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Abstract

The research on the Very High Cycle Fatigue (VHCF) response of materials is

fundamental to guarantee a safe design of structural components. Researchers

develop models for the fatigue life in VHCF, aiming at assessing the stress–life
relation and, accordingly, the probabilistic S–N (P-S–N) curves. In the paper,

the models for the stress–life relation in VHCF are comprehensively reviewed.

The models are classified according to the approach followed for defining the

stress–life dependency, that is, power law, probabilistic, fracture mechanics, or

Paris law-based approach. The number of failure modes that can be modeled,

the statistical distribution for the fatigue life, and the characteristics of the esti-

mated P-S–N curves are also reviewed by analyzing the fitting capability of

experimental datasets for each model. This review is supposed to highlight the

strengths and weaknesses of the currently available models and guide the

future research.

KEYWORD S

duplex S–N curves, fatigue limit, FGA, statistical model, step-wise curves, ultrasonic
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1 | INTRODUCTION

In the last years, the number of research on the Very
High Cycle Fatigue (VHCF) response of materials has sig-
nificantly increased.1,2 The VHCF life range corresponds
to the fatigue life region beyond 107 cycles with a fatigue
strength below the traditional fatigue limit in case of
high-strength steels3–5 or below the knee point for alumi-
num alloys. Indeed, for the design of components, like
car engines and turbine palettes,1 subjected to fatigue
loads for a long time or to high-frequency loads,2 the con-
ventional design methodologies based on the assumption

of a fatigue limit above 2 �106 cycles or 107 cycles are not
sufficient to guarantee their structural integrity. Accord-
ingly, a large number of results and research have been
carried out through the years to assess the mechanisms
of crack initiation in the VHCF region and to model the
fatigue life behavior through the analysis of the experi-
mental results.

The research activity on the VHCF response of mate-
rials focuses on three main research fields. The first one
concerns the development of testing equipment capable
of reliably assessing the VHCF response of materials in
a reasonable testing time,1,6,7 also at elevated
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temepratures8 and to test different materials or joints
(e.g., UFTMs for test on adhesives,9,10 on welded
joints,11,12 and on composite materials13) under different
loading conditions (torsional fatigue tests,14–16 biaxial
fatigue tests,17,18 and under variable loading19). The sec-
ond main research field focuses on the assessment of the
mechanisms of crack initiation in VHCF. Indeed, it is
widely accepted in the literature that the crack in VHCF
mainly originates from a defect (initial defect) present
within the material volume. The peculiarity of the VHCF
failures is that the crack can initiate and propagate even
if the stress intensity factor (SIF) associated with the ini-
tial defect is below the threshold for crack propagation.
The initiation of the fatigue crack is generally accompa-
nied by the formation of a characteristic area close to the
initial defect, which is called, depending on the measur-
ing technique, Optically Dark Area (ODA20), Fine Granu-
lar Area (FGA21,22), and Granular-Bright Facet (GBF23).
Research efforts are focused on understanding the mech-
anisms of crack initiation around the initial defect with
the FGA formation, which is fundamental for the assess-
ment of the VHCF response. For a comprehensive review
on the formation of this characteristic region, the reader
is referred to the review paper.24 The third main mac-
roarea of research concerns the development of models
for the fatigue life in VHCF. Conventional low-cycle
fatigue (LCF) and high-cycle fatigue (HCF) life models
cannot, in general, be used for modeling the VHCF
response, since the failure origin is different (surface
nucleation in LCF–HCF and internal nucleation in
VHCF). The formation of the fatigue cracks from defects
with the FGA formation should be also considered when
modeling the fatigue life. Moreover, the probabilistic S–N
(P-S–N) curves should be modified to take into account
the occurrence of the two failure modes and a second
decreasing trend below the conventional fatigue limit. In
the literature, many different models have been proposed
throughout the years based on different approaches. A
proper modeling of the fatigue life, to assess the stress–
life relation and, accordingly, the P-S–N curve, is of fun-
damental importance for the design of components
against VHCF failures.

In the paper, the models for the fatigue life in VHCF
are reviewed. The main objective is to analyze and clas-
sify the models that define a relation between the fatigue
life and the applied stress amplitude in order to estimate
the P-S–N curves. Other reviews on this subject have
been published in the literature25–27: in particular, Hong
and Sun26 highlight the importance of understanding the
mechanisms of crack initiation from defects to model the
stress–life relationship and proposed the well-known
“Numerous Cyclic Pressure” model to explain the forma-
tion of the FGA for failures in the VHCF region.

In the first part of the paper, the models for the
fatigue limit in VHCF are described and analyzed. In the
second part, the models for the fatigue life are critically
reviewed, and the approach followed to define the stress–
life relation or the statistical distribution of the fatigue
life is analyzed. This comprehensive review is supposed
to show the strengths and weaknesses of the models cur-
rently available in the literature and to guide the future
research by highlighting the already addressed research
issues and those that should be investigated in the future.

2 | FATIGUE LIMIT IN VHCF

In this section, the models for the VHCF fatigue limit,
that is, the threshold for crack propagation in the VHCF
region, are reviewed. In order to model the crack initia-
tion with a SIF smaller than the SIF threshold, the influ-
ence of the FGA is taken into account. In Section 2.1, the
models for the fatigue limit available in the literature are
described, analyzing the approaches followed for
assessing their formulation.

As highlighted in Section 1, the characteristic area
surrounding the initial defect and responsible for the
crack initiation has been called in different ways in the
literature. For the sake of clarity and uniformity, this
region will be called in the following FGA, even if called
in a different way in the original paper. Due to the impor-
tance of the analysis of the fracture surfaces when the
experimental data are analyzed, Figure 1 shows a picture
of a fracture surface with a fish-eye morphology, typical
of VHCF failures, that we obtained by testing an high-
strength steel. The main features, that is, the initial
defect, the FGA, and the fish-eye boundary, are
highlighted in the figure.

It must be noted that the presence of a fatigue limit in
VHCF is still debated in the literature. However,
according to the well-known Murakami model, a fatigue
limit can be estimated in the presence of defects or of the
weakening mechanisms inducing the formation of the
FGA, and it corresponds to the stress amplitude at which
a crack cannot propagate from a defect. Other authors in
the literature assumed the existence of a fatigue limit28,29

in presence of defects and, therefore, in the VHCF region.
Moreover, according to Mughrabi (in particular to the
multistage fatigue life diagrams4), the presence of a lower
fatigue limit in the VHCF regime can be assumed for
Type 2 material (“Finally, there are reasons to believe that,
at sufficiently low-stress levels, there will be a true ultimate
fatigue limit (range II)”). Therefore, according to the liter-
ature, we can assume the existence of a fatigue limit in
the VHCF region, even if this assumption has to be
proven in future research. This section focuses, therefore,
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on the models that have the objective to propose a formu-
lation for the fatigue limit, that is, a formula that permits
to compute the fatigue strength at which the crack does
not propagate from defects, since the stress and the weak-
ening mechanisms are not strong enough to originate a
fatigue crack.

For what concerns the nomenclature, the area of the
initial defect in a direction perpendicular to maximum
applied stress (or its equivalent size30) is called ad,0
throughout the paper. The number of cycles to failure,
the stress amplitude, the SIF threshold, and the fatigue
limit are called Nf , sa, Kth, and sl respectively.

2.1 | Models for the fatigue limit in
VHCF

In Murakami,30 an expression for the computation of the
fatigue limit in the presence of defects is proposed. The
fatigue limit is defined as “the threshold stress for crack
propagation and not the critical stress for crack initiation”
and is obtained by equaling the SIF associated to a defect
to the SIF threshold of the material. The fatigue limit
depends on the material Vickers hardness, HV , and is
inversely proportional to

ffiffiffiffiffiffiffiffi
ad,0

p� �1=6
(Murakami30). How-

ever, for failures in the VHCF region, the crack originates

from a defect characterized by a SIF smaller than the SIF
threshold and starts propagating as a long crack31 from
the FGA borders. The crack growth within the FGA is
possible, according to Murakami,30 due to weakening
mechanisms induced by the hydrogen trapped near the
initial defect (“hydrogen assisted crack model”). There-
fore, differently from failures from defects in HCF, the
initial defect area corresponds to the area including the
initial defect and the FGA,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ad,0þaFGAð Þp

, being aFGA
the size of the ODA surrounding the initial defect with
size ad,0, according to Equation 1:

sl ¼ C � HV þ120ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ad,0þaFGAð Þp� �1=6 � 1�R

2

� �α
, ð1Þ

where C is a constant coefficient depending on the defect
location (e.g., C¼ 1:56 for internal defects) and R is the
stress ratio, defined as the ratio between the minimum
applied stress, smin, and the maximum applied stress,
smax , in a load cycle, and α is a constant coefficient
depending on HV (α¼ 0:226þHV �10�4). Equation 1
enables to easily compute the fatigue limit in the VHCF
regime and to prevent failures characterized by crack
initiation with ODA formation.

The validity of Equation 1 modified for VHCF failures
was proved in Murakami and Yamashita,32 as shown in
Figure 1, which plots the ratio between the applied stress
amplitude and the fatigue limit with respect to Nf . In the
figure, σ¼ sa and σw ¼ sl. The experimental data have
been collected by testing, through tension–compression
fatigue tests at stress ratio R¼�1, the heat-treated hard
steel Cr-Mo SCM435 steel. In Figure 2, QT refers to the
“quenched and tempered” condition, whereas VQ refers
to the “quenched in vacuum” conditions. According to
Figure 2, almost all fatigue failures occur for σ=σw larger
than 1, whereas runout specimens are characterized by a
ratio σ=σw smaller than 1.

A similar approach is followed in Chapetti et al.33,34

The threshold for crack propagation is equaled to the SIF
associated to an inclusion with radius Rmax

i (i.e., the
radius of the largest inclusion within the material) in
order to obtain an expression for the internal fatigue
limit, sint at stress ratio R¼�1 (according to Chapetti
et al., “the stress level below which fracture produced by
cracks initiated from an internal inclusion is not found
after 1010 cycles”). It is worth noting that the internal
fatigue limit corresponds to the stress amplitude below
which a crack does not form even if its formation is
assisted by the weakening mechanisms that originate the
FGA around defects with a SIF smaller than the SIF
threshold.

FIGURE 1 Fracture surface typical of failures in the VHCF

region with the main features, the initial defect, the FGA, and fish-

eye borders highlighted [Colour figure can be viewed at

wileyonlinelibrary.com]
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sint ¼ 3:55 � HV þ120ð Þ
2 � 3 �Rmax

i

� �1=6 ¼ 256 � ΔKthffiffiffiffiffiffiffiffiffiffi
Rmax
i

p , ð2Þ

with

ΔKth ¼ 4 �10�3 HV þ120ð Þ � 3 �Rmax
i

� �1=3
if ΔKth <10MPa

ffiffiffiffiffi
m

p
,

ΔKth ¼ 10MPa
ffiffiffiffiffi
m

p
if ΔKth ≥ 10MPa

ffiffiffiffiffi
m

p
:

(
ð3Þ

For the computation of the internal fatigue limit, a
crack three times larger than the largest inclusion has
been considered (i.e., 3 �Rmax

i ), since the weakening
mechanism inducing the ODA formation, that is, “the
hydrogen embrittlement process assisted by fatigue,”
takes place within a region with a maximum extension
equal to three times the inclusion radius computed
from the center of the inclusion. Accordingly, the zone
influenced by the inclusion is conservatively assumed
as the size of a sphere with radius three times larger
than the radius of the initial inclusion. The model has
been validated on experimental datasets on high-
strength steels available in the literature (the results
are reported in a tabular form in the original paper)
and proved to be in most cases conservative, with
Chapetti et al. pointing out however the need for
further validations to assess the limits of the proposed
equations.

The macromechanical models in Ref.28,35,36 permit
assessing the fatigue limit by analyzing the mechanisms
of crack initiation in the vicinity of the initial defect. In
particular, in Liu et al.,28,35 the fatigue limit is estimated
by adding a SIF, correlated to the hydrogen concentrated
near the initial defect, to the SIF computed by consider-
ing the initial defect size. Accordingly, the total SIF for
the defect, KT , is given by the sum of the maximum SIF
associated with the initial defect, KImax , and the SIF that
models the detrimental presence of hydrogen near the
defect, KH . KH is obtained from literature models
accounting for the amount of hydrogen concentrated in
the material and is dependent on the coefficient C0, i, the
initial mass fraction of hydrogen in the cyclic plastic zone
around the defect. Liu et al. moreover estimated the SIF
threshold at the periphery of the GBF, KGBFð Þth, by ana-
lyzing the fracture surfaces of six steels (four spring steels
and two bearing steels) subjected to fully reversed ultra-
sonic fatigue tests up to 109 cycles.35 The expression for
KGBFð Þth was found to be equal to that obtained by
Murakami for the SIF threshold (eq. 5.4 in Murakami30)
but with different coefficients. Through an analysis of the
SIF close to the initial defect, the authors conclude that
the crack propagation is possible only if the condition
KT ¼KImax þKH ¼ KGBFð Þth is fulfilled. With some
passages, the authors obtained the following expression
for the fatigue limit sl,LIU :

sl ¼C � HV þ120ð Þ0:9375ffiffiffiffiffiffiffiffi
ad,0

p� �0:1875 , ð4Þ

being C a constant coefficient that can be estimated ana-
lytically and experimentally. The authors pointed out that
C has to be estimated from the experimental data, since it
can be hardly estimated analytically due to the large
uncertainty in the coefficients involved in the analytical
expression. For the investigated high-strength steels
(18 high-strength steels subjected to fully reversed ultra-
sonic tension–compression fatigue tests were considered),
C was found to be equal to 2:7. For inclusion sizes larger
than 6 μm, the model is in good agreement with the
experimental data, as shown in Figure 3, which plots the
fatigue limit (σw ¼ sl) normalized by the quantity
HV þ120ð Þ0:9375 with respect to the initial defect size
(
ffiffiffiffiffiffiffiffiffiffiffiffi
areain

p ¼ ffiffiffiffiffiffiffiffi
ad,0

p
). All the data are within an error band

�15%.
In Paolino et al.,36 the models available in the

literature are generalized, and the intrinsic randomness
associated with the VHCF phenomena is considered in a
statistical framework. Starting from the “hydrogen
assisted crack growth” theory proposed by Murakami,30

the SIFs involved in the crack initiation phase in VHCF

FIGURE 2 Experimental validation of the model for the

fatigue limit32: ratio between the fatigue limit in Equation 1 and the

applied stress amplitude with respect to Nf (reprinted with

permission from Elsevier)
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failures have been defined and generalized. In particular,
the SIF threshold range, Δkth, has been expressed as

Δkth ¼ 10�3 � cth � HV þ120ð Þ � ffiffiffiffiffiffiffiffi
ad,0

p αth,t , ð5Þ

being cth and αth constant coefficients. The hydrogen
assistance has been modeled with an additional SIF with
the following formulation:

kH ¼ 10�3 � cH � sa � ffiffiffiffiffiffiffiffi
ad,0

p 0:5�αH � ffiffiffiffiffi
ad

p αH , ð6Þ

being
ffiffiffiffiffi
ad

p
the square root of the defect area (i.e., the area

of the forming FGA) and cH and αH constant coefficients.
The total SIF at the crack tip, kT , is given by the sum of
the SIF associated with the initial defect, kd, and kH
(i.e., kT ¼ kdþkH). The crack growth could occur only if
kT > kth. According to the Paolino et al., four different
scenarios are possible:

1. crack initiation and propagation directly from the ini-
tial defect;

2. crack initiation from the defect and following propa-
gation with fish-eye morphology and FGA (in this
case

ffiffiffiffiffi
ad

p ¼ ffiffiffiffiffiffiffiffiffiffi
aFGA

p
);

3. crack initiation with FGA formation but crack arrest
and infinite life;

4. crack does not initiate even with the hydrogen
assistance.

