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Two FEM-BEM methods for the numerical solution of 2D transient

elastodynamics problems in unbounded domains.

S. Fallettaa,∗, G. Monegatoa, L. Scuderia

aDipartimento di Scienze Matematiche �G.L. Lagrange�, Politecnico di Torino,

Corso Duca degli Abruzzi, 24, 10129, Torino, Italia

Abstract

We consider classical transient 3D elastic wave propagation problems in unbounded isotropic
homogeneous media, which can be reduced to corresponding 2D ones. For their solution, we
propose and compare two alternative numerical approaches, both obtained by coupling the problem
di�erential equation with a space-time boundary integral equation. The latter is de�ned on an
arti�cial boundary, chosen to surround the problem physical domain as well as the (bounded)
exterior computational domain of interest. The integral equation de�nes a condition which is non
re�ecting for incoming and also for outgoing waves.

In both approaches, the �rst equation is discretized by applying a �nite element method, while
for the discretization of the second equation we couple a time convolution quadrature with a space
collocation boundary element method. The construction of the two approaches is described and
discussed. Some numerical testing are also presented.

Keywords: Elastic wave propagation, space-time boundary integral equations, discrete
convolution quadrature, collocation method.

1. Introduction

Since many decades, a large number of papers have been published on the numerical solution
of transient elastodynamics problems, de�ned on bounded or unbounded domains, by using their
well-known (time dependent) spatial Boundary Integral Equation (BIE) representation. Several
numerical approaches have been proposed with satisfactory results. In general, problems have
been solved by working in the Laplace or Fourier transform spaces, where a classical Boundary
Element (BE) method has been then applied, after which a numerical inversion of the results to
the time domain had to be performed. Later, the same problems have also been solved by using
their space-time BIE representation, �rst coupling a time-marching (quadrature) rule with a (BE)
spatial discretization (see [15],[17]), and then replacing the previous time integration formula with
a discrete (time) convolution quadrature due to Ch. Lubich [13] (see, for example, [16, 12, 9, 14]).
This quadrature has some very nice features, which include the use of the FFT to compute its
coe�cients, hence the sums of all the corresponding boundary integrals.

For the latter approach we are not aware of stability and convergence (theoretical) results,
except for those obtained in [11]. In this paper, the authors have examined a Lubich-BE Galerkin
approach for the solution of a particular wave-structure interaction problem, proving its stability
and convergence. We are not aware of similar results for a Lubich-BE collocation approach, in
spite of the numerical evidences given by the many authors that have applied this method.

In this paper we consider transient 3D elastic wave propagation problems in unbounded
isotropic homogeneous media, which can be reduced to corresponding 2D ones. This is the case,
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for example, of problems de�ned on the exterior of a bounded rigid domain, which are invari-
ant in one of the cartesian directions. For their solution, we propose, and then compare, two
alternative numerical methods, both based on the coupling of a (vector) PDE representing the
given 2D elastodynamics problem with the associated space-time BIE. In the �rst approach the
di�erential equation is the classical one of elasodynamics, while in the second one, the latter is
replaced by a corresponding couple of scalar wave equations, obtained after performing the dis-
placement Helmholtz decomposition. With this decomposition, the elastic (vector) equation is
split into a couple of scalar wave equations, describing, respectively, the propagation of P - and
S-waves. These two equations are coupled by the problem Dirichlet boundary conditions. The
latter approach has been used in [2] to solve an interior problem by a �nite element method, and
in [8] to solve an exterior problem by means of their space-time BIE representations. This new
method inherently allows to include P- and S-wave sources.

The two equivalent vector PDE formulations of the problem we consider are described in
Sections 2.1 and 2.2. In each of these two approaches, the discretization of their space-time
BIE is performed by coupling a Lubich time Convolution Quadrature (CQ) with a classical space
collocation method (see [7, 6]). The derivations of these two discetizations are described in Sections
2.1.2�2.1.3 and 2.2.2�2.2.3. In these same sections, the subsequent FEM-BEM couplings, and their
corresponding linear systems to be solved, are obtained. Finally, in Section 3, to test and compare
the two alternative numerical approaches we have proposed to solve the stated elastodynamics
problem, we have applied them to three di�erent problems. From the results we have obtained,
some conclusions are then drawn.

2. The model problem

We de�ne by Ωi ⊂ R2 an open, bounded and rigid domain, whose boundary Γ is assumed to
be a closed and smooth curve. Then, we de�ne the unbounded region Ωe := R2 \ Ωi, where we
aim to study the propagation of elastic waves.

The linear elastodynamics problem that characterizes small variations of a displacement �eld
ue(x, t) = (ue1(x, t),ue2(x, t)), x = (x1, x2) in a homogeneous isotropic elastic medium Ωe, caused
by a body force f , initial conditions u0, z0 and a Dirichlet datum g, is de�ned by the following
system:

ρ
∂2ue

∂t2
(x, t)− (λ+ µ)∇(divue)(x, t)− µ∇2ue(x, t) = f(x, t) (x, t) ∈ Ωe × (0, T ]

ue(x, t) = g(x, t) (x, t) ∈ Γ× (0, T ]

ue(x, 0) = u0(x) x ∈ Ωe

uet (x, 0) = z0(x) x ∈ Ωe,

(1)

where ρ > 0 is the constant material density, λ > 0 and µ > 0 are the Lamé constants.

As often occurs in practical applications, we assume that the initial condition u0, the initial
velocity z0 and the source term f are either trivial or have local supports. Aiming to determine
the solution ue of the above problem in a bounded subregion of Ωe, surrounding the physical
domain Ωi, we truncate the in�nite domain Ωe by introducing an arti�cial smooth boundary B.
This boundary divides Ωe into two open sub-domains: a �nite computational domain Ω, which is
bounded internally by Γ and externally by B, and an in�nite residual domain D (see Figure 1).
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Figure 1: Model problem setting.

To obtain a well posed problem in Ω, we impose a Time Domain Non Re�ecting Boundary
Condition (TD-NRBC) on B, by using a direct boundary integral equation. The latter is de-
�ned by means of suitable boundary operators which involve the fundamental solutions of the
elastodynamic equation.

In the following sections we describe the approach we propose, which consists in the coupling
of the �nite element method for the interior computational domain with the boundary element
method for the discretization of the TD-NRBC. We apply such approach to two formulations of
the elastodynamic problem: the �rst one is de�ned by the standard vector equation (see Problem
(1)); the second one consists of a couple of scalar equations obtained by means of the classical
Helmholtz decomposition (see Problem (35)).

2.1. The FEM-BEM coupling for the standard vector formulation

In this section we consider the standard vector formulation (1), de�ned in the �nite computa-
tional domain Ω, with the additional TD-NRBC. Then, for its solution, we propose a numerical
approach which consists of a FEM associated to the variational formulation of the interior PDE,
coupled with a CQ-collocation-BEM for the numerical approximation of the TD-NRBC.

In order to de�ne this latter, we introduce the following integral operators associated to the
integral formulation of the elastodynamic equation:

Uite(x, t) =

2∑
`=1

� t

0

�
B
U∗i`(x− y, t− s)te`(y, s) dByds

Tiue(x, t) =

2∑
`=1

� t

0

�
B
T ∗i`(x− y, t− s)ue`(y, s) dByds

(2)

where U∗i` and T
∗
i`, i = 1, 2, are the displacement and traction fundamental solutions, respectively,

and te` is the `-component of the traction vector te associated with ue (see [17] for their expression
in the space-time domain).

