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Magnetic and Combined Field Integral Equations
Based on the Quasi-Helmholtz Projectors

Adrien Merlini, Student Member, IEEE, Yves Beghein, Kristof Cools, Eric Michielssen, Fellow, IEEE,
and Francesco P. Andriulli, Senior Member, IEEE

Abstract—Boundary integral equation methods for analyzing
electromagnetic scattering phenomena typically suffer from sev-
eral of the following shortcomings: (i) ill-conditioning when the
frequency is low; (ii) ill-conditioning when the discretization
density is high; (iii) ill-conditioning when the structure contains
global loops (which are computationally expensive to detect); (iv)
incorrect solution at low frequencies due to a loss of significant
digits; (v) presence of spurious resonances. In this paper, quasi-
Helmholtz projectors are leveraged to obtain a magnetic field
integral equation (MFIE) that is immune to drawbacks (i)-(iv).
Moreover, when this new MFIE is combined with a regularized
electric field integral equation (EFIE), a new quasi-Helmholtz
projector combined field integral equation (CFIE) is obtained
that also is immune to (v). Numerical results corroborate the
theory and show the practical impact of the newly proposed
formulations.

Index Terms—Electric, Magnetic, and Combined Field Integral
Equations, Preconditioning, Calderon strategies.

I. INTRODUCTION

T IME-HARMONIC scattering by perfect electrically con-
ducting (PEC) objects oftentimes is modeled using fre-

quency domain boundary integral equations. Among them,
electric and magnetic field integral equations (EFIE and MFIE)
[1], [2] are the most popular.

Although the EFIE is easily discretized using Rao-Wilton-
Glisson (RWG) basis functions [3], it suffers from ill-
conditioning when the frequency is low and/or the discretiza-
tion density is high. The MFIE, on the other hand, remains
well-conditioned in both regimes, provided that a mixed
discretization scheme is employed [4]. In practice, however,
it is not feasible to obtain accurate results for the MFIE at
extremely low frequencies without resorting to highly pre-
cise numerical quadrature methods. Even at moderately low
frequencies, both the EFIE and MFIE suffer from a loss of
significant digits in the non-solenoidal part of the current [5]–
[7]. This loss of significant digits in the current is caused by the
storage of two very differently scaled floating point numbers
in the same memory location. This results in many digits of
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the smaller number to fall below the numerical cutoff imposed
by the larger number.

The EFIE’s low-frequency conditioning and loss of accuracy
problems can be overcome by using loop-star or loop-tree
decompositions [8]–[12]. For multiply connected geometries,
this requires the detection of global loops, which is computa-
tionally expensive [8]. These techniques also fail to address
dense discretization breakdown phenomena [13], [14] that
causes the EFIE’s condition number to grow quadratically
with the inverse of the average edge length. Worse still,
loop-star techniques for combatting the EFIE’s low-frequency
conditioning problems further degrade the equation’s dense
discretization behavior [15].

Several formulations have been introduced to address the
EFIE’s low-frequency breakdown without resorting to global
loop detection [16]–[18]. These solutions, however, do not
address the equation’s ill-conditioning due to dense discretiza-
tion. Both issues can be concurrently tackled by leveraging
hierarchical quasi-Helmholtz decompositions [13], [19]–[21].
Approaches based on Calderón preconditioning [22]–[27] and
Debye-inspired schemes [28] have been successfully coupled
with these decompositions [14], [29]–[31]. The price to be paid
for this dual stabilization is, once again, the need for global
loop detection at very low frequencies. In addition, several of
the aforementioned techniques fail to properly address low-
frequency loss of significant digits occurring in the solution
vector [5], [6], [32], [33]. Several of the above drawbacks
have been successfully addressed by the promising scheme in
[34] which introduces decoupled vector and scalar potentials
obtained by exploiting freedom in the choice of the gauge
to obtain a stable formulation. Alternative remedies to the
loss of significant digits include perturbation methods [5],
[32], [35] and Calderón regularization combined with loop-
star decompositions [30], [31]. Both families of solutions do,
however, have shortcomings: the former is only applicable at
low frequencies and exhibits the same spectral issues as the
formulation it is applied to – dense discretization breakdown
for the EFIE or global loop detection for the MFIE and
Calderón EFIE – while the latter also requires global loop
detection and treatment of the dense discretization instability
of the loop-star decomposition. It should also be noted that
some recent incarnations of augmented equations are immune
to several of the above mentioned drawbacks, though they
require the recovery of auxiliary quantities [36], [37].

