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Abstract

This paper presents numerical results concerning the nonlinear analysis of thin-walled isotropic struc-

tures via 1D structural theories built with the Carrera Unified Formulation (CUF). Both geometrical

and material nonlinearities are accounted for, and square, C- and T-shaped beams are considered.

The results focus on equilibrium curves, displacement, and stress distributions. Comparisons with

literature and 3D finite elements (FE) are provided to assess the formulation’s accuracy and compu-

tational efficiency. It is shown how 1D models based on Lagrange expansions of the displacement field

are comparable to 3D FE regarding the accuracy but require considerably fewer degrees of freedom.

Keywords: Carrera Unified Formulation, Geometrical and material nonlinear beams, Refined beam

theories, Elastoplasticity
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1 Introduction

Beam models have been developed extensively over the last few decades for the structural analysis

of slender bodies, such as columns, arches, blades, aircraft wings, and bridges [1]. Beams have one

dimension much larger than the other two and are primarily subjected to lateral loads, resulting

in their reference axes’ bending. Common loading conditions are extension, compression, bending,

transverse shear, and twisting [2]. This paper focuses on two common sources of nonlinearity:

geometrical and material. The former is due to the nonlinear strain-displacement relations, and the

latter to the nonlinear constitutive behavior of the material of the system [3]. Some examples on the

nonliear behavior of plates and shells can be found in [4–7]. Many studies have been focused on the

elastoplastic analyses of beam-like structures [8–10]. Park and Lee [11] presented a 3D elastoplastic

shear flexible beam element to solve geometrically nonlinear problems. Saje et al. [12] worked on

the kinematically exact finite element model for elastoplastic arbitrarily curved beams. Pajunen [13]

used kinematically exact finite beam element based on Reissner’s stress resultant theory to solve

large-deflection of elastoplastic beams. Mata et al. [14] studied the beam structures with nonlinear

geometric and constitutive behavior and used thermodynamically consistent 3D constitutive laws

to describe the material behavior. Challamel et al. [15] investigated the plasticity collapse of

hardening-softening beams. Battini and Pacoste [16] investigated the plastic instabilities in the

beams with arbitrary cross-sections. They presented a formulation for the 3D co-rotational elastic

beam element with warping effects. The large deflection of elastoplastic frame structures has been

studied in many works [17–20]. Among the others, the Generalized Beam Theory (GBT) is one of the

most powerful approaches to investigate the nonlinear behavior of thin-walled structures [21, 22].

Abambres et al. [23] presented a formulation for the physically nonlinear analysis of thin-walled

members with isotropic hardening based on the GBT. The same authors carried out a structural

analysis of elastoplastic thin-walled members [24, 25].

The use of refined structural models helps reduce the computational cost of nonlinear analyses

without compromising efficiency. The Carrera Unified Formulation (CUF) can generate any-order

structural theory and, recently, has been extended to nonlinear problems [26–31]. Pagani and Carrera

formulated a refined beam model based on the CUF to solve geometrically nonlinear problems. They

presented the Fundamental Nucleus (FN) of the secant and tangent stiffness matrix and used the

Newton-Raphson linearization scheme along with a path-following method [27]. The same authors

investigated the large deflection and post-buckling of composite beams using the CUF, and layer-wise
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kinematics [26]. Carrera et al. [29] carried out a nonlinear analysis on the elastoplastic thin-walled

structures using the isotropically work-hardening von Mises constitutive model for the material

nonlinearity. Petrolo et al. [28] presented a global-local approach based on the CUF considering

physical nonlinearities to analyze elastoplastic thin-walled structures. Kaleel et al. [32] presented a

numerical framework to simulate the progressive delamination in laminated structures based on 1D

component-wise CUF models. The same authors [33] investigated the effect of kinematic enrichment

for the nonlinear problems that included von Mises plasticity and cohesive interface modeling for

delamination of composites. Nagaraj et al. [34] worked on the elastoplastic contact problems of

compact and thin-walled metallic structures.

