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Bosonic lattice systems with nontrivial interactions represent an intriguing platform to study exotic phases of
matter. Here, we study the effects of extended correlated hopping processes in a system of bosons trapped in a
lattice geometry. The interplay between single particle tunneling terms, correlated hopping processes, and onsite
repulsion is studied by means of a combination of exact diagonalization, strong coupling expansion, and cluster
mean field theory. We identify a rich ground state phase diagram where, apart from the usual Mott and superfluid
states, superfluid phases with interesting clustering properties occur.
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I. INTRODUCTION

Clustering in gapless ultracold bosonic systems has re-
cently garnered intensive interest thanks, on one hand, to
the experimental realization of quantum liquids composed of
droplets both in dipolar systems [1,2] and bosonic mixtures
[3,4], and on the other hand to the very recent realization of
supersolid states [5–7]. As has also been determined theoret-
ically, the achievement of such a state of matter requires spe-
cific tuning of the interactions [8,9]. These features have re-
markably also been identified in a locally interacting bosonic
mixture trapped in a purely one-dimensional lattice [10,11].
This kind of system is usually and properly described by
the Bose-Hubbard model (BHM) which, for a single bosonic
species, represents the simplest Hamiltonian where the inter-
play between interaction and kinetic energy of particles gives
rise to fundamental quantum effects. Indeed, as an early mo-
tivation, the BHM gained attention as a means to understand
the effects of repulsive interactions on a superfluid phase [12]
while later on it has been both theoretically [13] and exper-
imentally [14] demonstrated that for integer density values
the competition between interaction and kinetic energy allows
for a pure quantum phase transition between a Mott insulator
state and a superfluid. Furthermore this model has turned out
to be relevant to the description of Josephson-junction arrays
[15], quantum magnets [16], and photonic systems [17]. Re-
newed theoretical interest has been driven by highly tunable
experimental realizations of close-to-ideal generalized BHMs
in systems of ultracold atoms trapped in optical lattices [18],
where other terms such as long range interactions [19] or
higher order hopping processes [20,21] are important (apart
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from the usually dominant onsite interactions and hopping
processes) and lead to richer phase diagrams [22].

In this context, the correlated hopping (CH) terms, describ-
ing how the single particle tunneling amplitude is influenced
by the position of another particle, represent a very intriguing
kind of interaction. On one hand, their effect was investi-
gated mainly in fermionic systems to get insights initially on
high-temperature hole superconductors [23,24]. It has been
further shown that in one-dimensional fermionic systems CHs
can give rise to exotic metallic [25], superconductor [26–28],
and magnetic [29,30] regimes as well as to symmetry pro-
tected topological states [31,32] and lattice gauge theories
[33]. On the other hand, the investigation of bosonic systems
in the presence of such kind of interaction started just re-
cently. Nonetheless, it has already been shown that CHs may
lead to the formation of stable condensates of boson pairs
[34–36] without direct attractive interactions, paired super-
fluids [37,38], supersolid regimes [39], scar states [40], and
gauge constrained confined phases [41–43].

A special kind of CHs are the ones called extended cor-
related hopping (ECH) terms, where the tunneling range
exceeds the usual nearest neighbor approximation. It is worth
mentioning that such interaction terms naturally appear in
rigorous descriptions of long-range [44,45] kinetically con-
strained one-dimensional systems, strongly interacting Raman
coupled bosonic mixtures [46], and semisynthetic zigzag
optical lattices [47]. Furthermore a recent paper [48] has in-
troduced a one-dimensional fermionic lattice construction for
which contact interaction actually leads to an effective three
site extended correlated hopping thus realizing a variant of
the Bariev model [49]. It was shown that in such a model a
rich phase diagram emerges when ECHs destructively inter-
fere with single-particle hopping. On the other hand, bosonic
systems with extended correlated hoppings have been treated
only in the hard-core regime both in square [34] and triangular
[35] lattices.
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FIG. 1. Schematic of the lattice consisting of bosons residing
on a one-dimensional triangular lattice described by the interacting
Hamiltonian (1). (a) Shown is a particular configuration of sites filled
with particles (green) and the various elementary processes in the
system. The bottom frame shows exemplary configurations corre-
sponding to the nonstandard phases of the model. (b) Paired-hole
superfluid below unit filling: Every particle on the lower layer (blue)
is always followed by a particle on the upper lattice (red) as a result
of which pairs of coherently moving bound nearest neighbor holes
characterize the system. (c) Paired-particle superfluid: Above unit
filling, nearest neighbor doubly-occupied sites are paired and move
coherently through the lattice. (d) Unbounded droplet phase with
superfluid order: Most of the particles form a cluster of occupied
consecutive sites. (e) Phase separation: Particles form two separated
regions in space, one where only the lower layer (blue) is occupied
and the other where the upper layer (blue) is occupied.