Recently, an electric type equation based on quasi-
Helmholtz projectors was proposed that is immune to all of the
aforementioned issues [38]. A similar regularization has also
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been applied to the time domain electric field integral equation
[39], [40] and both the time domain and the frequency domain
PMCHWT equations [41], [42]. Quasi-Helmholtz projectors
also have been combined with other integral formulations. For
instance, they have been used to cure ill-conditioning in the
volume EFIE related to the choice of material parameters [43].

In this paper, quasi-Helmholtz projectors are used to obtain
a new MFIE that no longer requires interaction integrals to
be computed using extremely accurate quadrature rules. Ad-
ditionally, the solenoidal (divergence free) and non-solenoidal
(non divergence free) current components are scaled such that
the loss of significant digits at low frequencies is avoided. As
a result, the formulation remains accurate down to extremely
low frequencies. Scattering problems involving closed PEC
objects can also be solved using the combined field integral
equation (CFIE), which is a linear combination of the EFIE
and the MFIE. This equation has the added benefit that it does
not support spurious resonances [44]. In this paper, the new
regularization method for the MFIE is combined with that for
the EFIE presented in [38]. The resulting CFIE is not only
low-frequency stable but also immune to spurious resonances.
Preliminary results of this research have been presented as con-
ference contributions [45], [46]; these publications, however,
presented only partial results without proofs and lacked the
theoretical apparatus together with all implementation details.

This paper is organized as follows. Section II defines the
standard EFIE and MFIE as well as their discretizations and
related quasi-Helmholtz current decompositions. Section III
applies a quasi-Helmholtz decomposition to a new Calderón-
like form of the MFIE. The resulting equation can be dis-
cretized accurately using standard numerical quadrature meth-
ods, and scaled w.r.t frequency such that no low frequency loss
of significance occurs. Section IV combines this new MFIE
with the regularized EFIE [38] to obtain an extremely low
frequency stable CFIE. Section V discusses numerical results
that corroborate the theory and conclusions are presented in
Section VI.

II. BACKGROUND AND NOTATIONS

The EFIE and MFIE operators T k and Kk are defined as

(T kj) (r) = (T s,kj) (r) + (T h,kj) (r) , (1)

(T s,kj) (r) = jkηn̂×
∫

Γ

e−jkR

4πR
j(r′)ds′ , (2)

(T h,kj) (r) = − η
jk
n̂×∇

∫

Γ

e−jkR

4πR
∇′ · j(r′)ds′ , (3)

(Kkj) (r) = −n̂× p.v.
∫

Γ

∇× e−jkR

4πR
j(r′)ds′ , (4)

where R = ‖r − r′‖, Γ is the boundary of a closed domain
Ω ⊂ R3 and n̂ is its exterior normal vector. Furthermore,
given the angular frequency ω, k = ω

√
µε and η =

√
µ/ε;

here ε and µ the permittivity and permeability of vacuum,
respectively. If Ω is perfectly conducting, it supports an
electric current j(r) satisfying both the EFIE

(T kj) (r) = n̂×Ei(r) (5)

c+n c−n

v+
n

v−
n

r+n r−nen

Figure 1. Notations used for the definition of an RWG basis function; en
denotes the defining inner edge that links vertices v+

n and v−
n and c+n and

c−n the two triangles (cells) connected to this edge which are completed by
the vertices r+

n and r−
n , respectively.

and the MFIE((
I
2
+Kk

)
j

)
(r) = n̂×Hi(r) (6)

for all r ∈ Γ ; here I is the identity operator and Ei and
Hi denote the impinging electric and magnetic fields, re-
spectively. To numerically solve these equations via a Petrov-
Galerkin procedure, j(r) is expanded into RWG basis func-
tions {fj(r)} [3] as

j(r) ≈
Ne∑

j=1

[j ]j fj(r) , (7)

where Ne is the number of edges of the mesh. Following
[38], the RWG functions are normalized such that the flux
through their defining edges equals one (i.e. they are not
normalized by their edge length). Next, the EFIE (5) is tested
with rotated RWG functions {n̂ × fi(r)}, while the MFIE
(6) is tested with rotated Buffa-Christiansen (BC) functions
[47] {n̂ × gi(r)}. The BC functions {gj} are divergence-
conforming functions defined on the barycentric refinement of
the mesh. In addition, they are quasi curl-conforming in the
sense that the mixed Gram matrix between curl-conforming
rotated BC functions and RWG functions is well-conditioned.
For an explicit definition of these functions the reader is
referred to [14], [47]. The testing procedure results in the
following matrix equations:

T j = (Ts + Th) j = ve , (8)(
GT

2
+Kk

)
j = vh , (9)

where

[T ]ij = (n̂× fi,T kfj) , (10)
[Ts]ij = (n̂× fi,T s,kfj) , (11)
[Th]ij = (n̂× fi,T h,kfj) , (12)
[Kk]ij = (n̂× gi,Kkfj) , (13)
[G]ij = (fi, n̂× gj) , (14)

[ve]i =
(
n̂× fi, n̂×Ei

)
, (15)

[vh]i =
(
n̂× gi, n̂×Hi

)
, (16)

with (a, b) =
∫
Γ
a(r) · b(r)ds. In what follows, we denote

by T, Ts and Th the BC-expanded counterparts of the
discretized operators T , Ts and Th, tested with rotated BC
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functions and computed with the complex wavenumber −jk.
This choice, as further explained in the following, will play a
key role in characterizing the high frequency behavior of the
final equation.

The solutions of (8) and (9) can be expressed as linear
combinations of divergence free (loop and harmonic functions)
and of non-divergence free (star functions) components via a
quasi-Helmholtz decomposition

j = Λl +Σs +Hh (17)

where the first two matrices Λ ∈ RNe×Nv and Σ ∈ RNe×Nc

represent mappings from the RWG subspace to the local loop
and star subspaces, respectively. Here, Nv and Nc are the
number of vertices and cells of the mesh, respectively [8], [48].
These two mappings can be defined using only the connectivity
information of the discretized geometry as

[Λ]ij =





1 if vertex j equals v+
i

−1 if vertex j equals v−i
0 otherwise

(18)

and

[Σ]ij =





1 if the cell j equals c+i
−1 if the cell j equals c−i
0 otherwise ,

(19)

where vertices v−i and v+
i define the oriented edge characteriz-

ing RWG function i, and c−i and c+i denote the corresponding
cells (Figure 1). The matrix H represents the mapping from
the RWG space to the quasi-harmonic or global loop space
composed of 2Nh functions, where Nh is the number of
handles in the structure. The number of handles (or genus)
of a surface is its number of holes; a sphere has no handles,
while a torus has exactly one. For a complete description of
this mapping and the associated harmonic functions, the reader
is referred to [8] and [48].

A few properties of these matrices are recalled to facil-
itate further developments. For the sake of simplicity we
restrict ourselves to geometries with a single closed connected
component, i.e. a single object containing no apertures. All
derivations below can be extended to arbitrary geometries
using the relations in [49]. Given this assumption, Λ has a
null-space spanned by the all-one vector 1Λ ∈ RNv , i.e.

Λ1Λ = 0. (20)

Similarly, the linear dependency of the star functions causes Σ
to exhibit a one-dimensional null-space spanned by the all-one
vector 1Σ ∈ RNc , i.e.

Σ1Σ = 0. (21)

Finally, it is trivial to show that the loop and star subspaces
are orthogonal, i.e.

ΣTΛ = 0. (22)

As Λ and Σ are ill-conditioned and because of the high
computational cost of detecting global loops required to build
H, it is convenient to leverage the quasi-Helmholtz projectors

introduced in [38] to obtain a quasi-Helmholtz decomposition
of the EFIE and MFIE operators. The projectors are defined
as

PΣ = Σ
(
ΣTΣ

)+
ΣT , (23)

P ΛH = I− PΣ , (24)

where + denotes the Moore-Penrose pseudo-inverse and I
is the discretized identity operator. Any RWG expansion
coefficient vector can then be decomposed as

j =
(
P ΛHj

)
+
(
PΣ j

)
(25)

where P ΛHj and PΣ j contain the RWG expansions of the
solenoidal (loop) and non-solenoidal (star) components of the
current, respectively. The solenoidal components of the current
are divergence-free functions that form loops, while the non-
solenoidal components are their complement and have been
shown to be star-like in nature [9]. These projector matrices are
Hermitian and also can be used to decompose the RWG testing
space. Similarly, the dual projectors PΛ and PΣH , defined as

PΛ = Λ
(
ΛTΛ

)+
ΛT , (26)

PΣH = I−PΛ , (27)

and decompose any linear combination of BC (basis or
testing) functions into a non-solenoidal and solenoidal part,
respectively. It should be noted that construction of these
projectors does not require the detection of global loops, and
that

(
ΣTΣ

)+
can be efficiently computed using multigrid

preconditioners [38], [50].

III. REGULARIZING THE MFIE AT EXTREMELY LOW
FREQUENCIES

A. Low Frequency Behavior of the MFIE

The standard RWG discretization of the MFIE fails to pro-
vide accurate results at low frequencies due to the unphysical
scaling of the solenoidal and non-solenoidal components of
the current [5]. It was shown in [4], [51] that the mixed dis-
cretization of the MFIE (in which rotated BC or Chen-Wilton
(CW) functions [52] are used as testing functions) improves
the accuracy of its solution. In particular, the solenoidal and
non-solenoidal components of the current obtained from this
formulation scale physically [33]. This result also holds true
for multiply connected geometries [53].

