ, is shown in Figure

17(b) and its convex decomposition into three convex sets

(nC = 3) in Figure 17(a). The parameters used in the simu-

lations are provided in Table 1.

To solve the convex optimization problems CVX (Grant

and Boyd, 2008, 2014) with the SDPT3 solver (Toh et al.,

1999) was used. The 44,100 cases were solved on the

Naval Postgraduate School high performance computing

facility ‘‘Hamming.’’

In these simulations, the chaser starts the maneuver at

rest, at a distance of 10 from its target, and with the manip-

ulator in a stowed configuration (see Figure 16(a)). To ini-

tially meet the line-of-sight constraint, the chaser is oriented

to have its sensor’s boresight pointing towards the center of

mass of the target. During the final part of the maneuver,

t= tps, tf
� �

, the manipulator’s motion is set to move from

um tps

 �

to um tf

 �

in a linear fashion and the keep-out

radius is kept at a constant R
ps
KO(t)=Rf for t 2 tps, tf

� �
.

5.1. Step 1 simulation results

During the first optimization step, 15 of the 12,100 capture

maneuvers (0.03%) were found infeasible—the proposed

guidance could not find a feasible solution—and 992 of

them (2.25%) required the use of penalties to obtain an

admissible solution (see S1.3b). These results suggest that

the proposed approach is robust and able to handle a wide

range of initial RSO states. For the converged cases, Figures

18–20 show the results of the first optimization step.

In particular, Figure 18 shows the mean system-wide

translation sub-maneuver cost with respect to the different

Fig. 16. Chaser model used in the numerical simulations: (a) stowed configuration; (b) configuration at t= tps; (c) capture

configuration.

60 The International Journal of Robotics Research 38(1)



Fig. 17. RSO model used in the numerical simulations: (a) RSO’s convex decomposition; (b) RSO’s convex hull.

Table 1. Numerical simulation parameters.

Parameter Value

Chaser

Initial distance from RSO 10 m
Initial velocity 0 m s21 & 0�s21

Initial orientation Sensor’s boresight pointing towards target
Sensor’s boresight (for line-of-sight) Aligned with the first link
Mass of the base 105 kg
Inertia of the base Jxx, yy, zz = 9:3 kg m2

Mass of the links m1 = 5, m2 = 10, and m3 = 10 kg
Length of the links l1 = 0:2, l2 = 0:75, and l3 = 0:75 m
Initial configuration um t0ð Þ u1 =p, u2 =

p
2
, and u3 =

p
2

(see Figure 16(a))
Initial pre-set configuration um tps


 �
u1 = � p, u2 =

p
8
, and u3 = � p

4
(see Figure 16(b))

Grasping configuration um tf

 �

u1 = � p, u2 =
p
6
, and u3 = � p

3
(see Figure 16(c))

Grasping pose reach Rf = 1:85 m
Keep-out sphere radius RKO = 2:04 m
Maximum force f0 max = 6:25 N
Maximum base torque t0 max = 1 N m
Maximum joint torque tm max = 5 N m
Maximum joint deflections u1 =6p, u2 =6 p

2
, and u3 =61:75

Line-of-sight cone half-angle f= 15�

RSO

Initial attitude Random
Initial angular velocity Magnitude 0-10 �s–1. Random initial direction
Mass 1200 kg
Inertia Jxx = 933, Jyy = 502, and Jzz = 693 kg m2

Optimization

Number of nodes N1, 2 = 101
Pre-set time tps tps = tf � 20 s
S1 convergence criteria e1 = 0:01% of ½k�1�JH1
S2 convergence criteria e2 = 2% of ½k�1�JH2
S2 initial trust regions rum = 0:5, rv0

ø0:5
S2 trust regions tunable gain k 0.001
S2 linearization of the dynamics using Equation (81a)

Monte Carlo

Maneuver time tf from 80 to 100 s in 1-second steps
RSO’s initial angular velocity magnitude k vRSO t= 0ð Þ k from 0 to 10�s–1 in 0.5�s–1 steps
Number of samples per tf , k vRSO t= 0ð Þ k combination 100
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maneuver times (tf ), and tumbling rate magnitudes

(kvRSO t= 0ð Þk). As expected, the cost decreases as the

maneuver time tf increases. With respect to the tumbling

rate magnitude, the sub-maneuver cost increases as the

tumbling rate increases.

Figure 19 shows the mean number of iterations required

to converge, showing that, on average, fewer than five

iterations are required. Figure 20 shows the convergence

rate statistics for all cases. Note that the sequential convex

programming procedure for the first optimization step is

considered to converge when the cost between iterations

decreases less than 0.01%.

