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Abstract

A novel metric – the Mean Temperature Difference (MTD) – is proposed for the selection of urban-rural pairs

of stations needed in the Urban Heat Island (UHI) quantification. This metric highlights the thermal pattern

typical of each weather station with respect to the average one of the area of interest. Afterwards, Principal

Component Analysis is adopted to cluster stations into subsets exhibiting similar thermal behaviors. The

joint use of MTD and PCA allows one to classify stations objectively and without the need of preliminary

assumptions about the station landscapes. An application to the metropolitan area of Turin (Italy) and a

comparison with validated methods to select urban-rural pairs demonstrate that the proposed approach is

easily interpretable and reliable also when the study area exhibits a non-trivial landscape categorization.

Keywords: Urban Heat Island, urban-rural pairs, MTD

1. Introduction1

The meteorological phenomenon known as Urban Heat Island (UHI) is one of the main effects produced2

by increasing urbanization (Landsberg, 1981; Tzavali et al., 2015) and a significant example of anthropogenic3

climate modification (Arnfield, 2003). UHI refers to the warmer temperatures experienced by a city with4

respect to its rural surrounding area, mainly due to the different thermal properties between urbanized and5

natural lands, anthropogenic heat emissions, human-induced pollution and limited wind blowing among6

buildings (Oke, 1973, 1976; Rizwan et al., 2008). In the long and well-documented urban heat island7

literature (Stewart, 2011), UHI has been commonly quantified as the difference, in terms of air temperatures,8

between pairs of urban and rural measurement sites (Oke, 1973; Kim and Brown, 2021) or between a spatial9

average of several urban and/or several rural stations (e.g., Hoffmann and Schlünzen, 2013). This difference10
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1 INTRODUCTION

is crucial in determining the UHI intensity and requires choosing a non trivial definition of which stations are11

"urban" and "rural". In his work, Stewart (2007) highlighted the difficulty in the definition of the urban-rural12

dichotomy, because the demarcation between "urban" and "rural" is artificial and many relevant local-scale13

aspects should be taken into account. Recent studies tried to address this critical issue by proposing new14

methods that (i) highlight different thermal behaviors in urban-rural pairs – e.g., the approaches based on the15

thermal day-to-day variation (Karl et al., 1995; Gough, 2008; Mohsin and Gough, 2012; Tam et al., 2015; Wu16

et al., 2017; Anderson et al., 2018) or the mean daily excursion (Milelli, 2016) – or (ii) identify the stations17

called "peri-urban", i.e. those located close to the urban-rural interface, by focusing on the day-to-day warm18

and cold transitions (Gough, 2020).19

Another important approach to classify the stations is the Local Climate Zones (LCZs) Classification20

System proposed by Stewart and Oke (2012). By using criteria concerning aspects that control the local21

surface climates, this climate-based tool classifies the landscape (i.e., a local-scale area of land) in 17 regions22

characterized by uniform surface cover, structure, material and human activity. The classification covers23

both built and natural environments and each zone is characterized by a distinctive near-surface temperature24

regime.25

Despite the variety of methods, a key point is that all of them need a preliminary classification of the26

stations. In order to overcome this possible source of arbitrariness, we propose a novel method, which we27

call the "Mean Temperature Difference" (hereinafter MTD). The MTD is a data-based approach aiming to28

recognize and differentiate the thermal behavior of the urban context with respect to its surrounding less29

populated area. The former is different – in terms of thermal response – from the latter, mainly because of30

its predominantly impervious land cover type and the presence of sheltering constructions, which trap heat31

during the day and release it during the night resulting in higher night-time temperatures.32

The strength of the proposed MTD method is the capability to objectively identify these different thermal33

behaviors, without assuming a priori which sites pertain to the urban and rural categories. In this sense, the34

MTD approach can complete and be of support to the Local Climate Zones Classification. In fact, as stated by35

Stewart and Oke (2012), the intention of the LCZs is not to supplant the categories "urban" and "rural" in the36

heat island issues, but to provide a more conscious and constrained use of these categories when describing37

the local conditions of the stations.38

Starting from a group of stations – heterogeneous in terms of LCZs – and adopting the Principal39

Component Analysis (Jolliffe and Cadima, 2016) as a clustering method, the proposed approach is able to40

objectively and clearly identify the different thermal behavior of the stations. It allows a clear distinction of41

what is the typical "urban" pattern, the different "rural" one and also what does not fall into either categories.42
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2 PROPOSED METHOD

No choice about whether a site is "urban" or "rural" is made a priori and no parameters to calibrate enter the43

procedure, so that its results are clear, immediate and easy to apply. This makes the method objective, totally44

data-based and unrelated to any preliminary landscape classification.45

To show the features of the proposed method, we apply it to the city of Turin (Italy) and its surrounding46

area, which is characterized by a quite complex morphology (orographic and hydrographic heterogeneity,47

different land uses, etc.), making it suitable to test the proposed metric.48

The paper is organized as follows. Section 2 describes the MTD metric. Section 3 reports the results of49

the application of the proposed method to Turin area and highlights its advantages. In Section 4 we discuss50

the applicability of the MTD. Section 5 shows the comparison of the MTD-based approach with existing51

methods to select proper urban-rural pairs. Finally, some conclusions are drawn.52

2. Proposed method53

The idea behind the MTD metric is to detect similar behaviors among stations and it is based on two main54

steps: (i) the evaluation of a metric characterizing the thermal behavior of each measurement site, and (ii)55

the adoption of the Principal Component Analysis (Jolliffe, 2002; Wilks, 2011), in order to capture common56

performances of such metric and to cluster the stations into distinct groups.57

We start describing the first step. The variable considered for each weather station 𝑆 is the monthly-58

averaged hourly temperature 𝑇𝑆
𝑖,𝑀 , where subscripts 𝑖 = 1, 2, .., 24 and 𝑀 = 𝐽𝑎𝑛, 𝐹𝑒𝑏, ..., 𝐷𝑒𝑐 refer to the59

hours and months, respectively. For example, the monthly temperature value at 01:00 hours for January (i.e.,60