From this analysis, the following expression for the
fatigue limit was obtained:

sl ¼ csl � cth � HV þ120ð Þffiffiffiffiffiffiffiffi
ad,0

p� �0:5�αth,t
, ð7Þ

being csl a constant coefficient that must be estimated
from the experimental data and that models the hydro-
gen assistance (i.e., cth and αth are obtained by analyzing
the SIF threshold in Equation 5). The authors moreover
showed the procedure for the estimation of the csl coeffi-
cient through the application of the maximum likelihood
principle, with the likelihood function expressing the
probability of having a failure or a runout for the experi-
mental data. Starting from the statistical distribution of
Δkth, it is shown that the logarithm of the fatigue limit is
a random variable (rv), Xl j ffiffiffiffiffiffiffiffi

ad,0
p

, that follows a Normal
distribution with mean μXl

ffiffiffiffiffiffiffiffi
ad,0

p� �
depending on

ffiffiffiffiffiffiffiffi
ad,0

p
and constant standard deviation σXl . In Paolino et al.,36

the uppercase has been used for the rv, whereas the low-
ercase has been used for the realization of the rv (i.e., for
deterministic values). The cumulative distribution func-
tion (cdf) of Xl j ffiffiffiffiffiffiffiffi

ad,0
p

, FXlj ffiffiffiffiffiffiad,0
p xl;

ffiffiffiffiffiffiffiffi
ad,0

p� �
, is given by

FXlj ffiffiffiffiffiffiad,0
p xl;

ffiffiffiffiffiffiffiffi
ad,0

p� �¼Φ
xl�μXl

ffiffiffiffiffiffiffiffi
ad,0

p� �
σXl

� �

with
μXl

ffiffiffiffiffiffiffiffi
ad,0

p� �¼ csl � cth � HV þ120ð Þffiffiffiffiffiffiffiffi
ad,0

p� �0:5�αth

σXl ¼ const

8><>:
ð8Þ

The model has been validated on an experimental
dataset obtained by the authors through ultrasonic fully
reversed tension–compression fatigue tests on H13 steel
specimens. Figure 4 plots the estimated median and 10th
and 90th quantiles of the fatigue limit with respect toffiffiffiffiffiffiffiffi
ad,0

p
and proves the effectiveness of the proposed model,

since all the experimental failures are above the
estimated quantiles of the fatigue limit.

According to Equation 8 and Figure 4, as well as for
the other models described in this section,28,30,32,34,36 the
fatigue limit is a function of the defect size. This depen-
dency is eliminated by exploiting the properties of the
marginal cdfs and by considering the statistical distribu-
tion of the defect size. The cdf of the fatigue limit no
more conditioned to the defect size (marginal fatigue
limit, FXl xlð Þ) is given by

FXl xlð Þ¼
Z ∞

0
FXlj ffiffiffiffiffiffiad,0

p xl;
ffiffiffiffiffiffiffiffi
ad,0

p� �
f ffiffiffiffiffiffi

Ad,0

p ffiffiffiffiffiffiffiffi
ad,0

p� �
d
ffiffiffiffiffiffiffiffi
ad,0

p
, ð9Þ

According to the literature,30
ffiffiffiffiffiffiffiffi
Ad,0

p
was assumed to

follow a largest extreme value distribution (LEVD). The

FIGURE 3 Validation of the fatigue model in Liu et al.28:

fatigue limit (σw ¼ sl) normalized by the quantity HV þ120ð Þ0:9375
with respect to the initial defect size (

ffiffiffiffiffiffiffiffiffiffiffiffi
areain

p ¼ ffiffiffiffiffiffiffiffi
ad,0

p
) (reprinted

with permission from Elsevier)
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model in Equation 9 was successfully validated, with all
the experimental failures above the 90th quantile of the
fatigue limit.

A further generalization of the fatigue limit model
defined by the research group of the Politecnico di Torino
has been proposed in Paolino et al.37 In particular, a
reduction SIF kth,r that models the weakening mecha-
nisms for crack initiation from the initial defect is intro-
duced. Accordingly, a local SIF threshold, kth,l, associated
to the initial defect, has been defined as the difference
between the SIF threshold (Equation 9) and the reduc-
tion SIF (i.e., kth,l ¼ kth�kth,r). In these cases, the
unknown parameters have been estimated by minimizing
the difference between the number of cycles consumed
within the FGA and the number of cycles estimated with
the proposed model, by assuming that the crack growth
within the FGA can be described with the Paris law
(i.e., da=dN ¼ cI � kd�kth,lð ÞmI , being cI and mI unknown
coefficients and kd the SIF associated with the defect).
The model is found to be in agreement with the experi-
mental data, with the experimental failures conserva-
tively above the estimated 90% fatigue limit. The
dependency between the fatigue limit and the risk vol-
ume (according to Murakami,30 the volume of material
subjected to a stress amplitude larger than the 90% of the
maximum stress) and the influence of the stress ratio
have been also investigated by the research group of the
Politecnico di Torino in Paolino et al.38–40

According to the above analysis, the defect and the
FGA size affect the crack initiation in VHCF and the
fatigue limit. For the Murakami model (Equation 1), the
VHCF limit can be estimated only if the FGA size is
known, whereas for the other three models, the initial
defect size must be considered. The estimation of the
defect size is easier than the estimation of the FGA size,
which is not known a priori before experimental tests.
On the contrary, the defect size can be estimated through
different techniques (e.g., inclusion sampling, CT scan).

In order to estimate the FGA size without performing
experimental tests, in Murakami and Yamashita,32 a pro-
cedure for the estimation of the FGA size from the initial
defect size is proposed and based on the “Master curve of
ODA.” It must be also noted that, even if the formula-
tions in Ref.28,35,36 (Equations 4, 8, and 9) depend on the
defect size, a preliminary experimental phase is necessary
to estimate the constant material coefficients, with proce-
dures requiring the assessment of the FGA size. However,
once the coefficients have been estimated, the formula-
tions for the fatigue limit in Ref.28,35,36 (Equations 4, 8,
and 9) can be easily used by considering the defect size.
On the other hand, the model in Chapetti et al.34 can be
applied without the need of assessing the FGA size. How-
ever, this model (Equation 2) is based on the assumption
that the region affected by the hydrogen is a circular
region with a radius three times the inclusion radius.
This assumption was shown to be valid by Chapetti et al.,
but it should be also validated on other metallic materials
or if different weakening mechanisms are responsible for
the crack growth within the FGA.

In general, all the analyzed fatigue limit formulations
point out the need of reliably assessing or estimating the
defect and the FGA size. Moreover, apart from the for-
mulation in Paolino et al.36 (Equations 8 and 9), the sta-
tistical scatter is not taken into account, and the
quantiles of the fatigue limit are not defined, despite their
importance when components are to be designed.
Accordingly, the research should also focus on the statis-
tical distribution of the fatigue limit to provide safe
design methodologies.

To conclude, all the formulations analyzed in this
section can be applied. The formulation in Equation 2
does not require a time-consuming experimental cam-
paign and the following fractographic analysis. However,
the validity of the assumed parameters and also the
assumption on the size of the FGA should be verified on
a larger number of experimental results. On the other

FIGURE 4 Validation of the fatigue

model in Paolino et al.36: fatigue limit

with respect to
ffiffiffiffiffiffiffiffi
ad,0

p
(reprinted with

permission from Wiley)
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hand, formulations in Equations 4 and 7 require time-
consuming experimental tests, and the FGA size must be
necessarily measured. Therefore, they are surely valid for
the tested material. In general, experimental tests on the
material that will be used for the final component and a
proper estimation of the material parameters involved in
the models are recommended, rather than assuming
averaged material parameters based on literature results.

3 | FATIGUE LIFE IN VHCF

In this section, the models for the VHCF life are investi-
gated, focusing on those models that can be used for the
estimation of the P-S–N curves, rather than on those
aiming at estimating the fatigue life consumed in the
crack initiation and propagation stages. For the sake of
clarity, a classification based on the initial approach
followed to define the stress–life relation (e.g., fitting of
the data with a power–law relation, probabilistic
approach, fracture mechanics approach, and integration
of the Paris law) has been considered. It is worth noting
that some of the investigated models combine different
approaches: In this case, the models have been grouped
depending on the prevalent approach.

First of all, the classification of the P-S–N curves cov-
ering the entire LCF–VHCF life range must be analyzed.
Indeed, the S–N curves showing a first decreasing trend
at high-stress amplitude (in the LCF and in HCF region),
a plateau (corresponding to the conventional fatigue
limit) and a second decreasing trend with failures origi-
nating from internal defects are called “step-wise S–N
curves” or “duplex S–N curves.” In Section 3.1, the papers
focusing on the classification of the S–N curves with the
above-described trend are analyzed. Thereafter, the
models developed in the literature have been analyzed.
In Section 3.2, the models that enable to assess the
stress–life relations in the VHCF life range by exploiting
the Basquin law or a power law are analyzed. In
Section 3.3, the models for the fatigue life or the P-S–N
curves developed by assuming the statistical distribution
of the fatigue life are analyzed and described (probabilis-
tic approach). In Section 3.4, the models based on the
fracture mechanics approach are, on the other hand,
described. Section 3.5 focuses on models based on the
integration of the Paris law. Finally, in Section 3.6, the
results are summarized, focusing on the strengths and
the weakness of the approaches followed and on consid-
erations on the use of the analyzed models for the design
of components.

The differences between the fatigue limit (Section 2)
and the fatigue strength at a defined Nf which can be
computed by assessing the stress–life relationship

(Section 3) are worth to be highlighted. Indeed, the
models for the fatigue limit computed in Section 2 have
the objective to assess the threshold for crack propaga-
tion, that is, the stress threshold below which a crack
does not propagate, even if a defect is present or different
weakening mechanisms24 are present. On the other hand,
the models described in Section 3 enable us to assess the
stress–life relationship and, accordingly, the fatigue
strength at a defined number of cycles to failure.

3.1 | Step-wise and duplex S–N curves:
General classification

The experimental evidence that failures below the con-
ventional fatigue limit (i.e., the asymptote in a S–N curve)
may occur has made it necessary to revise the models
conventionally used for defining the stress–life relation in
an S–N plot, in order to include also the VHCF region. S–
N curves characterized by a first decreasing trend at
high-stress amplitude, a plateau (corresponding to the
conventional fatigue limit and called in the following
“transition stress”), and a second decreasing trend below
the plateau are called in the literature “step-wise” or
“duplex” S–N curves interchangeably. For example, in
Nishijima and Kanazawa,41 these types of S–N curves are
called step-wise S–N curves. The P-S–N curves at differ-
ent failure probabilities in Nishijima and Kanazawa41 are
obtained by fitting the experimental data through the
application of a statistical method called probit analysis
(in Hanaki et al.,42 the reader can find details on the
application of the probit analysis to fatigue data). The
paper41 is mainly focused on the comparison of the step-
wise P-S–N curves obtained by testing different materials,
and no details on the statistical distribution of the fatigue
life and on the classification of the P-S–N curves are
provided.

On the other hand, a more detailed classification of
the S–N curves with the above-described trend is pro-
vided in Shiozawa and Lu.43 According to Shiozawa and
Lu, the terms “step wise” or “duplex” cannot be used
interchangeably, since they refer to two different types of
curves, even though with a similar shape. Shiozawa and
Lu proposed a classification based on the statistical distri-
bution of the fatigue life associated with the first failure
mode in the LCF–HCF region (surface failure mode) and
the statistical distribution of the fatigue life associated
with the second failure mode (internal failure mode).
Figure 5 shows the classification for the P-S–N curves
proposed in Shiozawa and Lu,43 which is based on the
experimental evidence that the fatigue life distributions
associated with the surface failure mode and with the
internal failure mode are different.
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According to the Shiozawa and Lu, “Type A” is the S–
N curve of low-carbon steels (no internal failures); “Type
B” is the typical “step-wise S–N curve,” since the proba-
bility distributions for the surface and the internal failure
modes do not overlap. On the other hand, “Type C” curve
is the typical “duplex S–N curve,” since surface failures
and internal failures partially overlap for stress amplitude
close to the transition stress. Finally, “Type D” is the S–N
curve of materials failing due to only internal defects
(no surface failures, even in the HCF region). Accord-
ingly, Shiozawa and Lu clearly distinguish between step-
wise and duplex P-S–N curves.

In Mughrabi,3,4 the duplex P-S–N curves are further
described, focusing on the mechanisms of crack initia-
tion. Sakai et al.6 recommend the expression “duplex S–N
curves” instead of “two-step S–N curve” or “doubly

reflected S–N curve” if two failure modes are present. In
our opinion, “duplex P-S–N curves” is more appropriate
for the S–N curves including also the VHCF region, since,
in the proximity of the transition stress, the fatigue fail-
ure can originate both from the specimen surface or from
internal defects, without a clear separation between the
two failure modes.

It is worth noting that S–N curves with different
trends have also been found in the literature, like the S–
N curves with a double slope without a plateau between
the two failure modes44,45 For a detailed classification,
the reader could refer to Sonsino.44 However, a transition
stress between the two failure modes is generally found
experimentally when the VHCF region is also analyzed,
thus justifying the importance of the classification in
Shiozawa and Lu.43

FIGURE 5 Classification of the S–N curves including the VHCF region in I43 (reprinted with permission from Wiley)
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3.2 | VHCF life range: Fitting with the
power law

In this section, the power-law is exploited to assess the S–
N curves in the VHCF life range. It represents the sim-
plest approach, with a linear decreasing relationship
between sa and Nf in the VHCF region. All the models
analyzed in this section focus only on the VHCF life
range.

For example, in Akiniwa et al.,46 the P-S–N curves for
specimens subjected to axial and torsional loads have
been estimated by assuming a power-law dependency
between the applied stress amplitude (axial or torsional)
and the number of cycles to failure. The power law was
found to be in good agreement with the experimental
data for both the load types. Figure 6A,B shows the
experimental data (obtained by testing oil-tempered Si–
Cr steel wire used for valve springs, JIS G3561, SWOSC-
V) and the estimated S–N curves on the S–N plot for axial
and torsional loads, respectively. The median curves are
shown, together with, according to the authors, the 90%
confidence interval, even though the two bounds of the
confidence interval seem to correspond to the 5th and
the 95th quantiles curves.

A similar approach based on the power law has been
followed in Liu et al.29 In particular, the paper focused
on the procedure for the estimation of the parameters
involved in the power-law equation (sa ¼ σ0f � 2 �Nf

� �b
),

being σ0f and b two constant coefficients to be estimated
from the experimental data. Indeed, the methodology
developed for the assessment of the fatigue limit in the
presence of defects and with FGA formation28,35 is
exploited also for the estimation of the P-S–N curves. In
particular, an expression for the fatigue limit from defects

(i.e., without the formation of the FGA) in the HCF
region, sl,LIU,H , is obtained. The two constant coefficients
involved in the Basquin equation, σ0f and b, are therefore
estimated by supposing that for Nf ¼ 106 cycles, sa ¼
sl,LIU ,H and that for Nf ¼ 109 cycles, sa ¼ sl, being sl the
fatigue limit computed according to Equation 4. The pro-
posed model has been validated on experimental datasets
obtained by the authors through ultrasonic fully reversed
tension–compression fatigue tests on spring steels and
available in the literature. Figure 7 plots the estimated
model and the experimental data in an S–N plot. The S–
N curve estimated with other literature models34,47,48 is
also shown in Figure 7 (“Chapetti” in the figure is the
model in Chapetti et al.,34 “Mayer” is the model in Mayer
et al.,48 and “Tanaka” is the model in Tanaka and
Akiniwa47). The two bounds represent the curves esti-
mated from the largest and the smallest defect size. The
authors conclude that the proposed formulation permits
obtaining a good fit of the data. No indications on the
fatigue life statistical distribution are provided.

