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Abstract—As more deep learning algorithms enter safety-
critical application domains, the importance of analyzing their
resilience against hardware faults cannot be overstated. Most
existing works focus on bit-flips in memory, fewer focus on
compute errors, and almost none study the effect of hardware
faults on adversarially trained convolutional neural networks
(CNNs). In this work, we develop a run-time reconfigurable bit-flip
injection module and perform large-scale resilience experiments
on differently trained CNNs. Our results show that adversarially
trained CNNs are more susceptible to failure due to hardware
errors when compared to vanilla-trained models. We identify
large differences in the quantization scaling factors of the CNNs
which are resilient to hardware faults and those which are not. As
adversarially trained CNNs learn robustness against input attack
perturbations, their internal weight and activation distributions
open a backdoor for injecting large magnitude hardware faults.
We propose a simple weight decay remedy for adversarially
trained models to maintain adversarial robustness and hardware
resilience in the same CNN. We improve the fault resilience of
an adversarially trained ResNet56 by 25% for large-scale bit-flip
benchmarks on activation data while gaining slightly improved
accuracy and adversarial robustness.

I. INTRODUCTION

Deep learning algorithms are entering new, safety-critical
application domains as research into their robustness and in-
terpretability matures rapidly. Specifically, convolutional neu-
ral networks (CNNs) are dominant in computer vision, and
are prime candidates for complex applications in autonomous
driving and robotics. Next to adversarial robustness and inter-
pretability, resilience against hardware (HW) errors must also
be guaranteed before placing these algorithms in safety-critical
settings. Understanding the failure cases for logic transient
errors on datatype, frequency, bit-position, and number of
affected computation units is important in carefully introducing
hardware redundancy in a reasonable, cost-effective manner.
Moreover, the method by which the CNN was trained af-
fects its behavior in the presence of hardware errors [1],
[2]. Consequently, it is also important to study the influence
of compression [3] or adversarial training techniques [4] on
fault resilience. Existing works in this domain have several
limitations. Some only focus on robustness against input ad-
versarial attacks without considering fault resilience [4], [5],
others focus on random errors in different parts of the hard-
ware with little attention to CNN training [6]. Works using
aged CNNs without frequent, intermediate batch normalization
layers have an exaggerated error-amplification effect for bit-

flips [7], while others using targeted bit-flips attacks (BFA)
construct network-specific attacks which are extremely unlikely
to happen at random [2], [8], [9]. We aim to holistically
investigate hardware fault resilience and adversarial robustness
with large-scale resilience analysis on differently trained CNNs
and clearly identify relationships between training-time CNN
statistics and their deployment-time effect on scaling factors
and clipping limits, necessary for quantized execution. We show
that the common denominator for all quantized, resilient CNNs
is small inter-layer data distributions, which result in smaller
scaling factors at deployment. Small scaling factors allow
quantization to naturally introduce resilience by attenuating the
largest possible perturbation through its limited representation
capability. The contributions of this work can be summarized
as follows:
• Across ∼10M bit-flip experiments, we consider regularly

trained, adversarially trained, batch-norm free, weight de-
cayed and pruned CNNs. Our bit-flip module allows us to
test a wide range of bit-flip patterns to analyze the effect
of training/compression on hardware fault resilience.

• We perform an in-depth analysis on the layer-wise data
distributions of the considered CNNs, by observing the
differences in the scaling factors required for their quanti-
zation. We provide key insights by studying the effect of
batch normalization and weight decay, to harness scaling
factors for improved fault resilience.

• We identify weaknesses in adversarially trained CNNs,
which open a backdoor for injecting faults of large mag-
nitude. We propose a simple weight decay remedy to
shrink the quantization scaling factors, which improves
resilience against faults in activation pixels by 25% on
FastAT ResNet56, while preserving natural accuracy and
adversarial robustness.

