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- ABSTRACT With the explosion in the size of off-the-shelf integrated circuits and the advent of novel

techniques related to failure modes, commercial Automatic Test Pattern Generator and fault simulation
engines are often insufficient to measure the coverage of particular metrics. Consequently, a general working
framework consists of storing simulation traces during the analysis phase and collecting test statistics
from post-processing. Unfortunately, typical simulation traces can be hundreds of gigabytes long. and
their analysis can require several days, even on large and powerful computational servers. In this paper,
we propose a set of strategies to mitigate the evaluation time and the memory needed to analyze huge dump
files stored in the standard Value Change Dump format. We concentrate on burn-in-related metrics that
current commercial fault simulators and Automatic Test Pattern Generators cannot evaluate. We show how to
divide the analysis process into several concurrent pipeline stages. We revise the logic process of each stage
and all principal intermediate data structures, to adopt smart parallelization with very low contention and
extremely low overhead. We exploit several low-level optimizations from modern programming techniques
to reduce computation time and balance the different pipeline phases. We analyze simulation traces up to
almost 250 GBytes computing different testing metrics. Overall, we can keep under control the memory
usage, and we show time improvements of over two orders of magnitude compared to previously adopted

state-of-the-art tools.

- INDEX TERMS Automotive SoCs burn-in, simulation analysis, parallel architectures, parallel applications.

I. INTRODUCTION
With the explosion of the size of the chips in terms of
the number of gates, and the advent of novel failure mode
strategies, a major concern for testing and reliability is the
elaboration times of simulation and fault simulation phases.
Nowadays, “*big monster” Systems-on-Chip (SoCs) integrate
tens of millions of gates, implementing computational units,
processors, real-time hardware modules, memory cores, etc.
However, even if each module is verified and validated during
each design phase, the functional and structural analysis of
the entire SoC may require huge computational efforts when
the system is finally assembled [1].

In this framework, all reliability measures rely on Auto-
matic Test Pattern Generators (ATPGs) and fault simulation
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engines [2]-[4]. These tools currently elaborate on several
fault models [5] and provide the coverage of different stress
metrics. Nevertheless, when considering new failure modes
and fault metrics, the capabilities of ATPGs and fault simula-
tors may be insufficient to reach the desired result accuracy.
For these reasons, when a commercial tool cannot help too
much to perform a specific measure, many strategies [6]. [7]
record the simulation trace and save into a file all values and
timings for the set of selected signals (i.e., possibly all signals
of the circuit). A commonly used file format for this task is
the so-called Value Change Dump (VCD) [8].

Given the organization and structure of a VCD file dump,
its analysis is theoretically straightforward. Usually, it is suf-
ficient to select the signals to monitor, sequentially read their
time evolution, and statistically collect all signal transitions or
value combinations. Unfortunately, software tools perform-
ing this task entail two main practical problems: A huge
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elaboration time and an extremely large memory require-
ment. For example, in a recent simulation session related to
the effectiveness of Burn-In (BI) techniques [9], [10], we
had to analyze an automotive device including approximately
30 million gates. During the examination phase, we stored
a simulation trace of a size of almost 250 GBytes. We then
used this file dump to evaluate the coverage of several
Bl-related stress metrics, including the “straightforward™
toggle activity plus some more complex, time and topology-
related metrics [8]. The evaluation of the toggle activity for
about 1K clock cycles required an elaboration time of approx-
imately three days on a single core mainframe architecture.
Practically speaking, this delay constituted a huge problem at
the corporate level, with nasty consequences on the produc-
tivity and performance of the entire working team.

In this paper. to reduce the time required to elaborate VCD
files storing Bl-related metrics for which commercial ATPG
and fault simulation approaches are either inappropriate or
extremely slow. We adopt a divide-and-conquer strategy com-
posed of three main ingredients: Pipelining, parallelization,
and in-depth code optimization. First, we divide the over-
all elaboration process into independent phases and insert
them into concurrent pipeline stages. Then, we analyze our
pipeline to discover computational costs and waiting (idle)
times of each phase. Finally, as our computational power is
not unlimited, we adopt paralleliszation enriched by low-level
optimizations to balance the different steps and to dedicate
more effort to the more critical phases. We strive to reduce
contention, waiting times, and overheads to find the right
balance in our recipe.

Notice that we work with traditional enterprise systems,
organized through a centralized server, where the simulation
engine stores a individual simulation file. In other words,
we do not take into consideration the possibility to use
distributed systems and related techniques (such as Apache
Hadoop MapReduce [11]) and we do not have to consider
problems associated with the network architecture, such as
network topology, latency. bandwidth. and packet loss.

As the original VCD file stores signal variations sorted
by increasing clock ticks, the exact logic of our application
strongly depends on the testing metric we need to compute.
Anyway, superficially speaking, we proceed as follows. Our
process starts with a given VCD file stored by the simulator
in the long-term memory unit of our system. The manager
thread of our application initializes the entire process, and
it runs all required working threads performing the different
pipeline stages, i.e.. it runs discovery, read, parse, elaborate,
and write-back threads. The discovery thread partitions the
file content and dispatches the resulting file partitions to the
reading threads. Each reading thread stores “large enough™
file partitions into the main memory. Parse threads visit
these partitions and store intermediate results in a thread-
local memory-efficient data structure. In parallel, elaboration
threads elaborate on this intermediate information to gather
the final testing metric. Write-back threads progressively take
care of all post-processing operations eventually required by
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the computed metrics and store “finalized™ local results to
the long-term memory system. The entire process continues
until all VCD file partitions have been read, parsed, elabo-
rated, and written back to the long-term memory system.

Please, notice again that since the size of the VCD file
maybe extremely large, not all file partitions can be read and
manipulated simultanecously in the central memory. There-
fore, to be as effective as possible, the system is organized as
a pipeline where all stages ideally require the same amount
of time and a very limited amount of partitions need to be
stored at the same time into the main memory. Moreover,
using more threads and computing cores allows us to leverage
the time requirements of the different stages. Adopting low-
level non-blocking system calls enables us to perform 1/0O and
memory manipulation as effectively as possible. Avoiding
stalls, adjusting the workload. and minimizing contentions
among different running tasks, allow us to reach the appro-
priate equilibrium among the stages and the desired time
and memory efficiency. Furthermore, notice that while the
functionalities of the elaboration phase and the write-back
step need to be tailored to the desired metrics and require the
intervention of the tool developer, the other stages are generic
and are not metric-dependent.

The experimental part shows the results collected on a
server architecture that manages threads, hyper-threads, and
software threads. We evaluate our solution on VCD files
generated by the simulation of large industrial circuits. These
files store testing metrics related to BI stress and include
timing and topology information. We collect three different
testing metrics, representing the single point, the single point
extended. and the multiple point stress analysis, on VCD files
of increasing size to almost 250 GBytes. The speedup, of over
two orders of magnitude compared to the original tool, looks
very consistent, and it linearly scales with the number of
adopted cores. Moreover, memory usage can be maintained
under control and adapted to the hardware architecture.

This paper is an extended version of the conference
paper [12]. The current work extends the original one in
several directions. First, we completely revise the original
procedure as the new one divides the computational process
into more fine-grained pipeline stages. Moreover, the new
algorithm better balances the different phases as it uses more
optimized intermediate data structures and further reduces
contention and memory overheads. Secondly, the new work
details the logic process. It reports the implementations to
compute three different testing metrics (the single point, the
single point extended. and the multiple point stress analysis).
Finally, this new work reformulates all experimental results.
These now include complete, separate, and detailed evidence
on the three different test metrics, both time and memory, on a
larger set of VCD files.

The paper is organized as follows. Section II introduces the
related works and the necessary background on simulation
and dump format. Section III introduces our approach from
a high-level point of view. Sections 1V, V, and VI detail the
process of computing three different testing metrics, namely
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the single point, the single point extended, and the multiple
point stress analysis. Section VIII reports our experimental
evaluation of the three previous strategies. Finally, Section [X
draws some conclusions.

Il. BACKGROUND AND RELATED WORKS

Figure | illustrates the workflow required to compute stress
metrics starting from the simulation of the circuit [12].
As motivated in the introduction, simulation traces can be
analyzed by ATPGs or fault simulation engines if they are
sufficiently instructed. The simulation dump analysis may
require ad-hoc tools to manage the selected metric values if
they are not.