The present paper brings together, for the first time, the geometrical and material nonlinearities.

In particular, Section 2 presents the CUF framework and the finite element formulation. Section

3 describer the nonlinear formulation. Sections 4 and 5 present the numerical results and their

discussion.

2 Structural theories

By considering a generic beam with the cross-section domain in the x,z plane, and the axis along

the y-direction, the displacement, stress, and strain vectors are expressed as:

u(x, y, z) = {ux uyuz}T

σ = {σxx σyy σzz σxz σyz σxy}T

ε = {εxx εyy εzz εxz εyz εxy}T

(1)

In CUF, the 3D displacement field and its variation (δ) read:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M

δu(x, y, z) = Fs(x, z)δus(y), s = 1, 2, ....,M
(2)

where Fτ and Fs represent the cross-section functions defined over the x,z plane, uτ is the generalized

displacement vector, and M indicates the number of terms within the expansion. In this paper,

Taylor Expansion (TE) and Lagrange Expansion (LE) cross-section functions are adopted to model

the beam displacement field.

TE models are based on the Maclaurin polynomials. The order of the TE model (N) indicates the

structural theory of the beam, and, in CUF, it is user input. For example, in the case of N=2, the
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second-order displacement field is

ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6

(3)

where ux1 to uz6 are the eighteen generalized displacement variables. The classical beam theories

such as Euler–Bernoulli and Timoshenko models can be obtained as particular cases of linear TE

model (N=1) [35]. On the other hand, LE models have pure displacements as unknown variables.

Namely, they allow the users to employ Lagrange Points (LPs), where displacement variables are

located. In this paper, nine-node LEs (L9) are employed, and they ensure a quadratic interpolation

of the variables. A schematic representation of TE and LE models for a beam structure is shown in

Fig.1.

yz

1L4 1L9 4L9TE

Figure 1: TE and LE cross-section functions for a square beam

The finite element method is used for the discretization of the beam axis. The generalized displace-

ments (and their variation), lying in the y-direction, then become:

uτ (y) = Ni(y)qτi i = 1, 2, . . . , Nn

δus(y) = Nj(y)δqsj j = 1, 2, . . . , Nn

(4)

where Ni and Nj are the shape functions, and Nn is the number of nodes of each element. In this

paper, four-node cubic finite elements (B4), ensuring a cubic interpolation. More information about

Lagrange polynomials and shape functions can be found in [36]. By joining CUF (Eq. 2) and CUF

(Eq. 4) formalisms, the 3D displacement field can be expressed as:

u(x, y, z) = Fτ (x, z)Ni(y)uτi (5)

Higher-order expansions, e.g., Eq. 3, overcome the limitations of classical theories; for instance, they

remove typical assumptions concerning the shear deformability and transverse stretching. Depending
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on the problem at hand, the order assuring good accuracy may vary. CUF, via Eqs. 2 and 5, allows

the choice of any-order expansions as the governing equations and finite element arrays are written

in a way independent of the expansion order. The choice of the proper order for a given model can

be made via a convergence analysis.

3 Geometrical and material nonlinearities

The Green-Lagrange nonlinear strain components are considered for the geometrical relations, as

follows:

ϵ = ϵl + ϵnl = (bl + bnl)u (6)

where bl and bnl are the following linear and nonlinear differential operators:

bl =


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

, bnl =
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(7)

with ∂x =
∂(·)
∂x

, ∂y =
∂(·)
∂y

, and ∂z =
∂(·)
∂z

. By introducing the CUF (Eq. (2)) and FEM (Eq. (4))

relations into Eq. (6), the strain vector can be written in an algebraic form as follows:

ϵ = (Bτi
l +Bτi

nl)qτi
(8)

where Bτi
l and Bτi

nl are the linear and nonlinear algebraic matrices with CUF and FEM formulations.

Equation (8) allows writing the geometric relations in terms of the generalized nodal unknowns qτi.