II. RELATED WORK

A. Hardware Fault Resilience Analysis

He et al. [6] analyze the effect of logic transient errors using
abstracted, high-level hardware models. The authors focus on
emphasizing the importance of investigating faults on control
and compute components rather than limiting the analysis to
memory-based bit-flip analysis. No conclusions are drawn on
the training scheme, compression, and adversarial robustness
of the neural networks. Rakin et al. [8] introduce a progressive






search technique to find optimal bit-flips attacks (BFA) that
break CNNs. In a CNN with 93M-bits of weights, the authors
can find 13 precise bit-flips which completely break the net-
work. However, the probability of such an event happening
at random is ∼10−95. We refer to such non-random, specific
cases as targeted bit-flips. He et al. [2] perform resilience
investigations on differently trained CNNs while employing
such targeted BFA. Several conclusions are drawn based on em-
pirical results without further analysis to explain the underlying
cause of the observations. Moreover, hardware designers cannot
benefit from BFA analysis, as these are tightly optimized attacks
for one considered CNN. To add hardware redundancy in an
effective manner, large-scale resilience analysis covers more
general error cases and can aid in making design decisions that
benefit all CNN workloads. Lastly, BFA-based investigations
only apply to bit-flips on a CNN’s weights. In practice, logic
transient errors may happen in any part of the logic, including
input pixels, partial sums, or output activations [6].

B. Fault Resilient Training and Adversarial Robustness

Hoang et al. [7] propose to improve error resilience of
CNNs by clipping activations. The investigations are limited
to memory-based bit-flips on weights and only aged CNN ar-
chitectures are tested, which have no batch normalization after
each convolutional layer. Errors in such CNNs are typically
exaggerated compared to modern CNNs, as batch normalization
naturally reduces the activation distribution and scaling factors
(as shown in Fig. 2). In an adversarial attack scenario, input
noise is propagated and amplified through the layers causing
a misclassification. Liao et al. [10] propose to mitigate the
amplification error by using a denoiser to reduce input per-
turbations. Lin et al. [5] apply Lipschitz regularization to limit
the error amplification in quantized CNNs. Both works focus
on mitigating attacks injected at the input, but do not consider
inter and intra-layer faults (depicted in Fig. 3). Zahid et al. [1]
introduce a fault-injection layer at training time. The work
focuses on a class of permanent errors and does not consider
adversarial attacks. A defense method against targeted DRAM
bit-flip attacks is proposed by Li et al. [9], where weights are
preprocessed to limit their change of value. The method is
limited to weight-based, memory-only, targeted BFA and does
not consider input-based adversarial attacks.

III. METHODOLOGY

A. Problem Formulation: Quantization and Bit-flips

Without loss of generality, a single weight value w multiplied
by an activation pixel a produces a partial result in the con-
volution (CONV) operation of the weight tensor W l and input
activation tensor Al−1 in layer l of an L-layer CNN. At training
time, Al−1 and W l ∀l ∈ L are represented by high-precision
floating-point (FP) values to maintain smooth training and
fine adjustments through backpropagation. During inference,
the values are quantized to reduce their memory footprint
and arithmetic computation complexity on embedded HW. 8-
bit signed integer (INT8) representation is one of the most
common numerical representation formats for lean deployment
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Fig. 1. Batch-norm limits activation range at training time, effectively lowering
v and c of the subsequent CONV layer at deployment time (on HW). Errors in
CONV can at most grow in magnitude to the defined clip c of the next layer.

on resource constrained devices. A floating-point operand xf
of the convolution operation (either w or a) is quantized to xq
as shown in Eq. (1).

xq = clip(round(xf/v), c) (1)

The scaling factor v projects the quantized range of INT8

[−128, 127] onto the real range of values which xf ∈ Xf can
take with respect to the clip operator. Note that Xf is either W l

or Al−1. The round operation pushes the smooth values of Xf

into the limited 256 integer values of INT8. The clip operator
cuts-off values of the Xf range beyond [−c, c], maintaining
symmetric linear quantization, even in cases where layers such
as ReLU leave only positive activations, and weights use only
a small portion of the negative number scale. The clipping
limit c and scaling factor v are decided before deployment in a
process called calibration. By observing the statistics of weight
and activation distributions of a layer, calibration sets c and v,
such that the range of values that appear in a certain layer can
be covered by the INT8 static range [11]. Therefore, c and v
are directly influenced by the weight values of the CNN (e.g.,
learned through vanilla or adversarial training, regularized or
not) and its structure (e.g., existence of batch-norm layers). The
described quantization of Xf to INT8 is visualized in Fig. 1.