For this reason in this paper, we consider the effects of
extended correlated hopping on a one-dimensional bosonic
system with loosened onsite constraints, i.e., soft-core bosons,
instead. We start our analysis by describing the model and
its limiting cases where the ground state quantum regime is
known. This helps us to perform a first numerical analysis
based on fidelity behavior determined via exact diagonaliza-
tion calculations. In addition to this, we perform a strong
coupling expansion to get further insight on the strongly repul-
sive regime. Finally we employ the cluster mean-field method
as a complementary tool to enforce our results. With this com-
bination of approaches we are able to identify a large variety
of phases appearing in the quantum phase diagram as a func-
tion of the interplay among single particle tunneling, extended
correlated hopping, and onsite interaction terms. In particular,
apart from the usual Mott and superfluid phase, we discover
the presence of a paired-holes superfluid, a paired-particles
superfluid, and an unbounded droplet phase—all of which are
characterized by nontrivial clusterization properties.

A. The model

We consider the following one-dimensional lattice Hamil-
tonian (see Fig. 1):

H =
L∑
i

[
− t (b†

i bi+2 + H.c.) + X (b†
i ni+1bi+2 + H.c.)

+ U

2
ni(ni − 1) + μni

]
, (1)

where b†
i /bi is the creation/annihilation operator of a boson

in site i of a lattice composed by L sites. The first term in the
Hamiltonian describes direct single particle hopping between
next nearest neighbors sites with amplitude t . On the other
hand X is the amplitude of the extended correlated hopping,
thus capturing the processes where the next nearest neighbors
hopping is conditioned by a finite occupation between the
two sites involved in the particle tunneling. The remaining
terms describe the onsite repulsion U and chemical potential
μ. The absence of nearest-neighbor tunneling precludes the
mixing between particles in even and odd sites. Therefore,
the model can be viewed as a triangular bosonic ladder with
a leg-conserving number of particles. In our work we con-
sider the even/odd sublattices to be of equal lengths L/2,
and the total number of particles in the system to be N =
Neven + Nodd, thus fixing the system density ρ = N/L. Note
that we do not a priori presume equal occupation of both
sublattices.

We further recall here that the fermionic model [48] is
analytically diagonalizable when X/t = 1 and U = 0 for ar-
bitrary filling. For this parameters choice, a fermion on one
sublattice cannot hop over a nearest neighbor fermion on the
other sublattice, i.e., the matrix element −t + Xni+1 = 0 for
ni+1 = 1. This strong additional symmetry constraint facili-
tates the analytical solution. For the same parameters, this
symmetry is generically broken for a bosonic system since
sites can be populated by more than one particle.

Nevertheless we note that there are known and intuitive
solutions for some limiting cases of the model Eq. (1). In
analogy with the standard Bose-Hubbard model, at unit filling
and for strong onsite repulsion U � t, X the system is a
Mott insulator (MI) |ψMott〉. At the same time in the absence
of correlated hopping X = 0 and for noninteger filling the
system is always a standard superfluid (SF) phase |ψ0〉 and it
remains SF even for integer filling but low U/t . Furthermore
for X = t , N/L < 1 and hard core repulsion t/U → 0, the
particles behave effectively as fermions and hence enter in
the so-called paired-hole superfluid (PHSF) state discussed in
Ref. [48]. In this state |ψph〉, any consecutive pair of bosons
on the lattice is separated by an even number of empty (hole)
sites. For such values of X , the motion of particles allowed
by the Hamiltonian is constrained so that effectively pairs
of nearest neighbor holes move whenever an allowed single
hopping event of a particle occurs. For small t/U , N/L > 1
and again X = t the paired-particles superfluid (PPSF) phase
|ψpp〉 appears, the latter being analogous to the paired-holes
superfluid for fillings larger than one. Finally an unbounded
droplet phase with superfluid order (DSF) |ψ∞〉 may occur as
the ground state of the Hamiltonian (1) in the limit t = 0,U =
0, X > 0. This DSF is characterized by a mobile highly dense
cluster of particles.