The TD-NRBC associated to Problem (1), and de�ned on B, has then the following represen-
tation:

1

2
uei (x, t) = Uite(x, t)− Tiue(x, t) + Iui,0(x, t) + Izi,0(x, t) + Ifi(x, t), i = 1, 2, (3)
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where the volume integrals are de�ned by

Iui,0(x, t) :=

2∑
`=1

∂

∂t

�
Ωe
U∗i`(x− y, t)u`,0(y, t)dy

Izi,0(x, t) :=

2∑
`=1

�
Ωe
U∗i`(x− y, t)z`,0(y, t)dy

Ifi(x, t) :=

2∑
`=1

� t

0

�
Ωe
U∗i`(x− y, t− s)f`(y, s)dyds,

(4)

with f = (f1, f2), u0 = (u1,0,u2,0) and z0 = (z1,0, z2,0). The details of the time dependent relation
(3) associated to Problem (1) can be found, for example, in [16, 3].

From now on, to simplify the description, we assume that the local supports of u0, z0 and f
are contained in Ω, so that Iui,0 = Izi,0 = Ifi = 0, i = 1, 2. The treatment of source and initial
data, whose supports are in D, is postponed to Section 3.

By introducing the symmetric second order strain tensor ε de�ned as

εij(w)(x, t) =
1

2

(
∂wi
∂xj

+
∂wj
∂xi

)
(x, t), i, j = 1, 2,

for w(x, t) = (w1(x, t), w2(x, t)), it is possible to rewrite the �rst equation of Problem (1) in the
following equivalent form:

 ρ
∂2ue

∂t2
(x, t)−∇ · σ(ue)(x, t) = f(x, t) (x, t) ∈ Ωe × (0, T ]

σ(ue)(x, t) = 2µε(ue)(x, t) + λ(divue(x, t))I, (x, t) ∈ Ωe × (0, T ]

(5)
where I denotes the 2 × 2 identity matrix and, we recall, the divergence of a tensor σ is de�ned
as:

(∇ · σ)i =

2∑
j=1

∂σij
∂xj

, i = 1, 2.

Combining (5) and (3), and imposing the continuity conditions of the vector �eld and of its traction
along the arti�cial boundary B, the model problem to determine the solution u := ue

Ω
(de�ned in

the domain of interest Ω) reduces to:

ρ
∂2u

∂t2
(x, t)−∇ · σ(u)(x, t) = f(x, t) (x, t) ∈ Ω× (0, T ]

σ(u)(x, t) = 2µε(u)(x, t) + λ(divu(x, t))I (x, t) ∈ Ω× (0, T ]

u(x, t) = g(x, t) (x, t) ∈ Γ× (0, T ]
1
2u(x, t) + Ut(x, t) + T u(x, t) = 0 (x, t) ∈ B × (0, T ]

u(x, 0) = u0(x) x ∈ Ω

ut(x, 0) = z0(x) x ∈ Ω,

(6)

where we have set t = σ · n = −σ · nD = −te, Ut = (U1t,U2t) and T u = (T1u, T2u) .
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2.1.1. Variational formulation of the PDE in the interior domain

In order to describe the variational formulation of Problem (6), we use the notations u(t)(x) :=
u(x, t), t(t)(x) := t(x, t) and we introduce the spaces

V = [H1(Ω)]2, X = [H−1/2(B)]2, W =
{
w ∈ [H1(Ω)]2 : w|Γ = 0

}
,

Hα being the classical Sobolev space of order α and H−1/2(B) the dual of H1/2(B). Recalling the
de�nition of the interior tensor product

σ : ε =

2∑
i,j=1

σijεij ,

in order to write the variational formulation associated to the �rst two equations of Problem (6),
we de�ne the bilinear form

a(v,w) =

�
Ω

σ(v)(x) : ε(w)(x)dx, v,w ∈ V

the standard [L2(Ω)]2 scalar product

(v,w)Ω =

�
Ω

v(x) ·w(x)dx, v,w ∈ V

and the bilinear form associated to the duality product

b(λ,η) := 〈λ,η〉B, λ ∈ X,η ∈ [H1/2(B)]2.

The variational formulation of (6) then reads: for any t ∈ (0, T ], �nd u(t) ∈ V and t(t) ∈ X
such that

ρ
d2

dt2
(u(t),w)Ω + a(u(t),w)− b(t(t),w) = (f(t),w)Ω,

holds for all w ∈W . For simplicity, here and in the sequel we omit the use of the trace operator
to indicate the restriction to the boundary B of an element of V .

Finally, the model problem, where we consider the weak formulation of the interior elastody-
namic equation coupled with the strong formulation of the TD-NRBC, takes the following form:
for any t ∈ (0, T ], �nd u(t) ∈ V and t(t) ∈ X such that

ρ
d2

dt2
(u(t),w)Ω + a(u(t),w)− b(t(t),w) = (f(t),w)Ω for allw ∈W

1

2
u(t)(x) + Ut(t)(x) + T u(t)(x) = 0 x ∈ B

(7)

with initial conditions u(0)(x) = u0(x), ut(0)(x) = z0(x) and the boundary condition u = g on
Γ.

In the following sections we describe the numerical procedure we adopt to approximate the TD-
NRBC in (7). We consider the numerical approach which combines the time integral discretization
by using a Lubich second-order time convolution quadrature (see [13]) with a continuous piecewise
linear space collocation method.

2.1.2. Discretization of the TD-NRBC

Time discretization.. We consider a uniform partition of the interval [0, T ] into N steps of equal
length ∆t = T/N and we collocate the second equation of (7) at the time instants tn = n∆t,
n = 0, . . . , N . Then we approximate the time integrals therein involved (see formula (2)) by
means of the convolution quadrature formula proposed by Lubich in [13]. In particular, denoting
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by tn(x) ≈ t(tn)(x) and un(x) ≈ u(tn)(x) the approximations of the traction and displacement
unknowns on B at the discrete time instants tn, we get: for i = 1, 2 and n = 0, . . . , N :

Uit(x, tn) ≈
2∑
`=1

n∑
j=0

�
B
ωn−j(∆t; Û

∗
i`(r)) tj`(y) dBy

Tiu(x, tn) ≈
2∑
`=1

n∑
j=0

�
B
ωn−j(∆t; T̂

∗
i`(r)) uj`(y) dBy,

(8)

where r = ‖x− y‖. In (8) the quadrature coe�cients

ωj(∆t; Ŵ ) =
%−j

2π

� 2π

0

Ŵ

(
γ(%eıϑ)

∆t

)
e−ıjϕdϑ (9)

are associated with the Laplace transform Ŵ of the convolution kernel W = U∗i`, T
∗
i`. In (9) the

function γ(z) = 3/2 − 2z + 1/2z2 is the characteristic quotient of the BDF method of order 2, ı
is the imaginary unit and % is such that for |z| ≤ % the corresponding γ(z) lies in the domain of

analyticity of Ŵ . The integrals in (9) are e�ciently computed by using the trapezoidal rule

ωj(∆t; Ŵ ) ≈ %−j

L

L−1∑
l=0

Ŵ

(
γ(%eıl

2π
L )

∆t

)
e−ıjl

2π
L , j = 0, . . . , N (10)

based on the uniform partitioning of [0, 2π] in L subintervals. The quadrature coe�cients ωj(∆t; Ŵ )
are then computed simultaneously using the FFT, with O(N logN) �ops. Assuming that W is
computed with a relative accuracy bounded by ε, Lubich has shown that the choice L = 2N and
%N =

√
ε leads to an approximation of ωj with relative error of size

√
ε.