ATPG /Fault
Simulator
m B Value 5
P i _ Change / Y]
Logic simulstion Dump " Dependingonthe ~ Computed
Simulator 1 (vep) Imk”""“" 57| metries
\ = file _ P
= veo
Pattern Signal list Analysis
’ Tool

FIGURE 1. The process flow for testing metric evaluation in case an ATPG
or a Fault simulator can be used, or when an ad-hoc tool is necessary.

This section provides the reader with the necessary back-
ground on the VCD file format, the most used simulation
dump format, and the metrics usually evaluated to character-
ize a specific pattern or functional behavior.

A. VCD FILES

When a simulator must generate a trace, a commonly used
file format is the so-called Value Change Dump (VCD) [8].
Its layout is composed of two logical sections:

e The first one includes a header and a declaration part.
The former defines generic information on the simu-
lation performed. The latter locates all signals into a
hierarchical description, assigns an integer identifier to
each signal, and specifies an initial value for each design
signal.

« The second section reports all values assumed by the
previously defined signals over subsequent time frames.
Transitions are reported by increasing time values, such
that, for each time unit in the future, only the set of all
transient signals reported with the corresponding new
value.

A diagrammatical representation of such a format and its
high-level layout is reported in Figure 2.

The list of signals (or circuit nodes) to evaluate must be
selected before the simulation runs. When we need to collect
chip-level measurements, the scenario to investigate is often
the one including all signals. For example, all nodes of the

56442

circuit have to be considered if the stress ability of the scan
pattern/functional sequence is the objective of the analysis.
It is a common practice for the evaluation of BI stress metrics,
as described in Section 11-B.

Sdate
May 19, 2022 12:47:28
Send
Stimescale
ins
Send
Sscope module testbench Send
Sscope module top Send
Sscope module cpu Send
Sscope module epu_dpath Send
Sscope module dpath_pipex Txxen Send
Svarport  [0:31] <0 ad_abs_bus Send
Svarport  [0:31] <1 ad_abs_unsat_hi_bus Send

VCD file

Signal header

W2SSTTST

Sdumpparts

01011111101 10110 s00ck 1 000001 0001 <0
mnmrmnnnann <l
01011111101 101101 00cx 10000010001 <2
0<3

<4

<5

0101111110110110100cx 10000010001 <6

0101111101101 10 meex 100001 10101<10
e e )
rrerrrererrrrees 1 OrxxxQO0000000000< 17
#2557812

000010001001 10100000000011111111<0
Q00010001001 101000111 100000101002

Signal change dump

FIGURE 2. Simulation dump format: A VCD file and its high-level structure
composed by the header and the simulation part.

If the device includes up to millions of gates, as automotive
chips and the simulation considers a long list of patterns,
VCD files may reach a size up to hundreds of GBytes.

B. TEST AND BURN-IN RELATED STRESS METRICS

The analysis of a VCD file is often perceived as a tedious,
risky, and time-consuming activity. Modern state-of-the-art
ATPG engines (essentially their fault simulation procedures)
can digest VCD files to evaluate the toggle activity and sev-
eral other fault coverage metrics (such as stuck-at, transition
delay, bridges, etc.). Unfortunately. they often generate a lim-
ited number of models and metrics with inadequate statistics
and information details. For example, in our particular field of
application, ATPG engines cannot measure the stress metrics
related to the BI process or for the activity over time of a
circuit. Therefore, there are cases in which we need to use
more specific tools.

Figure 3 illustrates the use of scan chain(s) to stimulate a
chip. BI patterns add logical stress to the electrical burden
(higher voltage supply) and the higher temperature inside the
climatic chamber. Such extra stress tent to exacerbate latent
defects of various nature by moving the circuit in specific
“highly-stressing” logic conditions, possibly reflecting addi-
tional physical fatigue for the device under BI. This process
addresses the problem of infant mortality failure, and its
major purpose is to make weak devices break and screen them
before they reach the market.

In our production flow, we evaluate the following BI stress
metrics [12]. [13]:
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Heat (thermic stress)
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Climatic Chamber

Test/Stress Pattern
(i.e., scan vectors,
functional programs)
Repeatedly
sequenced

Tester Driver

FIGURE 3. BI stress overall scenario.

« Single point stress metrics. An example of this metric is
the very common “toggle activity™ [ 14], which indicates
if a circuit node assumes both logic values '0" and
1" during the simulation. If this happens, the node is
covered. Within the single point stress metrics, we may
identify:

— Extended statistics. We compute the number of
times a node toggles during the simulation, along
with the values assumed by the nodes on each
time frame. This metric is rarely included in ATPG
analysis.

— Timing-related measurement. We consider the logic
behavior of the circuit along time, i.e., we com-
pute the average toggling frequency. This metric is
sometimes important to ensure similar stress for all
nodes of the circuits.

« Multiple points stress metrics. This measure has similar-
ities with the bridging fault concept as we evaluate the
logic values of adjacent nodes [15]. As ATPG cannot
provide time-related measures, we transform the time-
centric nature of the original VCD report into a signal
couple-centric one. In other words, we transform the
original VCD file into a new report highlighting the
couples in which the two signals hold opposite values
for a time span longer than a minimum desired one
(e.g., if the first element maintains the logic value *0°, the
second element must hold "1°, and both shall be stable
for at least a certain amount of time). If both signals
of the couple assume both values, the couple is fully
covered.

ill. OUR METHODOLOGY

Although manipulating a VCD file is theoretically straight-
forward, current VCD files may have a size up to a few
hundred of GBytes. Moreover, for some types of analy-
sis, the generated output may even require more memory
space than the original simulation trace. For example, this
is true for the single point extended (or full) analysis, for
which not only the final file may be huge, but it is usually
impossible to store all intermediate information in the central
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memory. Consequently, processing a VCD file may require
enormous resources [16], [17], i.e., computation servers with
high memory capacity. and it may imply very long waiting
times. A more accurate analysis of the existing applications
processing VCD files showed that computation costs often
depend on /O operations, i.e., the ones required to read the
input files and store the final result on the external memory
unit. Intermediate elaborations that are necessary to compute
the desired testing metrics have a cost that depends on the type
of metric collected. In this section, as the desired coverage
metric strongly influences the logic flow of our process,
we concentrate on the former cost, highlighting our strategy
from a very high-level point of view. We concentrate on the
latter cost and detail the logical steps required to compute our
metrics in the following sections. Our process is illustrated in
Figure 4.

Discover Read Parse Execute Write-Back
i A 1 |
| — | I'_.]‘ | | 1 | |
(] L) ] ]
%
HD disk RAM RaM RAM RAM HD disk
| —

_VeD FLE.

]

s [ | @
| tme ]DD

FIGURE 4. The logic flow of our approach: A carefully designed pipelined
process with several scrupulously optimized parallel stages.

Generally speaking, our recipe to efficiently manipulate
VCD files includes three main ingredients.

The first ingredient consists of a divide-and-conquer
approach to perform the coverage computation procedure and
dispatch its different phases into different pipeline stages.
In the most general case, our pipeline includes five stages,
which we refer to as:

« Discover

. RCIII:I

« Parse

« Execute

« Write-Back.

In specific cases, i.e., for some coverage metrics, some steps
can be missing, or different steps can be merged into a unique
phase.

During the Discover phase, we pre-process the file to set up
the reading stage. Essentially, we read the header of the VCD
file, initialize all main data structures, and partition the sim-
ulation section of the file, providing both the order of the
partitions and their sizes to the Read stage.

During the Read stage, we read the simulation section
of the VCD file from the external memory, and we transfer it
into the main memory in pieces of proper size. The dimension
of the partitions is very important as it has a strong impact
on the level of parallelism we can adopt in the following
phases and on the quantity of main memory used by the entire
process.
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We analyze the previous file pieces during the Parse phase
to extract compact information from which to derive our
coverage metrics. This phase is the most memory-critical one,
and great care has to be applied in designing the intermediate
data structures used to store the required information.

The Execute phase computes the final metric or
re-organizes the data in a proper internal (RAM-based)
representation.