II. RESULTS

A. Exact diagonalization

To gain exact insight into the ground state properties of the
many body Hamiltonian Eq. (1), we first present an analysis
based on exact diagonalization calculations. We consider the
system at exactly unit filling N = L as well as under the
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simplest deviations from this density, i.e., N = L ± 2 (we add
or subtract one particle on each sublattice to maintain the
symmetry of the system). The local bosonic Hilbert space
is not truncated, i.e., we choose the maximal possible onsite
occupation to be N/2 and we impose periodic boundary con-
ditions. Exact diagonalization is performed using the Arnoldi
algorithm. The Hilbert space is relatively small for the chosen
system size L = 12 (the exact dimension is 2522 for N = 10,
4622 for N = 12, and 7922 for N = 14). In general the size
of the Hilbert space for a system of size L, number of parti-
cles N and maximal onsite occupation N/2 equals dim(H) =(L/2+N/2−1

N/2

)2
.

Thanks to known solutions, an immediate way to get in-
sights about the phase diagram is achieved by computing
the fidelity F (ψ,ψref ) = |〈ψref |ψ〉|2 of the calculated ground
state |ψ〉 with the various numerically extracted reference
states |ψref〉 (|ψMott〉, |ψ0〉, |ψph〉, |ψpp〉, and |ψ∞〉. As exam-
ples, in Fig. 2 we show that this strategy allows us to properly
capture the relevant effect induced by the ECH. Indeed it is
possible to notice that, in the limit of strong onsite interaction,
the Mott insulator known from the standard Bose-Hubbard
model is additionally stabilized by X , which effectively de-
creases the hopping rate. This is especially visible close to
X = t , for which the insulating phase turns out to extend
up to t/U ≈ 0.3 while only up to t/U ≈ 0.2 for X = 0 [cf.
Fig. 5(a)]. In addition to this we notice that the presence of
ECHs allows for the occurring of a different kind of gapless
superfluid states. As visible in Fig. 2(b), when U = 0 and
X is weak, the usual superfluid state is the dominant order.
On the other hand larger X/t ratios favor the presence of a
DSF phase |ψ∞〉 which, as we will discuss in more details
later, possesses intriguing clustering properties. Moreover, for
the case of noninteger densities, the same approach based on
fidelity measurements allows us to properly capture the exten-
sion of the paired-holes/particles superfluid states. Indeed, as
visible in Fig. 2(a), we are able to show that the PHSF/PPSF
survives well beyond the hard core t/U → 0 limit. In Fig. 2(c)
one could see that even for X/t < 1 the overlap with |ψph〉 is
significant in the interval 0 � t/U < 0.1.

In order to better characterize the phase diagram in the
intermediate regimes, where the fidelity approach is sup-
posed to be less accurate, we calculate the off-diagonal
part of the one-body φ = ∑

j �=i〈b†
i b j〉 and of the two-body

� = ∑
j �=i〈b†

i b†
i b jb j〉 density matrix. These quantities are

very useful to distinguish between possible paired states,
which turns out to be of crucial relevance when dealing with
ground state clustering of bosons. In order to be even more
accurate in characterizing the ground state of the system,
we further define the contribution (weight) of configura-
tions with certain maximal onsite occupation nmax and for
which the maximal sequence of occupied sites (called max-
imal cluster) has a specific length Lcluster. For illustration
consider the following vector in occupation number represen-
tation |1 1 0 0 1 0 1 3 1 1 1 0〉. The maximal onsite occupation
is nmax = 3 while the maximal cluster is [1 3 1 1 1] having a
length Lcluster = 5. In Fig. 3 we combine the aforementioned
quantities to enforce our characterization of the phase diagram
in the regime of density slightly smaller than one, i.e., for
filling 5/6.