We implement a runtime reconfigurable bit-flip module
which can change the value of any position in the 8-bit rep-
resentation, for weights and activations, and for any subset of
multipliers in a standard spatial DNN accelerator [12]. Flipping
the n-th bit of an operand at the input of any affected multiplier
translates to a 2n absolute change in magnitude within the
static INT8 range [−128, 127]. However, it is more important
to analyze the precise severity of a 2n flip with respect to the
values of the projected real range of Xf , i.e. after applying
scaling factors v. With this understanding of quantization and
bit-flips, some general insights can be made:
Quantization clips the largest possible perturbation when
projecting a larger, dynamic representation, such as FP32. As
the clip limits c and scaling factors v are decided based on
statistics before deployment on HW, a single or multiple bit-
flips on HW cannot perturb the network beyond c of the next
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Fig. 2. Layer-wise scaling factors v of ResNet20 CNNs trained on CIFAR-
10, with and without batch-norm. Works investigating bit-flips on aged CNNs
(without batch-norm after every layer) cannot be extended to modern CNNs.

layer (Fig. 1). This is an inherent improvement in bit-flip
resilience over float/dynamic numerical representations.
Resilience analysis on aged CNNs (LeNet, VGG and AlexNet)
without batch normalization after every CONV layer cannot be
extended to modern CNNs. The lack of batch-norm layers on
aged CNNs aggravates the effect of bit-flips, as their activation
and weight distributions are much larger than modern CNNs.
Consequently, INT8 variants of aged CNNs will have large
scaling factors v to accommodate the activations that appear
in the CONV layers, resulting in a much larger true magnitude
error for any bit-flip. We show the scaling factors v of ResNet20
with and without batch-norm in Fig. 2 to visualize this problem.
Errors in aged CNNs can also propagate and get amplified, as
the scaling factors grow in deeper layers.
Adversarially trained CNNs need to be robust against input
perturbations which may not follow the statistical distribution
of the original training dataset. This affects the statistical
distribution of the learned weights in adversarially robust CNNs
compared to vanilla trained ones, thereby influencing their
scaling factors v during hardware deployment.

B. Adversarially Trained CNNs

An increasingly important aspect in CNN deployment in
safety-critical scenarios is robustness against adversarial attacks
in the form of input perturbations. Adversarial attacks against a
neural network can be formulated as an optimization problem
of finding the minimal perturbation δ for an input image I that
changes the prediction of the neural network N . These present
a different threat model when compared to HW-faults, as shown
in Fig. 3. During adversarial training, we introduce perturbed
examples to maximize the loss L with respect to the label Y ,
within a reasonable perturbation budget ε as shown in Eq. (2).

min
W

E
(I,Y )∼D

[
max
|δ|≤ε

L (N (I + δ,W ), Y )

]
(2)

A set of randomly sampled images from dataset D are
chosen, where the expected loss E on the random samples
is minimized through an adversarial training scheme, such as
fast adversarial training (FastAT) [4]. A commonly used attack
to introduce imperceptible adversarial perturbations is the fast
gradient sign method (FGSM) [13]. The advantage of FGSM is
that generating an adversarial example is faster than with other
attack methods, such as projected gradient descent (PGD) [14].
FGSM in combination with random initialization is particularly
effective to incorporate into the training loop. For the final
evaluation of adversarial robustness, we apply an unseen PGD
attack to the CNN.
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Fig. 3. Adversarial attacks apply input perturbations to cause incorrect classi-
fications. Training for such attacks implies training for pixel value distributions
outside of the natural dataset. Differently, HW-faults can occur at any point
within the CNN, and are not limited to the input of the network.

