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Abstract
The topological phase of the Su–Schrieffer–Heeger (SSH) model is known to exhibit two edge
states that are topologically protected by the chiral symmetry. We demonstrate that, for any
parameter quench performed on the half-filled SSH chain, the occupancy of each lattice site
remains locked to 1/2 at any time, due to the additional time-reversal and charge conjugation
symmetries. In particular, for a quench from the trivial to the topological phase, no signature of
the topological edge states appears in real-space occupancies, independently of the quench
protocol, the temperature of the pre-quench thermal state or the presence of chiral disorder.
However, a suitably designed local quench from/to a SSH ring threaded by a magnetic flux can
break these additional symmetries while preserving the chiral one. Then, real-space effects of the
quench do appear and exhibit different dynamical features in the topological and in the trivial
phases. Moreover, when the particle filling is different from a half and the pre-quench state is not
insulating, the dynamical appearance of the topological edge states is visible already in a chain, it
survives time averaging and can be observed also in the presence of chiral-breaking disorder and
for instantaneous quenches.

1. Introduction

The existence of topological edge states protected by some symmetry is perhaps the most striking feature
characterizing topological insulators and superconductors. Evidence of the conducting channels in 2D
topological insulators and of Dirac surface states in 3D topological insulators has been found in a number
of experiments through transport, magnetotransport and photoemission spectroscopy measurements
[1–4]. In one-dimensional (1D) topological superconductors, the interpretation in terms of Majorana
quasi-particles [5, 6] of the robust zero-bias peak observed in the conductance of spin–orbit coupled
nanowires [7, 8] has led to some controversy [9]. A more direct evidence of these exotic quasi-particles
seems to be provided by spatially resolved spectroscopic techniques applied to ferromagnetic atom chains
[10]. In fact, in last years an increasing number of works have been devoted to the search for a real-space
imaging of topological phases and states [10–18].

After a decade characterized by a remarkable effort to find signatures of these edge states in various
materials, presently one of the most fascinating challenges in physics is the possibility to manipulate these
states and to possibly encode information therein [19–21]. To this purpose, the implementation with cold
atoms in optical lattices [22–39] offers a twofold advantage, namely a pretty reliable system isolation from
the environmental decoherence, and an extremely precise control of the system Hamiltonian. In particular,
it is possible to realize quantum quenches of the Hamiltonian parameters [40–43], both over the entire
system and on a spatially localized portion. These experimental advances thus also bring up new interesting
questions about topological systems. Consider, for instance, a topological insulator characterized by some
symmetry and suppose that, by a quantum quench preserving such symmetry, the system is dynamically
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brought from the trivial to the topological phase, passing through a gap closing. Can one observe the
topological states dynamically appear in real-space at its edges? Conversely, how do they evolve and possibly
disappear when the quench is towards the trivial phase? In this paper we aim to answer these questions,
focussing on a prototypical case, namely the Su–Schrieffer–Heeger (SSH) model [44, 45].

The SSH model describes spinless fermions in a bipartite 1D lattice through the following tight-binding
Hamiltonian

ĤSSH = v
∑

j

(
ĉ†j,Aĉj,B + ĉ†j,Bĉj,A

)
+ w

∑
j

(
ĉ†j,Bĉj+1,A + ĉ†j+1,Aĉj,B

)
, (1)

where ĉ†j,s and ĉj,s denote the fermionic creation/annihilation operators for electrons localized at atom
s = A, B within the jth cell of the lattice, whereas v and w indicate the intra- and inter-cell tunneling
amplitudes, respectively. The model, first introduced in the description of opto-electronic properties of
polyacetylene [44–46], is considered as a paradigmatic example of 1D topological insulators [47, 48].
Indeed at half filling (one electron per unit cell) the SSH model describes a band insulator characterized by
a band gap 2εg with εg = ‖v| − |w‖ and by a sublattice symmetry called chiral symmetry, which identifies
for |v| < |w| and for |v| > |w| two topologically different phases that cannot be connected to each other
without closing the gap. In the topologically non-trivial phase, a SSH chain exhibits at its edges localized
states that are protected by the chiral symmetry. Recently, soliton states and topological indices of the SSH
model have been experimentally observed in implementations with cold atoms [49, 50]. Moreover, the
effects of time-dependent perturbations to the SSH hopping amplitudes have been analyzed in the context
of topologically protected quantum gates [51] and Floquet nonequilibrium states generated by periodic
drives [52–55].

Consider now a SSH chain-lattice, initially in the ground state of the topologically trivial phase
(|v| > |w|), at half filling, and perform a quench of the hopping amplitudes to the topological phase
(|v| < |w|). If the quench remains within the chiral symmetry class, the gap closes at some time and, by
inspecting the dynamical evolution of the occupancy at each chain site, one would expect localized
topological states to gradually emerge at the chain edges. Here we show that this is not the case: the site
occupancy remains exactly equal to the one of the trivial pre-quench state at any time and any site,
including at the chain edges, regardless of the quench protocol (fast or slow) and even in the presence of
chiral disorder. As we shall demonstrate, the reason boils down to the charge conjugation or time-reversal
symmetries of the pre-quench state and of the quenching Hamiltonian. In an open chain, these additional
symmetries are typically present and completely mask any effect of the quench in real-space, including the
appearance of the topological states. Effects of a quench can be observed in real-space occupancies only
when such symmetries are broken, which can be done in two ways: (i) remaining within the topological
insulator framework, i.e. preserving the chiral symmetry and the half-filling condition; (ii) by ‘brute force’,
i.e. by breaking the chiral symmetry and/or by moving away from an insulating state.

We shall first explore the first option and propose two ways to observe the dynamical effects of the
quench in real-space. The quench protocols are based on a local quench, where a ring lattice is cut into a
chain or, vice versa, two edges of a chain are bridged to form a ring. In both cases the presence of a
magnetic flux threading the ring is crucial to induce a real-space dynamical response to the quench, which
is different depending on whether the involved chain is in the trivial or in the topological phase.

Then, we shall explore the second option and analyze the effects of quenches beyond the framework of
topological insulator, i.e. by breaking the chiral symmetry and by considering filling values different from
1/2, where the SSH model describes a metallic state. We find that the optimal way to observe the dynamical
appearance of the edge states characterizing the topological insulator is to have a slightly metallic system.
Then, the dynamical appearance of these states is robust even in the limit of short quench time and in the
presence of chiral breaking disorder.

The paper is organized as follows. In section 2, after briefly summarizing the aspects of the SSH model
that are needed to illustrate our results, including its symmetries, we shall describe the method we used to
compute the dynamical evolution. In section 3 we present a general theorem ensuring that the site
occupancy remains locked to 1/2 when charge conjugation symmetry is present. In particular, this explains
the case of a quenched half-filled SSH chain. Then, in section 4 we show how to violate the hypotheses of
the theorem and observe real-space effects of the quench without breaking the chiral symmetry. Finally,
after analyzing the effects of chiral breaking terms and of a filling different from 1/2 in section 5, we discuss
our results and draw our conclusions in section 6.
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2. Model, symmetries and method

2.1. Generalized SSH model and symmetries
In this paper we consider a generalized SSH model

ĤSSH,χ =
∑

j

(
vj ĉ

†
j,Aĉj,B + v∗j ĉ†j,Bĉj,A

)
+

∑
j

(
wj ĉ

†
j,Bĉj+1,A + w∗

j ĉ†j+1,Aĉj,B

)
(2)

extending the SSH Hamiltonian (1) to the case where the tunneling amplitudes {vj,wj} are possibly
complex and site-dependent. Here j = 1, 2, . . . , M, where M is the number of cells in the lattice.
Furthermore, because symmetries play an important role in the dynamical effects that we aim to discuss, it
is worth briefly recalling the behavior of the Hamiltonian (2) under three transformations that are local on
the lattice site operators. The first one is charge-conjugation C, a linear and unitary transformation mapping
the lattice site creation/annihilation operators as follows

⎧⎨
⎩
C ĉj,AC−1 = ĉ†j,A

C ĉj,BC−1 = −ĉ†j,B

, (3)

and fulfilling C−1 = C† = C. The second one is the chiral transformation S. Despite acting on the lattice site
operators in the same way as C ⎧⎨

⎩
S ĉj,AS−1 = ĉ†j,A

S ĉj,BS−1 = −ĉ†j,B

, (4)

it is by definition anti-linear (SiS = −i) and anti-unitary 〈SΨ1|SΨ2〉 = 〈Ψ1|Ψ2〉∗. Finally, the
time-reversal transformation, which leaves lattice site operators unaltered

{T ĉj,AT −1 = ĉj,A

T ĉj,BT −1 = ĉj,B

(5)

but is also anti-linear and anti-unitary, with T 2 = I, as is the case for spinless fermions. In fact, only two of
these transformations are independent because the chiral symmetry S can be obtained as the product
S = T C.