𝑇𝑆
1,𝐽𝑎𝑛) refers to the climatological average over all years of all the temperatures of January registered at61

01:00. The metric MTD is defined, for each hour 𝑖, each month 𝑀 and each station 𝑆, as:62

MTD𝑆
𝑖,𝑀 = 𝑇𝑆

𝑖,𝑀 − 𝑇𝑆
𝑖,𝑀 − ⟨𝑇𝑆

𝑖,𝑀 − 𝑇𝑆
𝑖,𝑀⟩ (1)

in which the overbar refers to a temporal average over all months and hours of 𝑇𝑆
𝑖,𝑀 , and ⟨·⟩ represents the63

spatial mean among all stations included in the study area (i.e., ⟨·⟩ = ∑
𝑗 (𝑇𝑖,𝑀 ) 𝑗/𝑁𝑆 , where 𝑗 ranges from64

1 to the number of stations 𝑁𝑆). The first two terms at the right-hand side of Eq. (1) define the anomaly of65

temperatures at each hour and month compared to their temporal average for that station. The last two terms66

remove the mean anomaly across all stations for that hour and month. Positive values of MTD indicate that67

the station 𝑆, at a certain hour and month, is characterized by higher air temperature anomalies than the mean68

of the other stations, while the opposite occurs for negative MTD.69

In the second step of the proposed method, the MTD values are organized in a matrix to which the70

Principal Component Analysis (PCA) is applied. The matrix (hereinafter MTD) has dimensions 288x𝑁𝑆:71
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3 CASE STUDY: TURIN (ITALY)

its rows contain the values MTD𝑖,𝑀 corresponding to the 24 hours for every month (24x12=288), and each72

column refers to a station 𝑆: therefore, MTD defines a cloud of 288 points in a 𝑁𝑆-dimensional space.73

PCA is commonly used in the atmospheric science and it is considered a robust tool in climatology and74

meteorology (e.g., Lorenz, 1956; Hannachi et al., 2007; Demšar et al., 2013). As described by Wilks (2011),75

this mathematical technique aims at reducing the dimensionality of a large set of data to another data set, which76

contains a linear combination of the original variables. The analysis can be conducted on the correlation77

matrix or on the covariance matrix. PCA applied to the correlation matrix weights all the standardized78

variables equally, because all have variance equal to the unity; instead, the analysis on the covariance matrix79

emphasizes the principal components having the largest variances (Wilks, 2011). Therefore, we performed80

PCA on the covariance matrix of MTD so that the information about the variance is included in the clustering81

of stations. PCA arranges the original dimensions of the data matrix MTD onto a new orthogonal space, such82

that the new axes are oriented in the directions explaining largest variance in the data. These new directions83

are called principal components and they are chosen in such a way that the greatest variance of the data lies84

along the first direction (namely, the first principal component), the second greatest variance on the second85

direction, and so on. The principal components correspond to the eigenvectors of the covariance matrix of86

MTD, while the eigenvalues are a proxy of the variance explained along each principal direction. It follows87

that, ordering the eigenvalues in descending order from largest to smallest, it is likely that the subspace88

mapped by the first 𝑚 principal directions explains most of the variability of the data contained in the MTD89

matrix. That is, it is sufficient to consider this 𝑚-dimensional subspace to describe the main features of the90

original 𝑁𝑆-dimensional space. The quality of the description provided by the 𝑚-th subspace can be assessed91

by comparing the sum of the 𝑚 eigenvalues – corresponding to the 𝑚 eigenvectors considered – and the92

cumulated variance explained by all the eigenvectors, computed as the sum of all eigenvalues. Typically, in93

the present application the first two principal components (i.e., 𝑚=2) were sufficient to describe the thermal94

behavior of the stations, allowing to cluster them on a simple plane. As a consequence, the interpretation of95

the analysis is straightforward and objective.96

3. Case study: Turin (Italy)97

3.1. Stations and data98

Turin is located in the North-West region of Italy, at latitude 45.071 N and longitude 7.687 E. The99

metropolitan area of Turin has a population of almost 1.5 million inhabitants, covering an area of about 600100

km2. The city is at about 100 km (air distance) far from the highest peak of the Alps, at a mean elevation101
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3.1 Stations and data 3 CASE STUDY: TURIN (ITALY)

above the sea level of 250 meters and it is surrounded by hills up to 600 m high in the Eastern sector, as102

shown in Fig. 1a.103

Figure 1: Panel (a): terrain map of the metropolitan area of Turin (North-West of Italy, in the inset), with the principal

rivers highlighted in blue and the urbanized area represented in gray. The distance in kilometers of each weather station

(black dots) from the city center (red dot, Piazza Castello: lat 45.071 N, lon 7.687 E) is marked with the black dashed

isolines, while the colored continuous isolines indicate the elevation above the sea level (meters). Panel (b): LCZ map

of the studied area, from Demuzere et al. (2020) (WUDAPT database, Ching et al., 2018).

The Po river flows in the South-East of the city and separates the most urbanized area, which is mainly104

located on the western bank of the river, from the hills in the East (see Fig. 1a). The Köppen Climate105

Classification (Köppen and Geiger, 1936) puts Turin into the Humid Subtropical Climate, namely Cfa (C =106

warm temperature, f = fully humid, a = hot summer). According to this, the climate in Turin is warm and107

temperate with significant rainfall all over the year. The 11 stations considered in the analysis (see Tab. 1)108

provide hourly near-surface temperature data. They belong to the network of the Regional Agency for the109

Protection of the Environment of Piedmont Region (Arpa Piemonte) and are distributed around the city of110

Turin, with about 20km as maximum distance from the city center (see Fig. 1a). For this study, the selected111

stations are chosen on the basis of the longest temporal series available, from January 1𝑠𝑡 , 2007 to December112

31𝑠𝑡 , 2020 (14 years).113

According to the Local Climate Zones (LCZ) map (see Fig. 1b), provided for Europe at 100m spatial114

resolution by Demuzere et al. (2019, 2020) (WUDAPT database, Ching et al., 2018), six stations fall under the115