The explicit form of these two matrices are not reported here for the sake of brevity, but they are
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reported in [27].

As far as the constitutive relation is concerned, the isotropic work-hardening von Mises constitutive

model was considered. The von Mises model was used as it is one of the most used for metallic

structures. Furthermore, given that this paper aims to explore the efficiency and accuracy of the

proposed framework, the von Mises criterion is helpful as it allows the verification of the results

against other papers from literature and commercial codes. Briefly, in case the elastic stress exceeds

the yield limit of the material, the following scalar nonlinear equation is solved:

f(∆γ) = qtrialn+1 − 3G∆γ − σy(ϵ
p
n +∆γ) (9)

where qtrialn+1 is the trial von Mises stress at the increment tn+1, G is the shear modulus, ∆γ is the

unknown, σy is the yield stress, ϵpn is the isotropic hardening parameter at the increment tn and f

is the con Mises yield locus, expressed as

f = q(σ)− σy(ϵp) (10)

where

q(σ) =

√
1

2

[
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σ2

xy + σ2
xz + σ2

yz)

]
(11)

Equation (9) is solved using Newton-Raphson method and, with solution ∆γ at hand, σ and ϵ are

updated.

sn+1 =

(
1− ∆γ3G

qtrialn+1

)
strialn+1

σn+1 = sn+1 + ptrialn I

ϵen+1 =
1

2G
sn+1 +

1

3
ϵe,trialv I

ϵpn+1 = ϵpn+1 +∆γ

(12)

where ptrialn I is the volumetric stress at increment tn and
1

3
ϵe,trialv is the volumetric component of

the elastic trial strain, for more details [28, 37].

3.1 Nonlinear governing equations

For the quasi-static nonlinear problem, the principle of virtual work is herein recalled,

δLint = δLext (13)
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where δLint is the virtual variation of the strain energy and δLext is the virtual variation of the work

of the external loads. The virtual variation of the internal work can be expressed as:

δLint =

∫
V
δϵTσ dV (14)

where V is the initial volume of the undeformed structure. Introducing the geometrical (Eq. (8))

and constitutive relations (Eq. (12)) into Eq. (13), a set of nonlinear algebraic equation occurs.

The Newton-Raphson incremental linearized scheme is employed as in Pagani and Carrera [26] and

Carrera et al. [29]. The linearized strain-displacement operators and stress-strain relations are

δ(δLint) =

∫
V
δ(δϵTσ) dV

=

∫
V
δϵT δσ dV +

∫
V
δ(δϵT )σ dV

=

∫
V
δϵTCcepδϵ dV +

∫
V
δ(δϵT )σ dV

(15)

where Ccep is the elastoplastic tangent modulus (see [28, 37] for more details). Note that evaluating

the second contribution on the right-hand side requires the linearization of the nonlinear geometrical

relations. This term results in the geometric stiffness matrix Kσ, which is not derived here for the

sake of brevity, but interested readers are referred to [27]. By substituting the geometrical (Eq. (8))

and constitutive relations (Eq. (12)) into Eq. (15), the linearization of the internal strain energy

holds

δ(δLint) = δqT
sj k

ijτs
T qτi

(16)

where kijτs
T is the fundamental nucleus of the tangent stiffness matrix.

Using the Newton-Raphson linearization method, the resultant system of equations needs to be

constrained. In this work, an arc-length path-following constraint is adopted. More details about

the arc-length method adopted can be found in the works by Carrera [38] and Crisfield [39, 40].

4 Numerical results

The numerical results focus on three types of beam cross-sections: square, C-shaped, and T-shaped.

For the C-shaped and T-shaped beams, the results of equilibrium curves are compared with the
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available literature. Additionally, the stress distributions obtained by the various structural theories

based on TE and LE models are discussed for the first numerical case, i.e. beam with a rectangular

cross-section. Geometrical nonlinearity is considered in each assessment, and the assumed material

behaviour is denoted using the labels elastic and elastoplastic.