The Hamiltonian (2) exhibits the chiral symmetry (4)

SĤSSH,χ S−1 = ĤSSH,χ ⇔
[
ĤSSH,χ,S

]
= 0, (6)

and the subscript χ stands in fact for ‘chiral’. In chiral-symmetric models like ĤSSH,χ, T and C are
intimately related. Indeed, because C = T S, time-reversal and charge conjugation transformations are
either both preserved or both broken. In particular, for {vj,wj} ∈ R, the Hamiltonian (2) also commutes

with time-reversal T and charge conjugation C. However, when vj = |vj|eiφvj and wj = |wj|eiφwj have
non-vanishing complex phases, the preservation of T and C heavily depends on the geometric boundary
conditions. In particular, in a chain, i.e. a lattice with open boundary conditions (OBCs), T and C are
always preserved, since such complex phases can be eliminated through a canonical transformation onto the

lattice operators cj,A → c̃j,A = eiαj cj,A and cj,B → c̃j,B = ei(αj+φvj ) cj,B, where α1 = 0 and αj =
∑j−1

i=1(φv
i + φw

i )
for j = 2, . . . , M, recasting the Hamiltonian into the case of real and positive tunneling amplitudes [47]. In
contrast, in a ring-shaped lattice, the periodic boundary conditions (PBCs) prevent the elimination of the
phases of vj and wj. Physically, this can be understood in terms of the Peierls substitution [56, 57], where
the complex phases of the tunneling amplitudes describe the integral of a vector potential from one lattice
site to next one. While in a chain the vector potential can always be gauged out, in a ring this is not
possible, for its circulation yields the magnetic flux Φ threading the ring, and one has

∑M
j=1(φv

j + φw
j ) =

2πΦ/Φ0 	= 0, where Φ0 = h/e is the flux quantum. Thus, in the SSH ring with a flux Φ 	= pΦ0/2 (with
p ∈ Z), T and C are broken.

To perform our time-dependent analysis, we represent the second-quantized Hamiltonian (2) in the
real-space basis as follows

ĤSSH,χ =

M∑
j1,j2=1

∑
s1,s2=A,B

ĉ†j1,s1
Hj1s1,j2s2 ĉj2,s2 , (7)

3
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where

(8)

is the related first-quantized Hamiltonian matrix, whose entries Hj1s1,j2s2 are labeled by the cell j and the site
s = A, B = +/− within the cell. In terms of the first quantized Hamiltonian (8), symmetries are expressed
in a different way as compared to the second quantized Hamiltonian (2). Explicitly, the chiral symmetry (6)
implies

SHS−1 = −H ⇔ {H, S} = 0, (9)

where S = ⊕M
j=1(σz)j is the first-quantized version of the chiral transformation S defined in equation (4),

and is unitary. From equation (9) one straightforwardly deduces that, for any realization of the parameters
{vj,wj}, the single-particle spectrum is symmetric around ε = 0. Indeed if ψ is a single-particle
wavefunction with eigenvalue ε, i.e. Hψ = εψ, the wavefunction Sψ, obtained from ψ by changing
the sign at the B-sites, is also an eigenfunction of H with eigenvalue −ε. The set of eigenfunctions of
equation (8) can thus be chosen as {ψα} (positive eigenvalues εα > 0) and {Sψα} (negative eigenvalues
−εα < 0), where α = 1, . . . , M is the quantum number running over the positive spectrum. The
corresponding operators ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γα,+ =

M∑
j=1

∑
s=A/B=±

(ψ∗
α)j,s ĉj,s

γα,− =

M∑
j=1

∑
s=A/B=±

(ψ∗
α)j,s (−1)s ĉj,s

(10)

diagonalize the Hamiltonian (2)

ĤSSH,χ =
∑
α

εα

(
γ†
α,+γα,+ − γ†

α,−γα,−

)
(11)

and fulfill the relations
Sγα,±S−1 = γ†

α,∓. (12)

While the chiral symmetry (9) always holds for equation (8), time-reversal and charge-conjugation
symmetries hold if the Hamiltonian H fulfills further properties. Specifically the former symmetry holds if
H is real

THT−1 = H∗ = H, (13)

where T = K denotes the complex conjugation and is anti-unitary, whereas the latter symmetry holds if

CHC−1 = SH∗S−1 = −H, (14)

where C = ST is the first-quantized version of C (see equation (3)) and is anti-unitary.
Note that the hopping amplitude wM appearing in the lower-left and upper-right corners of

equation (8) is vanishing for a chain. In such a case, an argument similar to the one used above for the
second quantized Hamiltonian, leads to conclude that equations (13) and (14) always hold, as can be
checked by merely redefining the real-space basis by local phase factors.

We conclude this subsection by recalling that, for homogeneous hopping amplitudes (vj ≡ v and
wj ≡ w) the model (2) can be exactly solved both in a ring (PBCs) and in a chain (OBCs). In particular, in
the ring geometry and in the thermodynamic limit one can identify two different topological classes [47],
and by analyzing the chain one can see that one phase is topologically non-trivial, hosting two discrete

4
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levels in the spectrum near ε = 0, which correspond to states localized at the edges. For the sake of
completeness, a short summary of these aspects in given in the appendix.

2.2. Quenches, density matrix approach and observables
In the following, we shall investigate the dynamical effects of a quench in the parameters {vj,wj} of the
Hamiltonian (2). Specifically, the system is prepared in an initial state ρpre, typically the ground state or the
thermal equilibrium state of a pre-quench Hamiltonian Ĥpre = ĤSSH,χ(t < t0). Then, at t = t0 the system is
disconnected from the environment and the dynamics is unitarily governed by the Hamiltonian ĤSSH,χ(t),
which varies until a time tf from Ĥpre to a post-quench Hamiltonian Ĥpost = ĤSSH,χ(t > tf). The quench
protocol specifies the way the parameters {vj(t),wj(t)} in equation (2) are varied during the quench time
τ q = tf − t0.

Although in our analysis we shall mainly focus on short quench time limit (τ q → 0), we shall keep the
parameter time dependence arbitrary because, as we shall see, some results are independent of the specific
quench protocol. Moreover, we shall deal with both global and local quenches. A global quench involves a
change in a significant number (scaling like the number M of cells) of hopping amplitudes along the chain.
This occurs, for instance, when all the hopping amplitudes of a homogeneous chain (vj ≡ v and wj ≡ w)
are brought from the trivial to the topological phase. In contrast, a local quench only involves a limited
number of hopping amplitudes. For instance, the cutting of a ring into a chain is described by quenching to
zero the hopping amplitude of one single bond. Note that, because of equation (6), the chiral symmetry is
preserved at any time, so that the quench occurs within the chiral symmetry class. Yet, the result of a
quench depends not only on the quenching Hamiltonian, but also on the pre-quench state and its
symmetries, as we shall see. Furthermore, in section 5, we shall also analyze the quench in chiral symmetry
broken cases.