C. Error Model and Benchmark Phases

Bit-flips at the compute level fall under logic transient er-
rors [6], and capture a broader range of error patterns compared
to memory-based faults. A memory-based fault on a weight
parameter w implies all computations using w are affected.
With logic transient errors, we can replicate that error as well
as every other case, where a subset of w’s computations are af-
fected, providing finer granularity in error injection control. We
perform large-scale resilience analysis by exploiting the flexi-
bility of our run-time reconfigurable bit-flip injection hardware
module. Large-scale statistical fault injection is an established
approach to analyzing errors in logic [6]. However, it is often
infeasible due to slow RTL simulations. We circumvent the
need for RTL simulations by directly implementing the bit-
flip module on NVDLA [12] and injecting the desired bit-flip
patterns on the running hardware. We develop benchmarks with
well-defined bit-flip patterns, allowing us to better understand
the effect of bit-flip position, frequency of occurrence, affected
data-type, and affected percentage of multipliers.

We define our benchmark in steps, where each successive
step changes one aspect of the error model, i.e., bit-flip pattern.
The bit-flip pattern is maintained and the accelerator performs
inference of an entire test set of input images. Once the test set
is exhausted, the next step begins with a new bit-flip pattern
and the test set is passed once more. The benchmark steps are
shown as a nested-loop in Alg. 1.

First, the frequency f of bit-flip occurrence is set. The fre-
quency indicates the rate of bit-flip injection per computation,
i.e., if f is set to 0.1, a bit-flip is introduced at every 10-th
computation of the affected hardware component. Next, we
set the affected datatype t, as in activations A or weights
W . Third, we loop over the bit-flip position b, indicating the
severity in magnitude change for the value of the input operand
of the affected computation. Finally, we vary the number of
affected multipliers m as a percentage of the accelerator’s
total multiply-accumulate (MAC) units. Fig. 4 visualizes these
bit-flip characteristic parameters. At the core of the nested-
loop in Alg. 1, we program the characteristics into the bit-flip
module and allow the accelerator to perform inference over
the entire test set. We define system failures as those cases
when the prediction with hardware errors disagrees with that
of the same CNN without any bit-flips. Therefore, failures are
not counted based on the accuracy of the model or the true
label of the input image. This definition aligns with existing
work [6], and is fair when comparing different networks,
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as their underlying baseline accuracy is orthogonal to their
resilience against hardware errors.

Algorithm 1 Large-scale Resilience Analysis Benchmark
P = EvaluateTestSet() . Get Predictions w/o Bit-Flips
for f in F do . Frequency of Bit-Flip Occurance

for t in T do . Datatype (Weight, Activation)
for b in B do . Bit Position in INT8 Value

for m in M do . Affected MAC Units
ProgramBitFlipModule(f ,t,b,m)
P̂ = EvaluateTestSet()
FailRate = Count(P 6= P̂ )/TestSetSize

IV. EXPERIMENTS

We perform experiments on the CIFAR-10 dataset, using
50K images for training and 10K test images for evaluation.
The test set also serves as the hardware fault test set in Alg. 1.
ResNet20 and ResNet56 represent shallow and deep baseline
models for the CIFAR-10 dataset. If not otherwise mentioned,
all hyper-parameters specifying the task-related training were
adopted from ResNet’s base implementation [15]. Pruned
variants are obtained by re-implementing the reinforcement-
learning-based pruning agent proposed in AMC [3]. We in-
vestigate the fault resilience of CNNs with 50%− 60% fewer
operations remaining compared to their unpruned variants.
For defensive training against adversarial attacks, we use the
popular FastAT [4] approach and the training hyper-parameters
described in the paper. To evaluate adversarial robustness, we
apply a strong unseen PGD [14] adversarial attack on all
considered CNNs with 20 iterations and a perturbation budget
ε=2. We use the entropy-based calibrator of TensorRT to find
the optimal v and c for each layer of the full-precision CNNs,
before INT8 execution. All CNNs are calibrated on the same
dataset, i.e., the same images are passed to compute v, c of
each layer of each CNN, before deployment on hardware.