For completeness, we report here the expressions of the Laplace transforms Ŵ , involved in (9),
which can be found in [3]:

Û∗i`(r, s) =
1

2πρv2
S

(
ψ(r, s)δi` − χ(r, s)r,ir,`

)
(11)

T̂ ∗i`(r, s) =
1

2π

{[
∂ψ

∂r
(r, s)− χ(r, s)

r

](
δi`

∂r

∂nD
+ r,`ni

)
− 2

χ(r, s)

r

(
r,in` − 2r,ir,`

∂r

∂nD

)
−2

∂χ

∂r
(r, s)r,ir,`

∂r

∂nD
+

(
v2
P

v2
S

− 2

)[
∂ψ

∂r
(r, s)− ∂χ

∂r
(r, s)− χ(r, s)

r

]
r,in`

}
,

(12)

where r,i := ∂yir, δi` is the Kronecker delta and vP , vS denote the so-called P - and S-wave speeds,
de�ned by the Lamé constants through the relationships:

vP =

√
λ+ 2µ

ρ
, vS =

√
µ

ρ
. (13)

The functions ψ and χ in (11) and (12) are de�ned as follows:

ψ(r, s) = K0

(
rs

vS

)
+
(vS
rs

)[
K1

(
rs

vS

)
− vS
vP
K1

(
rs

vP

)]
, (14)

χ(r, s) = K2

(
rs

vS

)
−
(
vS
vP

)2

K2

(
rs

vP

)
, (15)

where Ki, i = 0, 1, 2, is the second-kind modi�ed Bessel functions of order i.
By using the relationsK ′0(z) = −K1(z),K ′1(z) = −K0(z)−1/zK1(z) andK ′2(z) = −2/zK2(z)−
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K1(z), easy calculations yield (see [10])

∂ψ

∂r
(r, s) = −1

r

[
χ(r, s) +

rs

vS
K1

(
rs

vS

)]
(16)

and
∂χ

∂r
(r, s) = −1

r

[
rs

vS
K1

(
rs

vS

)
−
(
vS
vP

)2
rs

vP
K1

(
rs

vP

)
+ 2χ(r, s)

]
. (17)

For further details we refer to [8].

Space discretization.. To describe the space discretization, we assume that the boundary B is
de�ned, for simplicity, by the following smooth global parametric representation, associated to the
reference unit interval:

x = η(ϑ) = (η1(ϑ), η2(ϑ)), ϑ ∈ [0, 1]. (18)

After having reduced the integration on B into the equivalent one de�ned on the parametrization
interval [0, 1], we apply a nodal collocation boundary element method with piecewise linear basis
functions {Nk}M+1

k=1 associated to a partition {ϑk}M+1
k=1 of [0, 1].

We approximate the unknown functions tn` (x) and un` (x), ` = 1, 2, for x ∈ B by

tn` (η(ϑ)) ≈
M+1∑
k=1

tk,n` Nk(ϑ), un` (η(ϑ)) ≈
M+1∑
k=1

uk,n` Nk(ϑ) (19)

where the coe�cients tk,n` and uk,n` represents the unknown nodal values at xk = η(ϑk). Taking

into account that the curve B is closed, we set t1,j
` = tM+1,j

` and u1,j
`,1 = uM+1,j

` . Finally, by
collocating the fully discretized equation at the points ϑm, m = 1, . . . ,M , we end up with the
following full approximation of the TD-NRBC:

2∑
`=1

(
1

2
δi`I + T0

i`

)
uB,n` +

2∑
`=1

n−1∑
j=0

Tn−ji` uB,j` +

2∑
`=1

U0
i`t
B,n
` +

2∑
`=1

n−1∑
j=0

Un−ji` tB,j` = 0, i = 1, 2 (20)

in the unknown vectors tB,n` = (t1,n
` , . . . , tM,n

` )T and uB,n` = (u1,n
` , . . . ,uM,n

` )T , with ` = 1, 2 and
n = 0, . . . , N . The symbol I denotes the identity matrix of order M , while the matrix entries of
Un and Tn are given by (see [8] for details on their computation)

(Uni`)m,k =
1

2π

%−n

L

L−1∑
l=0

(� 1

0

Û∗i` (rm, z)Nk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ınl2π
L (21)

and

(Tni`)m,k =
1

2π

%−n

L

L−1∑
l=0

(� 1

0

T̂ ∗i` (rm, z)Nk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ınl2π
L , (22)

where z := γ(%eı̇l2π/L)/∆t and rm = ‖η(ϑm)− η(ϑ)‖.
From the computational point of view, supposing to know uB,j` and tB,j` at the time steps

j = 0, · · · , n− 1, the non re�ecting boundary condition at time tn is given by

2∑
`=1

(
1

2
δi`I + T0

i`

)
uB,n` +

2∑
`=1

U0
i`t
B,n
` = −

2∑
`=1

n−1∑
j=0

Tn−ji` uB,j` −
2∑
`=1

n−1∑
j=0

Un−ji` tB,j` , i = 1, 2. (23)

2.1.3. Discretization of the interior vector PDE equation

Time discretization. To derive the complete numerical method we propose to solve (7), we �rst
describe the time discretization of its �rst equation. We perform this latter by using the Crank-
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Nicolson scheme, of second order and unconditionally stable, which is well suited even for long
time intervals, although other methods can be considered as well, in particular explicit ones.

Thus, we introduce the new unknown vector function z := ∂u
∂t and we rewrite (7) as follows:

ρ ddt (z(t),w)Ω + a(u(t),w)− b(t(t),w) = (f(t),w)Ω for allw ∈W , t ∈ (0, T ]
∂u
∂t (x, t) = z(x, t) x ∈ Ω, t ∈ (0, T ]
1

2
u(x, t) + Ut(x, t) + T u(x, t) = 0 x ∈ B, t ∈ (0, T ]

u(x, 0) = u0(x) x ∈ Ω

z(x, 0) = z0(x) x ∈ Ω.

(24)

Denoting by un(x) ≈ u(x, tn), zn(x) ≈ z(x, tn), tn(x) ≈ t(x, tn) and fn(x) ≈ f(x, tn) the approx-
imations of u, z, t and f at the time instant tn, and applying the Crank-Nicolson discretization
to the �rst two equations in (24), we get

ρ

(
zn+1 − zn

∆t
,w

)
Ω

+ a

(
un+1 + un

2
,w

)
− b

(
tn+1 + tn

2
,w

)
=

(
fn+1 + fn

2
,w

)
Ω

,

un+1 − un

∆t
=

zn+1 + zn

2
.

From the second relation we obtain:

zn+1 =
2

∆t
(un+1 − un)− zn (25)

which, inserted in the �rst relation, leads to

ρ (un+1,w)Ω +
∆2
t

4
a(un+1,w)− ∆2

t

4
b(tn+1,w) = ρ (un,w)Ω −

∆2
t

4
a(un,w) +

∆2
t

4
b(tn,w)

+ ρ∆t (zn,w)Ω +
∆2
t

4
(fn+1 + fn,w)Ω. (26)

Space discretization by �nite elements. For the space �nite element discretization, we de�ne a
regular triangular decomposition Th = {Ki} of Ω, with mesh size h. This de�nes a polygonal
domain Ω∆, having inner and outer boundaries Γ∆ and B∆, respectively. Then, we replace Ω
by Ω∆ and B by B∆ in (26). We remark that, for the space discretization of the TD-NRBC
we have used the parametric representation of B, instead of that of B∆. Note that, in spite of
this boundary discrepancy, the �nal discrete system will involve only the unknown values at the
common boundary mesh points, B∆ being nothing but a piecewise linear interpolant of B.

Denoting by f|D the restriction of a function f on a domain D, let

Vh = {vh ∈ [C0(Ω)]2 : vh|Ki
∈ [P1(Ki)]

2,Ki ∈ Th, } ⊂ V ,

Wh = {wh ∈ [C0(Ω)]2 : wh|Ki
∈ [P1(Ki)]

2,Ki ∈ Th,wh|Γ∆
= 0} ⊂W

be the spaces of piecewise linear vector polynomials of degree 1 associated with the mesh Th.
Let S be the set of the indices of the nodes {xi}i∈S of the triangular mesh, not including those

lying on Γ, and {NΩ
i }i∈S the standard piecewise linear �nite element basis functions. Denoting

by S = #S the total number of nodes, a natural choice for the set of the basis functions of Vh is
given by the 2S columns of the matrix

NΩ(x) :=

[
NΩ

1 (x) NΩ
2 (x) · · · NΩ

S (x) 0 0 · · · 0
0 0 · · · 0 NΩ

1 (x) NΩ
2 (x) · · · NΩ

S (x)

]
.

