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Abstract: In this work, new Screen Printed Carbon-paste Electrodes (SPCEs) were developed through
deposition of nanostructures of HO–BiONO3 synthesized with or without surfactant additions.
We performed a cyclic voltammetry study showing the improvement in performance of bismuth
tailored electrodes for paracetamol sensing compared with bare SPCE. A computation study was also
performed for investigating the interaction between paracetamol and bismuth species during the
electron transfer process enlighten the preferential sites of interaction on the surface of modified SPEs.

Keywords: paracetamol; bismuth; SPCE

1. Introduction

Paracetamol is among the most studied emerging pollutants [1] and one of the most
used antipyretic drugs in the world [2]. Accordingly, the development of a new trust-
worthy paracetamol detection system is a key pillar in the sensors field for personalized
therapy and for developing environmental monitoring. Among all available approaches,
electrochemical techniques are the most useful considering production-cost, sensibility and
reproducibility of sensing technologies [3]. The development of new electrode materials for
paracetamol detection has attracted more interest in recent years. To improve the sensing
performance, several studies used modified carbon electrodes tailored with several nanos-
tructured materials [2,3]. Recently, Madagalam et al. [4] reported a new SPCE decorated
with bismuth sub-nitrate as an effective electrochemical sensor for paracetamol detection.
The choice of bismuth was driven by the great tuneability of bismuth species [5], together
with its remarkable electrochemical performances [6,7].

Here, we move a step forward in the comprehension of the paracetamol detection by
using bismuth tailored SPCEs through a computational study. Accordingly, we report a
solid approach for the calculation of electron transfer rate with new structural information
of transitional state geometry of paracetamol–bismuth sub-nitrate system.

2. Materials and Methods
2.1. Materials

Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O), 1-butanol, and Polyethylene glycol
(PEG) were used for material synthesis at Politecnico di Torino, Italy. Phosphate buffer
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saline (PBS), DI water, and paracetamol tablets made into powder were used for the prepa-
ration of material suspensions and electrolytic solution at EPFL, Neuchatel, Switzerland.

2.2. Methods
2.2.1. Material Synthesis and Modification of SPCEs

HO–BiONO3 was synthesized According to Liu et al. [8] and by the modified synthesis
reported by Madagalam et al. [4]. SPCEs were prepared according to the procedure
described in [4]. A SPCEs consisting on a working electrode and a counter electrode in
carbon, and a reference electrode in silver/silver-chloride is presented in this study.

2.2.2. Electrochemical Measurements

Cyclic Voltammetry measurements (CV) were performed under atmospheric condi-
tions using AutoLab potentiostat and run accordingly with the procedure described in [4].
For an electrochemically reversible electron transfer process involving freely diffusing
redox species, the Randles–Sevcik equation [9] describes the linear increase of the peak
current ip (A) with the square root of the scan rate ν (V/s):

ip = 0.466nFAC
(

nFνD
RT

) 1
2
, (1)

where n is the number of electrons transferred in the redox reaction, A (cm2) is the electrode
geometric surface area, D (cm2/s) is the diffusion coefficient of the oxidized analyte,
and C (mol/cm3) is the bulk concentration of the analyte. The Randles–Sevcik equation
(Equation (1)) is used to deduce the analyte behavior identifying the two scenarios when it
is freely diffusing in solution or adsorbed on the surface of the electrode.

Kinetic parameters were calculated using the Laviron model [10], where the peak
potentials are described as follows, with the cathodic peak potential being:

Epc = E0 −
(

RT
αnF

)
ln
[

α

|m|

]
(2)

and the anodic peak potential being:

Epa = E0 +

(
RT

(1− α)nF

)
ln
[
(1− α)

|m|

]
(3)

with m = (RT/F) (k/nν). R is the universal gas constant, n is the number of electrons
involved in the redox reaction, T is the absolute temperature in Kelvin, F is the Faraday
constant, ν is the scan rate, and E0 is the surface standard potential. The kinetic rate
constant k was calculated by substituting α value into the following equation:

ln(k) = α ln(1− α) + (1− α)lnα− ln
(

RT
nFν

)
− α(1− α)

nF∆Ep

RT
(4)

2.2.3. Modelling

Computational simulations were run with HyperChem (HC) software using the
following procedure.