"Built types" category of Stewart and Oke (2012): Consolata (LCZ2con), Rivoli (LCZ6riv), Alenia (LCZ8ale),116

Vallere (LCZ8val), Venaria Ceronda (LCZ8vec) and Reiss Romoli (LCZ8rer). The stations of Santena-Banna117

(LCZBsan), Venaria La Mandria (LCZBvem), Bauducchi (LCZDbau), Carmagnola (LCZDcar) and Caselle118
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3.2 Results: Urban Heat Island 3 CASE STUDY: TURIN (ITALY)

Table 1: Weather stations for the temperature measurements used in the analysis, sorted alphabetically by their short

names, with lat-lon coordinates in decimal degrees, elevation above the sea level (a.s.l., meters) and Local Climate

Zones types and definitions (from Stewart and Oke, 2012).

Station name
Station Lat Lon Elevation LCZ type and

short name (N) (E) (m a.s.l.) definition

Consolata LCZ2con 45.0758 7.6783 290 2: Compact midrise

Rivoli LCZ6riv 45.0800 7.4989 362 6: Open low-rise

Alenia LCZ8ale 45.0797 7.6108 320 8: Large low-rise

Vallere LCZ8val 45.0181 7.6750 239 8: Large low-rise

Venaria Ceronda LCZ8vec 45.1353 7.6325 253 8: Large low-rise

Reiss Romoli LCZ8rer 45.1125 7.6708 270 8: Large low-rise

Santena-Banna LCZBsan 44.9447 7.7819 238 B: Scattered trees

Venaria La Mandria LCZBvem 45.1750 7.5592 337 B: Scattered trees

Bauducchi LCZDbau 44.9610 7.7086 226 D: Low plants

Carmagnola LCZDcar 44.8861 7.6861 232 D: Low plants

Caselle LCZDcas 45.1856 7.6508 300 D: Low plants

(LCZDcas) are categorized as "Land cover types" (Stewart and Oke, 2012), as shown in Tab. 1.119

However, the LCZ classification is sometimes the result of unsupervised choices and may lead to assign-120

ments which not always match the analysts’ expertise. In the following section, the stations are reexamined121

in light of the MTD approach. It emerges that sometimes the LCZs are too local to fully characterize the122

thermal behavior of the sites and do not consider the effects induced by local surrounding conditions or the123

large-scale context around a station, e.g., the distance to the city center or the proximity to the reliefs.124

3.2. Results: Urban Heat Island125

The MTD patterns obtained from Eq. (1) are shown in Fig. 2. The emerging patterns already feature126

common behavior among groups of stations at a first glimpse. Firstly, three stations – Consolata (LCZ2con),127

Reiss Romoli (LCZ8rer) and Alenia (LCZ8ale) – show a central cold area, characterized by negative MTD128

values during daytime, while at night hours the temperature anomalies are positive (see the first row of Fig.129

2). Secondly, the stations Caselle (LCZDcas), Rivoli (LCZ6riv) and Vallere (LCZ8val), displayed in the130

second row of Fig. 2, do not show a well defined hot/cold blob. Finally, in the remaining panels of Venaria131

Ceronda (LCZ8vec), Venaria La Mandria (LCZBvem), Bauducchi (LCZDbau), Santena-Banna (LCZBsan)132

and Carmagnola (LCZDcar) an inverse pattern clearly emerges, characterized by positive MTD values during133

daytime and negative ones during night times.134
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3.2 Results: Urban Heat Island 3 CASE STUDY: TURIN (ITALY)

LCZ2con LCZ8rer LCZ8ale

LCZDcas LCZ6riv LCZ8val LCZ8vec

LCZBvem LCZDbau LCZBsan LCZDcar

MTD (°C)

Figure 2: Mean Temperature Difference (MTD): each panel, labeled with the short name associated to each weather

station 𝑆, represents the MTD𝑆
𝑖,𝑀 computed with Eq. 1 (hours 𝑖 are reported on the y-axis and months 𝑀 on the x-axis).

Figure 3 shows the results of the applications of the Principal Component Analysis to the MTD matrix,135

allowing the different behaviors of the stations to be distinguished. As described in Section 2, the first two136

principal components clearly emerge. In Fig. 3a the percentage of the explained variance is plotted on the left137

y-axis, while its cumulative values are represented as the right ordinate. The first two principal components138

(p.c.) explain most of the variance in the data (about ≃ 92%) and so they are sufficient to cluster the stations:139

in particular, the first p.c. accounts for ≃ 74%, while the second p.c. for about 18%. The projection of each140

station onto the first and the second principal components are reported along the x- and y-axis of Fig. 3b,141

respectively.142

The physical meaning of these principal components is clear looking at panels (c) and (d) of Fig. 3,143

showing the two signals. Let us focus on the signal described by the first principal component (Fig. 3c). It144

is characterized by negative temperature anomalies during daytime hours and positive ones during evening145
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3.2 Results: Urban Heat Island 3 CASE STUDY: TURIN (ITALY)

(d)(c)

(a) (b)

Figure 3: PCA on the matrix MTD: (a) percentage of explained variance for each of the 11 components (blue dots, left

axis) and their cumulative values (red asterisks, right axis); (b) space of the first (x-axis) and second (y-axis) principal

components; (c),(d) representation of the two principal components of the MTD (color scales in degrees Celsius).

and night. This is the typical pattern embedded in the Urban Heat Island phenomenon: in the morning146

and early-afternoon, the UHI is low and can even become negative in some cases (Memon et al., 2009),147

resulting in the so-called daytime Urban Cool Island (Theeuwes et al., 2015). Then, when the solar radiation148

decreases, the urban area retains more heat and cools more slowly than the rural surroundings (Theeuwes149

et al., 2017), resulting in positive anomalies of temperatures. We deduce from this pattern that the first150

principal component – which corresponds to the highest eigenvalue (≃ 74% of explained variance) – refers to151

the most evident characteristic differentiating the stations: urban vs. rural thermal behavior. The projection152

of each station onto the first principal component (x-axis of Fig. 3b), either it is positive or negative,153

determines whether a site is characterized by one or the other thermal behavior: the stations of Consolata154