We shall be interested in one-body observables Â =
∑

j1s1,j2s2
ĉ†j1,s1

Aj1s1,j2s2 ĉj2,s2 , whose expectation values

are straightforwardly evaluated in terms of the single-particle density matrix ρj1s1,j2s2 (t) = Tr{c†j2,s2
ĉj1s1 ρ̂(t)},

where ρ̂(t) denotes the dynamical evolution of the full system density matrix and Tr the trace over the Fock
space. Due to the quadratic structure of equation (7), the Liouville–von Neumann equation for ρ̂
straightforwardly implies the dynamical equation for ρ, which reads

i�
dρ

dt
= [H(t), ρ] . (15)

We numerically solve equation (15) with the initial condition ρ(t0) = ρpre corresponding to the
single-particle density matrix of the pre-quench state, typically the ground state of the pre-quench
Hamiltonian. Then, the expectation values of an observable Â are obtained as

〈Â〉(t) = tr {Aρ(t)} , (16)

where ‘tr’ denotes the trace over the single-particle Hilbert space. In particular, we shall henceforth focus on
the site occupancy, evaluated as

Nj,s(t) = 〈n̂j,s〉(t) = ρjs,js(t), (17)

and on the cell polarization
Pj(t) = 〈n̂j,A〉(t) − 〈n̂j,B〉(t), (18)

obtained as Pj = ρjA,jA − ρjB,jB. The total number of electrons Ne =
∑

j,s Nj,s is simply given by Ne = tr ρ and
is constant as a consequence of equation (15). In section 5 we shall also discuss the non-equilibrium energy
distribution in the post-quench eigenbasis {λ}, where Ĥpost =

∑
λ ελn̂λ is diagonal. The energy

distribution is obtained as

〈n̂λ〉(t) =
M∑

j1,j2=1

∑
s1,s2=A,B

Uλ,j2s2 U∗
λ,j1s1

ρj2s2,j1s1 (t), (19)

where Uλ,js = 〈λ|js〉 is the unitary matrix determining the single-particle change of basis from the real-space
basis to the post quench eigenbasis.

3. Quenches in half-filled SSH models: the locking of site occupancy

We start by considering a chain of the customary SSH model equation (1) with homogeneous hopping
amplitudes, which can be assumed to be positive (v,w > 0). Let the pre-quench state be the half-filled
ground state of the chain in the trivial phase, so that there is one electron per cell (Ne = M), i.e. half an
electron per site on average, and

wpre < vpre, (20)

5
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Figure 1. A global quench is applied to a half-filled SSH chain from the trivial to the topological phase. The insets on the
right-hand side sketch the spectra of the two phases: while the trivial phase only exhibits a continuum spectrum, the topological
phase also hosts two discrete states.

where wpre ≡ w(t < 0) and vpre ≡ v(t < 0). No edge state is present. At t = 0 we start to quench the
Hamiltonian parameters towards the topological phase, as sketched in figure 1. This means that, within a
quench time τ q, the values of the hopping amplitudes are brought to

wpost > vpost, (21)

where wpost ≡ w(t > τ q) and vpost ≡ v(t > τ q).
At first, one would expect the discrete states characterizing the chain spectrum in the topological phase

to gradually appear in real-space, causing an occupancy increase localized at the two edges. However, this is
not the case: we find that the site occupancy is locked at 1/2 at any time and at any site, including the chain
edges

Nj,s(t) = 1/2 ∀t ∀j, s (22)

just like in the trivial pre-quench phase. Notably, such a locking of the real-space occupancy occurs for any
quench duration τ q, regardless of the specific way one changes the hopping amplitudes from (vpre,wpre) to
(vpost,wpost). Furthermore, it also holds in the presence of chiral disorder and/or if the pre-quench state is a
thermal state at finite temperature. Indeed the result (22) is a consequence of a general theorem that we
shall prove here below. Before doing that, it is worth emphasizing that the quench does affect the system,
though. For instance, the energy distribution of the post-quench Hamiltonian strongly differs from the
pre-quench equilibrium distribution and exhibits a striking band population inversion, as has been proven
in reference [58] for a SSH ring exposed to a sudden quench.

3.1. General theorem about site occupancy
The following general result can be proven: (i) if the pre-quench state (t = t0) is invariant under
charge-conjugation

Cρ̂preC−1 = ρ̂pre (23)

and (ii) if the time-dependent Hamiltonian Ĥ(t) characterizing the quench (t > t0) commutes with
charge-conjugation transformation [

ĤSSH,χ(t > t0) , C
]
= 0, (24)

then equation (22) holds. The proof starts by recalling that the pre-quench state ρ̂pre evolves as
ρ̂(t) = U(t)ρ̂preU†(t), where the evolution operator is

U(t) =
←−
T

[
exp

(
− i

�

∫ t

t0

Ĥ(t′)dt′
)]

∀t > t0 (25)

and
←−
T denotes the time-ordering. Moreover, the property (24) and the linearity of C imply that

[C , U(t)] = 0 ∀t > t0. (26)

By using equations (23) and (26) the time evolution of the site occupancy Nj,s = 〈n̂j,s〉 is then computed as

6
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Nj,s(t) = Tr
{
ρ̂(t) n̂j,s

}
= Tr

{
U(t)ρ̂preU†(t) n̂j,s

}
= Tr

{
U(t) Cρ̂preC−1U†(t) n̂j,s

}
= Tr

{
CU(t)ρ̂pre U†(t) C−1n̂j,s

}
= Tr

{
U(t)ρ̂pre U†(t) Cn̂j,sC−1

}
= Tr

{
ρ̂(t) (1 − n̂j,s)

}
= 1 − Nj,s(t), (27)

where we have used C = C−1 and Cn̂j,sC−1 = 1 − n̂j,s. The result equation (22) follows from equation (27),
and shows that the site occupancy remains locked to its trivial phase value 1/2. We also observe that, by a
very similar argument, the hypotheses of the theorem also imply that the off-diagonal single-particle density
matrix entries are always either real or purely imaginary, at any time. Specifically ρiA,jB(t) = 〈c†jBciA〉 is real

∀i, j, while ρis,js(t) = 〈c†jscis〉 is purely imaginary ∀i 	= j and s = A, B.

3.2. Global quench in a SSH chain
We shall now show that a quench of the half-filled SSH chain satisfies the hypotheses equations (23) and
(24) of the above theorem, whence one straightforwardly deduces the locking of the site occupancy,
equation (22). Indeed equation (24) is satisfied by ĤSSH,χ(t) because, as observed in section 2.1, in a chain
with OBCs the SSH model equation (2) preserves both charge-conjugation C and time-reversal symmetry
T . Furthermore, if the pre-quench state is the thermal equilibrium state at half-filling (μ = 0) of the
pre-quench SSH Hamiltonian Ĥpre

ρ̂pre =
e−βĤpre

Tr[e−βĤpre ]
, (28)

where β = 1/kBT is the inverse temperature, the symmetry [Ĥpre, C] = 0 straightforwardly implies
equation (23). In particular, this is true for the half-filled ground state ρ̂pre = |H.F.〉〈H.F.|, where |H.F.〉 is
constructed by occupying all the negative energy states of Ĥpre |H.F.〉 =

∏M
α=1γ

†
α,−|0〉 and is

non-degenerate.
This explains why in a half-filled SSH chain the quench does not lead to any change of the site

occupancy, which remains uniform and constant regardless of (i) the specific quench time and protocol,
(ii) the presence of chiral disorder in the tunneling amplitudes {vj,wj}, and (iii) finite temperature of the
pre-quench thermal state. In particular, in a chain it is impossible to observe the appearance of the
topological states or any other difference between the trivial and the topological phase in real-space
occupancies. In section 4 we shall propose a different setup where real-space effects of a quench can be
observed. However, we wish to first provide a more physical justification for the result equation (22).