The mixed MFIE formulation still suffers from three prob-
lems. First, the physical scaling of the current can only be
retrieved when interaction integrals are computed to high
accuracy [33]. Second, the non-solenoidal current component
scales as O(ω) whereas the solenoidal component is of O(1).
As a result, at very low frequencies and when using finite
precision, both components should be stored in different arrays
to prevent the non-solenoidal component from losing accuracy
[5], [6], [32], [53], [54]. Third, the static MFIE (ω = 0) has
a null space when applied to multiply connected geometries.
It follows that the discretized MFIE has Nh singular values
that scale as O(ω2) [48]. Any accurate discretization of the
MFIE operator must preserve this null-space. Standard RWG
discretizations of the MFIE operators are not capable of
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correctly modelling this null space [45]. The mixed MFIE, on
the other hand, correctly models this null-space in infinite pre-
cision. However, after discretization, the null-space associated
singular values will not be more accurate than the precision
of the quadrature rule.

B. A Robust MFIE Formulation

To address the above MFIE deficiencies we propose the
following Calderón-like MFIE:
(
I
2
−K−jk

)(
I
2
+Kk

)
(j) =

(
I
2
−K−jk

)(
n̂r ×Hi

)
,

(28)
where K−jk is the K operator computed with the imaginary
wavenumber −jk (k → −jk). This equation is the magnetic
field counterpart of the (localized) Calderón preconditioned
electric operator in [38]. We propose to discretize (28) as

Oi =MT

(
GT

2
−K−jk

)(
GT
)−1

vh (29)

where

O =MT

(
GT

2
−K−jk

)(
GT
)−1(GT

2
+Kk

)
Mi , (30)

M = P ΛH
1

α
+ jPΣα , (31)

M = PΣH
1

α
+ jPΛα , (32)

and Mi = j . The imaginary constant in the definition of M
and M permits the preservation of the relevant parts of the
solution for a large class of excitations; see [38].

The coefficient α allows for re-scaling of the solenoidal and
non-solenoidal components of the solution i of (29) to prevent
loss of significant digits. Because PΣ+P ΛH = PΛ+PΣH = I,
the operator O in (29) can be decomposed as

O = (PΛ +PΣH)O(PΣ + P ΛH) =

PΛOPΣ +PΛOP ΛH +PΣHOPΣ +PΣHOP ΛH, (33)

which allows for the study of the low-frequency behavior of
each of the separate terms. Analysis of the frequency behavior
of the first three terms is quite straightforward and yields

PΛOPΣ = O(α2) k → 0 , (34a)
PΛOP ΛH = O(1) k → 0 , (34b)
PΣHOPΣ = O(1) k → 0 . (34c)

Analysis of the last term in (33) requires special care. It is
known that when decomposing Kk as

Kk = K0 +K
′
k , (35)

where K0 is the static limit of Kk and K′k = Kk −K0 is the
dynamic remainder, K′k = O(k2) as k → 0 [53]. When using
this decomposition in (29), it can be verified that K0 satisfies

PΣH
(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
P ΛH = 0 . (36)

The above equation holds the key to unlocking a frequency-
stable MFIE. The proof of property (36) is provided in

Appendix A. The term PΣHOP ΛH can now be studied. To
this end, note that

α2PΣHOP ΛH =

= PΣH
(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
P ΛH

+PΣH
(
GT

2
−K0

)(
GT
)−1

(K′k)P
ΛH

−PΣH
(
K′−jk

) (
GT
)−1(GT

2
+K0

)
P ΛH (37)

−PΣH
(
K′−jk

) (
GT
)−1

(K′k)P
ΛH

= 0 +O(k2) +O(k2)−O(k4),
which completes the low-frequency analysis of the overall
operator

O = PΛOPΣ +PΛOP ΛH +PΣHOPΣ +PΣHOP ΛH

= O(α2) +O(1) +O(1) +O( k
2

α2
) . (38)

To choose α we need to consider the physical scaling of the
solenoidal and non-solenoidal parts of the current in addition
to the conditioning constraint imposed by (38); for a plane
wave excitation [6]

P ΛHj = O(1) , (39)
PΣ j = O(k) . (40)

These scaling laws reveal that for a standard formulation,
a severe loss of significant digits is expected due to the
fact that the non-solenoidal component of the current (which
scales as O(k)) will disappear when stored alongside the
solenoidal component (which scales as O(1)). Instead, for the
regularized formulation proposed here, the equation is solved
for i =M−1j , which scales as