4.1 Square beam

This section focuses on a square cantilever beam with a length of 1000 mm. The beam has an

upward tip force at the free end; see Fig. 2. The properties of the material for this case are in Table

1: σ0 and Et are the yield stress and tangent modulus of the material with a bilinear stress-strain

relation, respectively.

yz

P

x

z
1000

P

20

Figure 2: Schematic view of the square beam, all dimensions are in millimeters (mm)

Table 1: Material properties of the square beam

Material property Value

Young’s modulus E = 75 GPa

Tangent modulus Et = E/10

Poisson’s ratio ν = 0.33

Yield stress σy = 500 MPa

The convergence analysis of equilibrium curves for the elastic case is in Fig. 3 with the applied

force versus the vertical displacement of the square beam’s tip end (0, 1000, -10). The first analysis

case considered 20B4 elements along the beam axis, with 2L4, 1L9, and 4L9 over the cross-section.

For the second analysis case, the cross-section expansion is 1L9, while the beam axis discretization

ranges from 2B4 to 20B4. As 20B4 guarantees converged results, the subsequent analysis focuses

on the effect of structural theories on equilibrium curves and stress distributions while keeping the

finite element mesh constant. Table 2 shows the computational size of various models in terms of

the number of DOF and the analysis time. The equilibrium curves for the elastic and elastoplastic
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cases, as predicted using 1D CUF and reference 3D FE models, are in Fig. 4. Furthermore, Fig. 5

compares the two cases to highlight the effect of plasticity on the curves.
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Figure 3: Convergence analysis of equilibrium curves for the square beam with elastic behavior (a)
effect of the structural theory (b) effect of the FE discretization

Table 2: Computational size of various models for the square beam

Model DOF Computational time∗ (s)

ABQ-3D Coarse 1869 83

ABQ-3D Medium 11001 194

ABQ-3D Refined 44085 546

CUF-1D (LE: 4L9) 4575 56

CUF-1D (LE: 9L9) 8967 101

CUF-1D (LE: 16L9) 14823 171

CUF-1D (TE: N=1) 549 138

CUF-1D (TE: N=2) 1098 483

CUF-1D (TE: N=3) 1830 2125

∗ The reported run-times refer to elastoplastic analyses performed

on a laptop PC using a single core

The axial (σyy) and transverse shear (σyz) stress components, along the middle line of the cross-

section (z-axis) near the clamped edge (y=75 mm) and at a load of 1100 N, are plotted in Fig. 6 and

Fig. 7, respectively, for the case of the elastoplastic material. Similarly, the 2D stress distribution
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Figure 4: Equilibrium curves for the square beam based on various structural theories (a) elastic
material (b) elastoplastic material
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Figure 5: Effect of plasticity on equilibrium curves for the square beam (a) complete view (b)
detailed view of plasticity initiation

11



of the two stress components at the same cross-section is shown in Fig. 8 and Fig. 9, respectively.

Table 3 shows the transverse displacement (uz) at the tip point of the beam (0, 1000, -10), the axial

stress at (0, 75, 10), and the transverse shear stress at (0, 75, 0).
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Figure 6: σyy at F=1100 N, x=0, y=75 mm of the square beam considering (a) elastic behavior of
material (b) elastoplastic behavior of material
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Figure 7: σyz at F=1100 N, x=0, y=75 mm of the square beam considering (a) elastic behavior of
material (b) elastoplastic behavior of material
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(a) (b)

Figure 8: 2D contour plots of σyy (Pa) with F=1100 N and y=75 mm of the square beam for the
elastoplastic material based on (a) CUF-1D (LE: 16L9) (b) ABQ-3D Refined models

(a) (b)

Figure 9: 2D contour plots of σyz (Pa) with F=1100 N and y=75 mm of the square beam for the
elastoplastic material based on (a) CUF-1D (LE: 16L9) (b) ABQ-3D Refined models
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Table 3: uz at the tip point of the square beam (0, 1000, -10), σyy at (0, 75, 10), and σyz at (0, 75,
0), with F=1100 N