FIG. 2. Fidelity between chosen reference solutions described
in the text and the exact ground state obtained via numerical
diagonalization of systems consisting of L = 12 sites. (a) Fidelities
with the hard-core boson limit ground state (HCB) |ψHCB〉 (blue)
and DSF state |ψ∞〉 (orange) as a function of t/U for X = t
for unit filling (continuous), filling 5/6 (dashed), and filling 7/6
(dotted). The state |ψHCB〉 corresponds to the Mott insulator |ψMott〉
for filling ρ = 1, the paired hole state |ψph〉 for ρ < 1, and the
paired particle state |ψpp〉 for ρ > 1. (b) Fidelity with the standard
superfluid phase |ψ0〉 (green) and the DSF state |ψ∞〉 (orange)
as a function of X/t for U = 0 and for unit filling (continuous),
filling 5/6 (dashed), and filling 7/6 (dotted). (c) Fidelity of the
ground state with |ψph〉 for filling 5/6 and different values of X/t as a
function
of t/U .

Let us first concentrate on the limiting case X = t and var-
ied t/U : the left column of Fig. 3. The first thing to underline
is that, while our results confirm the presence of a paired-holes
superfluid for strong and intermediate repulsion, they also
allow us to capture that PHSF is characterized by almost
null one- and two-particle correlation functions [Fig. 3(a)]
and maximal contribution to the wave function from states
characterized by cluster length Lcluster = N [Fig. 3(c)] and

134513-3
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FIG. 3. Exact diagonalization characterization of ground state properties of L = 12 sites and N = 10 particles. The parameters are plotted
as a function of t/U at X = t [left columns: (a), (c), (e)] and as a function of X/t at U = 0 [right columns: (b), (d), (f)]. (a),(b) Single particle
superfluid and two particle superfluid correlation functions described, respectively, as:φ = ∑

j �=i〈b†
i b j〉 and � = ∑

j �=i〈b†
i b†

i b jb j〉. (c),(d) Total
contribution (sum of weights, i.e., squared amplitudes) in the ground state of basis vectors for which the maximal cluster (maximal sequence
of occupied sites) has length Lcluster marked in the legend. For instance the dashed light-blue curve in plot (c) is the contribution of vectors
with Lcluster = 10, i.e., all the cyclic permutations of |001111111111〉. (e),(f) Total contribution of basis vectors for which the maximal onsite
occupation equals nmax as marked in the legend. For example the dashed purple curve in plot (e) is the contribution of vectors with nmax = 5,
i.e., vectors of type |000015400000〉, |000005500000〉, etc. Gray shading on plots (b), (d), (f) denotes interpolation between the value X/t = 5
and infinite X/t for which the solution is |ψ∞〉.

maximal occupation nmax = 1 [Fig. 3(e)]. In Fig. 3(a) in the
interval 0.25 � t/U � 0.5 we observe a change of sign of
the one-particle correlation function φ as well as a small
growth of two-particle correlation function �. The latter is
associated with the appearance of bosonic pairs [37], which is
also confirmed by the fact that the maximal contribution to the
wave function comes from states with maximal occupation 2
or 3 [Fig. 3(e)]. Yet, the pair character of the superfluid in this
region is rather weak. Moreover, in Fig. 3(c) at t/U ≈ 0.31
we observe a significant change in the structure of states con-
tributing to the wave function: The states with long clusters
no longer dominate; instead the states of cluster lengths 3 or

4 account for about 70% of the wave function. This can be
associated with the appearance of a superfluid composed by
unbounded droplets, however of different kind (fragmented
and with lower onsite density) as the fidelity with |ψ∞〉 is
zero. The true DSF phase starts to appear at t/U ≈ 0.5, where
it is linked to a significant growth of the absolute value of
the correlation functions φ and � in Fig. 3(a). We also notice
the change in the structure of the wave function indicated by
the growing contribution from states having clusters of length
4 and 5 (3, 4 in the limit of large t/U ) and maximal onsite
occupation 3, 4, or 5, e.g., states with high-density clusters of
type |. . . 0 1 5 4 0 . . .〉 , |. . . 0 1 4 4 1 0 . . .〉. Moreover we notice
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that the overlap with the state |ψ∞〉 [Fig. 2(a)] increases to
reach 0.8 around t/U = 1.