3.2.1. The case of infinitely slow quench: comparison between the trivial and topological half-filled ground
states
Because the result equation (22) is valid for any quench protocol, it holds in particular for an infinitely slow
quench (τq →∞), where the pre-quench ground state evolves into the post-quench ground state. In this
particular limit, the result equation (22) can thus be understood by comparing the site occupancy profile of
the trivial and topological half-filled ground states. In the trivial phase, where the spectrum is purely
continuum, the uniform pattern Npre

j,s ≡ 1/2 is expected from the contribution of the bulk states extending

over the entire chain. In the topological phase, where the additional discrete levels ±εedge near ε = 0 are
present, the site occupancy profile results from two types of contributions. The red curve in figure 2(a)
shows the discrete state contribution localized at the chain edges (see equation (A.5)), while the thin black
curve displays, as an illustrative example, the contribution of one bulk state, whose wavefunction extends
over the entire chain (see equation (A.4)). Notably, the blue curve, describing the contribution of all the
occupied bulk states of the chain, features two dips at the edges, which are perfectly complementary to the
edge state contribution: the bulk states ‘feel’ the presence of the edge states and make room for them by
slightly modifying their behavior near the boundaries with respect to the trivial phase. This can be
considered as a real-space imaging of the bulk-boundary correspondence. The thick black curve is the sum
of the two contributions and uniformly takes the value Npost

j,s ≡ 1/2. Thus the half-filled ground state of the
chain in the topological phase does not show any different feature in real-space occupancy with respect to
the trivial phase, despite the presence of the edge states in the spectrum.

Such a lack of difference seems at first to contradict the argument that is customarily invoked to
illustrate the emergence of the edge states in the topological phase, based on the dimerized limit of the
chain: when the extremal links of the chain are very weak, v/w→ 0, the outmost chain sites host a localized
electron. However, this can only hold when the number Ne of electrons in the chain is M + 1. At half filling,
Ne = M, only one electron can be accommodated in the two edge sites and, in fact, each of them hosts ‘half
an electron’. Indeed the red curve of figure 2, peaked at both chain edges, describes the contribution of only
one discrete state, namely the one at energy −εedge, which is occupied in the half-filled ground state.
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Figure 2. The site occupancy profile of the half-filled SSH chain (N = 80 sites, i.e. M = 40 cells) in the topological phase (thick
black curve), the discrete level contribution (edge states, in red) and the contribution of all the occupied states in the continuum
spectrum (bulk states, blue). (a) In the clean case, where the tunneling amplitudes are homogeneous (vj ≡ v, wj ≡ w, with
v = 0.7w), all bulk states are extended, and the thin black curve shows an example of a bulk state; (b) in the chiral-disordered
case, where the tunneling amplitudes vj ,wj are random variables with average values fulfilling v = 0.7w and with disorder
strength d = 0.1, the bulk states are also localized, and one example is shown by the thin black curve. In both cases the edge and
bulk states contributions are perfectly complementary, so that the total site occupancy profile is flat and equal to 1/2 everywhere.

We also emphasize that such uniform site occupancy profile is not merely due to the accidental spatial
parity [59] of the homogeneous SSH model (1). The very chiral symmetry forbids disorder to localize the
two discrete states on opposite sides of the chain: the two wavefunctions ψedge

± with opposite energies ±εedge

are mapped into each other by a mere sign change in the B-sites through the chiral transformation S (see
section 2.1), so that their square moduli have to coincide, even in the presence of chiral disorder. This is
illustrated in figure 2(b), which refers to a disordered SSH model realized by taking wj = w(1 + ξjd) and
vj = v(1 + ηjd) in equation (2), where {ξj, ηj} are sets of random variables uniformly distributed in
[−1/2, 1/2], v > 0 and w > 0 are the average tunneling amplitudes, and d < |v − w|/max(v,w) is the
disorder strength. For v < w the spectrum of the disordered SSH chain still consists of a continuum branch
and of two additional discrete levels. The red curve describes the only occupied discrete level and again is
localized on both edges. In fact, disorder has a stronger impact on the bulk states, which get localized too, as
shown by the thin black curve in figure 2(b), in agreement with Anderson localization [60, 61]. However,
their total contribution to the site occupancy profile (blue curve in figure 2(b)) is still uniformly flat in the
bulk and exhibits two dips by the edges, just like in the clean case of figure 2(a). Again, at half filling, the
sum of bulk and edge state contributions yields a perfectly uniform occupancy profile Nj,s ≡ 1/2 (black
thick line in figure 2(b)).

It is also straightforward to understand why such uniform profile is unaltered by finite temperatures:
despite the energy separation between the two discrete levels is tiny, the partial occupancy of the level at
energy +εedge induced by thermal excitations is perfectly balanced by the corresponding depletion of the
level at energy −εedge.

4. Breaking charge conjugation in chiral symmetric models: a local quench

In order to observe some effects of the quench in the real-space occupancy, and possibly the appearance of
the topological edge states, a necessary condition is that at least one of the two crucial hypotheses of the
theorem, equations (23) and (24), is violated. Here below we show how this is possible while still preserving
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the chiral symmetry and while operating at half-filling, i.e. under the conditions where the SSH model is
rigorously characterized as a topological insulator.

4.1. Ring-to-chain quench
The first option is to violate the hypothesis of charge-conjugation invariance of the pre-quench state,
equation (23). This can be achieved by choosing as ρ̂pre a thermal equilibrium state of the homogeneous
half-filled SSH model, like in equation (28), where Ĥpre is equation (2) defined on a ring-shaped lattice
threaded by a magnetic flux Φ. In this case both Ĥpre and ρ̂pre break time-reversal symmetry T and hence
charge conjugation C symmetry, so that the condition equation (23) is violated. Note that, nevertheless, the
pre-quench site occupancy still equals exactly 1/2. Indeed, since Ĥpre commutes with the chiral symmetry
S, the relation

Npre
j,s = Tr

[
ρ̂pren̂j,s

]
=

Tr
[
S e−βĤpreS−1Sn̂j,sS−1

]
Tr

[
e−βĤpre

] =
Tr

[
e−βĤpre

(1 − n̂j,s)
]

Tr
[

e−βĤpre
] = 1 − Npre

j,s (29)

implies that Npre
j,s = 1/2 ∀j, s. For definiteness, we take for ρ̂pre the ground state of the SSH ring.

Then, after isolating the system from the environment, at t = 0 we perform a local quench, i.e. we bring
one single ring bond, e.g. wM, from w

pre
M = w to w

post
M = 0, leaving all the other bonds v and w unaltered.

As a consequence, the ring gets cut into a chain, as illustrated in figure 3(a). The post-quench Hamiltonian,
being defined on a chain lattice, preserves T and C and the second hypothesis equation (24) of the theorem
is satisfied. Depending on whether the cut bond is weak (|wpre

M | < |v|) or strong (|wpre
M | > |v|), the post

quench chain is in the trivial or in the topological phase, respectively. For simplicity we shall consider the
limit of an instantaneous quench. Still, two timescales characterize the post-quench evolution, namely

τg =
�

‖v| − |w‖ , (30)

which is the timescale related to the inverse half-gap, and

τL =
�M

min(|v|, |w|) , (31)

corresponding to the typical time an electron wavepacket takes to travel the system length L = Ma (see the
appendix).

The space–time evolution of the site occupancy induced by the quench is depicted in figure 3 for a ring
of N = 80 sites (M = 40 cells), initially threaded by a magnetic flux Φ = Φ0/5, where the w-bond between
sites 1 and 80 is cut by the local quench. In the plot, the red (blue) color characterizes a positive (negative)
fluctuation Nj,s − 1/2 from the pre-quench occupancy 1/2 (white color), and time is expressed in units of
τ g. Panels (b) and (c) refer to the cases of quench from the ring to the trivial and to the topological chain,
respectively. After the bond is cut (t > 0), we observe in both cases that the site occupancy remains roughly
equal to 1/2 everywhere until a time τ L/2, which corresponds to the timescale needed by the
quench-induced electron waves propagating in opposite directions to meet again and interfere in the middle
of the chain, i.e. at the opposite site of the cut bond.