In Wang et al.,49 a three-parameter model is consid-
ered for fitting the experimental data. Differently from
the previous analyzed model, a three-parameter model
involves an asymptotic trend at the end of the curve:

sa� s0,Rð ÞαR �Nf ¼CR, ð10Þ

being s0,R, αR, and CR material parameters to be esti-
mated from the experimental data. Moreover, the fatigue
life is considered normally distributed in order to model
the scatter associated to the experimental data. The
model has been validated on an experimental dataset
obtained by testing a high-strength martensitic stainless
steel FV520B-I, but the paper is mainly focused on their

FIGURE 6 Validation of the model for the VHCF life in Akiniwa et al.46: (A) S–N plot for specimens subjected to axial load and (B) S–N
plot (shear stress amplitude τa with respect to Nf ) for specimens subjected to torsional load (reprinted with permission from Elsevier)
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analysis on the estimation of the relation between the
defect size and Nf .

Sun et al.27 analyzed a dataset obtained by testing
through ultrasonic fully reversed tension–compression
tests a high-carbon–chromium steel and interestingly
showed that sa, Nf , and ad,o can be correlated with the
following equation:

sa ¼C �Nl
f �amd,0, ð11Þ

being C, l, and m material parameters. Equation 11,
therefore, models the dependence of the fatigue life on
the defect size and can therefore be employed for the
assessment of the P-S–N curve for VHCF failures origi-
nating from defects. The parameters have to be estimated
from the experimental data, since they may vary
depending on the material or on the heat treatment. The
model has been validated on the datasets obtained by the
authors (high-carbon–chromium steel) and on literature
datasets obtained through rotating bending fatigue tests
at R¼�1 and axial fatigue tests at R¼�1. Figure 8A,B
show the proposed model and literature data on an S–N
plot, for rotating bending fatigue tests and axial loading
fatigue tests, respectively.

The model has been also modified to take into
account the influence of the stress ratio of the VHCF
response. Starting from Equation 11 and by considering
previous results, the influence of the stress ratio can be
expressed as follows:

sa ¼C �Nl
f �amd,0 �

1�R
2

� �α

, ð12Þ

being α an unknown material parameter to be estimated
from the experimental data. The model has been vali-
dated on literature datasets obtained by testing high-
strength steels at different stress ratios (Figure 8C). The
model was found to be in agreement with experimental
data, proving to be capable to assess the influence of the
stress ratio. In the paper, the authors moreover proposed
to assess the largest defect expected in the risk volume
with the Gumbel distribution.

In Mayer et al.,48 the Basquin model is exploited to
take into account also the dependence between the defect
size and the fatigue life, too. In particular, a bainitic
high-carbon–chromium steel is subjected to ultrasonic
fully reversed tension–compression tests, and surface and
internal failures are found in the HCF and in the VHCF
region, respectively. Moreover, the authors found that
the experimental data plotted in a sa � ffiffiffiffiffiffiffiffi

ad,0
p� � 1

12 versus Nf

diagram show a smaller scatter than the one found by
reporting the experimental data in a traditional S–N plot,
due to the influence of the defect size on the fatigue life.
Accordingly, the dependency between Nf , sa, and

ffiffiffiffiffiffiffiffi
ad,0

p
is expressed by the authors as

sa � ffiffiffiffiffiffiffiffi
ad,0

p� � 1
12

	 
n
�Nf ¼C, ð13Þ

being n and C two material parameters. The experimen-
tal failures originating from defects in the VHCF region
and the estimated model (i.e., the median curve) are
shown in Figure 9.

The same research group adopted a similar approach
in Schönbauer et al.50 The VHCF response of a 17-4PH
steel subjected to variable amplitude loads is experimen-
tally investigated, focusing also on the influence of the
load ratio. It was also found that the stress ratio R has a
strong influence on the fatigue life of specimens sub-
jected to loads with constant amplitude (CA) and variable
amplitude (VA) and it was proposed to normalize and
condense the experimental data by replacing the stress
amplitude with the following equivalent stress seq in an
S–N plot (seq,CA for CA and seq,max,VA for VA):

seq,CA ¼ sa
1�R
2

� �α , ð14Þ

and for VA loads,

seq,max,VA ¼ sa,max
1�R
2

� �α , ð15Þ

being α a constant coefficient. This relation has been
obtained by considering the Murakami model,30 and the
coefficient α is obtained through a fitting of the

FIGURE 7 Validation of the model for the VHCF life in Liu

et al.29: S–N plot with the proposed model and literature models

(reprinted with permission from Elsevier)
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experimental results in Schönbauer et al.51 Figure 10A,B
shows the experimental data in seq,CA–Nf and
seq,max,VA–Nf plots and the estimated models, respectively.
In Figure 10, σa corresponds to sa. The scatter associated
to the experimental data and the statistical distribution of
the fatigue life is not discussed.

According to the models analyzed in this section, the
power law is effective also in modeling the fatigue life
and, accordingly, the P-S–N curves in the VHCF life
range. The models have been validated mainly on high-
strength steels, and no validation on other materials can
be found. Moreover, and this could be the most critical
issue, all these models fail to take into account the scatter

associated to the experimental failure, which is, on the
contrary, fundamental from a design point of view. On
the other hand, in Akiniwa et al.,46 the Basquin model
has been considered for analyzing the results of torsion
tests: This is the unique validation available in the litera-
ture on loads different from tension–compression loads.
Moreover, modifying the power law in order to take into
account the defect size proved to be an effective strategy
(Sun et al.27 and Mayer et al.48), also in reducing the scat-
ter associated to the experimental data on an S–N plot
(Mayer et al.48). The influence of the stress ratio has also
been investigated, following an approach based on the
Murakami model.27,48 An asymptotic behavior, on the

FIGURE 8 Validation of the model for the VHCF life in Sun et al.27: (A) experimental data and estimated model on an S–N plot for

literature datasets obtained through rotating bending tests. (B) Experimental data and estimated model on an S–N plot for literature datasets

obtained through axial tests. (C) Validation of the model in Equation 12 that models the effect of the stress ratio R (reprinted with

permission from Elsevier) [Colour figure can be viewed at wileyonlinelibrary.com]
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other hand, is not considered in the analyzed models,
apart from Wang et al.49 However, this assumption must
be verified.

To conclude, the adoption of a power-law model for
the S–N curves in the VHCF life range has proved to be
effective. This model is simple, and the procedure for
parameter estimation is not complex, too. By appropri-
ately modifying the original model, moreover, it has been
shown that the dependence between the fatigue life and
the defect size or the stress ratio can be assessed. How-
ever, the randomness associated with the experimental

data was not considered in most of the models: This limi-
tation can prevent their adoption for practical applica-
tions. On the other hand, the model in Sun et al.27 is the
most general, since it permits modeling both the influ-
ence of inclusion size and the stress ratio, enabling also
to estimate the curves at different ad,0.

3.3 | Models for the S–N curves:
Probabilistic approach

In this section, the models for the stress–strain relation
based on a “probabilistic approach” are analyzed in
detail. According to this approach, the statistical distribu-
tion of the fatigue life is a priori assumed, with the main
aim of estimating the P-S–N curves. As discussed in detail
the following, a log-normal distribution or a Weibull dis-
tribution for the fatigue life have proved to be effective
even for the VHCF region. For the sake of clarity, in
Section 3.3.1, the models for the stress–life relation that
considers only the VHCF region, for example, the region
below the fatigue limit for high-strength steels, are ana-
lyzed. On the other hand, the models dealing with the
LCF–VHCF life range are described in detail in
Section 3.3.2.

3.3.1 | VHCF life range: Probabilistic
approach

In this section, the models focusing only on the VHCF
life range are described. The statistical distribution of the
fatigue life is assumed to properly fit the experimental

FIGURE 9 Validation of the model for the VHCF life in Mayer

et al.48: S–N plot with normalized stress amplitude (reprinted with

permission from Elsevier)

FIGURE 10 Validation of the model for the VHCF life in Schönbauer et al.50: (A) experimental data and estimated model on a seq,CA
with respect to Nf . (B) Experimental data and estimated model on a seq,max,VA with respect to Nf (reprinted with permission from Elsevier)

[Colour figure can be viewed at wileyonlinelibrary.com]
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data. It is worth noting that, if the entire LCF–VHCF life
range is considered, the models analyzed in this
section can be combined with traditional models
(e.g., the Basquin law, the staircase method) for the LCF–
HCF life range. However, the continuity and a smooth
transition between the LCF–HCF life range and the
VHCF life range is, obviously, not guaranteed.

A first probabilistic method for the prediction of the
VHCF fatigue life is proposed in Chantier et al.52 The
model is based on the probability of finding a defect with
critical size and on the weakest link approach. A method
for extrapolating the fatigue life starting from the tests
carried out up to 107 cycles is proposed, but the S–N cur-
ves in the VHCF region are not estimated. A similar
approach based on the weakest link approach has been
used in many other subsequent models: For this reason,
this paper is worth to be cited.

In Paolino et al.,36,37 the dependence between the
defect size and the fatigue life is modeled in a probabilis-
tic framework. The curve ends with an asymptotic trend,
that is, a fatigue limit. The finite VHCF fatigue life has
been assumed to be log-normally distributed, with the
mean μY jint , assumed to be dependent not only on the
logarithm of the applied stress amplitude (i.e., Basquin
relation) but also on the defect size
(μY jint ¼ cY þmY � log10 sað ÞþnY � log10

ffiffiffiffiffiffiffiffi
ad,0

p� �
, being cY ,

mY , and nY constant material coefficients to be estimated
from the experimental data). From this model and by
considering the formulation for the fatigue limit
described in Section 2 and in Equation 8, the “conditional
P-S–N curves,” that is, the P-S–N curves conditioned to
the defect size (the P-S–N curve for a specific defect with
size

ffiffiffiffiffiffiffiffi
ad,0

p
), can be obtained, according to Equation (16):

FY j ffiffiffiffiffiffiad,0
p y;x,

ffiffiffiffiffiffiffiffi
ad,0

p� �¼Φ
y�μY jint x,

ffiffiffiffiffiffiffiffi
ad,0

p� �
σY

 !
�Φ xl�μXl

ffiffiffiffiffiffiffiffi
ad,0

p� �
σXl

� �
, ð16Þ

being Φ
y�μY jint x,

ffiffiffiffiffiffi
ad,0

pð Þ
σY

� �
the cdf of the conditional finite

fatigue life and Φ
xl�μXl

ffiffiffiffiffiffi
ad,0

pð Þ
σXl

� �
the cdf of the conditional

fatigue limit, according to Equation 8. Equation 16
enables to model the dependence between the fatigue life
and the defect size and also the statistical scatter associ-
ated to the experimental data. The model involves a lin-
ear decreasing trend, ending with an asymptote.
However, for the experimental data that do not show a
clear fatigue limit, a continuous decreasing trend can be

also modeled by considering Φ
xl�μXl

ffiffiffiffiffiffi
ad,0

pð Þ
σXl

� �
¼ 1.

The same research group, moreover, proposed a sec-
ond type of P-S–N curves, the so-called marginal P-S–N
curves, i.e., the P-S–N curves obtained by exploiting the
definition of “marginal distribution,” which enable to
assess the stress–life relation independently of the defect
size. The marginal P-S–N curves are estimated by consid-
ering the conditional distribution of the fatigue life and
the statistical distribution of the defect size rv,

ffiffiffiffiffiffiffiffi
Ad,0

p
,

which is assumed to follow a LEVD, with final
formulation:

FY jint y;xð Þ¼
Z ∞

0
FY j ffiffiffiffiffiffiad,0

p y;x,
ffiffiffiffiffiffiffiffi
ad,0

p� �
f ffiffiffiffiffiffi

Ad,0

p ffiffiffiffiffiffiffiffi
ad,0

p� �
d
ffiffiffiffiffiffiffiffi
ad,0

p
,

ð17Þ

being FY jint y;xð Þ the cdf of the marginal distribution of
the fatigue life (i.e., dependent only on x¼ log10 sað Þ),
FY j ffiffiffiffiffiffiad,0

p y;x,
ffiffiffiffiffiffiffiffi
ad,0

p� �
the cdf of the conditional fatigue life

and f ffiffiffiffiffiffi
Ad,0

p the probability density function (pdf) of
ffiffiffiffiffiffiffiffi
ad,0

p
,

assumed to follow a LEVD. The procedure for parameter
estimation, based on the analysis of the fracture surfaces
and requiring the measurement of the defect and the
FGA size, is detailed in Paolino et al.36 In particular, the
unknown parameters for the fatigue limit are estimated
by maximizing the likelihood function associated to the
probability of having a failure or a runout for the experi-
mental data (Section 2), whereas the unknown parame-
ters for the finite VHCF life are estimated through a
multiple linear regression. The model in Equation 17 has
been validated on an experimental dataset obtained by
the authors through ultrasonic tension–compression tests
on H13 steels in the VHCF region. Figure 11 shows the
estimated marginal P-S–N curves, together with the
experimental data and the estimated model.

In Qian et al.53 and Wu et al.,54 a different approach
is followed to assess the stress–life relation, even if the P-
S–N curves are finally not estimated. However, they pre-
sent innovative aspects, and therefore, they are worth to
be mentioned and briefly recalled.

In Qian et al.,53 a model for the prediction of the S–N
curves of specimens tested in different environmental
media is obtained through an energetic approach. In par-
ticular, the number of cycles necessary for a crack initia-
tion from a subsurface defect is computed by considering
the surface energy related to crack initiation and the
grain radius. The model is exploited to assess the influ-
ence of the environment media, of the mechanical prop-
erties and of the defect size on the HCF and VHCF
response. However, according to the authors, “the pro-
posed model ‘qualitatively’ predicts S–N curves for surface
and subsurface crack initiation in different environmental
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media, but a procedure for estimation is not provided and
considered as a further development.”

In Wu et al.,54 the VHCF response of a braided
carbon fiber-reinforced plastic (CFRP) composite is
experimentally assessed. The fatigue life distribution is
obtained by considering the crack density distribution
and by considering a “matrix crack density” damage as
the mechanism for failures in the investigated composite
material. A three-parameter model has been considered
for modeling the matrix crack density life damage evolu-
tion (“The crack density increases with the number of
cycles under all loading conditions, and the increasing
speed of crack density lowers down with the increase of
cycles”), whose parameters are estimated from the experi-
mental VHCF tests. The VHCF response has been there-
after predicted and a strain threshold computed, i.e., the
strain amplitude below which no damage occurs even in
the VHCF region. The distribution of the fatigue life is
obtained by equaling the fatigue life distribution function
and the crack density distribution function, which con-
trols the fatigue damage. The damage distribution model
of matrix crack density is assumed to follow a bimodal
Weibull distribution (i.e., two morphologies of matrix
crack density are assumed). The probability density func-
tion of the fatigue life has been finally compared with the
experimental data, but the relation between the applied
stress and the fatigue life is not assessed.

According to the models analyzed in this section, the
normal distribution is assumed for VHCF fatigue life dis-
tribution, as in the LCF–HCF life range. The model
described in Paolino et al.36 enables to assess the depen-
dence between the fatigue life and the defect size and to
model the mechanisms for the FGA formation. It

requires a detailed analysis of the fracture surfaces to
assess the defect size and the FGA size. Accordingly, it
can be applied only if, for each experimental failure, sa,ffiffiffiffiffiffiffiffi
ad,0

p
and Nf are available or can be reliably measured.