The last Write-Back stage stores our results back onto the
external memory storage. In some cases, we also perform
some final manipulation on the data generated by the Execute
phase during this step.

Although this logic scheme appears very simple, we had to
implement the different phases with great care and keep them
as balanced as possible to reach the desired efficiency and
scalability. Our pipeline is organized as shown in Figure 5.

Lo [ rrpfe]w
o [ r e [efw]
(a)
o [ & [ w
b | &R | P | E
o P e [ w|
(b)
D R N
o | S R S I |
o [ s R P | e [ w ]
(c)

FIGURE 5. Our process pipeline: We try to parallelize the use of the
different hardware units (disk, RAM, CPUs, etc.) as much as possible.
Letters D, R, P, E, and W stand for the Discover, Read, Parse, Execute and
Write-Back stages, respectively. S stands for Stall. (a) The original purely
sequential execution flow. (b) The balanced pipeline execution with all
stages having the same time length. (c) The unbalanced pipeline
execution with unbalanced stages and the necessity to stall or parallelize
the slower phase.

Figure 5a represents the sequence of our five process
stages without pipelining (letters D, R, P, E, W, and S stand
for Discovery, Read, Parse, Execute, Write-Back, and Stall,
respectively). Pipelining emerges in the other two representa-
tions. In Figure 5b, all stages are supposed to have the same
complexity and last the same amount of time. This is not the
case, and the real situation is the one depicted in Figure Sc.
In this case, the Read phase is supposed to be much longer
than the others and it drastically unbalances the pipeline,
inserting long stall phases.

To rectify this problem, or at least reduce it to the min-
imum possible one, we resort to our second ingredient. As
“programming” today is “parallel programming™ [18]-[24],
we resort to many-core parallelization to reduce the elabo-
ration time and memory usage of the more complex stages
[25], [26]. From the architectural point of view, paralleliza-
tion implicitly balances the different algorithmic stages of
the pipeline of Figure Sb. Thus, we run a proper number
of threads during each phase to minimize the waiting times
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for the following stage. Threads are organized into thread
pools to minimize thread overhead. In turn, pools are in
charge of a queue of tasks, usually manipulated following a
producer and consumer approach. Overall, the multi-thread
divide-and-conquer process has highly balanced tasks and
low contention (thus, overhead) among threads.

Our third and last ingredient is code optimization. In this
case, we resort to features delivered by modern languages
and the latest operating systems. More specifically, we min-
imize synchronous /0O, waiting times, and dynamic memory
manipulation.

In the following three sections, we specialize the approach
described in Figure 4 to compute the testing metrics intro-
duced in Section 11-B, that is, statistically analyze the behav-
ior of single signals, perform an extended analysis on the
toggle activity of single signals, and run a statistical study on
the strain stress of adjacent signals. In these sections, we clar-
ify each testing metric’s implication on our parallel imple-
mentation, and we report all implementation-related details.

IV. THE SINGLE POINT STRESS ANALYSIS

The single-point stress analysis is the simplest among our
testing metrics and requires less memory and time resources.
We evaluate the number of times a signal toggles during the
application of the pattern sequence. The target is to produce
a condensed report including the overall amount of toggling
events for every signal under consideration and the average
toggling events over the whole set of signals.

On the one hand, storing the number of variations for all
signals requires a single-column table (which we call the
signal or result table) with several rows equal to the number
of signals. Consequently, the quantity of memory necessary
to store temporary the number of signals bounds information.
Moreover, this quantity is not influenced by the time length
of the simulation or by the number of toggling events. On the
other one, since it is not necessary to store time information
about the toggle activity of the signals, different file sections
can be managed in parallel without any constraints on the
manipulation order. Thus, threads do not need any sort of
synchronization, and it is sufficient to update the signal table
in mutual exclusion. Notice that, for this metric, the Execute
stage is directly performed by the Parse phase. The above
considerations drastically simplify our concurrent process,
speed up the entire process, and make temporary memory
usage reasonable compared to the original VCD file.

Following the previous ideas, our procedure is described
in Figure 6. At the very beginning, our application initializes
the following data structures and logic processes:

« A single thread DT performing the Discover phase.

« Two First-In First-Out (FIFO) queues, namely @) and
(>, are of finite size and store different intermediate
results (namely partition extremes and partition refer-
ences) along the process.

« A thread pool RT. with N reading threads, taking care
of the Read phase. These threads elaborate the tasks
stored into Q) and store tasks into 0.
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, ,
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Thread pool
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Header

Signals
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File Chunks

Parse Write-Back
RAM HD disk
Thread pool
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Coverage

FIGURE 6. The architectural pipeline of our application for the single point stress analysis.

e A thread pool PT, including Np parsing threads. PT
deals with the data enqueued into @ and it updates the
final signal (or result) table.

o A single thread WT performing the Write-back
phase.

Initially, the discovery thread DT reads the file to com-
pute each file partition’s initial and final addresses. These
addresses are stored in the first queue Q). Q) is a FIFO
queue, and it is used to manipulate file partitions sorted by
increasing simulation times. All queues are always accessed
by adopting a producer and consumer scheme. DT acts as a
single producer for @y : the reading threads in the RT pool act
as consumers. Each consumer extracts elements from Q; and
reads the corresponding file section from the file. Thanks to
the pipeline strategy, reading threads may start running as
soon as at least one partition has been inserted in Q, without
any need to wait until the entire file is read and partitioned
by DT.

Due to hardware constraints, and especially when running
on very simple hardware architectures, very few reading
threads may be sufficient because operations on the sec-
ondary memory are often natively synchronous with limited
possibility of optimization. However, partitions are read from
the file using low-level system calls optimized to perform
reading operations in the fastest possible way. File partition
references are inserted into a second FIFO queue Q,. Notice
that, to minimize the cost of dynamic memory allocation as
much as possible, we also use a pool of pre-allocated data
structures to store file partitions. In this way, when a thread
within the PT pool dequeues data from @>. an RT thread
can upload a new file partition into the main memory without
losing time to allocate it. Threads belonging to the Parse pool
PT start running as soon as 2 is not empty. When a file
partition is available on the queue @,. a parsing thread ana-
lyzes that specific file partition. It updates the corresponding
toggle activity in the single-column result table previously
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described. Once all partitions have been completely parsed,
the final table is written back to the secondary memory by the
writing thread WR. Notice that for the writing phase and for
this metric, a single Write-back thread is sufficient.

As already observed in the introduction, to limit the quan-
tity of central memory to be used to store temporary infor-
mation and to avoid unbalanced pipeline stages are very
important factors for our approach. The partition size strongly
influences memory usage. and it can be dynamically adjusted
by the discovery thread DT. We normally worked with file
partitions of about 8 MBytes as this value constitutes a good
compromise between memory and time requirements. The
most important parameter to balance the pipeline is the num-
ber Np of threads within the Parse pool. We usually set the
size of the queue Q> to 40 entries. To avoid time overheads
for memory allocation, we use several pre-allocated partitions
five times larger than the number of entries of (J». As a
consequence, we need about 1.6 GBytes of allocated memory
for the entire procedure.

The pseudo-code of the previous process is reported by
Algorithm 1. It follows the previous logic. and it is quite self-
explanatory. In lines 1-3. our process initializes all required
data structures, and it runs all working threads belonging to
all thread pools. The Discover, Read, Parse, and Write-Back
pipeline stages are implemented by DT, RT, PT. and WT.
As previously mentioned, the Execute stage has been merged
to the Parse one for this metric computation. Notice that
all phases can run in parallel, except for the Write-Back
stage that can be executed only once the entire file has been
parsed. In the pseudo-code, this effect is obtained using the
synchronization barrier reported in line 30.

V. THE SINGLE POINT EXTENDED (Full) ANALYSIS

As in the single point stress analysis, we consider the behav-
ior of single signals during the full analysis. Nevertheless,
we aim to collect extended (or full) statistics, i.e., we want
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FIGURE 7. The architectural pipeline of our application for the single point full analysis.

to store in the final report, and for each signal, the complete
list of clock ticks in which the signal toggles. In other words,
we want to perform a sort of matrix transposition, as we move
from the original VCD time-based information (which lists
the variations of all signals in each time unit) to the final
signal-based information (which lists for each signal its entire
toggle activity during the simulation). For this reason, the
final result for this metric may require more disk space than
the original VCD file. As a consequence, great attention must
be taken to optimize all intermediate data structures. Notice,
however, that even if this metric may generate cumbersomely
and bulky final result. we consider it a crucial phase in
specific corner-case circumstances.