Let us now explore the case of t/U → ∞ (equivalently
U = 0) and varied X/t . The properties of the system in this
limit are summarized in the right column of Fig. 3. At weak
correlated hopping X/t � 0.2 the ground state of the system
is the standard SF as confirmed by the large value of the
correlation functions [Fig. 3(b)] and almost unit fidelity with
|ψ0〉 [Fig. 2(b)]. In the interval 0.2 � X/t � 0.67 the one-
and two-particle correlation functions decrease slightly and
the fidelity with |ψ0〉 drops to zero. At the same time the pre-
dominant contribution to the wave function comes from states
with short one- and two-site clusters with maximal on-site oc-
cupation of 3 and 4 [Fig. 3(d)]. This is due to phase separation,
i.e., the particles belonging to each sublattice concentrate in
spatially disjoint regions of length L/2 in which they are effec-
tively described by the standard Bose-Hubbard model: HBH =∑L/2

odd i=1 [−t (b†
i bi+2 + H.c.) + U

2 ni(ni − 1)] (and similarly
for even sites) and form a superfluid. In the bulk of each such
region only even/odd sites are occupied leading to single-site
clusters, however at the interface two consecutive even-odd
sites can be occupied, hence the presence of two-site clus-
ters. An exemplary state, which may contribute to such a
ground state, is |010301102020〉. For even larger values of
the correlated hopping X/t � 0.67 the one-particle correlation
function becomes negative and the two-particle correlation
function drops slightly in Fig. 3(b). Also in Figs. 3(d) and 3(f)
we observe sudden clustering of particles in clusters of length
3 and 4 with maximal occupation being 5, 4, or 3, which
signals the transition to the DSF. This is confirmed by the fast
increase of fidelity with |ψ∞〉 [Fig. 2(b)], which reaches 0.5
around X/t ≈ 0.7 and 0.8 for X/t ≈ 1.

In Fig. 4 we complement our analysis by studying the case
of filling higher than one, i.e., with the number of particles
being N = L + 2. The most important difference with respect
to filling ρ = (L − 2)/L is the nature of the ground state
for X = t and strong repulsion. While for ρ < 1 the bosonic
system behaves similarly to the fermionic case and its ground
state is the PHSF, for ρ > 1 we have a completely new sit-
uation. Exact diagonalization data show that the system with
two additional particles above the unit filling becomes indeed
a paired-particles superfluid, in which doubly-occupied sites
are paired and particles belonging to such pair can only hop
in a leapfrog manner, i.e., a particle hops over a doubly-
occupied site as hopping over a single particle is suppressed
by the correlated hopping term. The effective tunneling pa-
rameter associated with such a hopping process is positive,
i.e., −t + 2X = +t , hence to minimize the energy the ground
state has to be of the form |ψ〉 ∝ ∑

i(−1)ib†
i b†

i+1 |1 1 . . .〉. The
structure of the wave function can thus be also inferred from
the unit contribution of the states with a cluster of length
Lcluster = 12 in Fig. 4(c) and maximal occupation nmax = 2
in Fig. 4(e), as well as the negative sign of the one-particle
correlation function in Fig. 4(a). Note that close to t/U ≈ 0.1
there begin to appear contributions from states with clusters
of length 11 and maximal occupation 3, i.e., states of the
type: |0 2 3 1 . . .〉 in which the energy is lowered through for-
mation of a low-density droplet. For t/U > 0.3, similarly to
the system with filling below one, we observe a significant

change of the structure of the ground state and growth of the
two-particle correlation function. This is associated with the
appearance of fragmented unbounded droplets with low onsite
density. Finally, at t/U slightly below 0.5 the true DSF phase
is formed. The case of U = 0 and varied X = t is very much
the same for fillings below and above one, the only obvious
difference being the value of the maximal onsite occupation
nmax.

B. Strong coupling expansion

To estimate the extent of the phases identified in the pre-
vious section we perform the strong coupling expansion up to
the second order in t/U [50]. We rewrite the model Hamilto-
nian (1) as:

H = H0 − t

U

L∑
i=1

[
b†

i

(
1 − X

t
ni+1

)
bi+2 + H.c.