Then, for the unknown vector function un(x) = (un1 (x),un2 (x))T , we consider its �nite element
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approximation de�ned as follows:

unh(x) =

[
un1,h(x)

un2,h(x)

]
= NΩ(x)un =


S∑
i=1

ui,n1 NΩ
i (x)

S∑
i=1

ui,n2 NΩ
i (x)

 , with un =

[
un1
un2

]

and where

un1 =
[
u1,n

1 ,u2,n
1 , · · · ,uS,n1

]T
and un2 =

[
u1,n

2 ,u2,n
2,1 , · · · ,u

S,n
2

]T
are the unknown nodal values associated with the nodes of the triangular mesh.

Moreover, let Xh ⊂ X be the space of piecewise linear continuous vector functions de�ned
on the boundary B by the non-vanishing �nite element basis functions NB(x) = NΩ

|B(x). Thus,
proceeding analogously as before, and denoting by M the number of mesh points that belong to
the boundary B, we introduce the following 2M columns matrix for the basis NB(x):

NB(x) =

[
NB1 (x) NB2 (x) · · · NBM (x) 0 0 · · · 0

0 0 · · · 0 NB1 (x) NB2 (x) · · · NBM (x)

]
.

Then, for the unknown function tn(x) = (tn1 (x), tn2 (x))T , with x ∈ B, we introduce its �nite
element approximation de�ned as follows:

tnh(x) =

[
tn1,h(x)

tn2,h(x)

]
= NB(x)tn =


M∑
i=1

tn1,iN
B
i (x)

M∑
i=1

tn2,iN
B
i (x)

 , with tn =

[
tn1
tn2

]

and where

tn1 =
[
t1,n
1 , t2,n

1 , · · · , tM,n
1

]T
and tn2 =

[
t1,n
2 , t2,n

2 , · · · , tM,n
2

]T
are the vectors of the unknown nodal values.

The Galerkin formulation of (26) then reads as follows: for each n = 0, · · · , N − 1, �nd
(un+1
h , tn+1

h ) ∈ Vh ×Xh such that, for all wh ∈Wh

ρ(un+1
h ,wh)Ω +

∆2
t

4
a(un+1

h ,wh)− ∆2
t

4
b(tn+1

h ,wh) = ρ(unh,wh)Ω −
∆2
t

4
a(unh,wh)

+
∆2
t

4
b(tnh,wh) + ∆tρ(znh,wh)Ω +

∆2
t

4
(fn+1 + fn,wh)Ω. (27)

To write the discrete variational formulation (27) in matrix form, we split the total set of indices
S = SI ∪ SB, into the set SI of internal mesh nodes and SB of the mesh nodes lying on the
arti�cial boundary B. Then, by properly reordering the unknown coe�cients of unh, we rewrite the

unknown vectors uni = [uI,ni ,uB,ni ]T , i = 1, 2 whose two components uI,ni and uB,ni represent the
unknown values associated with the internal nodes and with those on the boundary B, respectively.
The same splitting is performed for the vector zn, containing the unknown coe�cients of znh.

Therefore, setting α =
∆2
t

4 , the matrix form of (27) is given by(
M + αA

)
un+1 − αQtttn+1 =

(
M− αA

)
un + αQtttn + ∆tMvn + αFn (28)

where, denoting by NΩ
i and NBi the i-th column of the matrix NΩ and NB respectively, the

9



elements of the mass and sti�ness matrices are

Mij = ρ
(
NΩ
i ,N

Ω
j

)
Ω
, Aij = a(NΩ

i ,N
Ω
j ), i, j = 1, · · · , 2S (29)

while those of Q are given by

Qij =

�
B
NΩ
i ·NBj , i = 1, · · · , 2S, j = 1, · · · , 2M. (30)

The term Fn in (28) is the column vector whose components are de�ned by

Fnj = (fn+1 + fn,NΩ
j )Ω, j = 1, · · · , 2S.

To write the matrix form of the �nal linear system, it is useful to introduce the following block
partitioning of the above matrices, based on a properly assembly of the total set of the basis
functions:

M11 = [Mrs]r=1,··· ,S, s=1,··· ,S , M22 = [Mrs]r=S+1,··· ,2S, s=S+1,··· ,2S ;

M12 = [Mrs]r=1,··· ,S, s=S+1,··· ,2S , M21 = [Mrs]r=S+1,··· ,2S, s=1,··· ,S ;

A11 = [Ars]r=1,··· ,S, s=1,··· ,S , A22 = [Ars]r=S+1,··· ,2S, s=S+1,··· ,2S ;

A12 = [Ars]r=1,··· ,S, s=S+1,··· ,2S , A21 = [Asr]r=1,··· ,S,s=S+1,··· ,2S ;

Q11 = [Qrs]r=1,··· ,S, s=1,··· ,M , Q22 = [Qrs]r=S+1,··· ,2S, s=M+1,··· ,2M ;

Q12 = [Qrs]r=1,··· ,S, s=M+1,··· ,2M , Q21 = [Qrs]r=S+1,··· ,2S, s=1,··· ,M ;

Fn1 = [Fnr ]r=1,··· ,S , Fn2 = [Fnr ]r=S+1,··· ,2S .

Finally, by taking into account the splitting of the index set S = SI ∪SB, we further partition
each of the above matrices into sub-blocks, as follows:

Mpq =

 MII
pq MIB

pq

MBIpq MBBpq

 , Apq =

 AIIpq AIBpq

ABIpq ABBpq

 , Qpq =

 QIBpq

QBBpq

 , p, q = 1, 2.

It is worth noting that, according to the structure of the bases NΩ and NB, we have M12 = M21 =
O, Q12 = Q21 = O and QIB11 = QIB22 = O. Moreover, the following equalities hold: M11 = M22,
A12 = A21 and QBB11 = QBB22 .

Finally, combining (28) with (23), and in accordance with the splitting of the set of the degrees
of freedom, we get the following block partitioned linear system (with obvious meaning of the
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notation):

MII
11 + αAII11 MIB

11 + αAIB11 αAII12 αAIB12 O O

MBI11 + αABI11 MBB11 + αABB11 αABI12 αABB12 −αQBB11 O

αAII21 αAIB21 MII
22 + αAII22 MIB

22 + αAIB22 O O

αABI21 αABB21 MBI22 + αABI22 MBB22 + αABB22 O −αQBB22

O 1
2 I + T0

11 O T0
12 U0

11 U0
12

O T0
21 O 1

2 I + T0
22 U0

21 U0
22





uI,n+1
1

uB,n+1
1

uI,n+1
2

uB,n+1
2

tB,n+1
1

tB,n+1
2



=



2∑
i=1

B∑
∗=I

(
MI∗

1i − αAI∗1i
)
u∗,ni + ∆t

B∑
∗=I

MI∗
11z
∗,n
1 + αFn,I1

2∑
i=1

B∑
∗=I

(
MB∗1i − αAB∗1i

)
u∗,ni + αQBB11 tB1 + ∆t

B∑
∗=I

MB∗11 z
∗,n
1 + αFn,B1

2∑
i=1

B∑
∗=I

(
MI∗

2i − αAI∗2i
)
u∗,n2 + ∆t

B∑
∗=I

MI∗
22z
∗,n
2 + αFn,I2

2∑
i=1

B∑
∗=I

(
MB∗2i − αAB∗2i

)
u∗,ni + αQBB22 tB2 + ∆t

B∑
∗=I

MB∗22 z
∗,n
2 + αFn,B2

−
2∑
i=1

n−1∑
j=0

Tn−j1i uB,ji −
2∑
i=1

n−1∑
j=0

Un−j1i tB,ji

−
2∑
i=1

n−1∑
j=0

Tn−j2i uB,ji −
2∑
i=1

n−1∑
j=0

Un−j2i tB,ji



,

to which equation (25) must be added.