After such time, the two panels feature qualitatively different behaviors. Indeed for a quench to the
trivial chain (see figure 3(b)), the fluctuations Nj,s − 1/2 from the pre-quench occupancy are more
pronounced near the center of the chain and occur at times t � τ L(m + 1/2) corresponding to half-integer
values of the typical time related to the chain length, equation (31). In contrast, for a quench to the
topological chain (figure 3(c)), the largest occupancy fluctuations are observed at the chain edges and
dynamically appear for the first time at t � τL, and then again at odd integer multiples (2m + 1)τ L. Note
that, at each appearance, the fluctuations take opposite signs at the two boundaries, since the total charge is
conserved.

We emphasize that the pre-quench flux Φ is crucial in determining the magnitude of fluctuations from
the occupancy value 1/2, for both quenches to the trivial and to the topological chain. For the quench to
the trivial chain this is clearly illustrated in panel (d), which displays the bulk polarization
P20 = N20,A − N20,B, i.e. the polarization of the central cell j = 20, for the time range highlighted by the
dashed box of panel (b), for various values of the flux Φ through the pre-quench ring. Similarly, for the case
of quench to the topological chain, panel (e) shows the edge polarization P1 = N1,A − N1,B, i.e. the
polarization of the cell j = 1 in the time frame highlighted in panel (c). When Φ is vanishing or equal to
Φ = pΦ0/2, with p ∈ Z, the site occupancy remains locked to Nj,s ≡ 1/2 at any time.
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Figure 3. (a) Sketch of a local quench: by cutting a bond w of an SSH ring threaded by a flux Φ, a SSH chain is obtained. Here
we used a ring with N = 80 sites (i.e. M = 40 cells). (b) Space–time evolution of the site occupancy Nj,s for the case Φ = Φ0/5
and w = 0.7|v|: the cut bond w is weak, so that the post-quench SSH chain is in the trivial phase; (c) space–time evolution of the
site occupancy Nj,s for the case Φ = Φ0/5 and |v| = 0.7|w|: the cut bond w is strong, so that the post-quench chain is in the
topological phase; (d) the central polarization P20 = N20A − N20B is plotted in the time frame highlighted in panel (b) by the
dashed box, for various values of the pre-quench ring flux Φ; (e) the edge polarization P1 = N1A − N1B is plotted in the time
frame highlighted in panel (c) by the dashed box, for various values of Φ.

Furthermore, for a given flux Φ, the magnitude of the fluctuations also depends on the gap 2εg through
the ratio r = εg/max(|w|, |v|). In particular, when r → 1, the model tends to the dimerized limit where the
flux plays no role and the fluctuations from occupancy 1/2 vanish everywhere. In general, both for
quenches to the trivial and to the topological phase, a decrease in the value of r implies an increase in the
fluctuation magnitude. For instance, for N = 80 and Φ = Φ0/5, when r is decreased from r = 0.5 down to
r = 0.1, the fluctuation magnitude at the edge sites of the topological chain increases from 14% to 30% of
the pre-quench site occupancy value 1/2. However, when r → 0 the model tends to the gapless metallic
tight-binding model, and a difference between topological and trivial phase emerges. Indeed if such limit is
taken from the trivial phase (|v| > |w|) the magnitude of fluctuations located near the center of the chain
(see figure 3(b)) tends to a finite value and survive even in the metallic case. In contrast, when the gap is
decreased from the topological phase side (|v| < |w|), the magnitude of the fluctuations located at the chain
edges (see figure 3(c)) eventually drops to zero for r < 10−2 and the effect is completely suppressed in the
metallic case r = 0, in agreement with the fact that edge states disappear in such a case.

To conclude this subsection, we analyze how the site occupancy fluctuations induced by the quench
depend on the chain length L = Ma. The cases analyzed so far in figure 3 correspond to the regime τ L � τ g

of a long chain. In this regime the magnitude of site occupancy fluctuations does not significantly change
with the number N = 2M of sites, while the occurrence timescale τ L does of course depend on M (see
equation (31)). For fixed values of v and w, when the number of lattice sites is reduced one reaches the
regime τ L ∼ τ g, where the typical energy separation Δ between the bulk states becomes comparable with
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Figure 4. Quench from a ring with flux to a chain in the topological phase: the space–time evolution of the site occupancy Nj,s in
the case of a small site number (N = 20, i.e. M = 10 cells). For comparison with a longer chain, the parameters |v| = 0.7|w| and
Φ = Φ0/5 are the same as in figure 3(c).

the gap 2εg, so that the very notion of bulk gap becomes somewhat questionable. Yet, two discrete energy
levels ±εedge near ε = 0 are still present in the topological phase. In figure 4 we have plotted the space–time
evolution of the site occupancy for a short lattice with N = 20 sites (i.e. M = 10 cells), when the ring with
flux is cut into a chain in the topological phase, keeping all the other parameters unchanged with respect to
the case of figure 3(c). The comparison shows two interesting effects of the reduced system size on the
dynamics. First, the magnitude of the fluctuations at the edges is bigger in the shorter chain (figure 4) than
in the longer chain (figure 3(c)), highlighting the dynamical alternation of excess and depletion of
occupancy at the two edges. Second, along with the short timescale τL determining the roughly periodic
occurrence described above, we observe a second longer period that further modulates the fluctuation
magnitude. Such a timescale is associated to the small energy splitting 2εedge between the two discrete edge
states. Indeed such energy separation increases when reducing the system size and, despite being much
smaller than the gap, it becomes visible through this time-dependent modulation.

The local quench cutting the ring thus leads to qualitatively different behaviors in real-space, depending
on whether the post-quench chain is in the trivial or in the topological phase. In particular, in the quench to
a topological chain the fluctuations of site occupancy are localized at the edges, and alternate in time from
excess to depletion. A time-resolved measurement is thus needed to observe such real-space signatures,
while a time-average would vanish, just like in any site of the bulk. This is typical of a half-filled system. In
section 5 we shall discuss the case of different filling values.

4.2. Chain-to-ring quench
The second possibility to tackle the theorem of section 3.1 is to break the hypothesis equation (24). We keep
the first hypothesis equation (23) by choosing as a pre-quench state the ground state of a homogeneous
half-filled SSH chain. Then, one can perform a local quench binding the first and last site of the chain, i.e.
bringing the tunneling amplitude wM from w

pre
M = 0 to w

post
M = w, thereby enclosing the chain into a ring,

as illustrated in figure 5(a). If the ring is threaded by a magnetic flux, the quenching Hamiltonian breaks T
and hence C symmetries, and the condition equation (24) is violated, opening up the possibility to observe
real-space signatures of the quench.

Figure 5(b) displays the space–time evolution of the site occupancy when the pre-quench state is the
ground state of a 80-sites half-filled SSH chain in the topological phase (|v| < |w|) and the post-quench
ring is threaded by a flux Φ = Φ0/5. Note that, although the initial chain is in the topological phase, before
the quench (t < 0) the site occupancy is locked to 1/2 everywhere, in agreement with the theorem proven
above, and no signature of the edge state emerges in real-space. However, after the quench (t > 0), two
occupancy fluctuations Nj,s − 1/2 of opposite signs depart from the bridged link and propagate along the
ring in opposite directions, determined by the sign of the flux Φ. When the SSH chain is initially in the
trivial phase, such an effect is absent, the occupancy evolution is quite similar to the case of a ring-to-trivial
chain quench already shown in figure 3(b) and is not reported here. The evolution of the edge polarization
at the cell j = 1 is shown in figure 5(c) in the early time range highlighted by the dashed circle of panel (b),
for various flux values. Again the presence of the flux is crucial to observe real-space signatures of the
quench.
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Figure 5. (a) By binding the extremal sites of a SSH chain in the topological phase, the chain is brought into a SSH ring threaded
by a flux. Here we have taken N = 80 sites (i.e. M = 40 cells) and v = 0.7|w|; (b) space–time evolution of the site occupancy Nj,s

along the ring, for a flux Φ = Φ0/5; (c) time evolution of the edge polarization P1 = N1A − N1B of the first cell (j = 1), for
various values of the flux Φ.