(LCZ2con), Reiss Romoli (LCZ8rer) and Alenia (LCZ8ale) are characterized by substantially positive values,155
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3.2 Results: Urban Heat Island 3 CASE STUDY: TURIN (ITALY)

while negative projections correspond to Venaria La Mandria (LCZBvem), Venaria Ceronda (LCZ8vec),156

Carmagnola (LCZDcar), Santena-Banna (LCZBsan) and Bauducchi (LCZDbau). Instead, an almost null157

projection onto the first p.c. means that the thermal behavior cannot be assigned to urban or rural patterns.158

This is the case of Rivoli (LCZ6riv), Caselle (LCZDcas) and Vallere (LCZ8val).159

The general pattern described by the first p.c. (Fig. 3c) can be made station-specific by multiplying160

it by the projection of the station of interest onto the first principal component, thanks to the fact that the161

principal components form an orthonormal base. As an example, consider two stations characterized by a162

positive and a negative projection onto the first p.c., namely Consolata (LCZ2con, positive) and Carmagnola163

(LCZDcar, negative), and examine one temporal slot, e.g., 01UTC in January. We define 𝐸𝑃𝐶
𝑖,𝑀 as the164

value corresponding to the considered instant in time (hour 𝑖 = 1 and month 𝑀 = 𝐽𝑎𝑛), derived from the165

representation of the first principal component (𝑃𝐶 = 1) in Fig. 3c: 𝐸𝑃𝐶=1
1,𝐽𝑎𝑛 = 1.63. The value of the166

projection of Consolata onto the first principal component is 0.54 (see Fig. 3b). The MTD associated with167

this station is MTDLCZ2con
1,𝐽𝑎𝑛 = 0.90◦C (see panel LCZ2con in Fig. 2), and it can be obtained by multiplying168

𝐸1
1,𝐽𝑎𝑛 by 0.54: MTDLCZ2con

1,𝐽𝑎𝑛 ≃ 1.63 · 0.54 = 0.88◦C. The centesimal digits missing for obtaining the exact169

value 0.90◦C (in Fig. 2) derive from the additional contribution of the other principal components. To sum up,170

at 01UTC in January the temperature at Consolata is ≃ 0.90◦C warmer than the average of all other stations.171

This behavior reflects the UHI effect and it is mainly due to the urban characteristics of this site, which is172

confirmed also by its LCZ class. Instead, the station of Carmagnola is characterized by a negative projection173

onto the first principal component, equal to −0.35 (Fig. 3b): MTDLCZDcar
1,𝐽𝑎𝑛 ≃ 1.63 · (−0.35) = −0.57◦C. As174

above, a good approximation of the actual MTDLCZDcar
1,𝐽𝑎𝑛 = −0.38◦C displayed in Fig. 2 would be obtained175

adding 𝐸2
1,𝐽𝑎𝑛 · (−0.25), where (−0.25) is the projection of Carmagnola onto the second principal component176

(Fig. 3b).177

The previous example shows that the correspondence between the projection of the stations onto the178

first principal component and their thermal pattern is very clear. A first group, characterized by positive179

projections (LCZ2con, LCZ8rer and LCZ8ale), resembles exactly the signal shown in Fig. 3c, where warmer180

temperatures are experienced during night. Therefore, its thermal behavior is associated with a typical urban181

pattern in the UHI effect, as already discussed by Milelli (2016) and Garbero et al. (2021). The LCZ-based182

classification assigned to the stations belonging to this group confirms these findings, since the combined183

effect of buildings and the mostly paved surface cover – typical of LCZ classes number 2 and 8 – greatly184

influences the surface energy and radiation balance (Oke, 1982).185

A second group of stations exhibits the opposite temperature pattern with respect to the one shown in186

Fig. 3c, having a negative projection onto the first p.c.: LCZBvem, LCZ8vec, LCZDcar, LCZBsan and187
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3.2 Results: Urban Heat Island 3 CASE STUDY: TURIN (ITALY)

LCZDbau. We associate this thermal pattern with the rural surroundings of the city, characterized by colder188

temperatures during the night and by higher early morning heating rate than over the city (Johnson, 1985;189

Theeuwes et al., 2015). As before, some considerations can be drawn in light of the LCZs assignment. In190

agreement with the authors’ expertise, the described rural thermal pattern is coherent with the land cover types191

B (scattered trees) and D (low plants) associated with the stations of Santena-Banna (LCZBsan), Venaria La192

Mandria (LCZBvem), Bauducchi (LCZDbau) and Carmagnola (LCZDcar). Note that LCZBsan, LCZDbau193

and LCZDcar were adopted as rural stations also in Milelli (2016) and Garbero et al. (2021). However, the194

LCZs assignment of Venaria Ceronda (LCZ8vec), namely the "Large low-rise" built type, seems too local195

to fully characterize its rural thermal pattern emerging from PCA. Actually, the LCZ class number 8 would196

relate this station to a mostly paved surface with few or no trees, but the PCA shows that its thermal behavior197

is instead more aligned with the rural class.198

Figure 3b also shows that the projection onto the first principal component is almost zero for LCZ6riv,199

LCZDcas and LCZ8val. This means that for these three stations the contribution of the first principal200

component (𝐸𝑃𝐶=1
𝑖,𝑀 ) weights less than the second p.c. and, therefore, the signal characterizing these sites201

looks like panel (d) of Fig. 3. Before focusing on the meaning behind the second principal component, the202

near-absence of the projection onto the first principal component in LCZ6riv, LCZDcas and LCZ8val reveals203

that Rivoli, Caselle and Vallere exhibit an intermediate thermal behavior with respect to the other stations204

characterized by substantially positive or negative projections. Note that this intermediate behavior is not205

necessarily homogeneous among these stations. PCA only highlights that their thermal pattern differs from206

all other sites characterized by positive or negative projections and, therefore, these three stations should be207

considered carefully for UHI studies. It is also important to point out that also the LCZs assignment for208