A 3D structure is obtained in HC by the function model build for both paracetamol
and Bi clusters. Then, the simulations started to evaluate the electronic properties and the
geometry information required in the generalized Marcus model. Therefore, the potential
energy must be minimized with respect to the system coordinated by means of geometry
optimization. This is done by evaluating the potential energy as function of molecules
coordinates according to a hybrid quantum/molecular mechanics approach (MM+) [11].
Then, a second simulation was run in line with the neglect of differential diatomic overlap



Chem. Proc. 2021, 5, 33 3 of 8

approximation (PM3 basis set) [12]. Two different Bi clusters model the polymeric layer as
shown in Figure 1.
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Figure 1. BiONO3 dimer on the left and BiONO3 trimer on the right.

The dimer was assumed to be the minimum unit allowing the electron transfer (ET).
Indeed, ET is depicted through two Bi–C “fake bonds” as shown in Figure 2 by sup-
posing that each couple exchanges just one electron and the two charged particles are
simultaneously acquired from paracetamol [1].
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Figure 2. Transition state model: the double dashed lines on paracetamol defined the chemical bonds
involved in the reaction while the single ones defined the Bi–C “fake bonds” through which the
ET occurs.

The Figure 2 represents one of the hypothesized transition states (HTS) geometry.
Indeed, the transitional state (TS) is identified as a unique crossing point in the potential
energy surface (PES) defining the reaction coordinates of both reactants and products [13].
However, according to Tachiya et al. [14] the TS is not uniquely defined since it depends on
the probability to achieve a certain value of the electrostatic potential distribution. For that
reason, it is necessary to talk about “hypothetical” TS. Moreover, it is observed after each
simulation that the interaction distance between each Bi–C couple is not equal:, the system
is asymmetric, thus the average between the interaction distance is kept within the model
according to the procedure reported in [14]. Afterwards, the simulations were repeated
for the Bi trimer. The geometry optimization was performed two times in both cases by
cutting the “fake bonds” before starting the second simulation. The solvation effect arising
from the electrolyte wetting the electrode at the interface with the organic compound was
considered as well. It was modelled by adding water molecules surrounding paracetamol
and it was established that the ET would be ensured by a minimum amount of five
molecules. Finally, the HTS in which the nitric functional groups in both dimer and trimer
were replaced by hydroxyl group by supposing that the functionalized electrode undergone
a cleaning pre-treatment in H2SO4 was simulated. The electron transfer rate constant in a
CdS-Phenol system was analyzed to validate our model. According to Serpone et al. [15],
we simulated the electrochemical redox process between a CdS powder and a phenol
molecule in solution by defining a box containing water molecules, as shown in Figure 2.
All of them were mirrored outside the box by reproducing the system in solution. The
obtained ET rate constant was k = 6.42·10−5 s−1, in compliance with the literature constant
(k = 5.17·10−5 s−1).