Elastic Elastoplastic

Model uz (mm) σyy (MPa) σyz (MPa) uz (mm) σyy (MPa) σyz (MPa)

ABQ-3D Coarse 328.4 -717.3 4.6 366.0 -632.0 2.8

ABQ-3D Medium 325.5 -719.9 5.5 363.4 -548.9 5.1

ABQ-3D Refined 324.5 -723.1 4.0 361.2 -553.0 4.8

CUF-1D (LE: 4L9) 321.6 -633.0 4.2 356.9 -552.1 6.5

CUF-1D (LE: 9L9) 321.7 -660.1 3.6 357.5 -544.9 3.8

CUF-1D (LE: 16L9) 321.7 -672.9 3.8 357.8 -541.0 5.2

CUF-1D (TE: N=1) 323.8 -404.5 2.7 331.1 -405.2 2.7

CUF-1D (TE: N=2) 322.5 -540.6 2.9 370.6 -524.9 3.3

CUF-1D (TE: N=3) 322.0 -599.5 3.6 359.8 -547.7 3.5

The following comments can be made according to the results of this section:

1. The convergence analysis for the equilibrium curves shows that, for the force-displacement

curves, at least 10B4 and 1L9 are necessary.

2. Although CUF requires fewer DOF than 3D solid models, the equilibrium curves based on the

1D CUF LE models match well with the results obtained with 3D FE models.

3. All LE and TE models can predict the large displacements of the compact square beam within

the elastic regime. However, lower-order TE models (N = 1,2) are not accurate enough when

the load exceeds the yield limit.

4. A considerable difference near the bottom and the beam cross-section’s top surface is visible

between the axial stress distributions from lower-order models or coarse 3D meshes and refined

models. Also, such differences seem more significant in the elastoplastic case and due to the

presence of local plasticity requiring more complex kinematics modelings. In other words,

the necessity of advanced structural theories for the elastoplastic problems is higher than the

elastic case. Such requirements are even more stringent in the case of transverse shear stresses.
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4.2 C-shaped beam

This section focuses on a C-shaped cantilever beam with a length of 900 cm [9], and is loaded by

a point force at the free end, see Fig. 10. The properties of the material for this case are in Table

4, where σ0 refers to the yield stress of elastic, perfectly-plastic material [16]. For all the following

analyses, a 20B4 mesh was used.

Table 4: Material properties of the C-shaped beam

Material property Value

Young’s modulus E=210 GPa

Poisson’s ratio ν=0.3

Yield stress σy=360 MPa

yz
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z

900

P

10

15

15

30

1.6

Figure 10: Schematic view of the C-shaped beam, all dimensions are in centimeters (cm)

Table 5 presents the various numerical models used for the current case. For the case of thin-walled

structures with local deformation, the use of TE necessitates very high orders, and LE tends to be

the preferable option [35]. The transverse displacement was evaluated at the point (0, 900, -15)

to plot the equilibrium curves. Figure 11 compares the equilibrium curves for both the elastic and

elastoplastic cases, obtained from the 1D-CUF (LE) model and reference numerical results from

[16]. The 3D contour plots of displacement magnitude predicted by 1D CUF and 3D FE models are

shown in Fig. 12.
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Table 5: Computational size of various models for the C-shaped beam

Model DOF Computational time∗ (s)

ABQ-3D Coarse 9867 419

ABQ-3D Medium 125814 1193

ABQ-3D Refined 245049 2911

CUF-1D (LE: 5L9) 6039 322

CUF-1D (LE: 8L9) 9333 421

CUF-1D (LE: 13L9) 14823 730

∗ The reported run-times refer to elastoplastic analyses performed

on a laptop PC using a single core
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Figure 11: Equilibrium curves of the C-shaped beam with different material behaviors. Reference
numerical results from [16]