2.2. The FEM-BEM coupling for the new scalar approach

It is well-known (see [5]) that, using the Helmholtz decomposition of a vector �eld, we can
decompose the unknown displacement in (1) by two unknown scalar potentials ue = ∇ϕeP+curl ϕeS
where, for a generic w = w(x1, x2), curl w = (∂x2w,−∂x1w). The unknowns ϕeP and ϕeS are called
Primary (or longitudinal) and Secondary (or transverse) waves.

Referring to [8] for details, we recall the main relations that allows to rewrite Problem (1) in
terms of a couple of wave equations. In particular, by using the decomposition of the Dirichlet
datum on Γ

∇ϕeP + curlϕeS = g (31)

and introducing the anti-clockwise oriented unit tangent vector τ
Γ

= (n
Γ,2
,−n

Γ,1
), n

Γ
= (n

Γ,1
, n

Γ,2
)

being the ingoing unit normal vector on Γ, the following relations hold:

∂ϕeP
∂nΓ

− ∂ϕeS
∂τΓ

= g · n
Γ
,

∂ϕeS
∂nΓ

+
∂ϕeP
∂τΓ

= g · τ
Γ
. (32)
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Furthermore, after setting

ϕeP,0(x) := ϕeP (x, 0), ϕeS,0(x) := ϕeS(x, 0)

ϕ̄eP,0(x) := ∂tϕ
e
P (x, 0), ϕ̄eS,0(x) := ∂tϕ

e
S(x, 0)

(33)

and decomposing the initial data u0, z0, the Dirichlet datum and the source term as follows

u0(x) = ∇ϕeP,0(x) + curlϕeS,0(x), z0(x) = ∇ϕ̄eP,0(x) + curl ϕ̄eS,0(x)

g(x, t) = ∇gP (x, t) + curl gS(x, t), f(x, t) = ∇fP (x, t) + curl fS(x, t) (34)

we obtain that the exterior elastodynamics problem (1) is formally equivalent (see [2]) to the
following exterior potentials problem:

∂2ϕeP
∂t2

− v2
P∇2ϕeP =

1

ρ
feP (x, t) ∈ Ωe × (0, T ]

∂2ϕeS
∂t2

− v2
S∇2ϕeS =

1

ρ
feS (x, t) ∈ Ωe × (0, T ]

∂ϕeP
∂n

Γ

=
∂ϕeS
∂τΓ

+ g · nΓ=:
∂ϕeS
∂τ

Γ

+ gnΓ (x, t) ∈ Γ× (0, T ]

∂ϕeS
∂n

Γ

= −∂ϕ
e
P

∂τ
Γ

+ g · τ
Γ
=: −∂ϕ

e
P

∂τ
Γ

+ gτ Γ
(x, t) ∈ Γ× (0, T ]

ϕeP (x, 0) = ϕeP,0(x) x ∈ Ωe

ϕeS(x, 0) = ϕeS,0(x) x ∈ Ωe

∂ϕeP
∂t

(x, 0) = ϕ̄eP,0(x) x ∈ Ωe

∂ϕeS
∂t

(x, 0) = ϕ̄eS,0(x) x ∈ Ωe.

(35)

Moreover, note that, if we consider the Helmholtz decomposition (34) of the datum g, the functions
gnΓ

and gτ Γ
are given by

gnΓ
(x, t) =

∂gP
∂n

Γ

(x, t)− ∂gS
∂τ

Γ

(x, t)

gτ Γ(x, t) =
∂gP
∂τΓ

(x, t) +
∂gS
∂nΓ

(x, t).

To determine the solution of (35) in the �nite computational domain Ω, bounded externally
by B, we need to de�ne on B × [0, T ] a couple of scalar TD-NRBCs. To this aim, we introduce
the following well known single and double layer operators associated to the scalar ? := P, S-wave
equation:

(V?ψ)(x, t) :=

� t

0

�
Γ

G?(x− y, t− s)ψ(y, s) dΓyds

(K?λ)(x, t) :=

� t

0

�
Γ

GnD ,?
(x− y, t− s)λ(y, s) dΓyds

(36)

where the kernel function is

G?(x, t) :=
1

2π

H

(
t− ‖x‖

v?

)
√
t2 − ‖x‖

2

v2
?

,
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and we have set GnD ,?
:= ∂nDG?. Hence, we de�ne the following TD-NRBCs on B:

1

2
ϕeP (x, t) + (KPϕeP )(x, t)− (VP (∂nDϕ

e
P ))(x, t) = IϕP,0(x, t) + Iϕ̄P,0(x, t) + IfP (x, t)

1

2
ϕeS(x, t) + (KSϕeS)(x, t)− (VS(∂nDϕ

e
S))(x, t) = IϕS,0(x, t) + Iϕ̄S,0(x, t) + IfS (x, t),

(37)

where

Iϕ?,0(x, t) :=
1

v2
?

∂

∂t

�
D
G?(x− y, t)ϕe?,0(y, t)dy

Iϕ̄?,0(x, t) :=
1

v2
?

�
D
G?(x− y, t)ϕ̄e?,0(y, t)dy

If?(x, t) :=
1

ρv2
?

� t

0

�
D
G?(x− y, t− s)fe?(y, s)dyds.

(38)

are the volume integrals associated to the initial data and the body force.

To restrict the original problem in the �nite computational domain Ω, we impose the continuity
transmission conditions of the P and S-waves as well as of their normal derivatives on the arti�cial
boundary B. As previously remarked, without loss of generality, we assume that the local supports
of u0, z0 and f are contained in Ω, so that Iϕ?,0 = Iϕ̄?,0 = If? = 0.

Hence, denoting by ϕP and ϕS the restriction of the solutions ϕeP and ϕeS to Ω, we get:

∂2ϕP
∂t2

(x, t)− v2
P∇2ϕP (x, t) =

1

ρ
fP (x, t) (x, t) ∈ Ω× (0, T ]

∂2ϕS
∂t2

(x, t)− v2
S∇2ϕS(x, t) =

1

ρ
fS(x, t) (x, t) ∈ Ω× (0, T ]

∂ϕP
∂n

Γ

(x, t) =
∂ϕS
∂τ

Γ

(x, t) + gnΓ
(x, t) (x, t) ∈ Γ× (0, T ]

∂ϕS
∂n

Γ

(x, t) = −∂ϕP
∂τ

Γ

(x, t) + gτ Γ
(x, t) (x, t) ∈ Γ× (0, T ]

1

2
ϕP (x, t) + (KPϕP )(x, t) + (VP (∂nϕP ))(x, t) = 0, (x, t) ∈ B × (0, T ]

1

2
ϕS(x, t) + (KSϕS)(x, t) + (VS(∂nϕS))(x, t) = 0, (x, t) ∈ B × (0, T ].

(39)

2.2.1. Variational formulation of the PDE system in the interior domain

Proceeding analogously to the vectorial case, we consider the variational formulation for the
wave equations, and the strong one for the TD-NRBCs.

To this aim, we introduce the spaces

V = H1(Ω), X = H−1/2(B)

and, by abuse of notation with respect to that used in Section 2.1.1, the bilinear form

a(u,w) =

�
Ω

∇u(x) · ∇w(x)dx,

the standard L2(Ω) scalar product

(u,w)Ω =

�
Ω

u(x)w(x)dx

13



and the bilinear forms associated to the duality product

bD(u,w) := 〈u,w〉D, D = Γ,B.