]
, (2)

where H0 = ∑L
i=1 [ 1

2 ni(ni − 1) − μ

U ni] is diagonal in the
number basis and the term proportional to t/U is a pertur-
bation. We calculate the energies for the Mott insulator state
of density n0 = ρ

|ψMott (n0)〉 = |n0n0 . . .〉 , (3)

obtaining up to the second order in t/U :

EMott = L

[
1

2
n0(n0 − 1) − μ

U
n0

]

− 2t2

U
Ln0(1 + n0)

(
1 − X

t
n0

)2

. (4)

In the standard superfluid-Mott insulator transition, the varia-
tion from the Mott state leading to superfluidity is an addition
of one hole/particle, however in the present case we assume
the symmetric occupation of the two sublattices, hence the
superfluid ansatz of the form:

|ψHoles〉 = 2

n0L

∑
i odd

∑
j even

bib j |n0n0 . . .〉 , (5)

|ψParts〉 = 2

(n0 + 1)L

∑
i odd

∑
j even

b†
i b†

j |n0n0 . . .〉 , (6)

where the two additional holes/particles are not spatially cor-
related. We compute the energies of both states obtaining:

EHoles = 2
μ

U
− 2(n0 − 1) + L

[
1

2
n0(n0 − 1) − μ

U
n0

]

−4t

U
n0

(
1 − X

t
n0

)

−4t2

U 2
n0(n0 + 1)

[
1 − X

t
(n0 − 1)

]2

+2t2

U 2
(n0 + 1)(3n0 + 1)

(
1 − X

t
n0

)2

−2t2

U 2
Ln0(n0 + 1)

(
1 − X

t
n0

)2

, (7)
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FIG. 4. Exact diagonalization characterization of ground state properties of L = 12 sites and N = 14 particles. The parameters are plotted
as a function of t/U at X = t [left columns: (a), (c), (e)] and as a function of X/t at U = 0 [right columns: (b), (d), (f)]. (a),(b) Single particle
superfluid φ and two particle superfluid � correlation functions. (c),(d) Total contribution (sum of weights) in the ground state of basis vectors
with maximal cluster of length Lcluster as marked in the legend. For instance, the dashed purple curve in (c) is the contribution of vectors with
Lcluster = 12, i.e., maximal possible cluster for a system of size L = 12. These are all cyclic permutations of |221111111111〉. (e), (f) Total
contribution of basis vectors for which the maximal onsite occupation equals nmax as marked in the legend. For instance, the green dashed
curve in plot (e) is the total weight of vectors with nmax = 3, i.e., those of type |023111111111〉, |003311112200〉, etc. Gray shading on plots
(b), (d), (f) denotes interpolation between the value X/t = 5 and infinite X/t for which the solution is |ψ∞〉.

for two uncorrelated holes, and

EParts = −2
μ

U
+ 2n0 + L

[
1

2
n0(n0 − 1) − μ

U
n0

]

−4t

U
(n0 + 1)

(
1 − X

t
n0

)

−4t2

U 2
n0(n0 + 1)

[
1 − X

t
(n0 + 1)

]2

+2t2

U 2
n0(3n0 + 2)

(
1 − X

t
n0

)2

−2t2

U 2
Ln0(n0 + 1)

(
1 − X

t
n0

)2

(8)

for two uncorrelated particles. In the system under con-
sideration another possible variation from the Mott state
is a superfluid with two paired holes/particles. To check
which one, the standard or the paired-holes/particles super-
fluid, is energetically more favorable we take the following
states:

|ψPHoles〉 = 1

n0

√
L

∑
i

bibi+1 |n0n0 . . .〉 , (9)

|ψPParts〉 = 1

(n0 + 1)
√

L

∑
i

b†
i b†

i+1(−1)i |n0n0 . . .〉 (10)
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FIG. 5. Cluster mean-field phase diagrams at different X/t = 0.0, 0.6, 0.8, 1.0, 1.2 as a function of μ/U and t/U . In (a) we plot the value
of the superfluid parameter φi = 〈b†

i 〉 + ∑
j �=1 〈b†

i b j〉 on central sites of the cluster. In (b) the colors refer to the different phases obtained by
combining the value of the superfluid parameter and the properties of the wave function. In particular the colors are defined as follows: (red)
phase separation, (orange) paired holes superfluid (PHSF) with two holes, (purple) paired holes superfluid (PHSF) with four holes, (yellow)
Mott insulator (MI), (blue) paired particles superfluid (PPSF) with two additional particles, (green) paired particles superfluid (PPSF) with four
additional particles, (gray) normal superfluid (SF). In white areas we were not able to unambiguously determine the properties of the system
using the CM approach. In both (a) and (b) we plot the boundaries of phases resulting from the strong coupling expansion: (dot-dashed black)
transition to PHSF or PPSF, (continuous black) transition to standard superfluid. The boundaries of phases resulting from the strong coupling
expansion (SCE) are shown in the previous section.

and again compute the energies perturbatively up to the sec-
ond order in t/U .