The model is valid for all VHCF failures originating from
defects with or without FGA formation: For example, it
has been used for the assessment of the P-S–N curves for
an AlSi10Mg alloy produced through an additive
manufacturing process.55 For the VHCF life range, only
one model that permits estimating the P-S–N curves has
been found: Indeed, other models for the fatigue life in
VHCF are estimated through a fracture mechanics
approach, a mixed probabilistic/fracture mechanics
approach, or consider also the LCF–HCF life range, as
detailed in the following subsection.

3.3.2 | LCF–VHCF life range and duplex
P-S–N curves: Probabilistic approach

In this section, the models for the fatigue life in the LCF–
VHCF life range are described. Most of the models
focused on the presence of two failure modes, according
to the experimental evidence. The presence of a transi-
tion stress or of a knee point is another characteristic of
the models analyzed in this section.

Sonsino44 investigated the shape of the P-S–N curves
by analyzing literature datasets and by considering a
bilinear model with a “knee point.” Different metallic
materials have been considered; the parameters have
been estimated through a linear regression, to show that
the continuous decrease of the fatigue strength in the
VHCF region reduces the safety against failures and the

FIGURE 11 Validation of the model for the VHCF life in Paolino et al.36: P-S–N and experimental data (reprinted with permission from

Wiley)
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effectiveness of a design based on the fatigue limit con-
cept. However, a procedure for the estimation of the P-S–
N curve is not proposed.

In Weixing and Shenjie,56 the fatigue life in the pres-
ence of two failure modes (surface and internal failure
modes) has been modeled in a statistical framework, by
assuming that the fatigue life distribution has a double-
peaked shape. The cdf of the fatigue life, F xð Þ, is obtained
as the weighted sum of the cdfs, F1 xð Þ and F2 xð Þ, associ-
ated with the first and the second failure modes, respec-
tively, and with t as the weighting coefficient:

F xð Þ¼ t �F1 xð Þþ 1� tð ÞF2 xð Þ: ð18Þ

The fatigue life is assumed to follow a log-normal
distribution. A procedure for the estimation of the
unknown parameters is provided, and the model is
validated on an experimental dataset obtained by test-
ing the aluminum alloy LC4CS. Figure 12 plots the
probability F xð Þ with respect to the number of cycles to
failure. No indications on the estimation of the P-S–N
curves are provided.

Zhao et al.57 analyzed the experimental data with
standard codes (AASHO standard58 and ECCS code59),
showing that they are not effective in estimating the P-S–
N curves, especially if the VHCF region is also consid-
ered. An innovative model is, therefore, defined: The
fatigue life rv is assumed to follow a log-normal distribu-
tion, with the mean and standard deviation linearly
dependent on the applied stress amplitude and with the
stress–life in the HCF region and in the VHCF region
modeled with a power law. A formulation for the P-S–N
curves in the HCF region is provided, with the unknown
material parameters estimated through the application of
the maximum likelihood principle. The unknown

material parameters of the model for the VHCF life are
obtained through a probabilistic concurrent model,
according to the relation shown in Figure 13A. The distri-
bution of the fatigue life in the VHCF region is thereafter
obtained and the procedure for the parameter estimation
is provided, with the final S–N curves characterized by a
bilinear shape with a transition point, NT . NL represents
the fatigue life, according to the authors. The model has
been validated on a dataset obtained by testing the LZ50
axle steel, as shown in the S–N plot in Figure 13B.
According to the authors, the proposed model is in agree-
ment with the experimental data, with the 0.999th qua-
ntile P-S–N curve below all the experimental failures.
The Student's t-distribution is considered for estimating
the quantiles of the S–N curves.

It must be noted, however, that for the analyzed
dataset, only one failure occurred at Nf above 108

cycles. Moreover, the origin of the fatigue failures in HCF
and in VHCF is not investigated, and the presence of two
failure modes is not modeled. Therefore, this model can
be applied depending on the experimental dataset,
i.e., it would not be appropriate for datasets showing a
transition stress with a plateau and to model the
influence of defects, if failures in VHCF originate from
defects.

In Sakai et al.,6 the fatigue life is assumed to follow a
Weibull distribution. The occurrence of two failure
modes is also modeled. The experimental data obtained
by testing a high-carbon–chromium steel for bearings
(JIS Material Code: SUJ2) showed two failure modes: sur-
face failures for high-stress levels and internal failures for
low-stress levels, with fish-eye morphology. Accordingly,
two distinct statistical distributions are considered for the
fatigue life associated to surface and internal failures. For
each investigated stress level, the distribution of the
fatigue life is estimated, thus enabling to assess the P-S–N
curves. Moreover, a mixed-mode Weibull distribution
(F ¼ p1 �F1 Nf

� �þp2 �F2 Nf
� �

, being F1 and F2 the cdfs of
the fatigue lives and p1 and p2 the occurrence probability,
with the subscript 1 and 2 referring to the first and the
second failure mode, respectively) is considered for
modeling the occurrence of two failure modes. The
occurrence probabilities, p1 and p2, are estimated by ana-
lyzing the experimental data close to the transition stress
(“At medium stress levels, the occurrence probability of
each fracture mode is determined by the occurrence fre-
quencies of the respective fracture modes”), showing that
p1 tends to increase with the applied stress and p2 tends
to increase as the applied stress is decreased. The pro-
posed model has been validated on the experimental data
obtained by the authors. Figure 14A shows the Weibull
plots of the fatigue life distribution, with the dashed line
indicating the conventional Weibull distribution and the

FIGURE 12 Validation of the model for the VHCF life in

Weixing and Shenjie56: cdf of the fatigue life, F xð Þ, with respect to

Nf (reprinted with permission from Wiley) [Colour figure can be

viewed at wileyonlinelibrary.com]
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solid line the mixed-mode Weibull distribution.
Figure 14B plots the estimated duplex P-S–N curves, con-
firming the effectiveness of the proposed model. The
authors concluded by pointing out that the presence of a
VHCF fatigue limit at 1010 cycles is still debated in the
literature and cannot be assumed, since it has to be
experimentally verified.

In Bomas et al.,60 a different approach is proposed,
and the fatigue life distribution function is computed by
assuming that the probability of crack initiation due to a
specific mechanism is independent from the probability
of failure due to a different failure mechanism. In
general, according to Bomas et al.,60 the cdf of the fatigue
life, F Nf ,sa

� �
, can be expressed as follows:

F Nf ,sa
� �¼ 1�

Ynth
i

1�Fi Nf ,sa
� �� �

, ð19Þ

being nth the number of failure modes (i¼ 1,…,nth) and
Fi Nf ,sa
� �

the cdf of the fatigue life associated to the i-th
failure mode, expressing the probability of having a
failure at a number of cycles smaller than Nf for an
applied stress amplitude equal to sa. The fatigue life rv is
assumed to follow a two parameters Weibull distribution,
and a procedure for the estimation of the constant coeffi-
cients, according to the Stepnov method,47 is provided.
The model has been validated on experimental data
obtained by testing notched specimens made of the

FIGURE 13 Validation of the model for the VHCF life in Zhao et al.57: (A) concurrent probabilistic model for estimating the S–N
curves in the VHCF region and (B) experimental data and estimated model on an S–N plot (reprinted with permission from Elsevier)

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Validation of the model for the VHCF life in Sakai et al.6: (A) Weibull plots of the fatigue life distribution and

(B) experimental data and estimated P-S–N curves (reprinted with permission from Elsevier)

TRIDELLO ET AL. 347

http://wileyonlinelibrary.com


carburized, quenched and tempered steel SAE 5115 (DIN
20MnCr5). As shown in Figure 15, the model has been
validated by considering only the median S–N curve,
even if the model in Equation 19 enables to assess also
the quantiles of the P-S–N curves. Further validations are
therefore required to confirm the effectiveness of the
proposed model.

In Li et al.,61 the model in Bomas et al.60 has been
further developed and validated on an experimental
dataset obtained by testing a carburized Cr–Mn–Si
steel. Three failure modes are found experimentally:
surface flaw-induced failure at high-stress amplitude
(first failure mode, I), interior inclusion-induced failure
without the FGA (second failure mode, II), and interior
inclusion-induced failure with the FGA at low-stress
amplitude (third failure mode, III). For each failure
mode, the fatigue life is shown to be well described by
a two parameters Weibull distribution function. In
order to model the dependency between the fatigue life
and the applied stress amplitude, the “characteristic life
parameter” of the distribution of each failure mode is
modeled with a three-parameter power equation for
the first two failure modes (i.e., involving a linear
decreasing trend with an asymptote) and with a Bas-
quin equation for the third failure mode (involving
only a linear decreasing trend). Indeed, the transition
between the first and the second failure mode is the
fatigue limit for first failure mode. Similarly, the transi-
tion from the second to the third failure mode is the
fatigue limit for the second failure mode. The final
model for the cdf of the fatigue life, F Nf ,sa

� �
, is given

by Equation 20:

F Nf ,sa
� �¼ 1� exp

�
XII
j¼I

Nf

σf ,j= sa�σ0,j

� �� �cj
 !ajþbjsa

þ Nf

σf ,III= sað Þ� �cIII
 !aIIIþbIII sa

0@ 1A24 35,
ð20Þ

being aj, bj, cj, aIII , bIII , cIII , σf ,j, σ0,j, and σf ,III material
parameters estimated by considering the experimental
failures at stress levels at which two of the three failure
modes coexist (i.e., at the transition from one failure
mode to the following one) and through a linear interpo-
lation of the experimental data. The P-S–N curves at dif-
ferent failure probabilities are finally estimated and
found to be in good agreement with the experimental
data, especially for failure modes I and II, as shown in
Figure 16A.

In Li et al.,62 the same research group has analyzed
the experimental results of tests on specimens subjected
to axial load. Differently from rotating bending tests, the
authors point out that “the duplex S–N characteristics of
bearing steel was not so distinct” due to the uniformity of
stress distribution within the cross-section. A mixed
Weibull distribution function has therefore been pro-
posed to model the fatigue life in case of multiple failure
modes and of axial loads (i.e., F Nf

� �¼P j
i¼1Pi �Fi Nf

� �
,

being j the total number of failure modes and Fi Nf
� �

the
three parameters Weibull distribution associated to the i-
th failure mode). A method for the optimization of the
parameters involved in the model has been also proposed
and applied to estimate the P-S–N curves of the tested
bearing steel SUJ2. The estimated P-S–N curves at differ-
ent failure probabilities are shown in Figure 16B, proving
that a “duplex behavior” with a transition stress between
the two failure modes is not evident from the experimen-
tal data and that, despite this, the proposed model is
effective for the analysis of the results of axial tests.

The properties of the Weibull distribution have been
also exploited in Muniz-Calvente et al.63 to estimate the
P-S–N curves. In particular, a methodology for model-
ing the fatigue life in the HCF region, with failures
originating from the specimen surface, and in the
VHCF region, with failures originating from internal
defects, is proposed and validated on experimental and
simulated datasets. It involves different steps: The first
step is the experimental activity, where the applied
stress, the number of cycles, and the type of failure
associated to each specimen are recorded. Thereafter,
the distributions of the fatigue life for surface failures
and for internal failures are estimated independently,
by assuming for the fatigue life associated to each
failure mode a Weibull distribution, according to the
Castillo–Canteli model64:

FIGURE 15 Validation of the model for the VHCF life in

Bomas et al.60: (A) S–N plot with the proposed model and

experimental data (reprinted with permission from Elsevier)
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F Nf ;GP
� �¼ 1

� exp � log Nf
� ��B

� � � log GPð Þ�Cð Þ
δ

� �β
" #

,

ð21Þ

being GP the generalized parameter (i.e., the uniaxial
applied stress), B and C two asymptotic values, and β and
δ two constant coefficients. Given the cdfs of the fatigue
life associated with the two failure modes, the cdf of the
fatigue life is obtained by applying the weakest link
principle:

F Nf ;GP
� �¼ 1�

Y2

i¼1
1�Fi Nf ;GP

� �� �
: ð22Þ

The methodology has been validated on a literature
dataset65 for which the experimental failures originated
from the specimen surface in the LCF–HCF region and
from internal defects in the VHCF region. Figure 17A
shows the P-S–N curves obtained by considering the two
failure modes separately, whereas Figure 17B shows the
“combined P-S–N curves” at different failure probabili-
ties. The estimated P-S–N curves are compared with
those estimated in Paolino et al.66 The model is in

FIGURE 16 Validation of the model for the VHCF life in Li et al.61,62: (A) S–N plot in Li et al.,61 with results obtained by carrying out

rotating bending tests (reprinted with permission from Elsevier) and (B) S–N plot in Li et al.,62 with results obtained by carrying out axial

tests (reprinted with permission from Taylor & Francis Online)

FIGURE 17 Validation of the model for the VHCF life in Muniz-Calvente et al.63: (A) P-S–N curve estimated by considering the surface

failure mode and the internal failure mode separately and (B) “combined P-S–N curve” (reprinted with permission from Wiley)
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agreement with the experimental data: Differently from
Paolino et al.,66 a clear transition between the two failure
modes is not present, and the S–N curves seem to show a
continuous decreasing trend in the VHCF region, with-
out an asymptotic trend indicating the occurrence of a
fatigue limit for the second failure mode. Considerations
on the existence of the fatigue limit and on its proper esti-
mation were made by the same research group in
Fern�andez-Canteli et al.67

In Paolino et al.,45 a similar approach has been
followed, and a unified statistical model for the P-S–N
curves in the LCF–VHCF life range is defined, by model-
ing also the presence of a VHCF limit. The proposed gen-
eral model permits assessing the duplex P-S–N curves
with different failure modes and with a VHCF fatigue
limit (i.e., a horizontal asymptote at the end of the curve
associated to the internal failure mode in VHCF). The cdf
of the fatigue life FY (Y is the rv representing the fatigue
life) is given by

FY ¼FY jsurf �FXt þ 1�FXtð ÞFY jint �FXl , ð23Þ

being FY jsurf , FY jint the cdfs of the fatigue life associated
to the surface and to the internal failure modes, FXt the
cdf of the transition stress, and FXl the cdf of the fatigue
limit. FY jsurf and FY jint are assumed to be normally dis-
tributed. The mean values of FY jsurf and FY jint are
assumed to be a linear function of the logarithm of sa.
The standard deviation of FY jsurf and FY jint is assumed to
be constant or linearly dependent on the logarithm of sa.
FXt and FXl are assumed to be log-normally distributed.
The proposed model has been validated on literature
datasets. Figure 18A shows the simulated 0.1th, 0.5th,
and 0.9th quantiles of the duplex P-S–N curves estimated
with the model in Equation 23. The proposed cdf for the
fatigue life in the LCF–VHCF life range has been further

validated in Paolino et al.68: In particular, a procedure for
the estimation of the unknown parameters and for the
probabilistic prediction of the failure mode of each tested
specimen is proposed. The 0.1th, 0.5th, and 0.9th qua-
ntiles of the P-S–N curves estimated by considering a lit-
erature dataset are shown in Figure 18B, showing a good
agreement with the experimental data.

The model for the fatigue life in the VHCF region in
Equation 23 has been further developed by the same
research group in Paolino et al.36,37 (Section 3.3.1, Equa-
tion 17), in order to model the influence of defect size on
the crack nucleation process in VHCF. Equation 17 can
be inserted in Equation 23 (i.e., FY jint �FXl ¼FY jint y;xð Þ)
to take into account the influence of defect size in VHCF
and to obtain an even more general formulation.