For these simulations, the steps described in Section 3.4

and illustrated in Figure 11 are followed. During the first time

that Problem 4 is solved the keep-out zone constraints are not

enforced (see S1.1). Figure 20 shows that solving the optimi-

zation problem without enforcing the keep-out zone con-

straints is sufficient to solve nearly half the cases (optimum

found). If the solution to the first iteration violates the keep-

out zone constraints, more iterations are required. During the

second time Problem 4 is solved, the SRSO is approximated

by its convex hull CRSO (see S1.3). This second problem, if

feasible, provides an admissible solution to the non-convex

Problem 3, and from the third iteration onwards Problem 4 is

solved using the non-convex SRSO with guarantees of conver-

gence (see S1.4). The solution to the second problem

increases, by definition, the cost with respect to the initial

solution as shown in Figure 20. If Problem 4 with the

convex-hull is infeasible then, Problem 4 is re-solved convert-

ing the keep-out zones into penalties (see S1.3b), with the

prospect to eventually find a feasible solution and resume the

sequential convex programming procedure.

With this procedure, more than 92% of the cases con-

verged after 8 iterations. The cases that after 8 iterations

have not converged see little cost improvements in subse-

quent iterations (around 0.1%). These observations suggest

that a good strategy would be to limit the number of itera-

tions to 8, bounding the total computational time and

ensuring convergence on most cases without incurring in

excessive cost penalties for the non-converged cases.

Fig. 18. Simulation results: system-wide translation mean cost.

Fig. 19. Simulation results: system-wide translation mean

iterations to converge.

Fig. 20. Simulation results: System-wide translation convergence rate. Dashed line shows the 0.01% convergence threshold.
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Finally, Figure 21 shows how the cost and required itera-

tions evolve depending on the maneuver’s start time. The

RSO’s orientation with respect to the chaser changes with

time as the RSO is tumbling at a rate of 5�s–1. From Figure

21 it is clear that the RSO’s orientation at the start of the

maneuver—tied to the starting time—has a dramatic impact

on the maneuver’s cost and computational complexity. The

cost and the number iterations, oscillating with a period

P’ 2p
kvRSOk, present local minima when the geometry between

the RSO and chaser is favorable. Waiting for such conditions

to occur appears to be a good strategy to lower the maneu-

ver’s cost and computational load (see Section 3.7).

5.2. Step 2 simulation results

During the second optimization step admissible solutions

where found for all of the internal re-configuration sub-

maneuvers, suggesting that, despite the lack of convergence

proofs, the proposed method is robust. Figures 22–24 show

the results of the second optimization step.

As expected, and as shown in Figure 22, the cost of the

second sub-maneuver decreases as the maneuver time, tf ,

increases and RSO’s tumbling rate decreases. As shown in

Figures 23–24, the second optimization step requires a

larger number of iterations to converge. Note that in this

case the convergence is achieved when the cost decrease is

below 2%. Interestingly, the cost decrease plateaus at

around 3% for kø9 iterations. This behavior is induced by

the trust region, which is tuned via k (see Equation (89)).

As the trust region stabilizes, the optimization convergence

rate also stabilizes. A larger trust region allows a faster

convergence rate but increases the risk of constraint viola-

tions or cost increases between consecutive iterations. As

in the first optimization step, it may be a good strategy to

limit the number of maximum iterations to bound the maxi-

mum computational time.

5.3. Combined maneuver

A video showing the different optimization steps and the

final maneuver is shown in Extension 1.

6. Hardware-in-the-loop experiments

The simulation results illustrate the use and performance of

the proposed guidance approach under a wide range of ini-

tial conditions. To demonstrate that the proposed guidance

approach is suitable for onboard implementation and real-

time execution, the algorithm has been implemented on an

embedded onboard computer and used on the POSEIDYN

hardware-in-the-loop dynamic test bed (Zappulla II et al.,

2017b) to guide, in real-time, a robotic capture maneuver.

As these experiments are performed on a planar environ-

ment, the guidance approach has been adapted to this envi-

ronment and the line-of-sight constraint only enforced

during the t 2 tps, tf
� �

, yet with f= 0. More details on the

experimental implementation can be found in Virgili-Llop

et al. (2017c).

Fig. 21. Simulation results: system-wide translation cost and

iterations with respect to initial time.

Fig. 22. Simulation results: internal re-configuration mean cost.