The main characteristics of our process, illustrated by the
diagrammatical representation of Figure 7 and the pseudo-
code of Algorithm 2, are the following. The first two pipeline
stages, i.e., the Discover and the Read phases. proceed as
analyzed in Section I'V. The main difference in this first part
of the process is that the Discover thread partitions the VCD
file into chunks, including entire (one or more) time frames.
As for the previous metric, the extremes of these file partitions
are enqueued into queue Q.

Read threads within the thread pool RT proceed exactly as
for the previous metric, i.e., they extract file extremes from
Oj.read entire file partitions from disk, and store the partition
references into the queue Q». Since the Read stage is one of
the slowest stages in the pipeline, we optimized the memory
allocation process. In particular, @» holds references to a pool
of pre-allocated file partitions. This pool, on which RT is the
only writer and PT is the only reader, has a size two times the
maximum size of the queue @>. We do not need a separate
queue to manage the selection of the pre-allocated parts since
PT does not perform writing operations on it and file parts
are not overwritten during their elaboration, as the number of
pre-allocated file parts is large enough This procedure allows
us to save time on memory allocations and deallocations.
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At the same time, we do not have to perform any expensive
selection of the pool partition, which is managed as a circular
buffer.

Each thread within the parse pool PT extracts a file par-
tition from the queue Q> and parses it. Nevertheless, Parse
threads must create the data structure to collect the full anal-
ysis is drastically different from the one used in Section IV.
For this metric, each Parse thread creates a list of records
for each time frame. Each record stores a signal change (the
signal identifier and its value) that occurred in that time
frame. Thus, every time a Parse thread (parsing a specific
file partition) encounters a signal activity, it just appends the
newly discovered activity on one of its signal lists.

At the end of this process, the toggle activity is time-
sorted (as each parse thread takes care of entire time frames)
but not signal-sorted. For that reason, each list is eventually
enqueued into queue Q3 managed by the pool £T of Execute
threads. Each Execute thread extracts a list from Q3, sorts it
by increasing signal identifiers. and stores it into queue Q4.
As soon as a single sorted list is present within Q4, Write-
Back threads within the thread pool WT start to work. To save
memory, Write-Back threads store sorted lists on files and,
at the same time, they merge lists, or sets of lists, represent-
ing contiguous time frames. This repeated process. briefly
sketched by function WT in the pseudo-code of Algorithm 2,
leverage computation times and memory usage.

To sum up, a few main aspects differentiate this procedure
from the one described in Section 1V:

« We do not have to store a summary of the toggle activity
but the entire list of variations. It implies using one list
of modifications for each signal instead of a unique and
“relatively™ compact table.

« An Execute thread must sort each list of variations
before being stored in the output file.

o Write-Back threads leverage computation time and
memory usage by adopting an iterative approach.
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Algorithm 1 Pseudo-Code for the Single-Point Stress
Analysis.

SinglePointStressAnalysis ()

Init queue @ and Q0>

Init threads DT and WT

Init thread pools RT and PT

synch_barrier (wait for all threads to terminate)

R e

by

5: DT ()

6: while (read_file() != EOF) do

7. insert signal name in signal table
8:  define partition limits

9:  enqueue (limits, Q)

10: end while

11: RT ()
12: for each thread in RT in parallel do
13:  while (Q, #¥)do

14: limit = dequeue (Q1)

15: content = read_file (limit)
16: enqueue (content, Q2)

17:  end while

18: end for

19;: PT ()

20: for each thread in PT in parallel do
21:  while (Q> # V) do

22: partition = dequeue (Q2)

23: while (partition is not parsed completely) do
24 {s, 1} = get toggle activity (signal s, time 1)
25: update (table, {s,t})

26: end while

27:  end while

28: end for

20: WT ()

30: synch_barrier (wait for all PT threads to terminate)
31: write (table, file)

They store sorted lists on temporary files and merge
previously-stored files with new incoming sorted lists
until a unique sorted list stores the desired results.

VI. THE MULTIPLE POINT STRESS ANALYSIS

In the adjacent nodes strain stress analysis, we consider
multiple points and evaluate the number of times adjacent
nodes take opposite values for a user-defined amount of time.
Storing all signal variations would make this analysis very
similar to the one of Section V, with a huge amount of
memory dedicated to store temporary information. Moreover,
storing all changes would make the size of the intermediate
data structure strongly dependent on the number of signal
variations, with a strong impact on the logical organization of
our dynamic data structures and memory contention among
threads to access them.
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Algorithm 2 Pseudo-Code for the Single Point Full Analysis.
SinglePointFull Analysis ()
1: Main
{See Algorithm 1}

[2%]

DT()
while (read_file() in VCD header) do
insert signal name in signal table
partition_start = find (time)
6: end while
while (read_file() != EOF) do
partition_end = find (time)
:  enqueue([partition_start, partition_end], Q1)
10:  partition_start = partition_end
11: end while

LV I |

o i

12: RT ():
{See Algorithm 1}

13: PT()
14: for each thread in PT in parallel do
15:  while (Q> # ¥)) do

16: Init list of changes

17: partition = dequeue (Q2)

18: while (partition is not parsed completely) do

19: {s. t, v} = get toggle activity (signal s, time t,
value v)

20: update (list. {s. t, v})

21: end while

22: enqueue (list, 03)

23:  end while

24: end for

25: ET ()

26: for each thread in ET in parallel do
27:  while (O3 # ¥) do

28: list = dequeue (Q3)
29: sort list per signal ID
30 enqueue (list, Q4)

31:  end while

32: end for

33: WT ()

34: for each thread in ET in parallel do
35:  while (Q4 # ) do

36: list = dequeue (Q4)

37: merge list with existing file if it exists
38: write result in new temporary file

39:  end while

40: end for

To rectify the above problems, we reason as illustrated in
Figure 8. The top part of the picture depicts a situation in

which we suppose 4 threads, namely {T]. ..., T4}, manipu-
late several file partitions, namely {Fy, F», ..., }. The time
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FIGURE 8. Collapsing information on a partition by partition basis to
collect adjacent nodes stress-related statistics.

plot is an example of the possible time behavior of two
signals, S} and S>, along with the entire simulation analysis.
As in the previous cases, each thread manipulates a file
partition. Thus, thread Ty may read file partition F4 and it will
detect 4 variations {d, e, f. g} for signal §. At the same time,
thread 74 will detect that signal §> remains to | during the
entire period associated with the partition. The core idea to
avoid storing the entire signal history is to realize that, in the
adjacent node analysis, signal changes need to be saved only
when they are meaningful concerning the time defined by
the user to perform the analysis. For example, let’s consider
file partitions that span a simulation time smaller than (or at
most equal to) the user-defined time. We can store for each
signal and each partition only the first and the last transition
activity. Due to time-limit constraints, these transitions can
cover a signal only if they can be positively combined with
the transitions eventually detected on adjacent file partitions.
This process has three advantages:

o It drastically limits the number of signal changes we
have to store (just two for each signal and each file
partition).

e It allows us to allocate table blocks statically and avoid
extra run-time for dynamic allocation.

« It avoids any sort of contention among threads as each
thread updates only the two dedicated entries within the
global table.

Consequently, for the multiple point stress analysis, the
discovery thread DT parses the entire VCD file to return
partitions of constant time-length and variable size. Partitions
extremes are enqueued into Q). As each partition does not
span a time length sufficient to be significant for our stress
test analysis, two signals must assume different values for
a time-length spanning contiguous partitions. As a conse-
quence, each thread stores only the first and the last toggle
activity for each partition and to evaluate the stress activity,
we consider adjacent partitions. We put together the toggle
activity of each partition with the one detected on the partition
on the left (the one with shorter simulation times) and the one
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on the right (with larger simulation times). This can be done
using a two-dimensional matrix, where each row represents
a signal, and the number of columns is strictly bounded by
the number of partitions manipulated in parallel. Once at least
two adjacent partitions have been parsed and the table reports
the related toggle activity, we can move into the next phase to
collect statistics. Statistics are gathered resorting to a double-
buffering scheme, i.e., we use two tables, and we create a
perfect pipeline: Parse threads PT store data on a table and
Execute threads ET collect statistics from the other one.