The axial and transverse shear stresses along the z-axis at the point x=0, y=75 cm, for uz=100 cm,

are plotted in Figs. 13 and 14, respectively. Furthermore, for the elastoplastic material, the 2D

contour plots of axial and transverse shear stresses for the corresponding cross-sections are shown in

Figs. 15 and 16, respectively. Table 6 presents the axial stress σyy at (0, 75, 15), and the transverse

shear stress σyz at (0, 75, 0), for uz=100 cm.
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(a) (b)

Figure 12: 3D contour plots of the displacement (m) for the elastoplastic material, C-shaped beam
based on (a) CUF-1D (LE: 13L9) (b) ABQ-3D Refined models
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Figure 13: σyy at x=0, y=75 cm for uz=100 cm, C-shaped beam, considering (a) elastic material
(b) elastoplastic material
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Figure 14: σyz at x=0, y=75 cm for uz=100 cm, C-shaped beam, considering (a) elastic material
(b) elastoplastic material

(a) (b)

Figure 15: 2D contour plots of σyy for uz=100 cm, at y=75 cm, elastoplastic material, C-shaped
beam based on (a) CUF-1D (LE: 13L9) (b) ABQ-3D Refined models
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(a) (b)

Figure 16: 2D contour plots of σyz for uz=100 cm, at y=75 cm, elastoplastic material, C-shaped
beam based on (a) CUF-1D (LE: 13L9) (b) ABQ-3D Refined models

Table 6: σyy at (0, 75, 15), and σyz at (0, 75, 0), for the C-shaped beam based on various structural
theories and 3D FE discretizations for uz=100 cm

Elastic Elastoplastic

Model σyy (MPa) σyz (MPa) σyy (MPa) σyz (MPa)

ABQ-3D Coarse -254.5 9.8 -249.2 6.6

ABQ-3D Medium -249.5 11.6 -235.1 7.6

ABQ-3D Refined -249.3 11.1 -236.9 7.1

CUF-1D (LE: 5L9) -251.1 6.4 -247.1 4.0

CUF-1D (LE: 8L9) -249.9 11.7 -242.0 7.6

CUF-1D (LE: 13L9) -251.0 11.4 -238.0 7.2

The following comments can be made based on the results of this section:

1. The equilibrium curves based on the LE 13L9 model match well with the results obtained

by Battini and Pacoste [16]. As known from previous works, classical and TE models cannot

accurately predict the C-shaped beam’s large displacements for either elastic or elastoplastic

materials.

2. For the shear stress, the CUF-1D (LE: 5L9) and ABQ-3D Coarse models do not provide

accurate results.
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3. The DOF required by the 1D CUF models is one order of magnitude lower than that of 3D

FE.

4.3 T-shaped beam

This section focuses on a T-shaped cantilever beam with a length of 1200 mm [16]. The free tip is

loaded with a transverse force (P) and a lateral load F=P/1000, see Fig. 17. The properties of the

material for this case are in Table 7, where σ0 and Et refer to the yield stress and tangent modulus

of the material with a bilinear stress-strain relation, respectively [16].

Table 7: Material properties of the T-shaped beam

Material property Value

Young’s modulus E=70 GPa

Tangent modulus Et=E/10

Poisson’s ratio ν=0.33

Yield stress σy=500 MPa
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Figure 17: Schematic view of the T-shaped beam, all dimensions are in millimeters (mm)

Table 8 presents the computational size of all models adopted in the present assessment. Three

CUF models are considered, with 5L9, 7L9, and 9L9 over the cross-section, respectively, and are

discretized with 20B4 along the beam axis. The equilibrium curve predicted by the CUF model with

9L9 is plotted in Fig. 18, along with reference numerical results from [16]. A detailed view of the

equilibrium curve is presented in Fig. 19. The 3D contour plots of the displacement are shown in

Fig. 20, for a load value of 3400 N. The 2D contour plots of axial and shear stress components, for a

load value of 3400 N, through the beam cross-section near the clamped edge (y=100 mm) are shown

in Fig. 21 and Fig. 22, respectively. Table 9 lists the transverse displacement uz at the free tip of
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the beam (0, 1200, 30), the axial stress σyy at (0, 100, 33), and the shear stress σyz at (0, 100, 0),

for a load value of 3400 N.