P ΛH i = O(α) , (41)
PΣ i = O(k/α) . (42)

It is now evident that by setting α =
√
k, the above scaling

behaviors become

P ΛH i = O(
√
k) , (43)

PΣ i = O(
√
k) , (44)

eliminating the low frequency loss of significance and, at the
same time, stabilizing the matrix at low frequencies. The latter
is seen upon inserting the new scalings into (38):

O = O(α2) +O(1) +O(1) +O( k
2

α2
)

= O(k) +O(1) +O(1) +O(k) . (45)

The deficiency of the MFIE in the static regime also is solved
by the scheme proposed here. In fact, using (38) when k = 0
we obtain

OP ΛH = PΛOP ΛH , (46)

which proves the existence of an exact matrix null-space in
statics of dimension exactly equal to that of the harmonic
subspace.
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Table I
NUMBER OF MATRIX OPERATIONS OF THE MAGNETIC FORMULATIONS

Formulation # of Add. # of Mul.
Mixed MFIE 1 1

New Calderón-like MFIE 7 9
New Calderón-like MFIE

at Low Frequency 12 18

This Calderón-like MFIE and its discretization remain
compatible with fast solvers and can reach an asymptotic
O(n log(n)) complexity after acceleration with an appropriate
fast solver. The computational cost of the new formulation
can be compared to that of the mixed MFIE by considering
the number of matrix additions and multiplications involved
in their respective computations (Table I). However, the cost
of the Calderón-like formulation should be studied both in the
high and low frequency scenarios to account for the additional
cost induced by the explicit cancellation of (36); depending
on the type of excitation, explicit cancellations in the right
hand side (RHS) of the equation may also require additional
matrix operations. The higher overhead of the new formulation
at low frequencies is offset by the fact that it is the only
magnetic formulation capable of yielding accurate results in
this regime and hence a comparison with the mixed MFIE is
not appropriate.

Summarizing, the proposed MFIE resolves the three main
shortcomings of prior MFIE formulations and can be linearly
combined with the EFIE using projectors.

IV. A NEW CFIE

The theoretical developments of the previous sections re-
sulted in a magnetic field operator that can be stably dis-
cretized for arbitrarily low frequencies using standard inte-
gration rules. The electric counterpart of this operator was
obtained in [38]. We will now combine these two operators,
first proving the resonance-free property of their continuous
combination at high frequencies, and then showing their
compatibility at arbitrarily low frequencies.

Standard Calderón CFIE equations use a localization strat-
egy for the EFIE component to obtain a resonance-free equa-
tion [22], [23], [55]. Here, we follow the Yukawa-Calderón
approach in [22]. When the Yukawa-Calderón EFIE is lin-
early combined with the new magnetic operator defined in
Section III, the following Yukawa-Calderón CFIE is obtained:
(
η2
(
I
2
−K−jk

)(
I
2
+Kk

)
+ T −jkT k

)
(j) =

η2
(
I
2
−K−jk

)(
n̂×Hi

)
+ T −jk

(
n̂×Ei

)
. (47)

To demonstrate that this equation represents a valid Calderón
CFIE, i.e. is free from internal resonances, we prove in
Appendix B that the operator

(
η2
(
I
2
−K−jk

)(
I
2
+Kk

)
+ T −jkT k

)
(48)

can be inverted for any k.

The discretization of the proposed Yukawa-Calderón CFIE
follows directly from that of the new MFIE in Section III and
that of the EFIE in [38]:

η2MT

(
GT

2
−K−jk

)(
GT
)−1(GT

2
+Kk

)
Mi

+MTTM (G)
−1
MTTMi

= η2MT

(
GT

2
−K−jk

)(
GT
)−1

vh

+MTTM (G)
−1
MTve . (49)

Here α = 1 and α =
√
k in the high and low frequency

regime, respectively; the low frequency regime is characterized
by a wavelength smaller than the diameter of the structure. We
next study this last regime in more detail.

The appropriate scaling law in the low frequency regime
follows from the results of the previous section:

η2MT

(
GT

2
−K−jk

)(
GT
)−1(GT

2
+Kk

)
Mi

+MTTM (G)
−1
MTTMi

=− j
(
PΣHTsP

ΣH
)
G−1Th + jThG

−1 (PΛHTsP
ΛH
)
+

j
(
PΣHTsP

ΣH
)
G−1

(
PΛHTsP

ΛH
)
+

η2PΣH
(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
jPΣ+

η2jPΛ
(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
PΛH+

O(k)

=O(1) +O(1) +O(1) +O(1) +O(1) +O(k) .
(50)

Combining this result with the corresponding right hand
side scalings (43) and (44) proves the overall low-frequency
stability of new CFIE.