Following the previous logic. our implementation is
described in Figure 9 and by Algorithm 3. To compute the
multiple point stress analysis, we need:

« A single discovery thread DT.

s Several queues, namely {Q1. Q2. O3, O4}, of finite size,

each one to store different partial results.

« A set of table blocks, each one coupled with a file
partition. In each table block, we store its first and last
toggle activity for each signal in a specific time frame.

« Different thread pools, namely {RT, PT, ET}. includ-
ing Nr Read, Np Parse, and Np Execute threads,
respectively.

« A single Write-Back thread WT.

As far as the discovery thread and the reading threads are
concerned, they proceed as described in Section V even if the
Discovery thread detects partitions of a defined simulation
length (min_time, line 11) instead of a defined size. The first
main difference can be noticed during the Parse phase. As in
the previous analysis, the FIFO queue @, temporarily stores
the reference to file partitions. However, to avoid serious
slow-down due to memory allocation, we pre-allocated a set
of table blocks and stored their references into Q3. Unlike
what we indicated in Section V, we need the queue 0Oz,
because Q4. which stores the references to the data held by
Q5 can be written by both PT and ET threads. As a conse-
quence, each parsing thread PT" runs when a file partition
is available in Q2 and a free table block in Q3. Once this
happens, the parsing thread parses that specific file partition,
and it stores the first and last toggle activity of each signal
in that specific table block. Once the partition has been com-
pletely parsed, the reference to the table block is inserted into
queue Q4. Unlike all previous queues, Q4 is a priority queue
as it is better to manipulate partitions sorted by (increasing)
simulation times. When at least two partitions in queue Q4 are
related to contiguous time frames, one thread in the thread
pool ET merges the results available in the two blocks into
a unique table block. This block is stored back into Q4 since
it might be re-used soon, whereas the empty block is stored
into O3, as a free partition to be updated by PT. Following
merging activity finally produces a unique table block. This
last block is written back to the external unit by the writing
thread WT.

Overall, the main aspect that differentiates this procedure
from the one used in Section IV and V is the work done by
the Execute threads ET. These threads extract table blocks
from the queue Q4 and compute the final testing metrics as
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FIGURE 9. The architectural pipeline of our application for the multiple point stress analysis.

highlighted in our pseudo-code of Algorithm 3 (lines 27-40).
They merge contiguous timetable blocks until there is only
one block remaining. In this case, the last ET thread running
computes the final statistics and copy them in the result table
for the writing-back thread, which generates the output file.
Since all the couples involved are independent of one another,
the thread pool performs a parallel pattern (line 28). In this
way, as more threads are involved in this pool, the speedup
increases linearly, as shown in the experimental section.

Vii. DESIGN OPTIMIZATIONS
As previously stated, we paid great attention to how to bal-
ance the different pipeline stages. avoid useless thread con-
tention and reduce memory overheads as much as possible.
To reach these targets, we heavily optimize the program
using appropriate C and C++ functions and efficient low-level
system calls:

« To have a very efficient signal manipulation, we adopt
a fast direct access table with one entry for each sig-
nal. Moreover, we store only strictly required informa-
tion to save memory space. For example, we optimize
memory allocation by avoiding padding, and we also
convert information to its binary format when this is
memory efficient and does not slow down the computa-
tion. We also avoid using pointers and extra information
(related to C++ collection libraries) as long as possible.
We minimize I/O waiting times due to lazy (on-demand)
loading and storing operations. We adopt memory map-
ping capabilities and binary block-based /O operations.
We also trim the block size with the different testing
metrics to improve efficiency and minimize memory
usage in all critical situations. We finally extend these
features with multiple-buffering techniques based on the
producer and consumer paradigm.
We minimize thread-contention using local-accessible
data structure on all Abstract Data Types (ADTSs) are
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accessed with a high frequency. On the remaining
ADTs. the ones accessed relatively at low frequency. we
implement standard critical sections protection strate-
gies using the more appropriate paradigm in each
situation.
Overall, the parameters that have more influence on the
performances of our applications are the size of the file
partitions, the number of working threads in each phase,
and the number of time frames present in the source VCD
file. Partitions have to be large enough to be l/O efficient.
Increasing their size also prevents the reading threads RT
from iterating too often on the queue Q;. Anyway, as each
partition resides in the main memory, the quantity of memory
used increases with the dimension of the file partitions. The
Discovery thread leverages these two aspects by selecting
the file partition size at the beginning of the entire process.
We can adjust the memory used, setting the level of par-
allelism of the parsing pool PT. When we run more Parse
threads, we increase the quantity of memory used, as we have
more partitions stored in the main memory simultaneously.
The number of threads also strongly influences the time
the threads stall on the different stages. In the experimental
section, we perform an accurate analysis of the execution
and stall times of the different stages using different levels
of parallelism.

The partition size also has substantial implications on the
elaboration phase. When we manipulate different file par-
titions with different threads in parallel, we collect signal
statistics (e.g., timings) randomly placed into different time
frames. Unfortunately, at the end of the process, each signal
should be analyzed sequentially in time. Thus, when we ana-
lyze in parallel a more significant number of small partitions,
we must increase the effort finally required to reconstruct
any time-dependent information properly. Moreover. notice
that the discovery phase is also helpful to make partition
starting synchronously with simulation time frames. If we
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Algorithm 3 Pseudo-Code for the Multiple Point Stress
Analysis.
MultiplePointStress Analysis ()
: Allocate table blocks
Init queues Q1, @2, O3, and Q04
insert table references in O3
Init thread DT
Init thread pools RT, PT, and ET
Init thread WT
synch_barrier (wait for all threads to terminate)

| i

- e B -

8 DT (min_time)

9: while (read_file() '= EOF) do

10:  insert signal name in signal table

11:  define partition limits (time difference < min_time)
12:  enqueue (limits, Q)

13: end while

14: RT ()
{See Algorithm 1}

15 PT()
16: for each thread in PT in parallel do
17:  while (Q> # ¥ AND Qs # ) do

18: partition = dequeue (Q>)

19: block = dequeue(Q3)

20: while (partition is not parsed completely) do
21; {s, t} = get toggle activity (signal s, time t)
22: update (block, {s.t})

23 end while

24: enqueue (block, Q4)

25:  end while

26: end for

27: ET ()

28: for each thread in ET in parallel do
29:  while (Q4 # ) do
30: block; = dequeue (Q4)

31 if (block is last block) then
32: update (result table, block)
33 else

34: blocks = dequeue (Q4)

35: block = merge (block, block,)
36: enqueue (block, Q4)

T enqueue (free block, Q1)

38: end if

39:  end while

40: end for

41: WT ()

{See Algorithm 1}

had partitioned the file blindly, we would have obtained three
different possible situations:
« The thread finds the beginning of a new time frame on
the first line of its partition.
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e The thread does not find the beginning of a new time
frame on the first line of its partition, but it finds it
inside it.

o The thread does not find the beginning of a new time
frame in its partition at all.

To avoid the second and third situations, we force the dis-
covery thread to store partitions into the queue Q) starting
synchronously with simulation times. Anyhow, as partitions
are not manipulated sequentially, each parsing thread does not
know the initial value of the signals it must analyze. Each
parsing thread considers the initial values of all signals as
undefined to reconstruct the correct toggle activity. Then,
when the toggle activity collected along different partitions
is concatenated to find the overall behavior, the time infor-
mation is reconstructed, managing all toggle activities sorted
in time. In this way, it is possible to reconstruct the correct
time sequence for each signal collecting single or multiple
point metrics.

VIll. EXPERIMENTAL RESULTS

In this section, we show the effectiveness and scalability of
our tool in terms of computation time and memory usage.
More specifically, as we focus on multi-thread applications,
we report the wall-clock time and the central memory used
by all threads to perform our analysis. We compare these
values with the ones gathered from the purely sequential
version. Time and memory usage are measured with a third-
party profiling tool to be as fair as possible. We limit the
maximum central memory to 120 GBytes. Moreover, we run
each experiment 5 times, and we present average data on all
these executions. Tests have been performed on a machine
equipped with a CPU AMD EPYC 7301, including 16 cores
at 2.2 GHz with hyperthreading and 128 GBytes of RAM. All
software versions run under Linux CentOS 7.