LCZ6riv, LCZDcas and LCZ8val is questionable and appears too local to take into account the real conditions209

affecting the temperatures measured by the sensors. The site of Rivoli (LCZ6riv) is designated as "Open210

low-rise" built type, but its thermal behavior is not classified as urban by the PCA probably because of the211

proximity to the reliefs and the distance from the city of Turin. Caselle station (LCZDcas) is assigned to the212

"low plants" land cover type D, but the PCA does not classifies it as rural. Actually, LCZDcas is located in213

the perimeter area of an airport, at about 200 m from the airstrip and only 600 m far from the closest town214

and the effective presence of low plants is true in the immediate surroundings of the site only. Finally, the215

"Large low-rise" built type associated with the station of Vallere (LCZ8val) does not show an urban thermal216

behavior, because it is located close to a park. Therefore, the LCZs assignments are not always able to clearly217

distinguish the urban and rural thermal patterns, since we observed that same LCZ type corresponds in some218

cases to different thermal behaviors.219
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4 APPLICABILITY OF MTD

Let now focus on the signal described by the second principal component (Fig. 3d), which explains220

about the 18% of the total variance and captures other aspects (with respect to the first component) related221

to the stations. This signal is characterized by positive anomalies of temperature after sunrise and negative222

ones when the solar radiation decreases. We note that southern sites, such as Vallere (LCZ8val), Bauducchi223

(LCZDbau), Santena-Banna (LCZBsan) and Carmagnola (LCZDcar), are characterized by a negative pro-224

jection onto the second principal component, meaning that these stations experience a later warming in the225

morning and an earlier cooling in the evenings. This behavior can be ascribed to the different thermal regime226

existing between the northern and southern portion of the considered area. In the North, the stations are227

closest to the reliefs and more subject to ventilation, while in the South their location in the Po valley yields to228

a more frequent inversion in the usual vertical temperature gradient. The colder air near the ground induces229

a delay in the warming up in the morning and an earlier cooling down in the evening, and it is associated230

with foggy conditions, as frequently observed in that area (Cassardo et al., 2002). In particular, the Southern231

stations registered a mean (over the 14 years of the analysis) of 88 foggy days/year, while the Northern ones232

17 days/year only (Arpa Piemonte, 2020). Therefore, we suggest that the second principal component is233

related to the geographical position of the stations, mainly to their elevation – and so proximity to reliefs –234

and latitude. The high correlation between the projection onto the second principal component and (i) the235

elevation of the sites (Pearson’s coefficient of correlation ≃ 0.86) and (ii) their latitude (correlation ≃ 0.75)236

supports our hypotheses.237

4. Applicability of MTD238

The Urban Heat Island intensity varies from city to city and its quantification is largely affected not only239

by the geography and climate of the site, but also by the datasets available to researchers. In this context, the240

proposed method is conceived to be general and applicable even when the data are not as rich as it is for the241

case study analyzed here.242

The first matter to address is the temporal scale of the UHI analysis. In the last decades, different scales243

were focused on, ranging from climatic scales (e.g., Rosenzweig et al., 2005; Parker, 2010) to seasonal244

analyses – e.g., summer heat waves (Founda and Santamouris, 2017) or waves in winter months (Giridharan245

and Kolokotroni, 2009) – to the negative effects of UHI during night hours in health and welfare studies (Tan246

et al., 2010). There is no single choice, but the selection of the time scale has to agree with the aims of the247

specific Urban Heat Island study of interest.248

If there is no particular purpose other than the characterization of the thermal behavior of stations, the249

annual time scale represents the most appropriate choice to fully grasp the thermal pattern. In any case, one250
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of the main advantages of the proposed MTD is to be as general as possible and, therefore, adaptable to any251

temporal scale of interest.252

Once the time scale has been chosen – we considered the annual scale in the Turin case study described253

in the previous section – a second question concerns the duration of the available measures. In order to test254

this aspect, we applied the MTD method by increasingly reducing our range of data (i.e., 14 years, 13 years,255

and so on) and we observed that only one year of observations is enough for the MTD to work. In Appendix256

A we show that the first principal component of the PCA exhibits the same thermal pattern associated to an257

urban or rural behavior as in Section 3.2. It follows that the metric MTD appears capable of exploiting the258

data very effectively, even if obviously the longer the period of observations is, the more the results will not259

be affected by the particular conditions observed in the considered 12 months.260

The time resolution of measures is another key aspect. In the Turin test case, we adopted the hourly261

time step, which is one of the most widely used in UHI literature (Santamouris, 2007; Oh et al., 2020; Kim262

and Brown, 2021). However, the robustness of the MTD has been tested also against a coarser temporal263

resolution: by considering a 3 hour time step (e.g., Pakarnseree et al., 2018, used this sampling time). In this264

study, we consider a subset of our original data with temperature measurements at 00, 03, 06, 09, 12, 15, 18265

and 21 UTC. Again, the method proves to work very well, since the resulting clustering of stations is equal266

to that obtained with the hourly temperatures (results are shown in Appendix A).267

An important question about the applicability of the MTD concerns the minimum number of weather268

stations required for the method to work. Turin has a relatively consistent number of measurement sites, but269

this may not be the case for other cities. In order to test this point, we performed a detailed sensitivity analysis,270

by re-evaluating the MTD performances using different subsets of the original 11 stations (see Appendix A).271

By excluding the stations identified as rural by our method (in Section 3.2), the PCA still identifies an urban272

thermal behavior and a different one. On the contrary, when considering the rural stations only, the main273

pattern described by the signal is different and cannot be related to urbanity/rurality. This result is a warning274

that the considered stations are not a good choice in selecting urban/rural pairs for UHI.275

Finally, we evaluated the method on a different dataset and geographic domain: the city of Cuneo, in276