We synthesize a 64 MAC unit variant of the NVDLA
accelerator on the Xilinx ZCU102 board. The bit-flip module
is written in Verilog and wraps around the MAC units without
adding any delays to any critical paths of the accelerator design.
The sets in Alg. 1 are F = {0.1, 0.02, 0.01, 0.005, 0.002},
T = {A,W}, B = {5, 6, 7}, and M = {25%, 50%, 100%},
where the benchmark loops over the elements in the order they
are presented here. Bit-position b = 7 ∈ B indicates a flip in the
sign-bit of INT8. The sets F , T , B, and M were chosen after
an ablation study on the considered networks. The ranges for

each bit-flip characteristic adequately represent weak-to-strong
influence on CNN fault rate for the purpose of our analysis.

A. Large Scale Resilience Analysis

The results of the benchmark detailed in Alg. 1 are shown
in in Fig. 5. The following observations can be made:
Activation sensitivity. Flipping bits of input activations A is
more likely to cause failures compared to flipping weight bits
in W at any bit-flip position, on any number of multipliers
and any frequency of bit-flip injection. Many memory-based
and targeted bit-flip works only flip the weights of the CNN,
without investigating input activations [7], [9], which are per-
sistently more vulnerable in all our tested CNNs, and all bit-flip
patterns of the benchmark.
Sign-bit sensitivity. An expected (common) observation is the
impact of the sign-bit in deciding the probability of failure.
However, it is interesting to note the degree of its importance;
in almost all cases, flipping the sign-bit in 25% of the mul-
tipliers is more potent than flipping the 6-th bit on 100% of
the multipliers, at any given frequency, for both weights W
and activations A. Flips on the 5-th bit (or lower, based on
observations not shown for brevity) are almost negligible at
low injection rates, even on 100% of the MAC units.
Adversarially robust CNNs are vulnerable to hardware
errors. There is a clear degradation in fault resilience for
adversarially robust CNNs, particularly for activation based bit-
flips. We address this observation more closely in the next
section. Pruned CNNs exhibit resilience properties close to
their unpruned counterparts. This is justified as their scaling
factors v are similar to the original (vanilla) unpruned network.
However, spikes of high failure rates (marked in Fig. 5) occur
when m = 100%, indicating that injecting many perturbations
in a CNN with fewer computations (due to pruning), leads to
slightly weaker fault resilience.
Deep CNNs with batch-normalization are resilient. Deeper
CNNs (56-layers) have improved fault resilience over their
shallow (20-layers) counterparts for vanilla, pruned, and ad-
versarially robust variants. The errors introduced in the early
layers of the network do not grow with the depth of CNN.
This can be credited in part to the batch-norm layers which
take place after every CONV layer, regulating the maximum
possible perturbation that can pass to the next layer, (1) due
to calibration-time statistics (helps in lowering scaling factors
v of the layers) and (2) run-time normalization. He et al. [2]
show benefits of batch-norm against targeted (search-based)
bit-flip attacks. We further show the benefits of batch-norm
more generally against any HW-based faults (non-targeted).
The two ResNet20 variants presented in Fig. 2 (Vanilla and No
Batch-Norm) are evaluated in Tab. I. The overall mean failure
rate is doubled in the variant without normalization, due to its
high scaling factors which amplify errors in the CNN.

The results in Fig. 5 can shed light on parsimonious
hardware-error resilience options. For example, the designer
may apply a redundancy method on the computations against
the sign-bit or allocate resilient memory holding activation
bits (e.g. 8T-SRAM). More conservatively, the designer may
apply that redundancy to only a subset of multipliers, e.g.
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Fig. 5. Bit-flip experiments following Alg. 1 on vanilla, pruned and adversarially trained ResNet20 and ResNet56. Each bar represents the fault rate of a
particular bit-flip setting {f, t, b,m} tested over 10K test images. Each sub-figure comprises 900K bit-flip experiments.

50% of the MAC array, further saving resources and area-on-
chip. Such design decisions can be made based on large-scale
experiments, and would be hard or impossible with targeted
bit-flip attacks [2], [8], [9].