EPHoles = 2
μ

U
− 2(n0 − 1) + L

[
1

2
n0(n0 − 1) − μ

U
n0

]

−2t

U
n0

[
1 − X

t
(n0 − 1)

]

+ t2

U 2
(n0 + 1)(7n0 + 1)

(
1 − X

t
n0

)2

− t2

U 2
(n0 + 1)(n0 − 1)

[
1 − X

t
(n0 − 1)

]2

−2t2

U 2
Ln0(1 + n0)

(
1 − X

t
n0

)2

, (11)

EPParts = −2
μ

U
+ 2n0 + L

[
1

2
n0(n0 − 1) − μ

U
n0

]

+2t

U
(n0 + 1)

[
1 − X

t
(n0 + 1)

]

+ t2

U 2
n0(7n0 + 6)

(
1 − X

t
n0

)2

− t2

U 2
n0(n0 + 2)

[
1 − X

t
(n0 + 1)

]2

−2t2

U 2
Ln0(1 + n0)

(
1 − X

t
n0

)2

. (12)

In Fig. 5 on top of the phase diagrams obtained by the
cluster Gutwiller method, which we will discuss in the next
section, we show the boundaries between the Mott insula-
tor and the two possible types of the superfluid obtained by
putting to zero the energy difference EParts/Holes − EMott and
EPParts/PHoles − EMott.

Apart from the already discussed PHSF and PPSF, the
system also supports the phase-separated superfluid phase,
i.e., such that the particles belonging to each sublattice con-
centrate in spatially disjoint regions and form two separate
superfluids on lattices of length L/2. Here we estimate the
value of t/U for which such a phase is energetically more
favorable than the standard superfluid at fixed total density
ρ = N/L. Assuming that in the superfluid phase with weak
interaction only the zero momentum mode is occupied, the
kinetic energy is −2t/UρL. Further, since only half of each
sublattice is occupied, the average number of particles per
site on occupied sites is 2ρ, i.e., n0 = ρL distributed equally
over L/2 sites (L/4 occupied sites on each sublattice). We
obtain the following estimate for the energy of the superfluids
cramped up on a half of each sublattice

Esep = −2t

U
ρL + 1

2
(2ρ)(2ρ − 1)

L

2
− μ

U
ρL

=
[
−2t

U
ρ + 1

2
ρ(2ρ − 1) − μ

U
ρ

]
L. (13)
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To estimate the energy of the standard superfluid in the
presence of the correlated hopping, we assume to be in a
regime of parameters in which the correlated hopping only
modifies the tunneling rate but does not change the nature of
the superfluid, as shown by the exact diagonalization data. We
obtain the following

ESF = −2(t − Xρ)

U
ρL + 1

2
ρ(ρ − 1)L − μ

U
ρL

=
[
−2(t − Xρ)

U
ρ + 1

2
ρ(ρ − 1) − μ

U
ρ

]
L. (14)

The system is in the standard superfluid phase whenever
ESF < Esep, which leads to a simple criterion for the extension
of the standard superfluid

U > 4X. (15)

C. Cluster mean-field approach

We now describe the phase diagram obtained within a
cluster mean-field (CM) approach which is complementary to
the properties derived in the earlier sections. The mean-field
decoupling of the single particle hopping yields a sufficient
description of the Mott insulator to superfluid transition in
the standard BHM. However, given the additional correlations
induced by occupation number dependent hopping, we need
to use the multisite extension (CM) of the standard Gutzwiller
ansatz for a more accurate decoupling and inclusion of quan-
tum fluctuation effects.

The variational CM ansatz is a product state |�G〉 =∏ |ψ〉, where each |ψ〉 is a linear combination of d-site Fock
states {|n〉} = {|n1, . . . , nd〉} (ni = 1, 2, . . . , nmax)

|ψ〉 =
∑

n

fn |n〉 . (16)

The Hamiltonian for the d-site cluster is the same as (1)
in the case of onsite interaction terms and in the interior
of the cluster S = {3, . . . , d − 2}. The boundary sites are
coupled to the rest of the system via mean-field parameters
〈b0〉, 〈bd+1〉, 〈b−1n0〉, 〈nd+1bd+2〉:

H cluster
mn = 〈m|HS + U

2

d∑
i=1

ni(ni − 1)|n〉

− t 〈m|
[
〈b†

0〉
(

1 − X

t
n1

)
b2 + H.c.