Similar to the newly introduced MFIE, the new CFIE
formulation can be accelerated with an appropriate fast solvers
to attain O(n log(n)) complexity. The computational costs
detailed in Table I can be extended to this new combined field
formulation by adding the costs of the Calderón EFIE.

V. NUMERICAL RESULTS

This section presents numerical results that validate the
above properties of the proposed MFIE and CFIE.

The first set of tests involve a PEC sphere of radius 1m.
Figure 2 shows the scattered far field at f = 200MHz obtained
using the new MFIE and CFIE as well as other established
formulations (standard EFIE, EFIE with projectors, Calderón
EFIE with projectors, Mixed MFIE, CFIE). For this high
frequency simulation all formulations deliver accurate results,
thereby validating our implementations. A first difference in
performance between our new formulations and their standard
counterparts is noted when lowering the frequency. Figure 3
shows data similar to Figure 2 but for f = 1× 10−40 Hz.
It is clear that accuracy breakdowns occur for the non-
projected methods, i.e. the mixed MFIE, the EFIE, and the
CFIE (for the latter two the lack of accuracy also is due
to conditioning problems). On the other hand, all projected

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2020.2964941

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

0 50 100 150

−5

0

5

10

15

20

Observation angle [◦]

R
ad

ar
cr

os
s

se
ct

io
n
[d
B
sm

]
EFIE Proj. EFIE

Cald. EFIE Mixed MFIE
Cald. MFIE CFIE
Cald. CFIE Mie series

Figure 2. Comparison of the far fields scattered by a PEC sphere of radius
1m, discretized with an average edge length of 0.15m, and excited by a
200MHz plane wave with amplitude of 1Vm−1.
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Figure 3. Comparison of the far fields scattered by a PEC sphere of radius
1m, discretized with an average edge length of 0.15m, and excited by a
1× 10−40 Hz plane wave with amplitude of 1Vm−1. The inset is provided
for improve the readability of the behavior of the different formulations.

formulations, including the two new ones, deliver accurate
results for arbitrarily low frequencies.

The low frequency stability of the new Calderón MFIE
is further demonstrated in Figure 4, which illustrates the
conditioning of the different formulations for low frequencies.
It is clear that the new MFIE remains as well-conditioned
as its standard counterpart. The Calderón CFIE is also low-
frequency stable, unlike the standard CFIE, which exhibits a
severe ill-conditioning caused by its EFIE contribution.

Figure 5 shows that, despite its regularized low frequency
behavior, the Calderón MFIE is prone to spurious resonances
causing it to become periodically ill-conditioned. This issue is
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Figure 4. Low frequency behavior of the conditioning of the different
formulations on a PEC sphere of radius 1m. Because of numerical limitations
in the computation of very high condition numbers (> 1× 1016) some points
have been left out.
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Figure 5. High frequency behavior of the conditioning of the different
formulations on a PEC sphere of radius 1m sphere illustrating the spurious
resonances occurring in non-combined formulations. The average edge size of
the discretized sphere has been kept at one-fifth of the wavelength for every
simulation.

shared by all non-combined formulations and can be overcome
by combined field strategies. It is clear from the figure that
both the new Calderón CFIE and its standard counterpart
exhibit resonance-free behavior.

The last key property to be illustrated is the refinement
stability of the proposed formulations. This property was
verified by studying the dependence of the condition number
of the different formulations applied to a unit radius sphere
with increasing discretization density (Figure 6). These results
confirm that the second kind nature of our new formulations
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Figure 6. Dense discretization behavior of the conditioning of the different
formulations on a PEC sphere of radius 1m. The non-resonant frequency has
been kept constant for all simulations and corresponds to 5 unknowns per
wavelength discretization for the least refined point.

renders them immune to the dense discretization breakdown.
In summary, the above results show that the new Calderón

MFIE yields correct results for arbitrarily low frequencies,
and is well conditioned for both low frequencies and dense
discretizations. Additionally, when combining this MFIE with
the projector Calderón EFIE, a new Calderón CFIE is obtained
that is low frequency stable, immune to dense discretization
breakdown, and free from non-physical resonances.