By taking into account the third and fourth relation in (39), the weak form of the �rst two equations
of the novel problem is: for any t ∈ (0, T ], �nd ϕP (t), ϕS(t) ∈ V , λP (t) := (∂nϕP )(t), λS(t) :=
(∂nϕS)(t) ∈ X such that

d2

dt2
(ϕP (t), ψP )Ω + v2

Pa(ϕP (t), ψP )− v2
P bΓ(∂τ

Γ
ϕS(t), ψP )− v2

P bB(λP (t), ψP )

=
1

ρ
(fP (t), ψP )Ω + v2

P (gnΓ(t), ψP )Γ for allψP ∈ V

d2

dt2
(ϕS(t), ψS)Ω + v2

Sa(ϕS(t), ψS) + v2
SbΓ(∂τ

Γ
ϕP (t), ψS)− v2

SbB(λS(t), ψS)

=
1

ρ
(fS(t), ψS)Ω + v2

S(gτ Γ
(t), ψS)Γ for allψS ∈ V

1

2
ϕP (t)(x) + (KPϕP )(t)(x) + (VP (λP ))(t)(x) = 0 x ∈ B

1

2
ϕS(t)(x) + (KSϕS)(t)(x) + (VS(λS))(t)(x) = 0 x ∈ B,

(40)
together with the associated initial conditions.

2.2.2. Discretization of the TD-NRBCs

Time discretization.. Proceeding as in Section 2.1.2, we approximate the time integrals in (36)
by applying the Lubich convolution quadrature formula. Denoting by ϕn? (y) ≈ ϕ?(tn)(y) and
(∂nϕ?)

n(y) ≈ ∂nϕ?(tn)(y), for ? = P, S, we have

(V?(∂nϕ?))(x, tn) ≈
n∑
j=0

�
B
ωn−j(∆t; Ĝ?(r)) (∂nϕ?)

j(y) dBy

(K?ϕ?)(x, tn) ≈
n∑
j=0

�
B
ωn−j(∆t; ĜnD ,?

(r))ϕj?(y) dBy,
(41)

where r = ‖x−y‖. The coe�cients ωn(∆t;W (r)), whose expression is given by (9), are associated
with the Laplace transforms of W = G?, GnD ,?

and are then approximated by formula (10). The
Laplace transforms of W in this case are de�ned by

Ĝ? (r, s) =
1

2π
K0

(
rs

v?

)
, (42)

ĜnD ,?
(r, s) = − s

2π
K1

(
rs

v?

)
∂r

∂nD

, (43)

where K0(z) and K1(z) are the second kind modi�ed Bessel function of order 0 and 1, respec-
tively. The above transforms are much simpler than the corresponding ones we have for the
elastodynamics equation.

Space discretization.. Proceeding as in 2.1.2, we approximate the unknown functions ϕj?(x) and
λj?(x) := (∂nϕ?)

j(x), x ∈ B, by

ϕj?(η(ϑ)) ≈
M∑
k=1

ϕk,j? Nk(ϑ), λj?(η(ϑ)) ≈
M∑
k=1

λk,j? Nk(ϑ), (44)
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Nk being the piece-wise linear basis functions associated to the partitioning of the parameterization
interval [0, 1] (see (18)).

To apply a nodal collocation method, we insert (44) into the TD-NRBCs of (40) and we
collocate the latter at the collocation points ϑm, m = 1, . . . ,M . The matrix form of the TD-
NRBC then takes the form:

(
1

2
I + K0

P

)
ϕB,nP +

n−1∑
j=0

Kn−j
P ϕB,jP + V0

Pλ
B,n
P +

n−1∑
j=0

Vn−j
P λB,jP = 0

(
1

2
I + K0

S

)
ϕB,nS +

n−1∑
j=0

Kn−j
S ϕB,jS + V0

Sλ
B,n
S +

n−1∑
j=0

Vn−j
S λB,jS = 0

(45)

in the unknowns ϕB,n? = (ϕ1,n
? , . . . , ϕM,n

? )T and λB,n? = (λ1,n
? , . . . , λM,n

? )T . The matrix entries of
Vn
? and Kn

? are given by (see [8] for details on their computation):

(Vn
? )m,k :=

1

2π

%−n

L

L−1∑
l=0

(� 1

0

K0

(
rmz

v?

)
Nk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ınl2π
L (46)

and

(Kn
? )m,k := − 1

2π

%−n

L

L−1∑
l=0

(� 1

0

sK1

(
rmz

v?

)
∂r

∂nD

Nk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ı̇nl2π
L (47)

where z := γ(%eıl2π/L)/∆t and rm = ‖η(ϑm)− η(ϑ)‖.
From the computational point of view, assuming to know ϕB,j? and λB,j? at the time steps

j = 0, · · · , n− 1, the absorbing condition at time tn is given by

(
1

2
I + K0

P

)
ϕB,nP + V0

Pλ
B,n
P = −

n−1∑
j=0

Kn−j
P ϕB,jP −

n−1∑
j=0

Vn−j
P λB,jP

(
1

2
I + K0

S

)
ϕB,nS + V0

Sλ
B,n
S = −

n−1∑
j=0

Kn−j
S ϕB,jS −

n−1∑
j=0

Vn−j
S λB,jS .

(48)

2.2.3. Discretization of the interior scalar PDE equations

Time discretization. As for the previous approach, for the time discretization we apply the Crank-
Nicolson method. To this aim we introduce the new unknowns zP (x) := ∂ϕP

∂t (x) and zS := ∂ϕS
∂t

and, proceeding as we did in Section 2.1.3, we obtain

(ϕn+1
P , ψP )Ω + αv2

Pa(ϕn+1
P , ψP )− αv2

P bΓ(∂τ
Γ
ϕn+1
S , ψP )− αv2

P bB(λn+1
P , ψP ) =

(ϕnP , ψP )Ω − αv2
Pa(ϕnP , ψP ) + αv2

P bΓ(∂τ
Γ
ϕnS , ψP ) + αv2

P bB(λnP , ψP ) + ∆t (znP , ψP )Ω

+
α

ρ
(fn+1
P + fnP , ψP )Ω + αv2

P (gnΓ

n+1 + gnΓ

n , ψP )Γ for allψP ∈ V

(ϕn+1
S , ψS)Ω + αv2

Sa(ϕn+1
S , ψS) + αv2

SbΓ(∂τ
Γ
ϕn+1
P , ψS)− αv2

SbB(λn+1
S , ψS) =

(ϕnS , ψS)Ω − αv2
Sa(ϕnS , ψS)− αv2

SbΓ(∂τ
Γ
ϕnP , ψS) + αv2

SbB(λnS , ψS) + ∆t (znS , ψS)Ω

+
α

ρ
(fn+1
S + fnS , ψS)Ω + αv2

S(gτ Γ

n+1 + gτ Γ

n , ψS)Γ for allψS ∈ V.

(49)

together with

zn+1
? =

2

∆t
(ϕn+1
? − ϕn? )− zn? . (50)

Space discretization. Let us de�ne the �nite element space Vh associated to the conforming trian-
gulation of Ω introduced in Section 2.1.3
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Vh = {vh ∈ C0(Ω) : vh|Ki
∈ P1(Ki),Ki ∈ Th, } ⊂ V,

whose basis functions {NΩ
i }i∈S have been previously de�ned. It is worth noting that, contrarily

to the standard approach, for which we directly impose the Dirichlet boundary condition on Γ,
thus eliminating the degrees of freedom on it, in this case the values of both unknowns ϕP and
ϕS are not known on Γ. By abuse of notation, we use the same symbol S to denote here the full
set of nodes of the triangular decomposition.

Further, we denote by Xh the space of continuous piece-wise linear functions de�ned on the
boundary B by the �nite element basis {NBi = NΩ

i |B}Mi=1, recalling that M denotes the number of
mesh-points inherited on B by the decomposition of Ω.