In Sun et al.,69 differently from the above-described
models, the fatigue life is assumed to continuously
decrease with the applied stress amplitude even in the
VHCF region, with the same trend found for HCF data
and regardless of the failure mode. Therefore, a knee
point or a transition stress has not been modeled, and a
unique Basquin model is assumed for modeling the
fatigue life. Moreover, the statistical distribution of the
log10 Nf

� �
is analyzed for different literature datasets,

showing that both a Weibull distribution and a normal
distribution can be used to model the fatigue life in
VHCF. By analyzing the P-S–N curves, with material
parameters estimated through the application of the max-
imum likelihood principle, the authors show that a con-
tinuous decreasing trend is appropriate for modeling the
fatigue life, since all the experimental data are above the
95th quantile S–N curve, with the Weibull cdf for the
fatigue life being more conservative. Thereafter, this
model is exploited to model the influence of the specimen
size on the VHCF response. Large specimens (or large
components) are assumed to be composed by n small

FIGURE 18 Validation of the model for the VHCF life in Paolino et al.45,68: (A) simulated 0.1th, 0.5th, and 0.9th quantiles of the duplex

P-S–N curves estimated with the model in Equation 23 (Paolino et al.45) (reprinted with permission from Wiley) and (B) duplex P-S–N
curves estimated by considering a literature experimental dataset in Paolino et al.68 (experimental data digitized from the original figure)
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specimens, and a weakest link approach is applied, with
the fatigue life for large specimens (or components) being
the minimum among the fatigue life of n small speci-
mens. The model has been validated on an experimental
dataset on high-strength steels.70 Figure 19 shows the
estimated P-S–N curves (Figure 19A for the specimens
“SUP Heat B” in Furuya70 and Figure 19B for the speci-
mens “SUP Heat C” in Furuya70), proving the effective-
ness of the model, since both the experimental failure for
small specimens (V90 ¼ 33mm3) and large specimens
(V90 ¼ 912mm3) are above the estimated 99.9% P-S–N
curve.

Apetre et al.71 and Arcari et al.72 focused on the
strain–life relation, by exploiting the properties of the
Weibull distribution. A probabilistic model for the assess-
ment of the strain–life curves capable to fit experimental
data obtained through CA tests and to model the influ-
ence of the stress ratio on the VHCF response has been
proposed. Starting from the probabilistic strain–life
Weibull regression model in previous studies,73–76 a gen-
eral formulation for the relation between the strain
amplitude εa and Nf is defined:

εa � 2
1�R

� �1�bγ
¼ exp α1þλþδ � �log 1�pð Þð Þ½ �1=β

logNf �α2

 !
,

ð24Þ

being R the stress ratio; bγ a parameter that accounts for
the stress ratio sensitivity; α1, α2, λ, δ, and β constant
coefficients that must be estimated from the experimental
data; and p the probability of failure. The procedure for
the parameter estimation is also provided in the paper,

involving a constrained least-square method. The model
has been validated on literature datasets obtained by test-
ing 7075-T6 specimens. Figure 20 plots the Walker strain

amplitude, εa � 2
1�R

� �1�bγ
, with respect to Nf . According to

Arcari et al.,72 the Walker method has shown to be effec-
tive in modeling the mean stress effect. The authors con-
clude that the model is in good agreement with the
experimental data and that it has a better fitting capability
in the VHCF region than the “conventional fit” (black
line). With conventional fit, Arcari et al.72 refer to a con-
ventional strain–life fit by using linear regression. Accord-
ingly, the strain life behavior and the corresponding
probability of failure can be properly assessed with the
proposed model, regardless of the failure mode.

In the paper, VA fatigue tests were also carried out.
The proposed formulation can be effectively used for con-
sidering the influence of the stress ratio and of the mean
stress, but not for VA loading, since the statistical distri-
bution of the VA loading is not modeled. VA tests have
been carried out to show that small amplitude loads can
have a significant influence on the fatigue life. The
results of the VA fatigue tests have been analyzed with
the model in Arcari et al.72 by using the rainflow cou-
nting method to identify the fatigue cycles in the spec-
trum and the Miner's rule to sum the damage produced
by each cycle in the spectrum block. However, the pro-
posed model cannot account for the shape of the cumula-
tive loading spectrum.

The model in Liu et al.77 is also worth to be men-
tioned, even if the P-S–N curves are finally not estimated.
In Liu et al.,77 the probability associated with three fail-
ure modes (“surface without facets,” “surface with

FIGURE 19 Validation of the model for the VHCF life in Sun et al.69: (A) P-S–N curves estimated by considering the specimens “SUP
Heat B” in Furuya et al.70 and (B) P-S–N curves estimated by considering the specimens “SUP Heat C” in Furuya70 (reprinted with

permission from Elsevier) [Colour figure can be viewed at wileyonlinelibrary.com]
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facets,” and “interior with facets”) for a Ti6Al4V alloy is
estimated. The normal distribution is considered for com-
puting the probability of a cleavage failure for a grain.
The probability of a defect from which the crack could
propagate, on the other hand, is assessed through a two-
dimensional Poisson distribution, which permits
assessing the probability of “activated defect” among a
number of defects present within the material. By evalu-
ating the total number of critical internal defects and of
critical surface defects that may cleavage, the probabili-
ties of a surface failure with facets, of an interior failure
with facets and of a surface failure without facets, are
finally computed. The probabilities associated to these
three types of investigated failures are finally plotted
against the maximum stress, but no indication on how to
assess the fatigue life and to estimate the P-S–N curves is
proposed.

All the models analyzed in this section have proved
that either Weibull distribution or a normal distribution
can be exploited for the assessment of the fatigue life
even in the VHCF region. Moreover, they focus on the
importance of properly accounting the possible presence
of two failure modes, with a transition stress or a knee
point. The occurrence of two failure modes, moreover,
involves the presence of a larger number of parameters
that have to be estimated from the experimental data.
The procedure for parameter estimation can be rather
complex, and optimization algorithms should be
employed. For example, for the application of the maxi-
mum likelihood principle,45 optimization algorithms
have to be used (e.g., the simplex search method
implemented in Matlab). These algorithms require an ini-
tial guess of the parameters to be optimized that have to
be properly chosen in order to obtain a physical solution
and to avoid obtaining a local maximum of the function

to be maximized. This complexity could discourage their
use for practical applications. However, if the procedure
for parameter estimation is automated, the use of these
methodologies based on the assumption of the statistical
distribution of the fatigue life can be further extended.
Indeed, according to the above analyses, they have
proved to be effective in modeling the P-S–N curves in
both the VHCF life range and the LCF–VHCF life range.
It is worth noting that, as the number of parameters
involved in the models increases, the computation time
increases: However, with the proper programming strat-
egy, computation time can be limited and reasonable
(minutes). Moreover, all the model involved a transition
stress or a knee point, apart the model in Sun et al.69:
The possible presence of a transition stress must be veri-
fied case by case, depending on the tested material and
on the experimental datasets. However, the assumption
of a specific trend for the entire LCF–VHCF life range
(i.e., a linear decreasing trend) is not suggested or has to
be avoided: Indeed, the models must be general
(i.e., admitting the presence of multiple failure modes)
and capable to properly adapt to the shape and the trend
of the experimental data. Therefore, the model in Sun
et al.69 is valid only for specific datasets showing linear
decreasing trend, whereas the other analyzed models are
more general and, with the proper parameter estimation
strategy, have the capability to adapt to different datasets.
The models analyzed in this section have been validated
mainly on high-strength steels, and their validity must be
proved on datasets obtained by testing different mate-
rials. It must be also noted that, if defects are at the origin
of the fatigue failures, their influence cannot be neglected
and should be modeled. Therefore, more efforts should
be made to model the dependence of the fatigue on the
defect size. The influence of the mean stress, or the stress

FIGURE 20 Validation of the

model for the VHCF life in Arcari

et al.72: Walker strain parameter with

respect to Nf (reprinted with permission

from Elsevier) [Colour figure can be

viewed at wileyonlinelibrary.com]
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ratio, is not considered in the analyzed models, apart
from in Arcari et al.72 This shortcoming must, necessar-
ily, be addressed in future research to extend the range of
application of models based on a probabilistic approach.

3.4 | Models for the S–N curves: Fracture
mechanics approach

In this section, models for the fatigue life based on the
fracture mechanics approach are analyzed. It is worth
noting that models based on the integration of the Paris
law can be included within this macro category. How-
ever, a classification that distinguishes between “fracture
mechanics” approach and models based on the “integra-
tion of the Paris laws” would help the reader, according
to our opinion.

In order to apply a fracture mechanics approach, the
dependence between the fatigue life and the defect size is
implicit (i.e., this approach must necessarily consider the
presence of a defect or of a crack), differently from the
models based on a probabilistic approach for which this
dependence is not required and must be a priori
assumed. In general, within this group, models that
involve the estimation of the SIF or of the SIF threshold
are considered. On the other hand, the statistical scatter
is generally neglected, even if it is fundamental when
dealing with the fatigue response.

In Chapetti et al.,33,34 a combined experimental–
fracture mechanics approach is proposed. In particular,
the dependency between

ffiffiffiffiffiffiffiffi
ad,0

p
, the FGA size,

ffiffiffiffiffiffiffiffiffiffi
aFGA

p
,

and Nf , obtained by interpolating experimental VHCF lit-
erature data on quenched and tempered steels (JIS SUJ2,
SCM435, and SNCM439 steels):

ffiffiffiffiffiffiffiffiffiffi
aFGA

p ffiffiffiffiffiffiffiffi
ad,0

p ¼ 0:25 �Nf
0:125, ð25Þ

Equation 25 interestingly shows that, given
ffiffiffiffiffiffiffiffi
ad,0

p
,

Nf increases with FGA size. However, it is worth noting
that the constant coefficients (i.e., 0:25 and 0:125)
involved in the equation may vary depending on the
material type and on delivery condition. According to
this dependence, the authors, moreover, assume that the
number of cycles consumed to create the FGA is repre-
sentative of the total fatigue life and that the threshold
stress range Δσth, obtained by equaling the SIF threshold
and the SIF associated with the initial defect, can be
expressed as

Δσth �a1
6 ¼ 3:55 � HV þ120ð Þ, ð26Þ

being a the crack length. By substituting Equation 25 in
Equation 26, the fatigue life as a function of the stress
amplitude and the defect size is obtained:

Δσth �Nf
1
48 ¼ 4:473 � HV þ120ð Þ

R1=6
i

, ð27Þ

being Ri the inclusion radius. It must be noted that the
internal fatigue limit in Equation 2 has been obtained
from Equation 26 and by considering a crack that is three
times larger than the largest inclusion, in order to model
the weakening mechanisms inducing the FGA formation.
On the other hand, the dependency between the applied
stress, the characteristic defect size and Nf in Equation 27
has been obtained by inserting Equation 25 in
Equation 26. The model is validated on literature
datasets. Figure 21 shows the literature datasets ([5] in
the figure is Shiozawa and Lu43 in the present paper, and
[23] in the figure is Chen et al.78 in the present paper)
and the estimated S–N curves (the line associated with
Equation 27 in the figure indicated by the red arrow).

According to the authors, the slope of the curve esti-
mated by considering an inclusion radius 2 �Ri

max ¼
22μm (i.e., two times the largest inclusion found in the
literature for the same material) is in agreement with the
experimental data. The distribution of the fatigue life is

FIGURE 21 Validation of the model for the VHCF life in

Chapetti et al.34: experimental data and estimated model on an S–N
plot (reprinted with permission from Elsevier) [Colour figure can

be viewed at wileyonlinelibrary.com]

TRIDELLO ET AL. 353

http://wileyonlinelibrary.com


not investigated, and a procedure for the estimation of
the curves at different failure probabilities is not provided
in the paper.

In Bandara et al.,25 the relation between the fatigue
life, the applied stress, the defect size, and the stress ratio
is obtained starting from the Murakami formulation and
the models in Wang et al.79,80 The following equation is
valid for internal failures:

sa,int ¼ 3:09�0:120 � log10Nf
� � � HV þ120ð Þffiffiffiffiffiffiffiffi

ad,0
p� �1=6 � 1�R

2

� �α

,

ð28Þ

whereas Equation 29 is valid for surface failures:

sa,surf ¼ 2:79�0:108 � log10Nf
� � � HV þ120ð Þffiffiffiffiffiffiffiffi

ad,0
p� �1=6 � 1�R

2

� �α

:

ð29Þ

Moreover, a formulation for eliminating the depen-
dence on

ffiffiffiffiffiffiffiffi
ad,0

p
, which may be difficult to be estimated, is

proposed:

sa, ¼ 155�7 � log10Nf
� � � HV þ120ð Þ

1000
� Ruð Þ1=3 1�R

2

� �α

,

ð30Þ

being Ru the ultimate tensile strength. The numeric
constants in the formulation (155, 7, 2:79, ) have been
obtained by analyzing literature results on high-strength

steels. The model has been validated by considering
58 experimental fatigue strengths of high- and medium-
strength steels obtained through rotating bending and
ultrasonic axial fatigue tests. Figure 22 compares the
predicted fatigue strength (σ0w) with respect to the experi-
mental fatigue strength σw for R¼�1 and for R¼ 0 com-
puted with Equation 30. The data obtained with the
model in Equation 30 are those indicated with Bandara
et al. Equation (17) in Figure 20A, whereas they are
those indicated with Equation 17 in Figure 20B.
According to Figure 20A, the model is in agreement
with the experimental data, with the datapoints close to
the bisector. However, about the half of the data is
below the bisector, being the prediction nonconservative.
Figure 20A,B confirms moreover that the model is capa-
ble to assess the influence of the stress ratio. Other vali-
dations are moreover carried out in the paper. The
approach proposed in this paper is interesting, since it
permits to account for the influence of the defect size
and the stress ratio and proposes an alternative solution
for the estimation of the largest defect based on the
tensile strength. However, a procedure for the assess-
ment of the quantiles of the curves is not provided.
Moreover, the numeric constants in the formula are esti-
mated under reasonable assumptions and by considering
a quite large number of experimental data on steel:
However, further validations are required to prove that
the models in Equations 29 and 30 can be generally used
for steels. A procedure for the estimation of the quantiles
of the curves is fundamental, if the model has to be
applied for the design of components without an
experimental estimation and validation of the material
constant parameters.

FIGURE 22 Validation of the model for the VHCF life in Bandara et al.25: predicted fatigue strength (σ0w) with respect to the

experimental fatigue strength σw. (A) R¼�1 and (B) R¼ 0 (reprinted with permission from Elsevier) [Colour figure can be viewed at

wileyonlinelibrary.com]
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In Kolyshkin et al.,81 a VHCF life model based on the
inclusion distribution within the material volume and on
a fracture mechanics approach is proposed and validated
on a dataset obtained by testing an AISI 304 steel. This
approach involves an experimental–analytical approach,
and it permits estimating the P-S–N curves at different
failure probabilities. By assuming that VHCF failures
originate from very large inclusions within the material,
only the inclusions exceeding a threshold size are to be
considered and are assumed to follow a generalized
Pareto distribution function. For the investigated steel,
the threshold was assumed to be 12 μm, whereas the
other material parameters involved in the Pareto distribu-
tion function are estimated from the experimental data.
The distribution of the inclusions above the threshold in
the normal direction (ND, i.e., along the thickness) is, on
the other hand, assumed to follow a Cauchy cdf. By rea-
sonably assuming that the interaction among inclusions
is negligible, a procedure based on the Monte Carlo simu-
lation is proposed and applied to the experimental
dataset. Each simulation involves the following steps:

1. Generation of the inclusion population within the
investigated risk volume V95 (i.e., the specimen vol-
ume characterized by a stress amplitude larger than
the 95% of the maximum applied stress). A Woodhead
analysis is applied to assess the density of inclusions,
whereas the size and the location of the inclusions
above the selected threshold size within the investi-
gated risk volume are modeled according to the Pareto
and the Cauchy distributions, respectively. The stress
in the vicinity of each inclusion is obtained analyti-
cally. It is worth noting that the parameters of the
Pareto and the Cauchy distributions must be esti-
mated from the experimental results, for example by
analyzing the fracture surfaces of specimens subjected
to VHCF tests.