To ensure that the properties illustrated so far still persist for
multiply connected structures, many of the previous analyses
were repeated for a square torus (obtained by connecting the
ends of a cylinder of square cross-section). The correctness of
the formulation has been verified by studying the far field
scattered by the torus at high and very low frequencies,
respectively (Figures 7 and 8). Since no analytic solution
is readily available for the square torus, the solution of the
Calderón EFIE was used as a reference and particular care
was taken to avoid frequencies corresponding to an internal
resonance. While the results are similar to those of the sphere,
the reader should be aware that, because of its toroidal and
poloidal null-spaces, the Calderón MFIE required the usage
of a pseudo-inversion to obtain current solutions at very low
frequencies.

The low frequency stability of the Calderón MFIE and
Calderón CFIE on the toroidal structure are demonstrated in
Figure 9, while their resonance-free behaviors are illustrated
in Figure 10. Finally, the resilience of both formulations to
dense discretization breakdown is illustrated in Figure 11,
which presents the condition number of the discretized integral
operators with increasing discretization.

One of the key advantages of the new Calderón MFIE
scheme is that it does not require extremely accurate numerical
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Figure 7. Comparison of the far fields scattered by a PEC square torus of
inner radius 0.5m and tube radius 0.25m, discretized with an average edge
length of 0.15m, and excited by a 200MHz plane wave with amplitude of
1Vm−1.
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Figure 8. Comparison of the far fields scattered by a PEC square torus of
inner radius 0.5m and tube radius 0.25m, discretized with an average edge
length of 0.15m, and excited by a 1× 10−40 Hz plane wave with amplitude
of 1Vm−1.

integration rules because it allows explicit cancellation of
near-zero terms. In other words, when implementing (33), the
matrix product should be expanded and (36) must be explicitly
set to 0 to obtain accurate results even with low-order numer-
ical integration rules. The slow convergence of the standard
numerical integration schemes can be seen in Figure 12, in
which the ratio of the norm of the term in (36) to the norm of
the full operator with increasing number of integration points
is presented. While this ratio does decrease with the number
of Gaussian quadrature points, it does so very slowly and
remains far from a machine-precision zero. The effect of these
numerical inaccuracies is evident when comparing the singular
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Figure 9. Low frequency behavior of the conditioning of the different
formulations on a PEC square torus with an inner radius of 0.5m, a tube
radius of 0.25m and meshed with an average edge length of 0.6m.
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Figure 10. High frequency behavior of the conditioning of the different
formulations on a PEC square torus of inner radius of 0.5m and tube radius
of 0.25m, illustrating the resonances of non-combined formulations. The
average edge size of the discretization is kept at one-fifth of the wavelength.

value decompositions of the Mixed MFIE and of the new
Calderón MFIE in Figure 13. It is clear that the null singular
values corresponding to the toroidal and poloidal subspaces
of the square torus immediately reach the machine precision
zero in the case of the Calderón MFIE, while for the Mixed
MFIE they require an unreasonably complex integration rules
to even remotely resemble a nullspace.

Finally, to demonstrate that our schemes can be readily ap-
plied to more complex problems we studied the low frequency
conditioning of our operators (Figure 15) for the complex,
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Figure 11. Dense discretization behavior of the conditioning of the different
formulations on a PEC square torus of inner radius of 0.5m and tube radius
of 0.25m. The non-resonant frequency is kept constant and corresponds to a
5 unknowns per wavelength discretization for the least refined point.
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Figure 12. Decay of the relative (with regards to the full operator) norm of
cancelled out term (51) of the Calderón CFIE as a function of the number
of Gaussian integration points. These results correspond to a square torus of
inner radius 0.5m and tube radius 0.25m simulated at 1× 10−10 Hz.

multiply connected geometry in Figure 14.

VI. CONCLUSION

This paper presented a new Calderón-like MFIE that can
be stably and effectively discretized using quasi-Helmholtz
projectors. When linearly combined with a quasi-Helmholtz
projector-based Calderón EFIE, a new CFIE that is immune
from all drawbacks that plague the majority of existing formu-
lations is obtained. In fact, the proposed CFIE remains well-
conditioned both at low frequencies and for dense discretiza-
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radius 0.25m simulated at 1× 10−10 Hz.

Figure 14. Complex multiply-connected cube-like geometry with 9m side-
length and discretized with an average edge length of 0.35m. The values
represented on the geometry correspond to the intensity of the current induced
on the PEC structure by a plane wave oscillating at 8.5× 107 Hz and directed
along the ẑ axis.

tion densities, allows for an accurate solution at extremely low
frequencies without requiring special numerical quadrature
methods, does not require the detection of global loops when
applied to multiply connected geometries, and is provably
free from internal resonances. Numerical results confirm the
theoretically predicted properties of the proposed equations.
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Figure 15. Low frequency behavior of the conditioning of the different
formulations on the structure illustrated in Figure 14. Because of numerical
limitations in the computation of very high condition numbers (> 1× 1016)
some points have been left out.