Fig. 23. Simulation results: internal re-configuration mean

iterations to converge.
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6.1. Experimental set-up

The POSEIDYN air bearing test bed consists of a

smooth and horizontally leveled 4× 4 m2 granite table and

multiple Floating Spacecraft Simulators (FSS) (see

Zappulla II et al., 2017b). A FSS, equipped with a three-

link robotic manipulator, is used as the chaser spacecraft

while a second FSS, with mock solar panels, simulates the

tumbling object to be captured. An overview of the experi-

mental set up is shown in Figure 25.

Three planar air bearings mounted on the FSS greatly

reduce its friction with the granite table. This quasi-

frictionless dynamics combined with the horizontally

leveled table produce a low residual acceleration environ-

ment in two translation and one rotation degree of freedom

(planar motion). Eight cold-gas thrusters (Lugini and

Romano, 2009), modulated using a Delta-Sigma modulator

(Ciarcià et al., 2017; Zappulla II et al., 2017a), provide the

required control forces and torque. Selected parameters of

the FSS are provided in Table 2.

A three-link manipulator is mounted on the chaser FSS

(Virgili-Llop et al., 2016a, 2017a). The manipulator joints

are all revolute. The first two links are identical and host an

additional air bearing to support their weight. The third link

of the manipulator is a minimalistic joint that functions like

a ‘‘wrist,’’ allowing the gripper to adjust its orientation. The

gripper is based on the open-source OpenHand Model T42

(Ma et al., 2013). Selected parameters of the robotic manip-

ulator are provided in Table 3.

Fig. 24. Simulation results: internal re-configuration convergence rate. Dashed line shows the 2% convergence threshold.

Fig. 25. Floating Spacecraft Simulators used during the experiments at the Spacecraft Robotics Laboratory POSEIDYN planar air

bearing test bed at the Naval Postgraduate School.

64 The International Journal of Robotics Research 38(1)



An overhead motion capture system (VICON) provides

position and orientation measurements of the different FSS,

at a 100 Hz rate. The chaser’s base-spacecraft and RSO’s

position and orientation measurements are made available

to the chaser FSS, effectively solving the relative navigation

problem. The chaser’s navigation data is augmented by an

onboard fiber optic gyroscope (FOG).

6.2. Experimental concept

The nominal initial conditions of the maneuver are shown

in Figure 26. These initial conditions present a ‘‘hard’’ gui-

dance problem, requiring multiple iterations on both

sequential convex programming procedures. The initial

conditions were selected to obtain a trajectory that remains

within the 4× 4 m2 granite table. The RSO rotation rate

was set to 5�s–1 (above this rate, simulations show the

chaser moving beyond the limits of the granite table). Note

that the RSO resembles the one used for the numerical

simulations (Section 5), with a similar convex hull (CRSO),

and also being decomposed with three convex sets.

The chaser first moves to its prescribed initial position

while acquiring the initial manipulator’s configuration. The

capture maneuver starts when the RSO achieves a pre-

determined initial attitude (seen in Figure 26). Then, the

two-step optimization problem is solved onboard the chaser

FSS every 5 seconds. The solutions fH0 and _�u
H

are applied

in a feed-forward arrangement with a linear-quadratic

Table 2. Selected Floating Spacecraft Simulator parameters (Zappulla II et al., 2017b).

Parameter Value

Mass 13 kg
Inertia 0.28 kg m2

Dimensions (length × width) 0.27× 0.27 m
Force per thruster ;0.15 N (inlet pressure dependent)
Air tank capacity 1.868 cm3 (14 ci)
Air tank nominal pressure 20.7 Mpa (3000 psi)
Air bearings and thrusters inlet pressure 413.7 Pa (60 psi)
Onboard computer Intel� AtomTM 1.6 GHz Z530 with 2 GB of RAM
Onboard computer performance ;1900 MIPS (Dhrystone v2.1)
Real-time operating System Linux 2.6 with the RT_PREEMPT patch (Arthur et al., 2007)
Fiber-optic rate-gyroscope KVH� DSP-3000
Test bed residual linear acceleration ;1.871× 10�4 m s–2(or ;19.1 mg)
Test bed residual angular acceleration ;7.56× 10�2�s–2

Table 3. Selected manipulator parameters.

Parameter Value

Mass per modular link 2.9 kg
Inertia per modular link ’ 0.0364 kg m2

Third link and gripper mass 1.128 kg
Third link and gripper inertia ’ 0.012 kg m2

Modular link’s length (axis-to-axis) 0.38 m
Link’s width 0.08 m
Motor maximum torque 61.8 N m (2.5 for the third joint)
Encoder resolution 1500 0 (3170 0 for the third joint)
Maximum joint angular displacement 6 90�
Gripper OpenHand Model T42 (flexure–flexure) (Ma et al., 2013)
Control and telemetry rate 50 Hz

Fig. 26. Experiment initial conditions on the POSEIDYN test

bed.
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regulator in a feedback loop, correcting any deviations

from the nominal trajectory (e.g., resulting from actuator

noise, errors in kinematic/dynamic models, or other unmo-

deled effects). The implemented linear-quadratic regulator

is equivalent to that implemented in Virgili-Llop et al.