A. BENCHMARKS

The considered target device is the 40 nm Automotive Micro-
controller described by Appello er al. [13]. The SoC includes
three dual-issue processors connected to a set of peripheral
cores. Overall, it includes about 28 million circuit nodes in
the logic parts. The chip is equipped with a configurable
scan chain, and all features to perform a Bl stress by oper-
ating on the scan inputs. Like many other devices available
in the automotive market, it requires a Bl step and must
undergo several hours of electrical stress to exacerbate all
possible faulty behavior. For this reason, it is essential to
evaluate all significant stress metrics before production. It is
common to evaluate patterns generated by an ATPG engine
(targeting some coverage, i.e., delay faults to ensure node
toggling) and streams of bits generated on the fly by the tester
logic. In our experimental analysis, we considered the stress
metrics analyzed in Sections IV, V, and VI as ATPG and
fault can hardly compute them simulation engines. In our
experiments, we consider the whole circuit, measuring values
and computing statistics on over 28 million nodes. In all
cases, our tool can generate compact and extended reports.
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TABLE 1. Single point stress timing analysis. Running times for the different pipeline stages of our chain, with an increasing number of threads for the
smaller VCD file, i.e., the one of 10 GBytes. All times are reported in seconds. — means that the data is meaningless in that experiment.

#THREADS DISCOVER READ PARSE WRITE-BACK TIME SUM WALL-CLOCK
Sequential - - - - - 231
1 0 7 221 0 229 222
Bl 0 6 63 0 70 63
8 0 8 33 0 41 33
16 0 11 23 0 35 23
32 0 20 20 0 40 21
64 0 45 12 0 58 47

The files from 10 to 57 GBytes are produced by pattern
simulation; the ones from 80 to 243 GBytes are generated per-
forming functional analysis. The functional analysis leads to
VCD files storing a more significant number of time frames,
each one with a reduced toggle activity with respect to the
ATPG pattern analysis. In general, this characteristic implies
longer computational times for the entire Execute stage of the
multiple point stress metric.

B. THE SINGLE POINT STRESS TIMING ANALYSIS

Table 1 reports the wall-clock times of all pipeline stages
required to compute the toggle activity on the 10 GBytes
VCD file. For the toggle activity (compact) statistics, we pro-
duce a report including the overall amount of toggling events
for every signal and the average toggling events over the
whole set of considered signals. Table | also reports the sum
of these times and the wall-clock times of the entire pro-
cess. Please, notice that within the sequential version of the
program, we do not have distinct phases, which are merged
into the sequential file reading and parsing. Thus, for this
implementation, we report only the total computation time.
For all other cases, due to our pipeline implementation, the
overall wall-clock time is quite close to the time required
to solve the slower stage. On the contrary, the sum of the
wall-clock times of all stages is usually more prominent than
the processing time. We define the pipeline efficiency (P) of
our application as:

Wall Clock

P=—— (1)
Time Sum

P provides a metric showing the efficiency of our pipeline
approach, i.e., the smaller the value, the larger the time saved
with respect to a hypothetical, fully sequential version of
the program. The lowest bound of P is 1 /N, for a per-
fectly balanced pipeline. We report the pipeline efficiency
P in Table 3, but Table | already shows how our pipeline
reduces the computational time. When we use a small num-
ber of threads, the most critical phase is represented by the
Parse stage. On the contrary, when we increase the number
of parsing threads in the thread pool PT. the most critical
stage is the Read one. It is also noticeable that 32 pars-
ing threads lead to the lowest computational time. Beyond
this value, the advantages of the parallel approach are bal-
anced by the computational overhead required to manage
more threads. Anyway. the difference between 16, 32, and
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64 parsing threads becomes smaller when processing larger
files.

Table 1 shows that the most balanced configuration is the
one with 32 parsing threads. This is true for most of the cases,
except for the file of 179 GByte, for which the configuration
with 16 parsing threads is about 50 seconds faster. Table 2
reports the running times on VCD files of increasing size
using the configuration with 32 parsing threads with this
exception in mind. The larger performance gap is the one
between the file of 57 and the one of 80 GBytes. As already
observed, this is due to the different nature of the VCD files,
which have fewer time frames with more signal variations up
to 57 GBytes, and more time frames with a reduced toggle
activity beyond 80 GBytes. In any case, our application scales
well in both scenarios. For the sake of readability, Figure 10
plots the timing trends with different thread configurations
in two and three-dimensional graphics. The two plots bet-
ter show the linear behavior of the total elapsed time with
increasing VCD files. As suspected, our analysis also shows
how the Read stage is the most expensive one. The Read
time is pretty close to the entire process wall-clock time,
clearly showing the performance of our pipeline is strictly
related to the slower phase. For this metric computation,
the Discover and the Write-Back times are irrelevant in all
experiments. The first one is unimportant because, in this
phase, our tool simply provides to the Read phase the limits
to partition the VCD file nicely. The last one is insignificant
as in the stress test analysis during the Write-Back stage, and
we store a minimal amount of statistical information on disk.
Using a faster disk (such as an SSD) would likely improve
the performance of both the Parse and the Reading stages,
providing shorter execution times and better balance.

Table 3 focuses on waiting times, pipeline efficiencies, and
speedups. again reporting data for VCD files of increasing
size. The waiting times of the essential stages (i.e., Read
and Parse) are computed as the sum of the idle times of
all threads performing those phases. Reading threads wait
mainly for parsing threads to manipulate the file chunks that
have been uploaded, whereas parsing threads mainly wait for
reading threads. Our data confirm that the most critical stage
is the reading one, as it forces the parse phase to wait for a
good percentage of the overall wall-clock time. In the last
two columns, the table reports the speedups obtained for the
Parses stage and for the entire process. The parsing stage has
almost a linear speedup (14.35 on average with 32 threads)
for all VCD files. On the contrary, the speedup of the entire
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TABLE 2. Single point stress analysis. Running times for the different pipeline stages, with 32 parsing threads (our most balanced configuration) for VCD
files with increasing size (from 10 to 243 GBytes). All times are reported in seconds or in hours (when explicitly stated).

VCD SIZE | SINGLE THREADED PIPELINE + PARALLEL + OPT
[GBYTES] TIME SUM Discover  Read  Parse  Write-Back  TiME Sum  WaLL-CLOCK

10 229 0 20 20 0 40 21

20 470 0 34 34 0 69 36

38 1.132 0 123 45 0 169 126

57 2,656 0 324 129 0 454 327

80 3,634 0 731 149 0 880 735

100 3,985 0 928 218 0 1,146 932

124 5461 0 1,156 258 0 1,415 1,162

140 5,680 0 1,305 283 0 1,589 1,311

156 4,438 0 1,459 346 0 1,805 1,463

179 1.77 h 0 1,661 391 0 2,053 1.668

207 1.99h 0 1,867 481 0 2,349 1,875

243 249h 0 2286 565 0 2,852 2,296
Zggg | 7000 T T T
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FIGURE 10. Single point stress analysis. Overall Wall-Clock Times as a function of the VCD file size and the number of threads. Three-dimensional
plot (a) and corresponding two-dimensional graph (b).

TABLE 3. Single point stress analysis. In-depth analysis of our approach: Waiting times for all threads of the two most critical phases (read and parse
stages), pipeline efficiency P (Equation 1), and speed-ups for the Parse phase and the entire process. All times are reported in seconds.

VCD SiZE WAITING TIMES PIPELINE SPEED-UPS

[GBYTES] | Read Stage  Parse Stage | EFFICIENCY | Parse Stage  Entire Process
10 0 1 0.54 10.90 10.50
20 0 1 0.52 13.25 13.05
38 0 45 0.75 21.85 8.94
57 0 197 0.72 15.72 8.11
80 0 585 0.83 19.46 494
100 0 713 0.81 14.07 4.27
124 0 903 0.82 16.81 4.70
140 0 1027 0.83 15.58 4.33
156 0 1118 0.81 9.47 3.03
179 0 1276 0.81 12.12 3.82
207 0 1392 0.80 11.11 3.82
243 0 1729 0.81 11.88 3.90

process is drastically limited by the most expensive Read
phase. During this stage, we face a substantial limitation in
improving the speedup due to the physical constraints of the
hardware architecture on which our application is executed.