North-Western Italy. Cuneo is located at a higher mean elevation above the sea level (about 550 m a.s.l.),277

has a smaller number of inhabitants than Turin (about 60000) and has only two weather stations available,278

namely Cuneo Camera di Commercio LCZ2ccc and Cuneo Cascina Vecchia LCZ6ccv (see Appendix A).279

In the surroundings of the city, the station of Boves LCZDbov (575 m a.s.l.) is the only one suitable for280

this kind of analysis. In addition, the hourly temperatures are available for 18 months only (from July 2019281

to December 2020). The Köppen Climate Classification (Köppen and Geiger, 1936) puts Cuneo into the282
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Temperate Oceanic Climate, namely Cfb. Being at the foot of the Alps, Cuneo receives more snow during283

winter than Turin (Arpa Piemonte, 2020). Even in this completely different domain, the MTD works very284

well (see Appendix A): LCZ2ccc is deemed as urban, LCZDbov as rural and LCZ6ccv exhibits an intermediate285

behavior between the other two.286

The minimum number of stations for the application of our method is two, namely the intrinsic number287

to the Urban Heat Island definition, provided that the selected sites exhibit a different thermal behavior288

(highlighted in the signal of the PCA) in terms of urbanity or rurality.289

5. Discussion and Conclusions290

The proposed method aims to cluster common behaviors among the available measurement stations, in291

order to detect the most representative urban-rural pairs for Urban Heat Island quantification in the studied292

area. The example of Turin shows that the MTD turns out to be an effective metric able to grasp the main293

differences – in terms of thermal behavior – among the stations.294

Given the widely recognized difficulty of the proper selection of urban-rural pairs, the metric which we295

propose can complement the methods already existing in literature, and provides an additional tool in the UHI296

research topic for the landscape classification. In this line, it is instructive to compare the results (for the Turin297

area) of our approach with those of three consolidated methods: (i) the Day-to-Day variation introduced by298

Karl et al. (1995) and further developed by Gough (2008), (ii) the mean daily excursion described by Milelli299

(2016) and (iii) the ratio between warm and cold day transitions recently presented by Gough (2020).300

The Day-To-Day (DTD) temperature variation detects urban stations when a site exhibits increasing301

day-to-day variation in the daytime maximum temperature. Figures 4a-b show the results of this metric:302

DTD is evaluated as the absolute difference between the temperatures of adjacent days for a given period303

of time (e.g., month) and is calculated both for daily temperature minimum (nighttime, DTD 𝑇min) and304

daily temperature maximum (daytime, DTD 𝑇max). According to Oke (1981, 1982), urban stations exhibit305

lower nocturnal temperature variability because urbanized areas trap the radiative energy, inducing a slower306

convective heat loss than the surrounding rural areas. Therefore, the effects of urbanization are associated307

with the lowest DTD 𝑇min. Results shown in Fig. 4a highlight a first cluster corresponding to the three urban308

stations – i.e., Consolata (LCZ2con), Reiss Romoli (LCZ8rer) and Alenia (LCZ8ale) – and this classification309

is consistent with what we found by the proposed MTD method. The DTD metric for 𝑇min identifies a second310

cluster characterized by higher values of the day-to-day variation, but it is quite difficult to separate possible311

intermediate behaviors, at least in an objective way. It follows that the DTD method classifies all other stations312

– Venaria La Mandria (LCZBvem), Venaria Ceronda (LCZ8vec), Carmagnola (LCZDcar), Santena-Banna313
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Figure 4: Panels (a) and (b): Day-To-Day (DTD), i.e., the average monthly DTD variation of nighttime (𝑇min in (a))

and day (𝑇max in (b)) temperatures (Anderson et al., 2018). The different line styles refer to the thermal behaviors

characterizing the stations, obtained through the Mean Temperature Difference (MTD). The dashed lines correspond

to stations with positive projection onto the first principal component of the PCA, associated with an urban thermal

pattern; the continuous lines refer to stations which projection onto the first p.c. is negative (rural thermal pattern); the

dotted lines correspond to the stations characterized by an almost null projection onto the first p.c. Panel (c): mean

daily excursion of temperature, i.e., the monthly average of 𝑇max − 𝑇min (Milelli, 2016); this panel refers to the same

legend reported in (a). Panel (d): warm to cold transition ratio (RΔT) for the minimum (downwards blue triangles) and

maximum (upwards red triangles) temperature of the day (Gough, 2020).

(LCZBsan), Bauducchi (LCZDbau), Rivoli (LCZ6riv), Caselle (LCZDcas) and Vallere (LCZ8val) – as rural314

and, differently from our MTD approach, seems unable to grasp the intermediate behavior. As described in315

Anderson et al. (2018), even smaller differences between the sites emerge when we consider DTD 𝑇max (see316

Fig. 4b).317

The second term of comparison we consider is the mean daily excursion proposed by Milelli (2016),318

calculated as the difference between the monthly averaged maximum and minimum temperatures (Fig. 4c).319
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Here, the three stations Consolata (LCZ2con), Reiss Romoli (LCZ8rer) and Alenia (LCZ8ale) are clearly320

marked by a limited daily excursion, indicating a non-sufficient cooling during the night and therefore –321

according to the UHI definition – they are related to a urban landscape. This is in agreement with what322

detected with the MTD metric. However, even in this case a non clearly distinguished group of stations shows323

an intermediate behavior, i.e., a gradual transition from the low to the high daily excursion groups emerges.324

See for example the stations of Caselle (LCZDcas), Rivoli (LCZ6riv), Vallere (LCZ8val) and Venaria Ceronda325

(LCZ8vec) in Fig. 4c.326

Finally, the application of the ratio between the warm and cold transitions is shown in Fig. 4d. By327

considering Canadian temperatures, Gough (2020) found a metric sensitive to what he called "peri-urban"328

landscapes, in particular focusing on the warm to cold transition ratio, RΔT, calculated for minimum temper-329

atures 𝑇min. Figure 4c illustrates the results both for 𝑇min and 𝑇max. Gough (2020) identified the threshold for330