(2017a). The open-source nonlinear programming solver

IPOPT (Wächter and Biegler, 2005) is used to solve the

convex programming problems onboard the chaser FSS

and the open-source SPART toolkit (Virgili-Llop, 2017) is

used to obtain all the manipulator-related kinematic and

dynamic quantities.

To generate the initial guess of the second step optimi-

zation, a linear manipulator motion from initial to the final

configuration is used, while the chaser’s attitude is set to

face the RSO’s grappling fixture. Selected guidance para-

meters are provided in Table 4.

When the chaser reaches t.tps no new guidance updates

are produced and the chaser follows the latest available

solution. Finally, when the manipulator’s end-effector is

within a certain distance with respect to the grappling fix-

ture, the chaser transitions to the capture mode. In this

mode, the chaser uses a linear-quadratic regulator to acquire

and maintain the terminal position of the last guidance solu-

tion. The third joint of the manipulator is steered to point

the end-effector towards the grappling fixture. The end-

effector distance with respect to the grappling fixture

Table 4. Selected guidance parameters used during the experiments.

Parameter Value

Guidance Algorithm

Guidance re-compute rate Dts 5 s
Maneuver time tf 70 s
Pre-set time tps 60 s
Number of nodes N1 = 26 and N2 = 20
Convergence threshold e1, 2 are set at 10% of ½k�1�J1, 2
S2 linearization of the dynamics using Equation (118)
End-Effector error to start ‘‘capture mode’’ ł 20 cm
End-Effector error to trigger capture ł 5 cm

Chaser

Chaser base-spacecraft initial position x= 2:5 m, y= 3:5 m
Manipulator initial configuration um t= 0ð Þ= [280�,280�,0�]
Manipulator final configuration um tf


 �
= [230�,60�,230�]

Manipulator configuration at tps ups tps

 �

= [236�,72�,236�]

RSO

RSO position x= 1:3 m, y= 1:3 m
RSO angular velocity 5�s–1

Nominal RSO orientation at start of maneuver 45�
Mock solar panel dimensions 1× 0:1 m
Main body dimensions 0:4× 0:4 m

Fig. 27. Experimental timeline.
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continues to decrease until a pre-determined threshold is

reached, triggering the gripper to close, capturing the rotat-

ing RSO. The experimental timeline is notionally illustrated

in Figure 27.

The FSS emulating the RSO to be captured is also con-

trolled up to the capture instant. Its position and orientation

are controlled to follow the prescribed rotation rate. When

the RSO is captured this control stops, allowing the com-

bined RSO-chaser system to drift freely.

6.3. Experimental results

Ten experiments were performed sequentially in a single

session and all were successful, showing that the proposed

guidance is able to produce repeatable results. A video

showing an example maneuver and the telemetry replays

for all 10 experiments is shown in Extension 2.

Despite the prescribed initial conditions, the RSO’s atti-

tude at the beginning of the maneuver is variable due to the

guidance solution being computed every 5 seconds in a

synchronous manner. The capture maneuver only starts

when the RSO reaches its initial orientation, but the com-

putation of the trajectory starts when the chaser’s internal

clock reaches the next 5-second mark. Therefore, a varia-

bility on the initial RSO’s attitude of 25� is introduced.

Eight snapshots of the first experiment are shown in

Figure 28. The bold line denotes the trajectory of the chas-

er’s center of mass, the bold circles, �, denote the locations

Fig. 28. Experimental results: telemetry snapshots of the first experiment.

Fig. 29. Experimental results: Step 1 computational effort. (a) Iterations. (b) Computation time.
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where the guidance updates are delivered, the square, h,

denotes the point where the chaser enters into the capture

mode, and the triangle, M, denotes when the gripper closes

and the capture is achieved (corresponding to the last fig-

ure of the series).

Figures 29 and 30 show the number of iterations

required to converge and the total amount of computational

time used.

What can be observed from these figures is that the

optimization problem is harder at the beginning, taking

several iterations to converge. As the maneuver advances,

the chaser, given its position and velocity, becomes ‘‘com-

mitted’’ to that particular trajectory. Making changes to the

trajectory of a moving chaser gradually becomes more

expensive, making the guidance solution settle on the

already planned trajectory. It is also very relevant to note

that the cumulative computation time is within the allotted

5 s interval.