3. Results and Discussion
3.1. Electrochemical Measurements

SPCEs modified sensors were tested by Madagalam et al. [4] through CV and main
data are summarized in Table 1.
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The peaks detected during CV without and with paracetamol were distinguishable
and confirmed that we observed higher peak currents when there was paracetamol in the
electrolytic solution. PEG-coated HO–BiONO3 sensor was found to have a potential shift of
−75 mV, whereas HO–BiONO3 sensor has a shift of−26 mV due to Nernst effect compared
to the bare SPCE sensor. PEG-coated HO–BiONO3 sensor was also found to have a higher
oxidation peak current of 52.1 ± 3.0 µA. To study the behavior of the electrochemical
system, CVs were run by varying the scan rate (50 mV/s–300 mV/s) while determining 1
mM paracetamol in 0.1 M PBS at pH 7. It was observed that the peak position changed
by increasing the scan rate while the redox current increased linearly with the square root
of the scan rate. From these observations and Equation (1), it was possible to give an
indication that the electrochemical system was a freely diffusing quasi-reversible system.
By plotting peak positions (Epa, Epc) versus ln(ν), a linear variation was observed and
peak-to-peak separation (∆Ep) increased linearly with ln(ν). According to Equations (2)
and (3), it was found that n is approximately equal to 2 meaning that two electrons were
participating in the redox reaction of paracetamol as reported in [1]. The α values are
listed in Table 1 for different sensors together with the k values obtained at a scan rate of
100 mV/s for three different sensors. PEG-coated HO–BiONO3 sensor had a higher rate
constant of 42.0 ± 9.8 ms−1 with lower ∆Ep of 243 ± 10 mV compared to other sensors.
This is a big advantage compared to the SPCE sensor since a higher rate constant gives
rise to faster electrochemical reaction and lower ∆Ep indicates a higher possibility of a
reversible reaction (low resistance). Quantitative studies run by CVs measurements showed
a higher sensitivity for PEG-coated HO–BiONO3 compared with bare SPCE due to the
nanostructure deposited on the surface [4].

Table 1. Main experimental outputs from electrochemical measurements of bare and tailored SPCEs.

Working Electrode Peak Position
(mV)

Peak Current
(µA) α

∆Ep
(mV)

k
(ms−1)

Sensitiviy
(µA/mM)

Detection
Limit (µM)

SPCE 459.9 ± 1.0 33.1 ± 1.5 0.44 ± 0.10 477 ± 45 0.60 ± 0.33 20.02 ± 0.23 2.34± 0.03

HO–BiONO3 433.6 ± 6.1 42.0 ± 1.5 0.45 ± 0.04 392 ± 19 2.20 ± 0.82 34.88 ± 0.15 2.79 ± 0.01

PEG HO–BiONO3 385 ± 30 52.1 ± 3.0 0.40 ± 0.04 243 ± 10 42.0 ± 9.8 43.50 ± 0.54 2.24 ± 0.03

3.2. Computational Evaluation

The electron transfer rate constant values coming from the computational simulations
are presented in the following sections by underlying the affecting parameters on the
transition state for both the HO–BiONO3 dimer and trimer cases. A geometrical scheme as
shown in Figure 3 acts as reference to describe the variations in the hypothetical transition
state conformation depending on the functional groups bonded to the Bi active atoms.
According to the assumption that paracetamol interacts with Bi cluster through its two
carbon atoms, we can define:

(1) The symmetric axis passing through the organic compound C atoms that is a C2 axis
since the symmetry is maintained by a rotation of 180◦

(2) The paracetamol plane A of symmetry on which the C ring lies that is a reflection
plane

(3) A second plane B on which the active Bi atoms lie
(4) The dihedral angle α between these two planes
(5) The angle β defining the rotation of the paracetamol plane with respect to its symmet-

ric axis.
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3.2.1. HO–BiONO3 Dimers

All the results are shown in Table 2. The different cases are labelled with the functional
groups bonded to the two Bi atoms.

Table 2. Electron transfer rate constant and activation energy for Bi dimers.