𝑇min (i.e., RΔT= 1.05) above which a group of stations is deemed peri-urban. If we adopt this threshold, no331

station falls above this limit; therefore, in the case of Turin, the value RΔT= 1.05 appears not to be adequate332

to detect intermediate thermal behaviors. This is not surprising because of the different climate in Canada.333

Using the outcomes of our MTD approach, a new ad hoc threshold equal to 1.016 would allow one to classify334

Vallere (LCZ8val), Caselle (LCZDcas) and Rivoli (LCZ6riv) in a different thermal behavior, which we call335

intermediate since it differs from the urban and rural but has no internal coherence. However, a slightly336

different value (lower or higher than 1.016) would provide very different results: e.g., if RΔT= 1.01 also the337

station of Venaria la Mandria (LCZBvem) would pertain to the intermediate behavior, while for RΔT= 1.02338

the only stations with an intermediate pattern would be Vallere (LCZ8val) and Caselle (LCZDcas). Note that339

RΔT (𝑇min) for the remaining stations – ascertained as urban (Alenia (LCZ8ale), Reiss Romoli (LCZ8rer)340

and Consolata (LCZ2con)) and rural (Bauducchi (LCZDbau), Carmagnola (LCZDcar) and Santena-Banna341

(LCZBsan)) according to the MTD – form two well separated groups and therefore clearly differentiate from342

the intermediate landscapes, as in Gough (2020).343

In a nutshell, the consolidated methodologies, when are applied to the Turin area, agree on the classifica-344

tion of the urban and rural stations, and identify the same urban-rural sites detected by our Mean Temperature345

Difference method. However, likely due to the complexity of the Turin landscape, the attribution of interme-346

diate thermal behaviors is not straightforward and the consolidated methods seem not to be able to give an347

objective and unique characterization of this pattern. In contrast, the proposed Mean Temperature Difference348

seems to be suitable in this area: in light of the Principal Component Analysis, the three stations Rivoli349

(LCZ6riv), Caselle (LCZDcas) and Vallere (LCZ8val) are characterized by near-zero projections onto the350

first principal component. In this way, the subjectivity is minimized, since no thresholds or graphic interpre-351
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tations are needed, differently from the other methods existing in literature. In fact, since the first principal352

component is associated with the urbanity or rurality of a site, a missing projection onto this component353

implies a thermal behavior which is neither clearly urban or rural, but rather an intermediate one which is354

not necessarily characterized by an internal coherence. This observation is also confirmed by the different355

Local Climate Zones associated to the stations LCZ6riv, LCZDcas and LCZ8val. Their thermal behavior is356

not captured by the first principal component, but it is synthesized by the second p.c. emerging from the357

PCA, which is associated to other geographically-based features characterizing the stations.358

To summarize, the combined use of MTD metric and PCA represents a robust tool to characterize the359

sites in the Urban Heat Island context. The method has been proven (i) to well reproduce the thermal behavior360

of the metropolitan area of Turin, (ii) to agree with existing and widely validated methods for the distinction361

between the urban and rural stations, and (iii) to be easily interpretable.362

Aware of the impossibility to totally eliminate some kind of subjectivity in the task of selecting urban-363

rural pairs, we aim at providing an additional tool to discern the landscape categories for the Urban Heat364

Island quantification. The metric which we suggest can be combined with the existing methods, especially365

when the study area does not offer a trivial categorization into urban or rural stations.366

Acknowledgments367

The authors thank the Regional Agency for the Protection of the Environment of Piedmont Region (Arpa368

Piemonte) for the data used in this paper. Barbara Cagnazzi and Daniele Gandini are acknowledged for369

having provided the fog statistics. This work is funded by the RISK-GEST Project-PITEM RISK, Interreg370

2014-2020 Alcotra IT-FR, the MISTRAL 2017-IT-IA-0144 Program Connecting Europe Facility (CEF) and371

the 2019-2021 Agreement between National Department of Civil Protection and Arpa Piemonte.372

Appendix A. Results of the applicability of the MTD373

Sensitivity analysis to evaluate to which extent the MTD method is applicable (attached file).374

References375

Anderson, C.I., Gough, W.A., Mohsin, T., 2018. Characterization of the urban heat island at Toronto:376

Revisiting the choice of rural sites using a measure of day-to-day variation. Urban Climate 25, 187–195.377

Arnfield, A.J., 2003. Two decades of urban climate research: a review of turbulence, exchanges of energy378

and water, and the urban heat island. International Journal of Climatology: a Journal of the Royal379

Meteorological Society 23, 1–26.380

16



REFERENCES REFERENCES

Arpa Piemonte, 2020. Annual Climatic Report (in Italian). https://www.arpa.piemonte.it/381

rischinaturali/tematismi/clima/rapporti-di-analisi/annuale.html. [Online; accessed 22-382

November-2021].383

Cassardo, C., Forza, R., Manfrin, M., Longhetto, A., Qian, M., Richiardone, R., Balsamo, G., et al., 2002. The384

Urban Meteorological Station of Turin, in: 11ˆ th Symposium on Acoustic Remote Sensing, ISAC/CNR.385

pp. 311–320.386

Ching, J., Mills, G., Bechtel, B., See, L., Feddema, J., Wang, X., Ren, C., Brousse, O., Martilli, A., Neophytou,387

M., et al., 2018. WUDAPT: An urban weather, climate, and environmental modeling infrastructure for the388

anthropocene. Bulletin of the American Meteorological Society 99, 1907–1924.389

Demšar, U., Harris, P., Brunsdon, C., Fotheringham, A.S., McLoone, S., 2013. Principal component analysis390

on spatial data: an overview. Annals of the Association of American Geographers 103, 106–128.391

Demuzere, M., Bechtel, B., Middel, A., Mills, G., 2019. Mapping Europe into local climate zones. PloS one392

14, e0214474.393

Demuzere, M., Bechtel, B., Middel, A., Mills, G., 2020. European LCZ map. https:394