Figure 31 shows the evolution of the manipulator’s con-

figuration, the commanded base-spacecraft forces and tor-

que, as well as the position and orientation of the base-

spacecraft. The mean time when the transition to capture

mode occurs and when the chaser captures the target is

clearly marked. It is noteworthy to point out that new gui-

dance solutions, delivered every 5 seconds, cause in some

instances discontinuities in the commanded forces and tor-

que, as the trajectory is suddenly altered.

Table 5 compares the experimental results obtained with

the results predicted by numerical simulations of the same

experiments. A noticeable discrepancy is found on the man-

euver duration, which is fixed at 70 s. The gripper closure,

capturing the grappling fixture, is triggered when the end-

effector is within 5 cm from the grapple fixture, thus cutting

the maneuver short.

As expected, the numerical simulation, representing an

idealized environment, underestimates the amount of

impulse required to complete the capture maneuver.

Thruster misalignments, variability, and modeling errors

make the chaser deviate from the nominal trajectory during

the experiments, which, when compensated by the linear-

quadratic regulator, result in higher impulses. In addition,

and given that all experiments succeeded, the proposed gui-

dance and control exhibits a certain degree of robustness.

Although a rigorous study on the guidance robustness has

yet to be conducted, the experimental results demonstrate

that the proposed guidance is able to cope with the imperfect

relative state estimates, the effects of unmodeled dynamics,

and the chaser’s actuation uncertainties inherently present in

hardware-in-the-loop experimental demonstrations.

7. Conclusions

An approach to guide the capture maneuver of a tumbling

RSO by a chaser spacecraft equipped with a robotic manip-

ulator has been proposed. The original guidance problem is

made more tractable by dividing the capture maneuver into

two sub-maneuvers: a system-wide translation and an inter-

nal re-configuration. These two sub-maneuvers are opti-

mized with two consecutive optimizations steps. By

combining the results of the two optimization steps a solu-

tion to the original guidance problem is obtained. To opti-

mize the two sub-maneuvers in two consecutive steps, they

are decoupled, prioritizing the minimization of the system-

wide translation at the expense of the internal re-

Fig. 30. Experimental results: Step 2 computational effort. (a) Iterations. (b) Computation time.

Table 5. Experimental and simulation results.

Parameter Simulation Experiments mean Experiments standard deviation

Maneuver time 66.85 s 68.50 s 0.41 s
Linear impulse 6.8 N s 11.09 N s 0.48 N s
Angular impulse 0.6 N m s 0.90 N m s 0.06 N m s
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configuration cost. The two consecutive optimization steps

are transcribed into two non-convex programming prob-

lems. A sequential convex programming procedure is used

on both instances to overcome the non-convex constraints

emerging from the keep-out zones on the system-wide

translation and the nonlinear kinematic and dynamics on

the internal re-configuration. In summary, the proposed

guidance approach casts the original guidance control

problem into a collection of convex programming prob-

lems. A proof of convergence has been offered for the

sequential convex programming used for system-wide

translational, expanding previous results. The procedure

used to optimize the internal re-configuration does not

offer guaranteed convergence and a set of heuristics—trust
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Fig. 31. Experimental results: (a) chaser’s manipulator configuration, (b) chaser’s thrust forces in components in the inertial frame, (c)

chaser’s thrust torque, (d) base-spacecraft position in the inertial frame, and (d) base-spacecraft orientation.
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regions—is used. The results of an extensive numerical

simulation campaign provide insight into the performance

and robustness of the proposed approach, suggesting that

the method can be reliably applied to a wide range of

maneuvers. As convex programming offers deterministic

convergence properties, the proposed guidance approach is

suitable for onboard implementation. This has been con-

firmed in a set of hardware-in-the-loop experiments where

the proposed guidance was implemented on an onboard

computer and used, in real-time, to guide a capture maneu-

ver. Although these experiments have not been conducted

in a full six-degree-of-freedom environment, they signifi-

cantly advanced the previously demonstrated state-of-the-

art and can be used as evidence to the suitability of the pro-

posed method for onboard implementation.

Future work can be directed to demonstrate maneuvers

with more complex chaser or target geometries as well as

with more elaborate initial guesses, pre-set manipulator

motions, and trust region update laws. Finally, a full three-

dimensional guidance implementation case could be demon-

strated on-orbit or using a processor-in-the-loop test bed.
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media type Description

1 Video Example of a simulated
maneuver

2 Video Experimental demonstration on
the POSEIDYN test bed
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