2. Depending on the inclusion location, computation of
the shape factor Y involved in the SIF equation.

3. Computation of the SIF associated to each inclusion.
4. Calculation of the fatigue life, Nf , by assuming that

the crack initiates simultaneously at all the considered
inclusions. Nf is obtained from the curve SIF versus
Nf , estimated by fitting experimental results already
obtained for the tested material.

5. Identification of the inclusion characterized by the
smallest Nf , the one that will originate the fatigue
failure.

The procedure is repeated iteratively, at least
100 times, for the stress amplitudes that are supposed to
be applied experimentally. The simulated sizes and loca-
tions are found to be in agreement with those found

experimentally. In order to take into account the scatter
associated with the defect size and location, the quantiles
of the P-S–N curves for the tested steel are estimated
from the 100 simulations. In particular, the estimated
fatigue lives (i.e., one estimated fatigue life in each simu-
lation) are ordered in ascending order for each consid-
ered stress level, and the values of the 10%, 50%, and 90%
percentiles are considered for the estimation of the P-S–N
curves at the corresponding failure probability, as shown
in the S–N plot in Figure 23 (in our opinion, the solid line
curves correspond to the 0.1th and the 0.9th quantiles
curves, even if they are indicated with “10% confidence”
and “90% confidence” in the legend). According to
Figure 23, all the data are within the estimated 10% and
90% P-S–N curves; moreover, Figure 23 shows that the
scatter is larger at higher stress amplitudes, where two
damage mechanisms are present, whereas it reduces as
the applied stress amplitude decreases, in the fatigue life
range where only internal failures are present.

According to these analyses, a pure fracture mechan-
ics approach has been employed in three literature
papers. Indeed, the approaches based on the analysis of
the SIF or, more specifically, of the SIF threshold are
more appropriate for the assessment of the fatigue limit,
as pointed in Section 2. Nevertheless, the model analyzed
in this section proved to be effective and in agreement
with the literature data. The model in Chapetti et al.34

can be easily applied and permits taking into account the
influence of the FGA formation in the crack nucleation
process. However, it involves the estimation of the SIF
threshold, which may vary depending on the material,
heat treatment, and production process and cannot be
easily retrieved or experimentally estimated. The
constant material parameters in Equation 25 should be

FIGURE 23 Validation of the model for the VHCF life in

Kolyshkin et al.81: experimental data on the S–N plot and estimated

P-S–N curves (reprinted with permission from Elsevier) [Colour

figure can be viewed at wileyonlinelibrary.com]
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verified for each investigated material. Moreover, no
details on the statistical distribution of the fatigue life are
provided, in order to take into account the experimental
data scatter. In Bandara et al.,25 an interesting approach
is proposed to model the relation between the fatigue life,
the applied stress, the defect size, and the stress ratio.
The defect size is estimated by considering the material
tensile strength. Indeed, the expected defect in the mate-
rial volume may be hard to estimate or predict if the dis-
tribution of defect size is not available. A procedure for
the assessment of the quantiles of the curves or to take
into account the scatter associated to the fatigue response
is not provided.

In the model in Kolyshkin et al.,81 the dependence
between the SIF associated to the defect and the number
of cycles to failures has to be estimated from the experi-
mental data. The distribution of inclusion size and inclu-
sion location is also considered, and they have to be both
experimentally assessed. By applying an iterative proce-
dure, the quantiles of the P-S–N curves are reliably
assessed.

These three methodologies showed how an approach
based on the SIF or on the SIF threshold can be effective
for modeling the fatigue life in VHCF. This approach,
however, requires necessarily a fundamental analysis of
the experimental results and of the fracture surfaces in
order to define the coefficients involved in the equations

that link
ffiffiffiffiffiffiffi
aODA

p ffiffiffiffiffiffi
ad,0

p with Nf (Chapetti et al.
34) or the SIF asso-

ciated to defects to Nf (Kolyshkin et al.81) that are gener-
ally not required in models based on a probabilistic
approach. Or, at least, if the models are intended to be
valid for a wide range of steels (Bandara et al.,25), the sen-
sitivity of the material parameters in the SIF threshold
equation or in the SIF equations should be verified. On
the other hand, the term

ffiffiffiffiffiffiffiffi
ad,0

p
is replaced by considering

the material tensile strength in Bandara et al.,25 but this
assumption must be verified on a large number of
datasets to be accepted for all steels.

3.5 | Models for the S–N curves:
Integration of the Paris law

In this section, the models based on the integration of the
Paris law are analyzed and described. Through this
approach, the dependence between Nf , sa, and the defect
size can be assessed. In particular, the crack propagation
from the defect to the FGA, generally neglected with the
approaches described above, is modeled.

In Tanaka and Akiniwa,47 the stress–life relation is
obtained by analyzing the crack formation and propaga-
tion from the initial defect. Two S–N curves, one for

cracks originating from surface defects and one for cracks
originating from internal defects, are estimated by inte-
grating the Paris law. The models are validated on experi-
mental results obtained by testing the bearing steels JIS,
SUJ2 and a low-alloy steel, JIS SNCM439. The crack
propagation from internal defects takes place in two
stages: Stage 1, from the inclusion to the border of the
FGA, and Stage 2, with crack propagation as a “long
crack.” The crack propagation in Stage 1 and Stage 2 can
be modeled with the Paris law. The SIF threshold range
for internal cracks, Δkth,i, is assumed to be constant.
Stage 1 and Stage 2 occur for internal cracks, whereas
Stage 1 is not present for surface cracks. Accordingly, two
S–N curves are estimated: the S–N curve for surface crack
nucleation and the S–N curve associated to the internal
failure mode. The conventional fatigue limit is denoted
as the fatigue limit for the surface failure mode. The con-
stant coefficients are computed by minimizing the differ-
ences between the experimental Nf and the estimated
Nf , assessed through the integration of the Paris law.

Figure 24 plots the experimental data and the esti-
mated S–N curves in an S–N plot.47 The estimated S–N
curves have been found to be in good agreement with the
experimental data. It was moreover shown that the S–N
curves estimated with the proposed model can be used to
compute the influence of specimen diameter, loading
mode, and residual stress. The statistical distribution of
the fatigue life is not discussed, and the P-S–N curves at
different failure probabilities are not estimated in the
paper.

In Lu et al.,82 three failure modes are found by testing
a high-chromium bearing steel, GCr15, in the LCF–
VHCF life range: surface-induced fracture mode, S mode;

FIGURE 24 Validation of the model for the VHCF life in

Tanaka and Akiniwa47: experimental data and estimated model on

an S–N plot (reprinted with permission from Wiley)
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internal inclusion-induced fracture mode without a for-
mation of the FGA area, I mode; internal inclusion-
induced fracture mode with the FGA area formation, IG
mode. The work is moreover focused on the influence of
the defect size on the fatigue life, by assuming that the
fatigue crack propagation from the initial defect to the
FGA can be described by the Paris law. Nf is therefore
obtained through the integration of the Paris law, under
the reasonable assumption that Nf is mainly consumed
to form the FGA and that the crack propagation outside
the FGA can be neglected:

Nf ¼
1� ffiffiffiffiffiffiffiffi

ad,0
p

=
ffiffiffiffiffiffiffiffiffiffi
aFGA

p� � m=2�1ð Þ	 

C � 0:5 � sa � ffiffiffi

π
pð Þm � m=2�1ð Þ �

1ffiffiffiffiffiffiffiffi
ad,0

p� � m=2�1ð Þ , ð31Þ

being m, C constant coefficients and
ffiffiffiffiffiffiffiffi
ad,0

p
and

ffiffiffiffiffiffiffiffiffiffi
aFGA

p
the square root of the area of the initial defect and of the
GBF, respectively. It was assumed that

ffiffiffiffiffiffiffiffi
ad,0

p
=
ffiffiffiffiffiffiffiffiffiffi
aFGA

p ffi
1:18 and that m is significantly larger than the values
assumed for a propagation outside the FGA (e.g., larger

than 7), so that
ffiffiffiffiffiffiffiffi
ad,0

p
=
ffiffiffiffiffiffiffiffiffiffi
aFGA

p� � m=2�1ð Þ
can be neglected.

According to these further assumptions, Equation 31 can
be rewritten as Equation 32, which expresses the relation
between the fatigue life Nf and the applied stress sa in
the presence of an initial defect with size equal to

ffiffiffiffiffiffiffiffi
ad,0

p
:

0:5 � sa �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π
ffiffiffiffiffiffiffiffi
ad,0

pq	 
m
� Nfffiffiffiffiffiffiffiffi

ad,0
p ¼ 2

C � m�2ð Þ : ð32Þ

The unknown parameters m, C are estimated from
the experimental data and by applying the least-square
method. By replacing the constant coefficients 0:5 with
0:65 and

ffiffiffiffiffiffiffiffi
ad,0

p
with

ffiffiffiffiffiffi
AS

p
(size of a surface defect),

Equation 32 can be used to compute the relation between
the fatigue life and the applied stress for a surface defect.
The model has been validated on the dataset obtained by
the authors, by considering

ffiffiffiffiffiffiffiffi
ad,0

p
equal to 16μm (average

internal inclusion size for the IG mode) and to 20μm
(size of an inclusion in axial loading) and

ffiffiffiffiffiffi
AS

p
equal to

9μm. Figure 25 shows the experimental data and the S–N
curves estimated with Equation 32. According to the
authors, the curve for IG mode and

ffiffiffiffiffiffiffiffi
ad,0

p ¼ 16 μm is in
agreement with the experimental failures. For the other
failure modes, there are not enough experimental data to
validate the model. The distribution of the fatigue life is
not defined in the paper. In the figure,

ffiffiffiffiffiffiffi
AIG

p
corresponds

to
ffiffiffiffiffiffiffiffi
ad,0

p
.

It must be noted that the failure modes considered in
this paper (Lu et al.82) are the same as investigated in Li
et al.61 Differently from the other models, in Li et al.61

and Lu et al.,82 the authors distinguished between

failures from defects without FGA formation and failures
from defects with FGA formation. Accordingly, they
assume that the experimental data follow two different
trends in an S–N plot (Figures 16A and 25), depending
on the FGA formation around the defects. For the other
investigated datasets that show surface failures in the
LCF–HCF life range and internal failures from defects in
the VHCF life range, different trends, depending on the
FGA formation, were not observed and, therefore, not
modeled.

In Schuller et al.,83 differently from Mayer et al.48

where the same research group modeled the stress life
relation by combining the Basquin equation and the
Murakami formulation, the final relation between Nf , sa,
and

ffiffiffiffiffiffiffiffi
ad,0

p
is obtained by integrating an adapted Paris

law:

Nf ¼ 2

C � n�2ð Þ � ffiffiffi
π

pð Þn � sað Þ�n � ffiffiffiffiffiffiffiffi
ad,0

p � 2�n
2

� �
: ð34Þ

The experimental data, obtained through ultrasonic
tension–compression tests on 18Ni maraging steel thin
sheets with different Co and Ti content and the estimated
models, are shown in the modified S–N plot in Figure 26.
The authors proposed also to assess the scatter associated
with the experimental data by assuming a log-normal dis-
tribution for the fatigue life, but in the figure only the
median curves are shown. With this approach, on the
other hand, the influence of the FGA on the crack nucle-
ation is not taken into account. Material A and Material
B are the same material, but Material B has a larger con-
tent of Co, which increases the strength. Moreover, Ti is
eliminated in Material B.

In Paolino et al.,37 the model proposed by the
research group of the Politecnico di Torino in the

FIGURE 25 Validation of the model for the VHCF life in Lu

et al.82 (reprinted with permission from Wiley)
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previous study36 has been further generalized in a sta-
tistical framework, and the unknown parameters are
estimated by integrating the Paris law that models each
stage of crack growth from the internal defect up to the
final failure. In particular, the αth quantile of the fatigue
life is obtained by integrating the Paris law in Stage
1 (from the defect size to the border of the FGA size) and
by assuming that the total number of cycles to failures
can be approximated by the number of cycles consumed
in Stage 1 (i.e., the same assumptions of the model in Lu
et al.82):

nf , ffiffiffiffiffiffiad,0
p

,αth ffinI, ffiffiffiffiffiffiad,0
p

,αth ¼
Z ffiffiffiffiffiffiffiffiffiffiffiaFGA,αth

p

ffiffiffiffiffiffi
ad,0

p
da

cI � kd�kth,l,αthð ÞmI
,

ð35Þ

being cI and mI the constant coefficients involved in the
Paris law, nf ,

ffiffiffiffiffiffi
ad,0

p
,αth the αth quantile of the total life,

nI, ffiffiffiffiffiffiad,0
p

,αth the αth quantile of the number of cycles to
failure consumed in Stage 1, kd the SIF associated to the
initial defect size

ffiffiffiffiffiffiffiffi
ad,0

p
, kth,l,αth the αth quantile of the

local SIF threshold (Section 2), and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aFGA,αth

p
the αth

quantile of the FGA size. The αth quantile of the marginal
P-S–N curve is given by

αth ¼
Z ∞

0
FNf j ffiffiffiffiffiffiad,0

p nf ,αth ;sa,
ffiffiffiffiffiffiffiffi
ad,0

p� �
f ffiffiffiffiffiffi

Ad,0

p ffiffiffiffiffiffiffiffi
ad,0

p� �
d
ffiffiffiffiffiffiffiffi
ad,0

p
,

ð36Þ

being FNf j ffiffiffiffiffiffiad,0
p nf ,αth ;sa,

ffiffiffiffiffiffiffiffi
ad,0

p� �
the conditional distribu-

tion of the fatigue life. FNf j ffiffiffiffiffiffiad,0
p nf ,αth ;sa,

ffiffiffiffiffiffiffiffi
ad,0

p� �
is implic-

itly defined in Equation 35, and through a numerical
procedure based on the Monte Carlo simulation, the αth
quantile of the fatigue life can be obtained from Equa-
tion 35. The methodology in Paolino et al.37 is based on
fracture mechanics concepts rather than on fitting the
experimental data and the distribution of the fatigue life
is not a priori assumed.36 However, differently from all
the other models for the fatigue life defined in the litera-
ture and based on a fracture mechanics approach, the
model in Paolino et al.37 permits also computing the S–N
curves at different failure probabilities. On the other
hand, the procedure for estimating the material parame-
ters is more complex, and a numerical procedure based
on the Monte Carlo simulation is necessary. Figure 27
shows the P-S–N curves estimated by considering the
experimental dataset obtained by the authors.