]
|n〉

− t 〈m|
[

b†
d−1

(
1 − X

t
nd

)
〈bd+1〉 + H.c.

]
|n〉

− t 〈m|
[〈

b†
−1

(
1 − X

t
n0

)〉
b1 + H.c.

]
|n〉

− t 〈m|
[

b†
d

〈(
1 − X

t
nd+1

)
bd+2

〉
+ H.c.

]
|n〉 . (17)

The d-site ground state wave function of (17) is computed
self-consistently. First, a generic initial state of the cluster with
f 0
n = 1/|{|n〉}| is used to compute the mean-field parameters.

Subsequently, a new ground state is obtained and the mean-
field parameters are updated. The convergence criterion to be
fulfilled is

∑
n | f i

n − f i−1
n | < 10−7, where i is an index of the

iteration. From the obtained wave vector we compute the aver-
age quantities 〈ni〉, 〈n2

i 〉, 〈bi〉, 〈b2
i 〉 on the most central sites, as

being minimally coupled to the mean-field they should most
accurately describe the properties of the system. However, we
also examine the cluster as a whole in search of any spatial
patterns and correlations of the local observables.

The results obtained by CM are depicted in Fig. 5 for
a cluster of size d = 6 and maximal on site occupation
5. Additionally, for the purpose of efficient self-consistent
computation, we lose the constraint of equal occupation of
sublattices and allow the number of particles in the even/odd
lattice to differ by one. The results show, however, that
only the vectors with an equal number of particles in both
sublattices contribute to the final wave function describing
the cluster. The main information is extracted from contour
plots of the superfluid parameter φi = 〈b†

i 〉 + ∑
j!=i〈b†

i b j〉 in
Fig. 5(a) combined with the properties of the wave function of
the cluster. Additionally in both Figs. 5(a) and 5(b) we plot the
boundaries of phases resulting from the strong coupling ex-
pansion (SCE) shown in the previous section. The CM method
reveals a rich phase diagram for different values of X/t . At al-
ready intermediate ECH values, 0.5 < X/t � 0.75, the phase
diagram shows a totally different scenario with respect to the
X = 0. The shape of the Mott lobe is modified and a phase
separated state appears for large onsite repulsion. For larger
values of X/t we observe that the MI is surrounded by PHSF
and PPSF. Finally in the limit of large ECHs X/t � 1.05, as
confirmed also by ED calculations, the Mott lobe remains
surrounded by the PHSF and PPSF.

For X/t > 0.5 and large t/U (t/U ≈ 0.5 for filling 1 and
t/U < 0.5 for higher fillings), where we expect to find the
DSF phase, we observe diverging particle number and large
absolute values of φi. Let us recall that in the DSF phase it
is energetically favorable to increase the number of particles.
Hence the divergent density within the mean field where the
local basis is practically constrained to a maximal occupation
number is suggestive of the presence of this phase. More-
over, inspection of the spatial distribution of particles in the
ground states obtained from the CM reveals that the particles
group together. All these properties strongly point towards the
presence of the DSF phase in the described parameter regime,
however we were not able to obtain conclusive results using
the CM method alone, hence the white areas in Fig. 5(b).

III. CONCLUDING REMARKS

In this paper, we have studied a one-dimensional ver-
sion of the Bose Hubbard model with extended correlated
hopping. By combining both numerical and analytical ap-
proaches, we have been able to show the intriguing effect
played by this kind of nonlocal interaction. In particular the
study of clustering quantities, obtained by combining different
and complementary approaches, turned out to be particularly
meaningful. Indeed we have been able to reveal the pres-
ence of nontrivial clustered gapless phases, hence allowing
us find nonstandard types of the superfluids like the paired
holes and paired particles superfluid as well as the unbounded
droplet phase with superfluid order. We finally stress that, as
already specified, nowadays clustering properties of ultracold
bosonic systems are a particularly timely topic since they are
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associated with nonstandard state of matter [1–7]. For this
reason it is worth it to underline that the discovery of novel
interaction terms, like extended correlated hopping processes,
which can give rise to intriguing clustered superfluid states,
can shed some further light on this timely and fascinating
research field.
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