Memory usage is almost constant for all thread configu-
rations, and it mostly depends on the number of signals to
analyze and the number of file chunks present in the Parse
queue. Overall. memory is not critical in this type of analysis.
For this reason, we discuss memory issues more accurately
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for the following metrics, for which memory has a more
substantial impact on the performances.

C. THE SINGLE POINT FULL TIMING ANALYSIS
In the single point full timing analysis, we are interested in
the entire toggle activity of all signals, including all of the
toggles and the time frames at which they happened.

Table 4 reports the wall-clock times of all pipeline stages
required to compute the toggle activity on the file of
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TABLE 4. Single point full timing analysis. Running times for the different pipeline stages, with an increasing number of threads, for the smaller VCD file,
i.e, the one of 38 GBytes. All times are reported in seconds. — means that the data is meaningless in that experiment.

#THREADS DISCOVER READ PARSE WRITE-BACK TIME SUM WALL-CLOCK
Sequential — — — - = 1793
1 452 172 948 219 1792 1047

Bl 140 214 289 227 871 329

8 130 176 164 234 687 302

16 390 609 82 128 1211 662

32 124 185 35 215 561 293

64 393 665 22 171 1253 677

TABLE 5. Single point full timing analysis. Running times for the different pipeline stages, with 32 threads (our most efficient configuration) for VCD files
with increasing size (from 10 to 243 GBytes). All times are reported in seconds or hours (when explicitly stated).

VCD Si1ZE | SINGLE THREADED PIPELINE + PARALLEL + OPT

[GBYTES] TIME SUM Discover Read Parse  Write-Back TIME SuM  WALL-CLOCK
10 355 18 50 9 62 141 83
20 11 a5 92 17 109 255 150
38 1792 124 185 35 215 561 293
57 5004 654 735 55 487 2933 916
80 550h 206h  1.92h 48 107 403 h 2.08h
100 6.95h 265h 247h 58 151 5.17h 2.67h
124 6.40 h 292h  2.72h 72 295 574h 294 h
140 8.39h 359h 334h 78 245 7.11h 361h
156 9.21h 371h  345h 88 285 7.26h 3.72h
179 10,30 h 466h 434h 102 435 9.14h 468 h
207 11.77 h 458h 4.26h 118 423 9.00 h 4.60h
243 14.12 h 550h  5.12h 140 618 10.84 h 552h

TABLE 6. Single point full timing analysis. In-depth analysis of our approach: Waiting times for the two most critical phases (the Read and Parse stages),
pipeline efficiency, and speedups for the Parse phase and the entire process. All times are reported in seconds or hours (when explicitly stated).

VCD SIZE WAITING TIMES PIPELINE SPEED-UPS

[GBYTES] Read Stage  Parse Stage | EFFICIENCY | Parse Stage  Entire Process
10 26 16 0.59 12.61 2.80
20 49 14 0.59 12.46 2.72
38 65 24 0.52 26.55 6.10
57 162 616 0.47 36.67 5.56
80 10 205h 0.52 31.12 2.65
100 18 264h 0.52 32,71 2.61
124 36 290h 0.51 28.99 2.18
140 29 357h 0.51 29.87 232
156 52 367h 0.51 2947 248
179 54 4.62h 0.51 28.85 2.20
207 50 4.54h 0.51 28.99 2.56
243 66 S544h 0.51 28.71 2.56

38 GBytes, the sum of these times, and the wall-clock time
of the entire application. We selected this VCD file because
it shows a typical performance profile, whereas for smaller
files, eight parsing threads provide the best performance.
From the table, it is noticeable that with 16 and 64 parsing
threads, the time for the Discover and Read stages signifi-
cantly increase. This is common to all other VCD files and,
as mentioned in the introduction, verified on different runs
performed after a considerable time gap. We have been unable
to understand this behavior even if we fully suspect it is due
to a combination of the characteristics of the VCD files and
the hardware platform used to run the experiments.

Table 5 shows all running times collected with the most
balanced version, i.e., the one using 32 parsing threads.
Notice that computing the full analysis is between 4 and
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10 times slower than evaluating the single-point statistic
metric. Anyway, as for this stress metric, our analysis scales
well with increasing file size. For the sake of space. we avoid
reporting the corresponding 2D and 3D plots. The time
behavior is similar to the one analyzed in Section VIII-B con-
sidering the file size, with the functional simulation requiring
more analysis time than the pattern simulation. For the full
analysis, the Discover stage is the most time-consuming. This
is because the Discover stage performs a more complex file
parsing than in the last metric to make each new file partitions
start with a time declaration.

Table 6 reports the measured waiting times for the Read
stage and the Parse phase is waiting for each other. We min-
imized those times during our trimming process, balancing
the different pipeline stages. Thus, even if the waiting
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times keep increasing with the file size (except for the
file of 207 GBytes), the pipeline efficiency improves as it
decreases to (.51 for the larger files. As for the single point
stress timing analysis, a faster storage unit would likely
reduce all Parse and Reading times. Our data also shows that
our pipeline process is more balanced with the full analysis
than with the stress metric. Excluding the two smaller files,
the speedup we obtained for the Parse stage is relatively
steady and has a value of about 29 with 32 threads. The overall
speedup varies from 2.18 to 6.10 times, and it is mainly
limited by the performances of the Discover stage, in which
we parse the file sequentially.

For the full analysis, memory usage strongly depends on
the number of signals. Moreover, in the case of smaller files,
the writing queue Q4 tends to be filled with more data to
be saved since a larger number of changes is read for each
time frame. On larger files, the data queue tends to use less
memory as there is a lower number of changes for each time
frame. For this type of analysis, memory usage is more critical
than for the previous metric. To keep the amount of used
memory under control, we store intermediate information
into temporary files on the external memory unit as soon
as they become useless for the following computations. This
strategy, implemented by the Write-Back stage, maintains the
memory usage under control.

D. THE MULTIPLE POINT STRESS METRIC

In the adjacent nodes strain stress analysis, we consider mul-
tiple points and evaluate the number of times adjacent nodes
take the opposite values for a user-defined amount of time.
Our experiments selected 20 million pairs of adjacent nodes
to analyze the files of size smaller than 60 GBytes. For larger
files (starting from 80 GBytes), we consider 2 million pairs to
avoid extremely long running times. We also set the minimum
time to 1 ns, focusing on a very bad scenario since almost all
signal changes need to be considered.

Table 7 shows the running times for all pipeline stages for
the VCD file of 10 GBytes. In this case, we present our results
varying both the number of parsing and executing threads.
The first line reports the result of the sequential execution.
As for the other metrics, the wall-clock time is shorter than
the sum of all times because of our pipeline architecture.
In the configuration with 1 Parse and 64 Execute threads,
we drastically reduce the time required by the Execute phase,
the more critical one. This leads to the parsing stage being
the slowest along our pipeline. With 32 Parse and 32 Execute
threads (the fourth line of the table), we better balance these
two expensive stages. However, this leads to the execute stage
being the slowest one. This situation does not change even
when we further increase the number of Execute threads.
Even with 32 Parse and 64 Execute threads (line 5 of the
table), the Execute phase is the slowest one, with a relatively
small improvement with respect to the previous case. Since
the execution stage represents the critical path, we can reduce
the number of parsing threads. Thus, the last configuration,
adopting 16 Parse and 64 Execute threads are the fastest
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due to an improved pipeline balance and a smaller thread
overhead.

Table 8 shows the improvements of our fastest config-
uration over a set of VCD files of increasing size. Notice
that the multiple point stress metric is about 40 times slower
than the single point stress metric and about four-time slower
than the full analysis. The sequential version needs extremely
long times with files larger than 60 GBytes. Our fastest ver-
sion shows speedups of over two orders of magnitude. Since
the duration of this analysis is strongly dependent on the num-
ber of time frames analyzed, for the files beyond 80 GBytes,
our tool shows much longer computation times. For this
metric, the most critical stage is the Discover phase. This
criticality is partially due to the number of signal pairs con-
sidered. We can also see that with the increasing number of
time frames, the Execute and the Discover times increase
significantly. Moreover, for large files, the parsing stage tends
to be slower than the execution stage. This is not an issue since
the Discovery stage is effectively on the critical path, and it
tends to be much slower than the parsing stage.