In Sun et al.,84 the Paris law is not exploited, but the
stress life relation is obtained starting from consider-
ations on the crack propagation within the FGA. For this
reason, this model has been included in this section. In
particular, an equivalent crack length after a number of
cycles N is computed by assuming that “the equivalent
crack growth rate in the FGA region is related to the maxi-
mum size of the plastic zone at the crack tip” and that the
number of cycles consumed within the FGA can approxi-
mate the total life with negligible differences. The stress–
life relation for high-strength steels failing in the VHCF
region becomes

Nf ¼ 1
α
� sa

σY

� ��l

ln
aFGA
a0

� �
, ð37Þ

being σY the yield stress, α and l two parameters that
have to be estimated from the experimental data, and
aFGA the size of the FGA. According to Equation (37), the
fatigue life increases with the ratio between the FGA size
and the initial inclusion size, in agreement with the
experimental evidence. Equation 37, obtained analyti-
cally, is similar to that obtained through the interpolation
of the experimental data in Chapetti et al.34 and reported
in Equation (25). Indeed, they both show that Nf

increases with FGA size but with different approaches.
Equation 37 with an analytical approach, whereas Equa-
tion 25 through an experimental approach.34 The expres-
sion obtained by Chapetti et al. depends on two material
parameters that have been estimated from the experi-
mental data and that must be verified for other types of
materials or delivery conditions (e.g., heat treatments).

FIGURE 26 Validation of the model for the VHCF life in

Schuller et al.83: S–N plot with normalized stress amplitude

(reprinted with permission from Wiley) [Colour figure can be

viewed at wileyonlinelibrary.com]
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The variation of the FGA size with the applied stress
amplitude is not accounted in Equation 25. On the other
hand, Equation 37 is more general, since it depends on
material parameters to be estimated from experimental
data, on quasi-static properties, i.e., the yield stress, and
on the applied stress amplitude. Accordingly, given the
applied stress amplitude, the dependency between the
FGA size and Nf can be obtained. The model has been
validated on an experimental dataset obtained by testing
a high-carbon–chromium steel (GCr15) and on literature
datasets. Figure 28 plots the fatigue life predicted with
the model in Sun et al.84 with respect to the experimental
fatigue life. According to Figure 28, the model in Sun
et al.84 permits to properly predict the fatigue life of speci-
mens failed in the VHCF region with failures showing a
fish-eye morphology with FGA formation.

The analysis of the model based on the integration of
the Paris law or on the analysis of the number of cycles

consumed within the FGA has shown that also this
approach is effective in modeling the stress–life relation.
They are almost all based on the assumption that most of
the life, larger than 95% to 99%, according to Paolino
et al.,37 is consumed within the FGA, according to the
experimental evidence. This assumption is generally
accepted and has proved to be effective. Moreover, by
integrating the Paris law, the dependence between the
defect size and the fatigue life is modeled, differently
from models for the fatigue life based on a probabilistic
approach. The influence of the mechanisms for the FGA
formation is, moreover, accounted. However, the mate-
rial parameters involved in the Paris law equation for the
crack propagation within the FGA must be reliably
known. The experimental assessment of these coefficients
can be rather complex, and, generally, they are not avail-
able in the literature. Alternatively, they have to be reli-
ably estimated, even if this could influence the final
results. A possible solution can be their estimation
through an optimization process: for example, by mini-
mizing the differences between the number of cycles con-
sumed within the FGA experimentally assessed and the
estimated number of cycles. This would avoid performing
tests for assessing the material parameters in the Paris
law equation.

Another critical point of this approach can be the
need of measuring the FGA size on the fracture surfaces.
Indeed, this requires the availability of a Scanning Elec-
tron Microscope (SEM) and a time-consuming analysis of
the fracture surfaces.

Another aspect that must be highlighted is that the
experimental scatter is generally not modeled with the
above-described approach. Indeed, apart from the model
in Paolino et al.,37 only the median curve is estimated,
and a procedure for the estimation of the quantiles asso-
ciated to the estimated P-S–N curves is not provided.
Therefore, more attention should be paid to this aspect,
i.e., modeling also the randomness associated to the
fatigue phenomenon or to the defect size, in order to

FIGURE 27 Validation of the model for the

VHCF life in Paolino et al.37: P-S–N curves and

experimental data (reprinted with permission

from Wiley)

FIGURE 28 Validation of the model for the VHCF life in Sun

et al.84: predicted fatigue life with respect to the experimental

fatigue life (reprinted with permission from Springer) [Colour

figure can be viewed at wileyonlinelibrary.com]
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employ models based on this approach in practical
applications.

3.6 | Summary and considerations on
fatigue design

In this section, the models described in previous sections
are described. Table 1 summarizes the main features
associated with each model available in the literature.
The models have been subdivided according to the
“approach-based” classification followed in the paper. In
the first column, the reference number is reported. In the
second column, the main features associated to the
model are schematically described. In the third, fourth,
and fifth columns, the material considered for the valida-
tion, the number of investigated failure modes, and the
investigated life range are reported, respectively. In
Table 1, only the models that focus on the stress–life rela-
tion and that propose a procedure for the estimation of
the P-S–N curves have been included. The models in pre-
vious studies44,49,53,77 are not included since they propose
interesting approaches for the fatigue life in VHCF, but
they have to be further developed for modeling the
stress–life relation and, accordingly, the P-S–N curves.

According to Table 1 and to the analyses in the
previous section, four main approaches have been
followed in the literature:

1. An approach based on the interpolation of the experi-
mental data by exploiting a power law.

2. A probabilistic approach, involving the assumption of
the statistical distribution of the fatigue life.

3. A fracture mechanic approach, based on the analysis
of the SIF and of the SIF threshold close to the initial
defect.

4. An approach based on the integration of the Paris
law.

The first approach is the simplest. Indeed, the num-
ber of parameters to be estimated is limited, and it is
based on the fitting of the experimental data on an S–N
plot. However, it fails to account the different mecha-
nisms for crack initiation occurring in VHCF and can be
applied only for a specific failure mode. The dependence
of the fatigue life on the defect size is generally not
considered. On the other hand, in Mayer et al.,48 the
stress–life relation is assessed by normalizing the stress
amplitude by a factor dependent on the defect size. The
influence of the stress ratio has been considered in
Schönbauer et al.50: Starting from the Murakami formu-
lation, the data are normalized by considering the stress
ratio. The model in Sun et al.27 is the most general, since

it permits modeling both the influence of inclusion size
and the stress ratio and has been validated on experimen-
tal datasets obtained by testing high-strength steels. This
analysis confirms that a power law is effective in model-
ing the fatigue life and that, properly adapted, can be
exploited also to model the influence of defect size, of the
stress ratio or the presence of an asymptote. However,
more efforts are necessary to model the scatter associated
to the experimental failures and to assess the quantile
curves.

The second group includes all the models based on a
statistical approach, for which the fatigue response is
assessed by fitting the experimental results in an S–N plot
and by assuming the distribution of the fatigue life. The
fatigue life is assumed to follow a log-normal distribution
or a Weibull distribution. These statistical distributions
proved to be valid even for the VHCF life range. In par-
ticular, the models in Ref.6,45,56,57,60–63 focus on the com-
petition between the two failure modes, surface for the
LCF–HCF region and internal for the VHCF region. On
the other hand, in Sun et al.,69 the experimental data are
interpolated by considering a continuous decreasing
trend from LCF to VHCF, regardless of the failure mode,
and a transition between the two failure modes has not
been investigated. In Sun et al.,69 a weakest link
approach has been considered. The transition stress
between different failure modes is seen as the fatigue
limit for a specific failure mode.61 In Paolino et al.,36 only
the VHCF region is taken into account, and a model for
the P-S–N curves below the transition stress is proposed.
The influence of the defect size is accounted for by
assuming that the mean of the fatigue life distribution is
dependent not only on the applied stress but also on the
defect size. The duplex P-S–N curves can be obtained by
integrating the model in Paolino et al.36 with the unified
model in Ref.,45 as shown in Tridello and Paolino.85. The
model in Arcari et al.72 focused on the assessment of the
strain–life response of materials. All the models within
this group have been validated experimentally mainly on
a high-strength steel, proving their effectiveness. How-
ever, to extend their use, validations on different mate-
rials are required. Moreover, the influence of defects is
not always taken into account, even if it plays a funda-
mental role in the VHCF crack initiation. For the models
addressing the entire LCF–VHCF life range, the assump-
tion of a linear decreasing trend with only a failure model
is to be avoided. Indeed, a large number of experimental
datasets show a duplex behavior, with two failure modes,
depending on the life range. Therefore, the assumption of
a unique trend could limit the use of the model. On the
other hand, if more failure modes are modeled and a
unique trend is observed from the experimental data, the
material parameters to be estimated should adapt to
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TABLE 1 Summary of the main models considered for the fatigue life in VHCF

Paper Main features
Material for the
validation

Failure modes
addressed Investigated life range

Power law fitting

Akiniwa
et al.46

Fitting of axial and
torsional VHCF test
results

Oil-tempered Si–Cr steel,
JIS G3561, SWOSC-V

Not specified VHCF life range

Liu et al.29 Material parameters
estimated from the
fatigue limit at 106 and

109 cycles

Spring steel Failure from defects VHCF life range

Sun et al.27 Influence of defect size and
on the stress ratio on the
VHCF life

High-carbon–chromium
steel

Failure from defects VHCF life range

Mayer et al.48 Influence of defect size on
the VHCF life

Bainitic high-carbon–
chromium steel

Failures from defects VHCF life range

Schönbauer
et al.50

Influence of the stress ratio
on specimens subjected
to constant and variable
amplitude loads

17-4PH steel Not specified VHCF life range

Probabilistic approach

Paolino
et al.36

Fatigue life log-normally
distributed dependent on
ad,0 and fatigue limit

H13 tool steel Failures from defects (also
with FGA formation)

VHCF life range

Weixing and
Shenjie56

Fatigue life distribution has
a double-peaked shape

Aluminum alloy LC4CS Surface and internal
failure modes

LCF–VHCF life range

Zhao et al.57 Fatigue life log-normally
distributed and
probabilistic concurrent
model

LZ50 axle steel One failure mode (not
specified)

LCF–VHCF life range:
bilinear trend with
transition point

Sakai et al.6 Mixed-mode Weibull
distribution; two cdfs for
surface and internal
failures

High-carbon–chromium
steel for the bearing

Surface in the LCF–HCF
and internal in the
VHCF life range

LCF–VHCF life range:
duplex trend

Bomas
et al.60

Fatigue life assumed to
follow a two-parameter
Weibull distribution:
failure mechanisms
statistically independent

Carburized, quenched
and tempered steel SAE
5115

“Non-defect” failures and
failures from defects

LCF–VHCF life range:
bilinear trend

Li et al.61 For each failure mode,
fatigue life described by a
two-parameter Weibull
distribution function

Carburized Cr–Mn–Si
steel

Three failure modes,
depending on the stress
amplitude

LCF–VHCF life range
with an asymptote for
each failure mode

Li et al.62 Mixed-mode Weibull
distribution, with three
parameters Weibull
distribution for each
failure mode

Bearing steel SUJ2 Surface and internal
failures

LCF–VHCF trend:
monotonic decreasing
trend

Muniz-
Calvente
et al.63

Weibull distribution for
each failure mode:
Castillo–Canteli model

Literature datasets on
Ti6Al4V

Surface and internal
failures

LCF–VHCF life range:
duplex trend

(Continues)
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TABLE 1 (Continued)

Paper Main features
Material for the
validation

Failure modes
addressed Investigated life range

Paolino
et al.45

Unified statistical model:
log-normal distribution
for the fatigue life,
transition stress and
VHCF limit

Literature datasets Surface and internal
failures

LCF–VHCF life range:
duplex trend with
VHCF limit

Sun et al.69 Weibull or log-normal
distribution and Basquin
model, assessment of size
effect

Literature datasets on
high-strength steels

Not defined Continuous decreasing
trend in the LCF–VHCF
life range

Apetre
et al.71 and
Arcari
et al.72

Strain–life relation, with
the probabilistic strain–
life Weibull regression
model. Influence of stress
ratio R

7075-T6 specimens Not defined Continuous decreasing
trend in the LCF–VHCF
life range

Fracture mechanics approach

Chapetti
et al.34

Experimental dependence
between

ffiffiffiffiffiffiffiffi
ad,0

p
,
ffiffiffiffiffiffiffiffiffiffi
aFGA

p
,

and Nf and experimental
expression for the SIF
threshold

Literature datasets on
high-strength steels

Failures from defects VHCF life range

Bandara
et al.25

Dependence between Nf ,ffiffiffiffiffiffiffiffi
ad,0

p
, sa, and R.

ffiffiffiffiffiffiffiffi
ad,0

p
estimated by considering
the tensile strength

Literature datasets on
high-strength steels

Failures from surface and
defects

VHCF life range

Kolyshkin
et al.81

Dependence between Nf ,ffiffiffiffiffiffiffiffi
ad,0

p
, and sa by

considering also the
defect location. P-S–N
estimation with an
iterative procedure

AISI 304 steel Failures from defects VHCF life range

Integration of the Paris law

Tanaka and
Akiniwa47

P-S–N curves for surface
and internal cracks.
Traditional fatigue limit
corresponding to the
fatigue limit for surface
cracks

Bearing steels JIS, SUJ2
and a low-alloy steel,
JIS SNCM439

Failures from surface and
from defects

LCF–VHCF life range:
duplex trend

Lu et al.82 Propagation from the initial
defect to the FGA border:
under reasonable
assumption, relation
between Nf , sa, and

ffiffiffiffiffiffiffiffi
ad,0

p
assessed

High-chromium bearing
steel, GCr15

Three failure modes:
surface, internal with
FGA, and internal
without FGA

LCF–VHCF life range

Schuller
et al.83

Relation between Nf , sa,
and

ffiffiffiffiffiffiffiffi
ad,0

p
and log-normal

distribution for the
fatigue life

18Ni maraging steel thin
sheets with different Co
and Ti content

Failures from defects VHCF life range
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follow a single trend, if the parameter estimation is prop-
erly carried out. On the other hand, apart from Arcari
et al.,72 the influence of the mean stress is not modeled
with this approach.

Differently from the models belonging to the first
group, the number of parameters involved in the cdf of
the fatigue life can be high, especially if the LCF–VHCF
life range is considered, thus requiring an appropriate
number of experimental results for a reliable estimation.
The flexibility increases with the number of parameters
involved; however, this increases the number of experi-
mental data required and could increase the complexity
of the procedure for the parameter estimation. For exam-
ple, for the application of the maximum likelihood
principle,36,45 optimization algorithms have to be used
(e.g., the simplex search method implemented in Matlab).
An initial and reasonable guess of the parameters to be
estimated is required to obtain a physical solution and to
avoid obtaining a local maximum of the function to be
maximized. This example shows that, as the number of
parameters to be estimated increases, the procedure for
their estimation becomes more complex and has also to
be properly designed. However, with the proper imple-
mentation of the procedure for parameter estimation, the
computation time can be limited and kept in a reasonable
range (minutes).

Macromechanical models based on the analysis of the
SIF and of the SIF threshold associated to the initial
defect are included within the third group: For example,
in Chapetti et al.,34 the S–N curves are estimated through
the analysis of the SIF threshold and by fitting of the
experimental data to find the relation between the defect
size, the FGA size, and Nf . In Bandara et al.,25 the depen-
dence between sa, Nf ,

ffiffiffiffiffiffiffiffi
ad,0

p
, and R is obtained starting

from literature models. The dependence on
ffiffiffiffiffiffiffiffi
ad,0

p
has

been interestingly eliminated by considering the material
tensile strength. The validation has proved the effective-
ness of the proposed methodology for steels. Finally, in
Kolyshkin et al.,81 a model that takes into account the
distribution of the most critical defects (defects above a
selected threshold) and their distribution within the
cross-section is developed, with the fatigue life estimated
through a procedure based on the Monte Carlo
simulation and by considering the experimental relation
between the SIF associated with defects and Nf . In all
these models, the proper assessment of the SIF threshold
is fundamental to model the crack initiation from the
initial defect: In Bandara et al.25 and Chapetti et al.,34 the
coefficients involved in the SIF threshold equation are
considered constant regardless of the material, since they
have been estimated by considering a large number of
experimental data on steels. In Kolyshkin et al.,81 differ-
ently from the other literature models, the SIF threshold
is not considered, and the experimental relation between
the SIF associated with a defect and Nf is exploited for
assessing the fatigue life. Within this group, the S–N cur-
ves at different failure probabilities are estimated in
Kolyshkin et al.,81 whereas they are not considered in
Bandara et al.25 and Chapetti et al.34 In general, all the
models for the fatigue life based on a fracture mechanics
approach permit modeling the dependency between the
fatigue life and the initial defect size, which is fundamen-
tal for the analysis of the VHCF response; on the other
hand, they may involve the experimental estimation of
material coefficients that require specific and time-
consuming experimental tests, for example, experimental
tests for the estimation of the SIF threshold.