Introducing the vectors

ϕn? =
[
ϕ1,n
? , ϕ2,n

? , · · · , ϕS,n?
]T

and λn? =
[
λ1,n
? , λ2,n

? , · · · , λM,n
?

]T
of the unknown nodal values of ϕn? (x) and λn? (x) associated with the nodes of the triangular mesh,
we consider the �nite element approximations

ϕn?,h(x) =

S∑
i=1

ϕi,n? NΩ
i (x), λn?,h(x) =

M∑
i=1

λi,n? NBi (x) and (∂τ
Γ
ϕ?,h)n(x) =

S∑
i=1

ϕi,n? (∂τ
Γ
NΩ
i )(x).

Then, the matrix form of the discrete Galerkin scheme associated to (49), is

(M + αv2
PA)ϕn+1

P − αv2
PBϕ

n+1
S − αv2

PQλ
n+1
P = (M− αv2

PA)ϕnP + αv2
PBϕ

n
S + αv2

PQλ
n
P

+ ∆tMznP +
α

ρ
fnP + αv2

Pg
n
n

Γ

(M + αv2
SA)ϕn+1

S + αv2
SBϕ

n+1
P − αv2

SQλ
n+1
S = (M− αv2

SA)ϕnS − αv2
SBϕ

n
P + αv2

SQλ
n
S

+ ∆tMznS +
α

ρ
fnS + αv2

Sg
n
τ
Γ
,

(51)
where the mass, sti�ness and boundary matrices are de�ned, by abuse of notation with respect to
that of the previous approach, by

Mij =
(
NΩ
i , N

Ω
j

)
Ω
, Aij = a(NΩ

i , N
Ω
j ), i, j = 1, · · · , S,

Qij =

�
B
NΩ
i (x)NBj (x)dB, i = 1, · · · , S, j = 1, · · · ,M,

Bij =

�
Γ

NΩ
i (x)(∂τ

Γ
NΩ
j )(x)dΓ, i, j = 1, · · · , S.

The terms fn? and gn
�
in (51) are the column vectors whose j-th component, j = 1, · · · , S, are

de�ned by
fn?,j = (fn+1

? + fn? , N
Ω
j )Ω, ? = P, S,

and
gn

�,j
= (gn+1

�
+ gn

�
, NΩ

j )Γ, � = τ
Γ
,n

Γ
.

Combining (51) with (48), and in accordance with the splitting S = SI ∪ SB of the set of the
degrees of freedom (recall that, in this case, I includes also the nodes lying on Γ), we get the
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following block partitioned linear system (with obvious meaning of the notation):

MII + α
P
AII MIB + α

P
AIB O O O O

MBI + α
P
ABI MBB + α

P
ABB O −α

P
BBB −α

P
QBB O

O O MII + α
S
AII MIB + α

S
AIB O O

O −α
S
BBB MBI + α

S
ABI MBB + α

S
ABB O −α

S
QBB

O 1
2I + K0

P O O V0
P O

O O O 1
2I + K0

S O V0
S





ϕI,n+1
P

ϕB,n+1
P

ϕI,n+1
S

ϕB,n+1
S

λB,n+1
P

λB,n+1
S



=



B∑
∗=I

(MI∗ − α
P
AI∗)ϕ∗,nP + ∆t

B∑
∗=I

MI∗z∗,nP +
α

ρ
f I,nP + α

P
gI,nn

Γ

B∑
∗=I

(MB∗ − α
P
AI∗)ϕ∗,nP + α

P
BBBϕB,nS + α

P
QBBλB,nP + ∆t

B∑
∗=I

MB∗z∗,nP +
α

ρ
fB,nP + α

P
gB,nn

Γ

B∑
∗=I

(MI∗ − α
S
AI∗)ϕ∗,nS + ∆t

B∑
∗=I

MI∗z∗,nS +
α

ρ
f I,nS + α

S
gI,nτ

Γ

B∑
∗=I

(MB∗ − α
S
AI∗)ϕ∗,nS + α

S
BBBϕB,nP + α

S
QBBλB,nS + ∆t

B∑
∗=I

MB∗z∗,nS +
α

ρ
fB,nS + α

S
gB,nτ

Γ

−
n−1∑
j=0

Kn−j
P ϕjB,P −

n−1∑
j=0

Vn−j
P λjB,P

−
n−1∑
j=0

Kn−j
S ϕjB,S −

n−1∑
j=0

Vn−j
S λjB,S



,

where we have set α
?

= αv2
?. We remark that, in the above system, we have taken into account

the sparsity pattern of the involved matrices. In particular, it results that the sub-blocks BII ,
BIB and BBI of B are null, as well as the sub-block QIB of Q.

Finally, the above system is combined with the following two relations that allows to update
the unknowns z?, for ? = P, S:

zn+1
? =

2

∆t
(ϕn+1

? −ϕn? )− zn? . (52)

3. Numerical results

In this section, the two approaches we have described in Sections 2.1 and 2.2 are tested, by
applying them to three problems. In particular, we compare the new FEM-BEM scalar wave
equation approach with that based on the standard vector formulation.

Among the characterizing aspects of the two numerical approaches, in Example 1 we point out
in particular that, despite the fact that both methods have been obtained by performing analogous
discretizations, while the new one turns out to be unconditionally stable, the other one inherits
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the conditional stability of the BEM scheme already highlighted in [8]. Moreover, in the case of
the new approach, all the advantages regarding the computation of the BEM matrices involved in
the discretized TD-NRBCs, underlined in [8], hold also for the associated FEM-BEM coupling.

From now on, we refer to the numerical solution of Problem 1 obtained by the new scalar
approach as unew = (unew1 , unew2 ), and to the one obtained by the standard vector approach by
ustd = (ustd1 , ustd2 ).

Example 1. In this �rst example, we consider Problem (1) de�ned on the domain Ωe = {x =
(x1, x2) ∈ R2 : x2

1 + x2
2 > 1}, external to the unit disc with boundary Γ and centred at the origin

of the axes, endowed with homogeneous initial data and null source f . The Dirichlet datum is
g = (g1, g2), where

g1(x, t) = t3e−2te−(x2
1+2x2

2), g2(x, t) = t3e−2t cos(x1), x ∈ Γ, t ∈ [0, T ].

The chosen P, S-velocities are vP =
√

3 and vS = 1, the material density is ρ = 1 and the �nal
time is T = 1.

We restrict the original problem to the �nite computational domain Ω, bounded internally by
Γ and externally by the circumference of radius 2 B = {x = (x1, x2) : x2

1 + x2
2 = 4}.

In Figure 2 we report the 2D and 3D behaviour of the P and S-waves within the �nite compu-
tational domain Ω at the �nal time instant. In Figure 3 we compare the behaviour of the solution
u = (u1, u2) of the elastodynamic problem obtained by applying both approaches. As we can see,
there is a good agreement between the solution of the two approaches. Finally, in Figure 4, the �rst
three plots correspond to the solutions obtained by the new approach. In particular, from left to
right, they represent the modulus of the P -wave displacement |∇ϕP |, the modulus of the S-wave
displacement |curlϕS | and the modulus of the total displacement |unew| = |∇ϕP + curlϕS |. In
the fourth plot we report the same quantity |ustd| obtained by the standard approach. Again, we
highlight a very good accordance between the last two �gures.

Figure 2: Example 1. Behaviour of ϕP (�rst two plots) and ϕS (last two plots) in Ω at the �nal time
instant T = 1.
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Figure 3: Example 1. Time-behaviour of u∗(x, t), x ≈ (2, 0) for t ∈ [0, 1] (left plot). Space-behaviour of
u∗(x, T ), T = 1 and x ∈ B (right plot), ∗ = new, std.

Figure 4: Example 1. Behaviour of P, S-waves in Ω. From left to right: |∇ϕP |, |curlϕS |, |unew| and |ustd|,
at the �nal time instant T = 1.