5. Quenches in chiral-symmetry broken models and effects of band filling

In the previous section we have shown how to violate the conditions equations (23) and (24), while
preserving the chiral symmetry S in the half-filled SSH model. Here we want to explore the dynamical
effect of quenches when the chiral symmetry is broken and the filling is not necessarily equal to 1/2, i.e.
beyond the framework where the model can be classified as a topological insulator. As a matter of fact, in a
realistic electron model on a bipartite lattice, the chiral symmetry is fragile. A difference δj between the
on-site energies of A and B sites is likely to exist, leading to an additional Hamiltonian term

Ĥχb =
∑

j

δj(n̂j,A − n̂j,B), (32)

which breaks the chiral symmetry because SĤχbS−1 = −Ĥχb [62]. On the one hand, in the absence of
chiral symmetry the very topological classification is not well defined since, for instance, one could go from
the range |v| > |w| to the range |v| < |w| without closing the gap. A priori, there is no guarantee that the
topological states exist at all. On the other hand, numerical analysis shows that, if the values of the δj are
small compared to the band gap 2εg, edge states still persist. Specifically, we shall consider a Hamiltonian

Ĥ = ĤSSH,χ + Ĥχb, (33)

where the first term, equation (2), contains a chiral disorder wj = w(1 + ξjd) and vj = v(1 + ηjd), while the
second term, equation (32), contains a chiral-breaking disorder δj = ζ j max(v,w)d. Here we have assumed
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Figure 6. The site occupancy profile of the half-filled chain of model (33) in the topological phase. The parameters are the same
as in figure 2, with the addition of the chiral-breaking disorder term. Its effect is to localize the two edge state wavefunctions on
opposite edges (thick and thin red curves), differently from the case with purely chiral disorder (see figure 2(b)). The
contribution of all occupied bulk states is described by the blue curve. The total site occupancy profile, depicted by the thick solid
black curve, exhibits a peak at one edge and a depletion at the other edge.

v,w > 0 and {ξj, ηj, ζ j} denote real random variables uniformly distributed in [−1/2,+1/2] with a
disorder strength d < |v − w|/max(v,w). Note that, although for each disorder realization the chiral
symmetry is broken by equation (33), the disorder-averaged Hamiltonian equation (33) still preserves the
chiral symmetry, so that the trivial and topological phases can still be defined in the sense of the average
values v and w. While reference [63] analyzed the Hamiltonian equation (33) in the case of local quenches
performed over a long quench time (τq � τ g) and at half filling, here we shall focus on the complementary
situation of a global quench in the short quench time limit (τq � τ g) and consider also filling values
different from a half, which turns out to be important for the effects in real-space.

Let us thus go back to the original problem illustrated in figure 1, and analyze a global quench from the
trivial to the topological chain, where now the Hamiltonian equation (33) includes the chiral-breaking term
equation (32).

5.1. The case of half-filling
At first, one might even expect that Ĥχb may favor the appearance of the edge states already at half-filling.
Indeed without such term equation (32) the site occupancy would always remain strictly locked to 1/2, due
to the theorem proven in section 3.1. In contrast, because the term (32) also breaks the charge conjugation
symmetry, CĤχbC−1 = −Ĥχb, the hypotheses of the theorem are violated, opening up the possibility to
observe fluctuations of the site occupancy, possibly at the edges. This expectation seems to be confirmed
when analyzing how the edge state wavefunctions are modified by the term Ĥχb. While in the purely chiral
SSH model ĤSSH,χ each wavefunction is localized on both edges even in the presence of chiral disorder
{vj,wj} (see figure 2), the addition of the chiral-breaking disorder Ĥχb localizes each discrete state of the
Hamiltonian (33) only on one single edge of the chain, as shown by the red curves of figure 6. This is the
hallmark of the break-up of the topological protection. Depending on the specific disorder realization, one
of the two edge wavefunctions is energetically slightly more favored than the other, so that the ground state
of the half-filled topological chain with chiral-breaking disorder exhibits a site occupancy with an
enhancement at one edge, a depletion on the other edge and a value roughly equal to 1/2 in the bulk (see
black curve of figure 6). In principle, such real-space signature of the edge state should appear by
performing an infinitely slow quench from the trivial to the topological chain, where the pre-quench trivial
ground state should evolve into the post-quench topological ground state. However, if the chiral-breaking
disorder term is weak, the energy separation between the two localized states is very small. In practice, at
half filling, any finite temperature in the pre-quench state leads the post-quench state to exhibit only
half-occupancy of both discrete states, quite similarly to what happens in the chiral SSH model Ĥχb.

The same effect occurs when the duration of the quench is short, as shown in figure 7(a), which
illustrates the space–time evolution of the site occupancy of a 80-sites chain that is suddenly quenched from
the ground state of the trivial phase (wpre = 0.7vpre) to the topological phase (wpost = vpre and
vpost = wpre), for given pre-quench and post-quench realizations of chiral and chiral-breaking disorder with
strength d = 0.1. Due to the chiral-breaking term equation (32), static deviations from the site occupancy
1/2 are present even before the quench, while after the quench these deviations fluctuate in time as well. In
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Figure 7. Effects of an instantaneous quench in a 80-sites chain (M = 40 cells) from the trivial phase (wpre = 0.7vpre) to the
topological phase (wpost = vpre and vpost = wpre), for a given realization of both chiral and chiral-breaking disorder with strength
d = 0.1. Panels (a)–(c) refer to the case Ne = M (μ = 0, half filling, insulating pre-quench state), while panels (d)–(f) to the
case Ne > M (μ = 0.44 vpre , metallic pre-quench state). Panels (a) and (d) describe the space–time evolution of the site
occupancy. Panels (b) and (e) display the polarizations P1 and P20 of the edge cell (j = 1) and the central cell (j = 20). Panels (c)
and (f) show the nonequilibrium distribution of the post-quench Hamiltonian (black and blue circles for bulk and edge states,
respectively). For comparison, the pre-quench equilibrium distribution is shown in red squares.

figure 7(b), the corresponding edge polarization P1 = N1,A − N1,B (black curve) is compared to the
polarization at the central chain cell P20 = N20,A − N20,B (red curve). As one can see, fluctuations do have
larger amplitudes at the chain edges than in the chain bulk. However, at each edge, the site occupancy
experiences an alternation of depletion and excess (blue and red colors in panel (a)), just like for the
quenches preserving the chiral symmetry discussed above (see e.g. figures 3(b) or 4). This quantitatively
shows that the chiral-breaking term does not really improve the observability of real-space effects of the
quench. In particular, the time-average of the fluctuations at the edge and in the bulk is essentially the same,
as highlighted by the arrows in figure 7(b).

In energy-space, however, the effects of the quench are seizable. Indeed the energy distribution of the
post-quench Hamiltonian displayed in figure 7(c) strongly differs from the pre-quench equilibrium one,
depicted in red for comparison. In particular, as far as the continuum spectrum is concerned (black
symbols), the non-equilibrium distribution that we obtain for the disordered chain-to-chain quench is
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quite similar to the result obtained for a quench in the clean bulk SSH model analyzed in reference [58],
and describes the population inversion effect found upon quenching from one phase to the other. This
effect can open up the possibility that, when the SSH model is coupled to a radiation [64], a stimulated
emission occurs due to transitions from the (almost filled) continuum states near the bottom of the
conduction band to the (almost depleted) states near the top of the valence band, with a radiation
frequency corresponding to the band gap. Apart from the presence of disorder, the major difference from
the ring case arises from the presence of the topological edge states in the post-quench spectrum of the
chain, highlighted by the blue symbols. Note that their occupancy is roughly 1/2. On the one hand, this is
precisely what disguises these states in the real-space occupancy at the chain edges, as argued above (see
figure 7(a)). On the other hand, differently from a purely bulk SSH system, in a chain quenched to the
topological phase the presence of half-occupied discrete levels near ε = 0 causes an additional emission
process, characterized by a frequency corresponding to a half of the gap, similar to the phenomenon
described in reference [65] of a quenched quantum well potential.