With reference to the fourth group, Nf is obtained
through the integration of the Paris law from the initial
defect size to the FGA size,37,47,82,84 by assuming that the

TABLE 1 (Continued)

Paper Main features
Material for the
validation

Failure modes
addressed Investigated life range

Paolino
et al.37

Propagation from the initial
defect to the FGA border.
Procedure for the
quantile of the fatigue life
based on Monte Carlo
simulation

H13 tool steel Failures from defects VHCF life range

Sun et al.84 Crack propagation within
the FGA: “the equivalent
crack growth rate in the
FGA region is related to
the maximum size of the
plastic zone at the crack
tip”

High-carbon–chromium
steel (GCr15)

Failures from defects VHCF life range
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total fatigue life Nf can be approximated with the life
consumed in the formation of the FGA. The validation
on the experimental datasets has proved the effectiveness
of these models and of this assumption. All the models
focus on the assessment of the stress–life relation and
provide indications for the assessment of the median
curve, without providing a detailed procedure for the
assessment of the quantile curves, apart from Paolino
et al.37 This shortcoming has to be necessarily addressed
in future research. However, the main issue associated
with this approach could be the proper choice of the
material coefficients involved in the Paris law equation,
which are generally not available since they have to be
estimated through specific complex experimental tests.
Therefore, they should be reasonably retrieved from liter-
ature data on the same material in similar conditions, if
available. In this case, it is even more important to model
the scatter associated to the fatigue life and to consider
high-reliability curves. Another solution is to estimate
the material parameters involved in the model through
an optimization process aiming at minimizing the differ-
ence between the experimental Nf and the estimated Nf .
In this case, however, the number of the experimental
data should be as high as possible, depending on the
number of parameters to be estimated. This could repre-
sent a future trend for the research on the models based
on this approach. It is worth noting that other models
based on the integration of the Paris law have been pro-
posed in the literature,5,86,87 but they are more focused
on the assessment of the number of cycles consumed in
each stage of crack propagation rather than on assessing
the stress–life relation and the P-S–N curves.

The analysis of all the available models has
highlighted the relevance of assessing the crack origin
and the failure mode to properly estimate the stress–life
relation. The dependency between the defect size and
the fatigue life must be also taken into account, since
the defects control the VHCF response and are respon-
sible for the large scatter associated with the VHCF
failure data. Models for the LCF–VHCF life range
should consider the possibility of two failure modes,
with two different trends in the two regions. Almost all
the models for duplex P-S–N curves consider two
failure modes, that is, surface failure for LCF–HCF life
range and internal failure from defect in the VHCF life
range. On the other hand, in Li et al.61 and Lu et al.,82

three failure modes are considered. Indeed, for the
internal failures, the authors differentiate between
failures from defects without FGA formation and
failures from defects with FGA formation, since they
follow two different trends in an S–N plot. For this rea-
son, fracture surfaces should be carefully investigated to
verify the FGA formation, since, according to Li et al.61

and Lu et al.,82 the data would follow different distribu-
tions and different trends in an S–N plot.

It must be noted that some of the analyzed
models37,45,61 in Section 3 show a horizontal asymptote at
the end of a monotonic decreasing trend, that is, a fatigue
limit. For example, in the model in Li et al.,61 three
asymptotes are present, each corresponding to the
“fatigue limit” for a specific failure mode. Similarly, the
so-called “transition stress” can be considered as the
fatigue limit for “surface failures.” However, differently
from the fatigue limit models analyzed in Section 2, the
horizontal asymptote present in the models described in
this section is obtained through the fitting of the experi-
mental data, that is, the experimental data show an
asymptotic trend or an asymptotic trend is a priori sup-
posed. This is the main difference between the fatigue
limit assessed by considering the models for the stress–
life in Section 3 (being the fatigue limit a fatigue
strength) and the “fatigue limit” models analyzed in
Section 2 and estimated through considerations on the
crack initiation mechanisms close to the initial defect.

The models analyzed in this section can be considered
valid for all VHCF failures, unless specified by the
authors. However, the proposed models have been vali-
dated, generally, on a specific material or on materials
with similar properties (e.g., high-strength steels and
bearing steels spring steels). In order to prove the adapt-
ability of the available models to different types of mate-
rials, the validation should be extended to a larger
number of experimental datasets. Nonetheless, the
majority of the investigated models has a general formu-
lation that can be adapted to materials different from
steels and showing similar failure modes. The models
based on a statistical approach, for example, can be
employed to fit datasets obtained by testing different
materials: For example, the models in Paolino et al.,36

validated on a H13 tool steel, have been adapted for
modeling the stress–life relationship of AlSi10Mg speci-
mens produced through additive manufacturing pro-
cesses.55 In general, a model can be applied to materials
different from those considered for the validation. A care-
ful validation, however, is strongly recommended. Other-
wise, the use of the investigated models should be
restricted to the test type and to the material considered
for the validation.

Regarding the test type, the range of application of
each model must be restricted depending on factors like
the loading type, the testing method, and the stress ratio.
For example, the influence of the mean stress has been
investigated only in Ref.25,27,50,71,72 and all the investigated
models consider only the case of a stress ratio equal to �1.
Literature models mainly deal with the fatigue response of
specimens subjected to ultrasonic tension–compression

364 TRIDELLO ET AL.



tests or to rotating bending tests.6 The influence of rotating
bending or tension–compression loads is not so marked,
being related mainly to the risk volume of the tested speci-
mens, with specimens for rotating bending tests that are
characterized by smaller risk volumes.30,38 Therefore, the
models analyzed in this section can be generally employed
for the estimation of the P-S–N curves of specimens sub-
jected to ultrasonic tension–compression fatigue tests or to
rotating bending tests, provided that the influence of the
risk volume is considered. If this effect is not taken into
account, the estimated P-S–N curves are valid only for the
risk volume of the tested specimens.

Moreover, only in Akiniwa et al.46 a model for the
fatigue life of specimens subjected to torsion loads has
been proposed.

Regarding the specimen condition, like the surface
finishing, it has been never taken into account in the
analyzed models. Indeed, specimens in the VHCF life
range generally fail from internal inclusions or defects,
with the surface roughness controlled through polishing
or other processes, in order to enhance the crack initia-
tion from internal defects. Therefore, the influence of
surface finishing or roughness in VHCF can be hardly
modeled, and accordingly, it has not been taken into
account in the investigated models. The influence of
other factors, like residual stresses, has not been modeled
in all the analyzed papers.

In general, it can be concluded that most of the
models available in the literature can be employed for
steel materials subjected to a fully reversed tension–com-
pression. More efforts should be made to extend the
range of application of these models, by taking into
account factors that strongly affect the VHCF response of
parts in-service conditions.

To conclude, none of the papers analyzed in this
review provide indications or a detailed methodology for
the assessment of the design curve88 in the VHCF life
range. According to the industrial practice, the design
curve is the lower confidence bound (e.g., 10%) for the P-
S–N curve with high reliability (e.g., 10% quantile P-S–N
curve) that, therefore, ensures an appropriate safety
factor when components are designed against fatigue
failures. More efforts should be made to provide method-
ologies for the definition of the “design curves” including
the VHCF region, since they are used for the design
of components and are therefore of fundamental
importance in practical applications.

4 | CONCLUSIONS

In this paper, the models for the fatigue life in the VHCF
region have been reviewed. In particular, the models

providing stress–life relation and, accordingly, that can
be used for the assessment of the P-S–N curves have been
analyzed in detail, for their relevance in the design
against VHCF failures. The following conclusions can be
drawn:

1. All the models for the fatigue limit show that the
fatigue limit is inversely proportional to the defect size
or to the FGA size. Indeed, in order to avoid the crack
propagation from a defect in the VHCF region, the
presence of the FGA must be taken into account and
assessed experimentally or analytically. All the models
show a similar expression, with different constant
coefficients. The statistical scatter and the quantiles
associated with the fatigue limit are not considered in
the proposed formulations, apart from one model.

2. The models for the fatigue life can be classified
depending on the approach followed to assess the
stress–life relation. Four main approaches have been
followed: an approach based on the fitting of the
experimental data through a power-law relation, an
approach based on the statistical assumption of the
distribution of the fatigue life, a fracture mechanics
approach, and an approach based on the integration
of the Paris law.

3. The first approach, i.e., fitting of the experimental
data with a power-law relation, is the easiest
approach, with generally a limited number of parame-
ters to be estimated. The experimental validations
have confirmed that a power law is effective in model-
ing the fatigue life and that, if properly adapted, it can
be exploited also to model the influence of defect size
and of the stress ratio. A procedure for the quantile
curves is generally not provided in the investigated
models following this approach.

4. The second approach, a probabilistic approach involv-
ing the assumption of the statistical distribution of the
fatigue life, has proved to be effective in assessing the
P-S–N curves in the presence of multiple failure
modes in the LCF–VHCF life range. The fatigue life is
assumed to follow a log-normal or a Weibull distribu-
tion, both being effective in modeling the VHCF life.
These models are more flexible than those belonging
to other groups and can adapt better to the fatigue
data, since not based on assumed materials parame-
ters. Appropriate methodologies and strategies for
parameter estimation are required.

5. Within the third group, all the models based on a frac-
ture mechanics approach are included. The relation
between the fatigue life, the applied stress, and the
defect size is assessed by considering the stress inten-
sity factor associated to the initial defect or the SIF
threshold. These approaches have proved to be
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effective; however, the material parameters in the SIF
equation must be reliably known and should be esti-
mated with specific experimental tests. The procedure
for the estimation of the quantile of the P-S–N curves
is generally not provided.

6. Within the fourth group, the models based on the
integration of the Paris law are included. The stress–
life relation is obtained through the integration of the
Paris law in the three stages necessary for the crack
formation and propagation up to failure. The fatigue
life is generally approximated with the life consumed
in the FGA formation, according to the experimental
evidence. This approach has proved to be effective
since it models the mechanism of crack initiation and
propagation from defects, and accordingly, it takes
into account the influence of defects on the fatigue
life. However, the material parameters in the Paris
law equation must be reliably known, even if this
could be difficult, especially if the crack propagation
within the FGA is modeled. Even for this group, the
scatter associated to the experimental data is generally
not modeled.

To conclude, all the available models have proved to
be effective in assessing the fatigue limit or the stress–life
relation. However, further validations are required to
extend the models analyzed in the present paper for all
the materials tested in VHCF life range. For example, the
models developed for the fatigue life of parts that fail
from defects in VHCF are to be considered valid for all
the material showing this failure mechanism in VHCF.
However, these models are validated on one experimen-
tal dataset, generally obtained by testing high-strength
steels. For this reason, it seems that all the models have
been developed to assess the P-S–N curves for steels or
high-strength steels. The validity of these models for
other materials has to be assumed, since it is not experi-
mentally confirmed. This is a shortcoming of almost all
the models developed in the literature that has to be
faced in future research. Moreover, the influence of
important factors, like the stress ratio, is considered only
by a limited number of papers, despite its influence on
the VHCF fatigue response. Another shortcoming
evidenced from the analysis carried out in the paper is
the complexity of the majority of the models, involving
the estimation of a large number of coefficients to well fit
the experimental data. This complexity could discourage
their adoption in practical applications, with components
subjected to VHCF loads that are still designed, for exam-
ple, by employing high safety factors to lower the fatigue
strength computed through traditional fatigue tests in the
HCF life region. The simplification of the procedure for
parameter estimation or the implementation of the

developed methodologies in automated tools would
surely extend the application of the models for the P-S–N
curves in VHCF even for the design of components,
which is one of the primary objectives of the research.
On the other hand, in general, no indications are pro-
vided for the assessment of the “design curves,” i.e., the
lower confidence bound (e.g., 10%) for the P-S–N curve
with high reliability (e.g., 10% quantile P-S–N curve),
according to the industrial practice. More efforts should
be made to define methodologies for the estimation of
the “design curves” including the VHCF region, since
they are used for the design of components and are there-
fore of fundamental importance in practical applications.
This would surely help designers, opening the way
towards a future standardization of the design methodol-
ogies against VHCF failures.
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NOMENCLATURE

ad,0 area of the initial defect
size

aFGA size of the FGA surround-
ing the initial defect

cdf cumulative distribution
function

f ffiffiffiffiffiffi
Ad,0

p pdf of the LEVD
F, FY cdf of the fatigue life
Fi(x) cdfs of the fatigue life asso-

ciated to the ith failure
mode

F(x), F1 xð Þ, F2 xð Þ cdfs of the fatigue life
FXlj ffiffiffiffiffiffiad,0

p xl;
ffiffiffiffiffiffiffiffi
ad,0

p� �
cdf of the fatigue limit

FXt cdf of the transition stress
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FY j ffiffiffiffiffiffiad,0
p y;x,

ffiffiffiffiffiffiffiffi
ad,0

p� �
cdf of the conditional
fatigue life

FY jint y;xð Þ cdf of the marginal distri-
bution of the fatigue life

FY jsurf , FY jint cdfs associated to the sur-
face and internal failure
modes

GBF granular-bright facet
GP generalized parameter

(i.e., the uniaxial applied
stress)

HCF high-cycle fatigue
HV Vickers hardness
int, surf (subscript) internal and surface failure

modes
kd SIF associated to the initial

defect
KGBFth SIF threshold at the

periphery of the GBF
kH additional SIF modeling

the influence of the
hydrogen

Kth SIF threshold
kth,r reduction SIF
LCF low-cycle fatigue
LEVD largest extreme value

distribution
nth number of failure modes
Nf number of cycles to failure
NL fatigue life
NT transition point
ODA optically dark area
pdf probability density

function
p1, p2 occurrence probability
P-S–N curve probabilistic S–N curve
rv random variable
R stress ratio
Rmax
i radius of the largest inclu-

sion within the material
sa stress amplitude
seq,CA and seq,VA equivalent stress for con-

stant amplitude (CA) and
variable amplitude
(VA) tests

sint internal fatigue limit
sl fatigue limit
SIF stress intensity factor
VHCF very high cycle fatigue
V90 risk volume (volume sub-

jected to a stress amplitude
larger than the 90% of the
largest applied stress)

xl logarithm of the fatigue
limit

y logarithm of the number of
cycles to failure

α, αH , αR, αth,t, aj, aIII , α1,
α2, b, bj, bIII , β, cIII , B, C, β,
cH , cj, csl, cth, cI , CR, c, δ, bγ,
l, m, mI , m, cY , mY , nY ,
s0,R, σf ,j, σ0,j, σf ,III , σY , σ0f

material parameters

αth specific quantile
Δσth threshold stress range
εa strain amplitude
εa � 2

1�R

� �1�bγ
Walker strain amplitude

μXl
, σXl , σY , μY jint x,

ffiffiffiffiffiffiffiffi
ad,0

p� �
,

μXl

ffiffiffiffiffiffiffiffi
ad,0

p� �
, σXl

parameters of the statisti-
cal distributions

Φ cdf of a standardized nor-
mal distribution
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