Table 8: Computational size of various numerical models used for the T-shaped beam

Model DOF Computational time∗ (s)

ABQ-3D Coarse 9393 241

ABQ-3D Medium 18453 477

ABQ-3D Refined 60549 1459

CUF-1D (LE: 5L9) 6039 142

CUF-1D (LE: 7L9) 8235 364

CUF-1D (LE: 9L9) 10431 484

∗ The reported run-times refer to elastoplastic analyses performed

on a laptop PC using a single core.
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Figure 18: Equilibrium curves obtained from the CUF-1D (LE: 9L9) model considering elastic and
elastoplastic material behavior. Reference numerical results from [16]
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Figure 19: Detailed view of the plasticity initiation for the T-shaped beam (a) force-vertical dis-
placement (uz) curve (b) force-lateral displacement (ux) curve

(a) (b)

Figure 20: 3D contour plots of the displacement (m) at the load of 3400 N for elastoplastic material
based on (a) CUF-1D (LE: 9L9) (b) ABQ-3D Refined models

(a) (b)

Figure 21: 2D contour plots of σyy (Pa) at the load of 3400 N near the clamped edge (y=100 mm)
for the elastoplastic material based on (a) CUF-1D (LE: 9L9) (b) ABQ-3D Refined models
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(a) (b)

Figure 22: 2D contour plots of σyz (Pa) at the load of 3400 N near the clamped edge (y=100 mm)
for the elastoplastic material based on (a) CUF-1D (LE: 9L9) (b) ABQ-3D Refined models

Table 9: uz at (0, 1200, 30), σyy at (0, 100, 33), and σyz at (0, 100, 0), T-shaped beam based at the
load of 3400 N

Elastic Elastoplastic

Model uz (mm) σyy (MPa) σyz (MPa) uz (mm) σyy (MPa) σyz (MPa)

ABQ-3D Coarse 122.2 264.7 -9.8 131.9 279.7 -10.7

ABQ-3D Medium 123.9 270.3 -10.4 133.4 286.9 -11.0

ABQ-3D Refined 126.5 279.5 -10.9 135.4 298.8 -12.4

CUF-1D (LE: 5L9) 121.7 259.9 -10.5 128.8 281.7 -10.8

CUF-1D (LE: 7L9) 123.0 261.5 -10.9 129.3 282.9 -12.1

CUF-1D (LE: 9L9) 124.1 267.9 -11.4 130.6 285.4 -12.5

The following comments can be made according to the results of this section:

1. The results for the T-shaped have similar characteristics to those of the C-shaped one.

2. Both transverse and lateral displacements were well captured. The latter, in particular, has a

highly nonlinear equilibrium curve, necessitating a refined numerical model.

3. Stress distributions present high gradients along the cross-section and, in particular, the accu-

rate modeling of shear stress requires refined 3D meshes or refined 1D CUF LE models.

5 Conclusions

The current work presents an investigation of compact and thin-walled isotropic beams considering

both geometrical and physical nonlinearity. The focus is on using refined 1D structural theories
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based on the Carrera Unified Formulation (CUF). For the first time, the geometrical and material

nonlinearities have been considered simultaneously. Square, C-shaped, and T-shaped beams have

been considered, and the results are presented in terms of equilibrium curves and stress distribu-

tions. Comparisons with results from literature and FE finite elements were made. The use of

Lagrange-based 1D models has led to the same accuracy of 3D FE regarding equilibrium paths,

displacement, and stress distributions. However, the use of 1D models can reduce the computational

cost considerably as one order of magnitude fewer DOF was required. Future extensions should

focus on high-velocity impact problems and progressive failure of composite structures.
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