B. In-depth Analysis of Adversarially Trained CNNs

To better understand the observation of reduced fault re-
silience of adversarially trained CNNs, we refer back to our
problem definition in Sec. III-A. Quantization to a constrained
numerical representation (INT8 or similar), implies that few
discrete values must represent a wider range of dynamic real-
values. The true range covered by the INT8 representation
depends on the scaling factor v and clipping limit c. Since
adversarially trained and vanilla CNNs are structurally identi-
cal, the first point of investigation is the data distributions of
these CNNs. In Fig. 6, we show the scaling factors v for each
CONV layer of the CNN after calibration, obtained through
the entropy-based calibrator on the same calibration dataset. A
clear difference can be observed, where adversarially trained
(FastAT) layers can have up to ∼ 7× higher scaling factors
compared to the respective vanilla trained CNN.

Regularization loss LReg is an auxiliary loss typically added
to the cross-entropy loss LCE to penalize weights with high
magnitude during neural network training. As shown in Eq. 3,
this loss is scaled with the weight decay (α) hyper-parameter,
to strengthen/weaken its effect on the overall loss formulation
Ltotal during backpropagation and weight update.

Ltotal = LCE + αLReg (3)

Weight decay α was set equivalently for both vanilla and
FastAT training (α = 0.0005 and α = 0.0004, respectively,
based on original papers [4], [15]). For the same LReg and α
settings, the FastAT CNN incorporated large inter-layer data
distributions to achieve its high robustness against adversarial
attacks. Following the third insight made in Sec. III-A, adver-
sarial training introduces pixel values which do not fall under
the distribution of the standard training dataset. This forces
the CNN to learn them to achieve higher adversarial robust-
ness, stretching its trainable parameter distributions (weights
and batch-norm parameters). When performing calibration on
natural, unattacked data, the scaling factors v grow accordingly
(Fig. 6). This opens a backdoor to inter- and intra-layer
HW perturbations (bit-flips) during execution, which end
up having high true magnitude as a consequence of the
larger scaling factors (v) in adversarially robust CNNs.

Strengthening the effect of LReg during training pushes the
weights to a more constrained distribution, and correspond-
ingly, the activations resulted by those weights. As an initial
remedy, we propose increasing the weight decay of the CNN,
which naturally shrinks the weight distributions. In Fig. 6,
we show the scaling factors of FastAT-trained ResNet20 and
ResNet56 CNNs with high weight decay α=0.05, bringing them
back to vanilla training levels.

C. Results and Discussion

In Tab. I, we summarize the results of Fig. 5, as well as
the weight decayed variants of FastAT (α=0.05). As a coarse
indicator of hardware fault resilience, we provide the mean
failure rates (MFR) of each CNN for the entire benchmark



TABLE I
SUMMARY OF RESULTS ON SHALLOW (RESNET-20) AND DEEP (RESNET-56) CNNS AS VANILLA, PRUNED, AND ADVERSARIALLY TRAINED VARIANTS.

PERCENTAGE IMPROVEMENT SHOWN FOR FASTAT α = 0.05 OVER REGULAR FASTAT.

Model Train/Config Baseline (INT8) PGD-20 Atk. Mean Failure Rate (MFR) - Lower is better
Acc. [%] Acc.[%] Overall f = 0.005 f = 0.1 b = 5 b = 7 m = 25% m = 100% t =W t = A

R
es

N
et

20
C

IF
A

R
-1

0 Vanilla 92.03 1.04 0.29 0.21 0.53 0.09 0.55 0.19 0.37 0.19 0.39
No BatchNorm 79.12 5.01 0.60 0.57 0.69 0.48 0.72 0.53 0.70 0.40 0.81

60% Pruned 89.59 1.21 0.27 0.17 0.56 0.11 0.47 0.15 0.41 0.19 0.35
FastAT [4] 81.58* 72.85 0.47 0.40 0.67 0.27 0.70 0.39 0.57 0.30 0.64

FastAT α=0.05 77.72 70.36 0.40 (15%) 0.31 (23%) 0.65 (3%) 0.20 (26%) 0.62 (11%) 0.24 (38%) 0.55 (4%) 0.33 (-10%) 0.47 (27%)