5.2. Away from half-filling
The results obtained above at half filling (Ne = M), where the model (33) describes a band insulator,
indicate that a quench from a trivial to the topological phase of a chain does lead to the appearance of site
occupancy fluctuations that are larger at the chain edges than in the bulk. However, the alternation of
depletion and excess yields a vanishing result upon time-average, both at the edges and in the bulk. In the
short quench time limit this holds for any temperature of the pre-quench state. We now analyze the effects
of a quench in a non half-filled chain, where the number Ne of electrons differs from the number M of
lattice cells. Note that in such a case the pre-quench ground state is metallic, with an excess of electrons
(holes) in the conduction (valence) band for Ne > M(Ne < M). At finite temperature this is described by

ρ̂pre =
e−β(Ĥpre−μN̂e)

Tr[e−β(Ĥpre−μN̂e)]
, (34)

where N̂e =
∑

j,s n̂j,s is the total electron number operator and μ the chemical potential. While in the

insulator μ = 0, the metallic state is described by μ 	= 0. Moreover, because N̂e transforms under charge
conjugation as CN̂eC−1 = 2M − N̂e the condition (23) of the theorem proven in section 3.1 is violated,
opening up the way to observe effects of the quench in real-space.

In principle, if one takes the standard disorder-free SSH model equation (1), the ideal situation to
observe the appearance of the topological edge states is a Gedankenexperiment where the pre-quench state
is the ground state of the trivial SSH chain (vpre > wpre) with exactly Ne = M + 1 electrons, with the extra
electron lying in the conduction band. By performing an infinitely slow quench (τ q →∞) to the
topological chain (wpost > vpost), the ground state evolves to the post-quench ground state of the
topological chain (see figure 1), where now both discrete levels will be occupied, instead of only one like in
the half-filled case. The extra electronic level, delocalized on both edges, causes the gradual appearance of
peaks localized at the chain edges in the site occupancy profile, over a value of Nj,s = 1/2 in the bulk of the
chain. In practice, however, such ideal conditions are not necessarily easy to realize and/or useful. First,
chiral-breaking disorder equation (32) is typically present as well. Second, in view of technological
applications, one typically wants these operations to be performed sufficiently fast. For a finite and possibly
short quench time τq the post-quench state may differ from the slow-quench scenario. Third, in a metallic
system the filling would deviate from 1/2 not just by one single electron. A finite fraction of the (say)
conduction band is occupied and, even in the adiabatic quench limit, these extra conduction states may
mask the localized peaks due to the edge states. This is certainly the case, for instance, when the filling
approaches 1. The question is thus whether the edge states dynamically appear in real-space when these
aspects are taken into account.

For definiteness, we shall analyze the case Ne > M, where before the quench a small fraction of the
conduction band of the trivial phase is occupied, e.g. 1/10 of the conduction bandwidth from its band
bottom. For the values wpre = 0.7vpre this corresponds to setting the chemical potential to μ = 0.44vpre.
Then, we consider a quench to the topological phase of the chain (wpost/pre = vpre/post), in the short quench
time limit (τq → 0). The resulting time evolution of the site occupancy is shown in figure 7(d). As one can
see, while in the pre-quench state the edge states are absent, after the quench they start to become visible
and stable. This can be seen explicitly in figure 7(e), where the polarization of the edge cell (black curve)
and of the central chain cell (red curve) are compared. Differently from the half-filling case [panel(b)], the
edge occupancy oscillates around an average value that is finite and thus differs from the small one obtained
in the bulk of the chain, as highlighted by the arrows. Finally figure 7(f) shows the corresponding
nonequilibrium post-quench energy distribution. Note that the occupancy of the discrete states near ε = 0
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significantly differs from 1/2. On the one hand, this is the reason for their appearance in real-space at the
chain edges. On the other hand, this reduces the occupancy difference from the (almost filled) states near
the bottom of the conduction band, thereby reducing the spontaneous emission effect as compared to the
half-filling case shown panel (c).

6. Discussion and conclusion

In this article we have analyzed how a quantum quench applied to the SSH model (2) impacts on
observables that are local in real-space, namely the site occupancy and the cell polarization.

In section 3 we have proven a general theorem ensuring that, when the pre-quench state and the
quenching Hamiltonian fulfill the charge conjugation symmetry C, the occupancy of each lattice site
remains firmly locked to the value 1/2, at any time. These symmetries are always satisfied in the customary
case of a half-filled SSH chain. Indeed, because C = ST and the chiral symmetry S is preserved by the SSH
model, the breaking of C requires also the breaking of time-reversal symmetry T , which is not possible for
spinless electrons in a chain lattice with OBCs. As a consequence of the proven theorem, a quench from the
trivial to the topological phase performed on a SSH chain has no effect whatsoever on the site occupancies.
In particular, no signature of the topological edge states appears locally in real-space, independently of the
quench protocol, of the temperature of the pre-quench thermal state and also of the presence of chiral
disorder. This is strikingly different from what is known to happen in k-space. Indeed when a quench
between two topologically different phases is performed, a dynamical quantum phase transition [66] is
known to arise, and the momentum distribution exhibits a band population inversion related to a
dynamical topological invariant [58, 67, 68]. Our result thus implies that these out of equilibrium
phenomena can be detected in real space only through non-local quantities, such as correlation functions.

The effects of the quench can become visible in observables that are local in real space only when charge
conjugation symmetry is broken. This can be done either remaining within the framework of the
topological insulator characterization, i.e. by preserving the chiral symmetry S and the half-filling
condition, or going out of such framework. The first case requires suitably engineered setups. In particular,
in section 4 we have shown that a local quench cutting a SSH ring threaded by a flux into a SSH chain (or
vice versa), violates the hypotheses of the above theorem while still remaining in the topological insulator
framework. Real-space effects of the quench then become observable and quite distinct dynamical features
appear in the two phases. In particular, when the pre-quench ring is cut into a trivial chain the site
occupancy fluctuations appear near the center of the chain, while when the ring is cut into a topological
chain these fluctuations appear at the chain edges after a time τL (see figure 3), and then repeat with a
dynamical alternation of excess and depletion at each edge. Such effect at the edges appears even more
clearly in a lattice with smaller number of sites (see figure 4). Conversely, when the local quench bridges a
chain to form a ring with flux, the site occupancy fluctuations propagate towards the chain center if the
pre-quench chain is in the topological phase (see figure 5), whereas such effect is absent if the chain is in the
trivial phase. In all such dynamical effects the presence of the flux Φ threading the ring is crucial. For
vanishing flux or for Φ = pΦ0/2, where time-reversal and charge conjugation hold, the site occupancy
remains locked to the pre-quench value 1/2.