APPENDIX A
PROOF OF THE FUNDAMENTAL MATRIX RELATIONSHIP (36)

To prove the validity of (36), i.e.

PΣH
(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
P ΛH = 0 , (51)

we introduce P Pol, P Tor, PPol, PTor, the orthogonal projectors
into the right and left null-spaces of the internal and external
MFIE operators, i.e.

(
GT

2
+K0

)
P Pol = 0 , (52)

(
GT

2
−K0

)
P Tor = 0 , (53)

PPol
(
GT

2
−K0

)
= 0 , (54)

PTor
(
GT

2
+K0

)
= 0 . (55)

Note that (
GT

2
+K0

)
P Tor = GTP Tor , (56)

(
GT

2
−K0

)
P Pol = GTP Pol , (57)

PTor
(
GT

2
−K0

)
= PTorGT , (58)

PPol
(
GT

2
+K0

)
= PPolGT . (59)

We next define

QΛ = P ΛH − P Pol − P Tor , (60)

which clearly satisfies

PΛQΛ = QΛ , (61)
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since the union of the right null spaces of the internal and
external MFIE operators contains all the non-trivial cycles of
the structure [48]. In addition, the operator

QΣ = PΣH −PPol −PTor , (62)

satisfies
PΣQΣ = QΣ . (63)

It follows that
(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
P ΛH

=

(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)(
QΛ + P Pol + P Tor)

=

(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
QΛ

+

(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
P Tor (64)

=

(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
QΛ

+

(
GT

2
−K0

)
P Tor

=

(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
QΛ ,

and similarly that

PΣH
(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)

=QΣ
(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
. (65)

Combining the above equations it follows that

PΣH
(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
P ΛH

= QΣ
(
GT

2
−K0

)(
GT
)−1(GT

2
+K0

)
QΛ . (66)

In the above expression we now insert the identity matrices(
P ΛH + PΣ

)
and

(
PΣH +PΛ

)
obtaining

(66) = QΣ
(
GT

2
−K0

)(
P ΛH + PΣ

) (
GT
)−1

(
PΣH +PΛ

)(GT

2
+K0

)
QΛ . (67)

Given that

QΣ
(
GT

2
−K0

)
P ΛH = QΣPΣ

(
GT

2
−K0

)
P ΛH = 0

(68)
and that

PΣH
(
GT

2
+K0

)
QΛ = PΣH

(
GT

2
+K0

)
PΛQΛ = 0

(69)
and considering the property

PΣ
(
GT
)−1
PΛ = 0 , (70)

it follows that

(66) =PΣ
(
GT

2
−K0

)
PΣ

(
GT
)−1
PΛ
(
GT

2
+K0

)
PΛ

=0 , (71)

which completes the proof.

APPENDIX B
RESONANCE-FREE PROOF FOR THE NEW CALDERÓN CFIE

OPERATOR

Since the operator
(I
2 −K−jk

)
always admits an inverse,

the invertibility of (48) is equivalent to the invertibility of
(
I
2
+Kk

)
+

(
I
2
−K−jk

)−1
T −jkT k. (72)

Given the anti-commutation property

T −1K+KT −1 = 0, (73)

which follows directly from the second Calderón identity
T −1K = T −1KT T −1 = −T −1T KT −1 = −KT −1, and
defining

A =

(
I
2
−K−jk

)−1
T −jk, (74)

it follows that

(n̂×A)
T
=

(
n̂×

(
I
2
−K−jk

)−1
T −jk

)T

=

(
n̂×

(
T −1−jk

(
I
2
−K−jk

))−1)T

=

(
n̂×

((
I
2
+K−jk

)
T −1−jk

)−1)T

=

(
n̂× T −jk

(
I
2
+K−jk

)−1)T

(75)

=

((
I
2
+K−jk

)−1)T

n̂× T −jk

= −n̂×
(
I
2
−K−jk

)−1
n̂× n̂× T −jk

= n̂×
(
I
2
−K−jk

)−1
T −jk

= n̂×A.

Given this result and the fact that

n̂×A = n̂×
(
I
2
−K−jk

)−1
T −jk (76)

is a real operator, the symmetry implies it being Hermitian,
so that

x†
(
n̂×

(
I
2
−K−jk

)−1
T −jk

)
x (77)

is real and nonzero. By leveraging a straightforward extension
of Theorem 3.1 in [56], it follows that

((
I
2
−K−jk

)(
I
2
+Kk

)
+ T −jkT k

)
(78)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2020.2964941

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



11

is always invertible. Otherwise said, the proposed Yukawa-
Calderón CFIE is resonance free.
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