As remarked in [8], for the resolution of the elastodynamic problem by means of the mere
collocation BEM method, to avoid the instability of the standard (vector) approach, the stepsizes
∆t and h must satisfy the Courant-Friedrichs-Lewy (CFL) condition β = vP∆t/h > 0.17. On the
contrary, such limitation did not happen in the new (scalar) approach. In the FEM-BEM coupling
method, it appears that the standard approach inherits the conditional stability of the associated
collocation BEM, while the new one turns out to be unconditionally stable.

To show the above mentioned instability phenomenon, in Figure 5 we report the 3D plot of
the solution |ustd|, obtained by applying the standard FEM-BEM approach with h ≈ 0.125 and
N = 104, 106, 116. These values violate the CFL condition, β being slightly smaller than 0.17,
and spurious oscillations soon appear on the arti�cial boundary B, quickly exploding as N mildly
increases. On the contrary, after performing an extensive numerical testing with various values of
β de�nitely smaller than 0.17, the new approach showed no instability.

Figure 5: Example 1. The solution |ustd| at the �nal time instant T = 1. From left to right: instabilities
e�ects for the choice h ≈ 0.125 and ∆t ≈ 9.6e− 03, 9.4e− 03, 8.6e− 03, respectively.
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Example 2. In the same setting of Example 1, we consider an S-wave source term, localized in
space, and de�ned in time by a Ricker pulse. In particular, referring to Problem (39), we choose
a null source fP and fS(x, t) = hS(x1, x2)r(t), with

hS(x1, x2) = e−40((x1−1.5)2+x2
2) and r(t) = −18π2e−π

2(t−1)2

(1− 2π2(t− 1)2), t ∈ [0, 4].

The initial data and g are null. The corresponding source for the solution u of Problem (6) is

f(x, t) = r(t)

[
∂x1

hS(x1, x2)
−∂x2

hS(x1, x2)

]
Since hS decays exponentially fast away from its centre x = (1.5, 0), the source fS is regarded as
compactly supported from the computational point of view, and since the support is included in Ω,
its contribution in the discrete scheme (49) appears in the right hand side vector fS . Analogously,
for the standard approach, since both f1 and f2 can be considered computationally supported in
Ω, the corresponding vectors Fn1 and Fn2 in the right hand side of the �nal linear system are the
non null terms involved in the time marching Crank Nicolson scheme at the time instant tn.

In Figure 6 we report the 2D and 3D behaviour of the P− and S-waves within the �nite
computational domain Ω at the time instants t = 1 and t = 2.

In Figure 7 we present the snapshots of the numerical solution obtained at the �xed time
instants tn = 0.75, 1.25, 1.75, 2, 2.5, 4. The �rst three columns represent the solution obtained by
the new FEM-BEM method (|∇ϕP |, |curlϕS | and |unew|, respectively) and the last one refers to
the solution |ustd|. As we can see, there is a very good agreement between the last two columns.

Figure 6: Example 2. Behaviour of ϕP (�rst two columns) and ϕS (last two columns) in Ω at the time
instants t = 1 (top row) and t = 2 (bottom row).
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Figure 7: Example 2. Behaviour of P, S-waves in Ω at di�erent time instants. From left to right columns:
|∇ϕP |, |curlϕS |, |unew| and |ustd|.

Example 3. In this �nal example, we aim to simulate situations where one is interested in knowing
the solution at points that are away from sources. We assume that the initial conditions and the
Dirichlet datum are null, and we study the propagation of elastic waves generated by a source f
located away from the obstacle. In such a case, to avoid the choice of a large computation domain
including the support of f and, consequently, the waste of computational time and space memory, it
is convenient to choose the arti�cial boundary B in such a way that the source is locally supported
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in the residual domain D. Therefore, a suitable modi�cation of the TD-NRBC is needed. This
consists in adding the extra �volume� integral terms in Equations (3) and (37) for the standard
vector and the new scalar approaches, respectively. For the details on the computation of these
latter, we refer to Example 3 in [8].

In particular, we consider the unit disc as physical obstacle, fP = 0 and the locally supported
fS(x, t) = hS(x1, x2)r(t), with

hS(x1, x2) = e−40((x1−2.5)2+x2
2) and r(t) = t3e−t sin(2t), t ∈ [0, 8].

To show that both approaches allow to treat external sources, we apply them in two di�erent
settings: the arti�cial boundary, in the �rst case, is the circumference of radius 1.5, in the second
one, the ellipse with horizontal and vertical semi-axis 3.5 and 1.5, respectively. Therefore the
source term fS is located outside the computational domain in the former case, inside in the latter
one.

In Figure 8 we show the behaviour of unew obtained by the new scalar approach at the time
instants tn = 2, 3, 4, 4.5, 5.5, 6, 7, 7.5 (proceeding row by row, from top-left to bottom-right). For
each instant we represent the numerical solution associated with both choices of the computational
domain. As we can see, the solutions reported in the �rst and third columns perfectly match with
the restriction to the circular annulus of those represented in the second and fourth columns.
Similar results have been obtained by the standard vector approach.

tn = 2 tn = 3

tn = 4 tn = 4.5

tn = 5.5 tn = 6

tn = 7 tn = 7.5

Figure 8: Example 3. Behaviour of unew at di�erent time instants for two types of arti�cial boundary.
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4. Conclusions

We have compared two numerical methods for the resolution of 2D exterior elastodynamic
problems with Dirichlet boundary conditions, both based on a FEM-BEM coupling. The �rst
method is the classical one, derived from the vector formulation of the problem; the second is
a novel approach, obtained by reformulating the original PDE in terms of two coupled scalar
wave equations involving, as new unknowns, the P (primary) and S (secondary) waves. The novel
approach is of particular interest when the problem source is a P-wave or a S-wave, and the
knowledge of the propagation of the waves generated by this source is required. We highlight
here the main pros and cons of the two methods, resulting from a numerical comparison of their
signi�cant �ingredients".

� In both cases, the major issue is the e�cient evaluation of the integral operators involved in
the de�nition of the boundary integral non-re�ecting condition. In this regard, the simplicity
of the Laplace transformed kernels for the scalar approach, compared to those of the vector
one, represents the most signi�cant advantage of the new method. Indeed, as remarked
in [8], the e�cient evaluation of the vector kernels requires special procedures, so that the
computation of the matrix entries in the novel approach is much faster.

� A further advantage of the new scalar method, that allows to speed up signi�cantly the
computation and to save memory space, is the circulant structure of all the BEM matrices
when the arti�cial boundary B is a circle, uniformly partitioned; a case of interest when this
choice is consistent with the geometry of the physical obstacle.

� The novel approach requires the post processing computation of the partial derivatives of
the P and S-waves to retrieve the solution u of the original problem. This step does not
represent a drawback since it has a negligible cost with respect to that of the global scheme.
However, it is important to point out that, since the degree of accuracy of the approximation
of u is lower than that associated to the P and S-waves, a �ner mesh is needed to obtain a
solution whose accuracy is similar to that produced by the vector method. So this implies
that the scalar method must also be applied with this �ner mesh.

� A common drawback of both methods is the recalculation, at each time step, of all the
matrix-vector products in each sum on the right-hand side of the equations de�ning the
non-re�ecting boundary condition. In fact, the updating of these terms requires a higher
cost the �ner is the inherited mesh on B. To overcome this, a possible remedy could be the
use of special sparsi�cation strategies of the BEM matrices, a task that has already been
examined in the context of scalar wave propagation (see [1, 4]); but this requires further
investigations, in particular for the vector approach.

� Finally, from an extensive numerical testing, it appears that the novel approach is uncon-
ditionally stable, while in the vector approach a CFL condition must be satis�ed by the
space-time discretization steps. The latter represents one of the most important advantages
we have found, especially when one has to retrieve highly oscillating solutions over time or
solutions de�ned in complex geometries.
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