In section 5 we have explored the effects of the quench beyond the framework of the topological
insulator. By adding a disordered on-site potential term equation (32) both the chiral and the charge
conjugation symmetries get broken. Although for a disorder realization the topological classification is in
principle not well defined and the existence of the edge states is not guaranteed, the disorder-averaged
Hamiltonian (33) still preserves S, and the topological phases can still be considered to hold for weak
enough disorder. We have thus analyzed the effects of a quench from a trivial to a topological chain. Our
results show that, although the chiral-breaking disorder localizes each edge state wavefunction on one edge
only (see figure 6), in practice such term does not lead to any improvement in terms of their observability
in real-space as compared to the purely chiral SSH model. In particular, for a half-filled system, while the
edge occupancy exhibits much larger fluctuations than the bulk, its time average is roughly equal to the bulk
one (see figure 7(b)). Thus, real-space effects of the quench do exist, but time-resolved measurements are
needed to probe the quench-induced appearance of the edge states. In contrast, for filling values different
from 1/2, where the model is slightly metallic, the edge site occupancy fluctuates around a value that is
different from the bulk. In this case the dynamical signature of the topological states survive both
time-average and the presence of chiral-breaking disorder, and persist even in the short quench time limit
(see figures 7(d)–(e)).

In conclusion our analysis points out that, when a topological insulator is driven out of equilibrium by a
quantum quench, the presence of additional symmetries (such as charge conjugation or time-reversal) in
the quenching Hamiltonian and in the pre-quench state can completely mask the impact of the quench in
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real-space occupancies, even in customary cases where the energy distributions are typically strongly
affected. Only when such additional symmetries are suitably broken, like in the setups and protocols
proposed here in sections 4 and 5, real-space effects do emerge in local observables, and exhibit distinct
dynamical behavior in the topological and trivial phases. The huge advances in realizing topological models
with cold atoms in optical lattices, which nowadays also enable one to effectively implement a Peierls
substitution in tunneling amplitudes [69–71], represent a promising perspective to test the predicted
quench effects.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Appendix

Here we briefly summarize some aspects of the standard homogeneous SSH model, which corresponds to
taking vj ≡ v ∈ C and wj ≡ w ∈ C in equation (2). Let us now recall the cases of a ring and of a chain.

A.1. Ring (periodic boundary conditions) and topological classification
Let M denote the number of cells and by N = 2M the number of lattice sites of a ring-shaped lattice. By
re-expressing the site operators as cj,s = M−1/2

∑
k eikjack,s, the PBC cM+1,A = c1,A enables one to

straightforwardly rewrite the Hamiltonian equation (2) as a decoupled set of k-dependent Hamiltonians

ĤSSH,χ =
∑

k

(
ĉ†k,A, ĉ†k,B

)
H(k)

(
ck,A

ck,B

)
. (A.1)

Here a denotes the cell size, k = 2πn/Ma the wavevectors (with n = −M
2 ,−M

2 + 1, . . . , M
2 − 1 for even M

and n = −[ M
2 ],−[ M

2 ] + 1, . . . ,+[ M
2 ] for odd M), and ck,s are the Fourier mode operators [72]. In

equation (A.1) H(k) = σ · b(k) is the first-quantized SSH Hamiltonian in k-space, with σ denoting the set
of Pauli matrices and b(k) =

(
Re(v) + Re(w eika),−Im(v) + Im(w eika) , 0

)
a vector lying in the plane. The

absence of the bz component is the hallmark of the chiral symmetry, which is expressed by the property
σzH(k)σz = −H(k) in terms of the first-quantized Hamiltonian. In terms of the tenfold classification
scheme [73, 74], the SSH model is in the AIII symmetry class. If w, v ∈ R the Hamiltonian H(k) also fulfills
the properties H∗(k) = H(−k) and σzH∗(k)σz = −H(−k) encoding the time-reversal and charge
conjugation symmetries, respectively, and the model is in the BDI symmetry class. The spectrum consists of
two bands

ε±(k) = ±|b(k)| = ±
√
|w|2 + |v|2 + 2|vw| cos(ka + arg(v) + arg(w)), (A.2)

separated by the bandgap 2εg = 2‖v| − |w‖. The maximal value of the group velocity v(k) = �
−1∂ε/∂k is

vmax = a min(|v|, |w|)/� and determines the minimal timescale equation (31) an electron wavepacket takes
to travel across the ring length L = Ma.

The single-particle eigenvectors related to the two bands ε± are |u−(k)〉 = (1 , −eiϕ(k))T/
√

2 and
|u+(k)〉 = (e−iϕ(k) , 1)T/

√
2, with ϕ(k) = −ϕ(−k) denoting the polar angle of the b(k) vector, so that

tanϕ(k) = by(k)/bx(k). In particular, in the thermodynamic limit, where k becomes a continuous variable
spanning the Brillouin zone [−π,+π]/a, b(k) draws a circle centered at (Re(v),−Im(v)) and with radius
|w|. As is well known, this enables one to identify two topological classes of the insulator, depending on
whether such circle encloses or not the origin (corresponding to the gap closing). Correspondingly, the
winding number of the fully occupied lower band of the insulator

ν = − i

π

∮
〈u−|∂ku−〉dk =

1

2π

∮
dϕ

dk
dk (A.3)

takes two different integer values ν = 1 (for |v| < |w|) and ν = 0 (for |v| > |w|). We emphasize that, while
the two phases are topologically distinct, labeling one phase as ‘topological’ and the other one as ‘trivial’ is
in fact unphysical as long as the model is defined on a ring. This is because the topological classification is
defined once the unit cell is identified, which is completely arbitrary in a system with PBCs, though. Indeed
the very Hamiltonian ĤSSH, written in equation (1) by adopting (A, B) as unit cell, could be equivalently
rewritten choosing (B, A) as unit cell, which would amount to exchanging the role of intra- and inter-cell
hopping amplitudes (v ↔ w), so that the ‘topological’ phase for the choice (A, B) corresponds to the
‘trivial’ phase for the choice (B, A) and vice versa. The emergence of topological edge states, which are
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perhaps the most striking hallmark distinguishing the topological character of the two phases, requires the
breaking of the PBCs.

A.2. Chain (open boundary conditions)
The customary way to break the PBCs is to cut the ring into a finite chain, thereby interfacing the SSH
model with vacuum. In turn, this lifts the degeneracy about the choice of the unit cell: if (say) (A, B) is the
unit cell of the chain with an even number of sites N = 2M, the OBCs of the chain impose
cM+1,A = 0 = c0,B, where M again denotes the number of cells. As argued above, in a chain the hopping
amplitudes can be taken as real and positive, v,w ∈ R+, without loss of generality. The OBCs modify the
spectrum and enable one to identify the actual topological and trivial phases. Indeed, besides a continuum
spectrum similar to the ring, when v < w the chain also features two additional discrete levels (topological
phase), which are absent for v > w (trivial phase) instead. The difference between the two phases becomes
apparent in the so called dimerized limit, where one of the two hopping amplitude is set to zero. The SSH
chain eigenstates resulting from the OBCs are non-degenerate and can be given an analytic expression [75,
76]. In particular, the continuum eigenstates extend over the entire bulk of the chain and can formally be
built by linearly combining the |u±(k)〉 and |u±(−k)〉 of the ring

|vbulk
± (k)〉 = 1√

Nk

M∑
j=1

(
sin[kaj − ϕ(k)]

± sin[kaj]

)
, (A.4)

where tanϕ(k) = w sin(ka)/(v + w cos(ka)) and Nk = M + v(v + w cos(ka))/(v2 + w2 + 2vw cos(ka)) is
a normalization constant. However, the quantization rule of k’s differs from the customary kaM = 2πn in
the ring and fulfill the transcendental equation ka(M + 1) = πn + ϕ(k) with n = 1, 2, . . . , M. In contrast,
the topological edge eigenstates read [75, 76]

|ψedge
± 〉 = 1√

N0

M∑
j=1

(−1)j+1

(
sinh[κa(M + 1 − j)]

± sinh[κaj]

)
, (A.5)

where κ fulfills v sinh[κ(M + 1)a] = w sinh[κMa] and N0 = (w sinh(2κaM)/2v sinh(κa)) − (M + 1) is a
normalization constant. They are localized mainly on A sites on the left edge and on B sites on the right
edge. Their energies are εedge

± = ±w sinh(κa)/ sinh(κ(M + 1)a), whose difference decreases exponentially
as ∼ exp[−κMa] with the number of cells.
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