R
es

N
et

56
C

IF
A

R
-1

0 Vanilla 92.94 4.53 0.22 0.13 0.49 0.06 0.46 0.13 0.32 0.17 0.28
50% Pruned 92.04 2.66 0.28 0.19 0.54 0.10 0.47 0.15 0.44 0.19 0.37
FastAT [4] 82.71* 72.72 0.43 0.35 0.66 0.21 0.69 0.31 0.54 0.30 0.56

FastAT α=0.05 83.37 74.72 0.36 (16%) 0.25 (29%) 0.65 (2%) 0.17 (19%) 0.63 (9%) 0.25 (19%) 0.48 (11%) 0.31 (-3%) 0.42 (25%)

*: Accuracy degradation from vanilla-training is common in state-of-the-art adversarial training to achieve high adv. robustness (see accuracy after PGD attack)
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Fig. 6. CONV layer scaling factors for vanilla trained and adversarially robust
variants of ResNet20 and ResNet56. High weight decay (α=0.05) brings the
high scaling factors v of FastAT back to vanilla levels.

in Alg. 1 (Overall). Additionally, to help in understanding the
effect of individual characteristics of the bit-flip patterns, we fix
one bit-flip characteristic (f , b, m, or t) and measure the mean
failure rate over all steps varying the other bit-flip parameters.

The observations made in Sec. IV-A are supported by the
MFR presented in Tab. I. For FastAT CNNs, we see a 62% and
95% degradation in overall MFR for ResNet20 and ResNet56,
respectively, compared to their vanilla-trained variants. When
increasing α, the FastAT CNNs improve by up to 16% in overall
MFR. More specifically, the fault resilience against activation
bit-flips t=A is improved by 27% and 25% for the high decay
FastAT ResNet20 and ResNet56, compared to the regular Fa-
stAT implementation. Although we consider accuracy orthog-
onal to our fault resilience analysis (explained in Sec. III-C),
it is interesting to discuss the trade-offs that can be achieved
in fault resilience, adversarial robustness and natural accuracy.
In general, adversarial training techniques in literature incur a
degradation in natural accuracy, when trying to learn adversarial
attacks as well as their target classification task [4]. We notice
that the smaller FastAT ResNet20 suffers a further drop of 3.8
p.p. accuracy degradation after applying high α. However, the
larger ResNet56 has a slightly improved accuracy after weight
decay compared to the regular FastAT implementation. Weight
decay can be harsh, particularly on smaller CNNs, as more
weights approach zero and lose their feature representation
capability. ResNet56 has sufficient redundancy to compensate
for this (and even benefits through regularization); however, the

smaller ResNet20 loses some of its natural accuracy. Although
we propose weight decay as an initial, simple remedy for the
adversarial training and fault resilience problem, the analysis
provided in this work identifies a larger challenge in bringing
robustness of both domains (adversarial attacks and hardware
faults) in the same CNN. It is also important to note that
adversarial trained CNNs, even with the proposed high α, are
still less fault resilient than vanilla CNNs. The reason being that
weight decay indeed shrunk the CONV layers’ scaling factors,
but the batch-norm trainable parameters (gamma, beta, etc.)
are not directly affected by weight decay, leaving their scaling
factors large due to adversarial training.

V. CONCLUSION

We shed light on the importance of scaling factors for main-
taining fault resilience of quantized CNNs. The importance of
scaling factors was verified by performing large-scale resilience
analysis experiments on regularly trained, adversarially trained,
batch-norm free, weight decayed, pruned, deep and shallow
CNNs. We identified that adversarial training resulted in CNNs
learning distributions beyond the natural dataset, which led
to larger scaling factors opening a backdoor for bit-flips with
large true magnitude perturbations. As a simple, first remedy,
we proposed applying weight decay to bring down the CONV
scaling factors, improving the resilience of adversarially robust
ResNet56 by 25% on activation faults. Nevertheless, since
weight decay does not constitute a final solution to all the
weaknesses of adversarially trained CNNs, they must be trained
with scaling factors in mind.
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