Dimer k (s−1) Activation Energy (eV)

NO3-NO3 1.2·10−3 9.3
OH-OH 2.6·10−3 10.89
OH-NO3 6.9·10−3 7.74
NO3-OH 2.78·10−2 7.46

We firstly evaluated the characteristics of symmetric dimers with two nitric or hy-
droxylic groups as shown in Figure 4. In both cases, the electron transfer rate constant is
of the order of magnitude of 10−3 s−1 a factor of 2 higher in the hydroxylic groups case.
The activation energy difference is about 15%. This is reasonable, as the dihedral angle
was slightly greater in NO3-NO3 than OH-OH by fixing the angle β, as can be seen in
Figure 5. However, paracetamol approaching is hugely affected by the two functional
groups. Indeed, the NO3 group bonded with Bi (a) was above the Bi plane and moved
closer to the paracetamol nitro groups by leading to a distortion of the Bi-O bond on that
side. The surrounding water molecules improved that distortion and emphasized the steric
hindrance. On the other hand, having four identical hydroxylic groups ensured a less steric
effect since no strong repulsions between electron clouds can arise in that case.

A second comparison was made between the HTS associated to the two specular
Bi-dimers having an OH group and a NO3 alternatively bonded to each Bi atom. In this
case, a larger dihedral angle resulted when NO3 was bonded to the right Bi since the
interaction with the paracetamol OH-group lead the nitric group position above the Bi
plane. This also resulted in an ET rate constant equals to 6.9 · 10−3 s−1 which is smaller
than the NO3-OH by a factor of 4. Regarding the activation energy, a difference of only
4% was obtained since the structures involved are the same in terms of atoms. From these
simulations, we realized that having hydroxyl groups could enhance the sensing properties
of the functionalized layer despite the steric effect arising from neighboring nitric groups.
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3.2.2. HO–BiONO3 Trimer

All the results are shown in Table 3. The different cases are labelled with the functional
groups bonded to the three Bi atoms.

Table 3. k and activation energy for Bi trimers.

Trimer k (s−1) Activation Energy (eV)

NO3-NO3-NO3 7.08·10−5 7.34
NO3-OH-NO3 5.9·10−2 5.75
NO3-OH-OH 8.46·10−2 9.16
OH-OH-NO3 8.3·10−2 9.87

When we simulated the HTS associated to the trimer cases, we introduced a further
assumption by distinguishing among the reacting Bi atoms and the non-reacting ones
since just two Bi atoms are supposed to interact with the paracetamol C atoms. Based on
that, we observed that the steric effect was more evident in the NO3-OH-NO3 structure
due to the orientation of the nitric group bonded with the non-reacting Bi atom towards
the nitro group of the organic compound. On the contrary, no distortion occurs in the
NO3-NO3-NO3 because the functional groups bonded with reacting Bi lie in the same plane.
However, lower activation energy of the transition state made the NO3-OH-NO3 more
energetically favorable to the ET process and further confirmed that the presence of some
OH groups should improve the efficiency of the ET process. Indeed, the ET rate constant
was three orders of magnitude greater in NO3-OH-NO3 case than the NO3-NO3-NO3 case.

Finally, the specular case for the trimer was simulated by replacing the two nitric
groups with hydroxyl as shown in Figure 6. We observed that NO3-OH-OH was strongly
affected by the orientation of NO3 above the Bi plane towards the paracetamol nitro group
that is also above the Bi plane. Nevertheless, no distortion occurred, and it can be seen in
Figure 7 that the dihedral angle was qualitatively the same as for the OH–OH–NO3 case.
These also let to ET values in the two specular trimers with a difference less than 2% and
geometries with very similar the dihedral angles. Indeed, we obtained a value of 9.16 eV
for NO3–OH–OH and 9.87 eV for OH–OH–NO3.
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4. Conclusions

As clearly shown from the data, the electrochemical sensing boost observed for HO–
BiONO3 tailored SPCEs is likely due to defective sites on HO–BiONO3 particles sitting
on the surface of the electrode. The hydroxyl functionalities played a relevant role in
the paracetamol–bismuth interaction that defines the geometry of the transitional state as
showed by the computational study. Accordingly, a more polar surface induced a better
interaction with paracetamol.

This study has firstly described in a comprehensive way the effect of bismuth subni-
trate chemistry in an electrochemical system considering both empirical and experimental
data sets, leading to the foundation for a rational design of bismuth modified SPCEs.
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