Table 9 shows the waiting times, the pipeline efficiency,
and the speedups for all VCD files. As in the previous anal-
ysis, the pipeline efficiency P (defined in Section VIII-B)
provides a valuable hint of how well the pipeline is working,
and its value goes down to 0.35-0.36 for the larger files.
Speedups are very significant when we compute this metric
for both the Execute stage and the entire process, as they reach
a value of about 40 (with 16 Parse and 64 Execute threads).

Memory occupation, in the multiple point metric compu-
tation, strongly depends on the number of signal pairs con-
sidered. To avoid allocating too much memory, we use a pool
storing all signal pair changes. The memory used is strongly
influenced by the size of this pool, which also depends on the
number of parsing threads since the pool’s size depends on it
to avoid deadlocks. To be more precise, the pool needs to be
as large as the number of threads if we want a performance
improvement. We selected it to be 2.5 times larger than the
number of parsing threads since any size beyond this value
does not allow significant time improvements.

E. SPEEDUPS, COMPLEXITY, AND SCALABILITY

For the sake of completeness, Figure 11 plots the speed-
ups already reported in Tables 3, 6, and 9. Blue graphics
illustrate the speed-ups gathered for the single point analysis,
red ones for the single point full analysis, and the green
ones for the multiple point stress analysis. For each of these,
we consider the contributions obtained thanks to pipelining
(Figure 11) and parallelism (Figures 11b and 1 lc), separately.
We compute the speedups due to pipelining as (1/(pipeline
efficiency)), where the pipeline efficiency is reported in
Tables 3, 6, and 9. Figures 11b take into consideration the
most expensive phase, whereas Figure 1lc considers the
entire process. Overall, our speedups range from about 3 to
over 40 for the entire process. Our data shows that the single
point full analysis is the least parallelizable computation,
whereas the most parallelizable one is the multiple point
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TABLE 7. Multiple Point Stress Analysis. Running times for the different pipeline stages, with different thread configurations, for the smaller VCD file,
i.e., the one of 10 GBytes. All times are reported in seconds. — means that the data is meaningless in that experiment.

#THREADS PIPELINE STAGES TIME SUM  WALL-CLOCK
Parse Execute Discover Read  Parse Execute  Write-Back

Sequential  Sequential — — — — — - 5884

1 1 15 36 1453 4372 0.0 5877 4385

1 64 17 43 1321 481 0.0 1863 1818

32 32 21 95 64 306 0.0 487 320

32 64 34 135 83 284 0.0 537 309

16 64 29 145] 152 269 0.0 596 292

TABLE 8. Multiple Point Stress Analysis. Running times for the different pipeline stages. with the 16/64 threads configuration (the most efficient one in
our experiments) for VCD files with increasing size (from 10 to 243 GBytes). All times are reported in seconds or hours (when explicitly stated).

VCD SiZE | SINGLE THREADED PIPELINE + PARALLEL 4+ OPT

|[GBYTES] TIME SUM Discover Read Parse Execute  Write-Back  TIME SUM  WALL-CLOCK
10 5887 29 145 152 269 0 596 202
20 5.32h 60 285 204 481 0 1121 524
38 12.32h 118 526 564 8568 0 2077 957
57 1823 h 174 684 811 1374 0 3044 1473
80 391.36 h 9.04 h 453 h 6.50h 5.81h 0 25.89h 9.02h
100 524.45h 10.62 h 5.14h 764 h 6.74 h 0 30.14 h 10.71 h
124 528.31h 12.76 h 6.34h 9.15h 7.96 h 0 36.21h 12.84 h
140 587.56 h 1456 h 755h  1054h 9.77h 0 4242 h 14.67 h
156 716.79 h 15.61 h T741h  11.20h 9.68 h 0 4391 h 1570 h
179 801.82h 17.72h 839h 1270h 11.06 h 0 49.87h 17.80 h
207 95745h 19.86 h 981h 1421h 11.79 h 0 55.67h 19.94 h
243 1076.56 h 2365h 11.14h  1697h 15.06 h 0 66.82 h 23.74 h

TABLE 9. Multiple Point Stress Analysis. In-depth analysis of our approach: Waiting times for all threads of the two most critical phases (read and parse
stages), pipeline efficiency, and speed-ups for the Parse phase and the entire process. All times are reported in seconds or hours (when explicitly stated).

VCD SI1ZE WAITING TIMES PIPELINE SPEED-UPS
|GBYTES] Read Stage  Parse Stage | EFFICIENCY | Execute Stage  Entire Process
10 72 128 0.49 16.24 20.12
20 166 218 0.47 32.59 36.51
38 335 381 0.46 42.68 46.29
57 684 633 0.48 37.27 44.53
80 433 h 261h 0.35 42.32 43.13
100 5.26h 3.06h 0.36 45.45 49.32
124 6.13h 3.67h 0.35 39.61 41.76
140 6.69h 4.09 h 0.35 38.78 40.93
156 7.83h 447h 0.36 44.33 46.23
179 8.90h 507h 0.36 42.96 45.62
207 9.55h 569h 0.36 45.46 48.73
243 11.9h 6.73h 0.36 44.89 45.98
stress test analysis. This is mainly due to the fact that for the following equation:
the single point full analysis, the reading and the writing 1
stage take most of the time, and these steps are intrinsically § = 7
sequential with strong architectural and hardware limitations. (I=p)+ N

If we do not consider reading and writing costs and just focus
on the core computation, the profile for Figure 11¢ would be
quite close to the one in Figure 11b with speedups ranging
from 10 to 50.

The results gathered with our profiling tool can be com-
pleted with an analysis of Amdahl’s law to understand the
theoretical limit of our speedups. We concentrate on the
single-point stress timing analysis. On the one hand, for
this metric, our profiler could compute that our tool runs
in parallel for about 75% of the overall wall-clock time.
Variations of this value are very limited with the different
VCD files. On the other hand, Amdahl’s law is described by
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where S is the theoretical speedup of the execution of the
whole task, p is the proportion of execution time that benefits
from parallelization of degree N. Thus, as p = 0.75, we can
compute a theoretical speedup of 3.36 with 16 threads. This
observed speedup does not significantly differ from the ones
shown by the experimental analysis of Table 3.

However, it is difficult to estimate the exact degree of
parallelization using Amdahl’s law within our pipeline. Stalls
are not deterministic, and they often depend on the size of
the VCD file. Then, we also used the pipeline efficiency,
as defined in Section VIII-A, to analyze the impact of our
pipeline on the speedup of the entire process.
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FIGURE 11. The three graphics report the speed-ups obtained using (only) our pipelining approach (Figure (a)), the ones gathered for the slower
phase of each metric (Figure (b)), and the ones measured for the entire process (Figure (c)). For each graphic, we report the speedups for the single

point (blue), single point full (red) and multiple points (green) analysis.

IX. CONCLUSION AND FUTURE WORKS

We propose a methodology to reduce time and memory costs
to analyze Bl-related metrics that current ATPG tools cannot
evaluate.

We work in a framework in which we firstly generate
simulation dumps using the VCD format, and then we use a
post-processing phase to gather detailed or statistical results
on the simulation phase. Our methodology is based on three
main ingredients, namely pipelining, parallelization, and low-
level system-call optimizations.

Our experimental analysis focuses on an automotive
device, including about 28 million gates and generating sim-
ulation traces occupying up to almost 250 GBytes. On this
device, we have been able to reduce the evaluation time by
more than two orders of magnitude compared to the original
sequential tool. We also keep the memory usage under control
with the right mixture of the three ingredients previously
introduced.

Among the future works, we would like to mention the
necessity to push forward our analysis on even larger VCD
files, close or beyond to 1 TBytes. This would imply long
experimental sessions on powerful and remote server units,
Moreover, one of the requirements we may foresee is to
enrich our application with some level of auto-trimming
capability, at least sufficient to leverage the different pipeline
stages using an appropriate level of parallelization.
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