//urlsand.esvalabs.com/?u=https%3A%2F%2Ffigshare.com%2Farticles%2Fdataset%395

2FEuropean_LCZ_map%2F13322450%2F1&e=78898b00&h=9a0f73a7&f=y&p=n. [Online; accessed396

15-June-2021].397

Founda, D., Santamouris, M., 2017. Synergies between Urban Heat Island and Heat Waves in Athens398

(Greece), during an extremely hot summer (2012). Scientific reports 7, 1–11.399

Garbero, V., Milelli, M., Bucchignani, E., Mercogliano, P., Varentsov, M., Rozinkina, I., Rivin, G., Blinov,400

D., Wouters, H., Schulz, J.P., et al., 2021. Evaluating the urban canopy scheme TERRA_URB in the401

COSMO model for selected European cities. Atmosphere 12, 237.402

Giridharan, R., Kolokotroni, M., 2009. Urban heat island characteristics in London during winter. Solar403

Energy 83, 1668–1682.404

Gough, W., 2008. Theoretical considerations of day-to-day temperature variability applied to Toronto and405

Calgary, Canada data. Theoretical and Applied Climatology 94, 97–105.406

Gough, W.A., 2020. Thermal signatures of peri-urban landscapes. Journal of Applied Meteorology and407

Climatology 59, 1443–1452.408

17

https://www.arpa.piemonte.it/rischinaturali/tematismi/clima/rapporti-di-analisi/annuale.html
https://www.arpa.piemonte.it/rischinaturali/tematismi/clima/rapporti-di-analisi/annuale.html
https://www.arpa.piemonte.it/rischinaturali/tematismi/clima/rapporti-di-analisi/annuale.html
https://urlsand.esvalabs.com/?u=https%3A%2F%2Ffigshare.com%2Farticles%2Fdataset%2FEuropean_LCZ_map%2F13322450%2F1&e=78898b00&h=9a0f73a7&f=y&p=n 
https://urlsand.esvalabs.com/?u=https%3A%2F%2Ffigshare.com%2Farticles%2Fdataset%2FEuropean_LCZ_map%2F13322450%2F1&e=78898b00&h=9a0f73a7&f=y&p=n 
https://urlsand.esvalabs.com/?u=https%3A%2F%2Ffigshare.com%2Farticles%2Fdataset%2FEuropean_LCZ_map%2F13322450%2F1&e=78898b00&h=9a0f73a7&f=y&p=n 
https://urlsand.esvalabs.com/?u=https%3A%2F%2Ffigshare.com%2Farticles%2Fdataset%2FEuropean_LCZ_map%2F13322450%2F1&e=78898b00&h=9a0f73a7&f=y&p=n 
https://urlsand.esvalabs.com/?u=https%3A%2F%2Ffigshare.com%2Farticles%2Fdataset%2FEuropean_LCZ_map%2F13322450%2F1&e=78898b00&h=9a0f73a7&f=y&p=n 


REFERENCES REFERENCES

Hannachi, A., Jolliffe, I.T., Stephenson, D.B., 2007. Empirical orthogonal functions and related techniques409

in atmospheric science: A review. International Journal of Climatology: A Journal of the Royal Meteoro-410

logical Society 27, 1119–1152.411

Hoffmann, P., Schlünzen, K.H., 2013. Weather pattern classification to represent the urban heat island in412

present and future climate. Journal of Applied Meteorology and Climatology 52, 2699–2714.413

Johnson, D., 1985. Urban modification of diurnal temperature cycles in Birmingham, UK. Journal of414

Climatology 5, 221–225.415

Jolliffe, I.T., 2002. Principal Component Analysis. Springer New York.416

Jolliffe, I.T., Cadima, J., 2016. Principal component analysis: a review and recent developments. Philo-417

sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374,418

20150202.419

Karl, T.R., Knight, R.W., Plummer, N., 1995. Trends in high-frequency climate variability in the twentieth420

century. Nature 377, 217–220.421

Kim, S.W., Brown, R.D., 2021. Urban heat island (UHI) intensity and magnitude estimations: A systematic422

literature review. Science of The Total Environment , 146389.423

Köppen, W., Geiger, R., 1936. Das geographische System der Klimate Handbuch der Klimatologie. Ed. W.424

Köppen and R. Geiger 1.425

Landsberg, H.E., 1981. The urban climate. Academic press.426

Lorenz, E.N., 1956. Empirical orthogonal functions and statistical weather prediction .427

Memon, R.A., Leung, D.Y., Liu, C.H., 2009. An investigation of urban heat island intensity (UHII) as an428

indicator of urban heating. Atmospheric Research 94, 491–500.429

Milelli, M., 2016. Urban heat island effects over Torino. COSMO Newsletter 16, 1–10.430

Mohsin, T., Gough, W.A., 2012. Characterization and estimation of urban heat island at Toronto: impact of431

the choice of rural sites. Theoretical and Applied Climatology 108, 105–117.432

Oh, J.W., Ngarambe, J., Duhirwe, P.N., Yun, G.Y., Santamouris, M., 2020. Using deep-learning to forecast433

the magnitude and characteristics of urban heat island in Seoul Korea. Scientific reports 10, 1–13.434

18



REFERENCES REFERENCES

Oke, T.R., 1973. City size and the urban heat island. Atmospheric Environment (1967) 7, 769–779.435

Oke, T.R., 1976. The distinction between canopy and boundary-layer urban heat islands. Atmosphere 14,436

268–277.437

Oke, T.R., 1981. Canyon geometry and the nocturnal urban heat island: comparison of scale model and field438

observations. Journal of climatology 1, 237–254.439

Oke, T.R., 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological440

Society 108, 1–24.441

Pakarnseree, R., Chunkao, K., Bualert, S., 2018. Physical characteristics of Bangkok and its urban heat island442

phenomenon. Building and Environment 143, 561–569.443

Parker, D.E., 2010. Urban heat island effects on estimates of observed climate change. Wiley Interdisciplinary444

Reviews: Climate Change 1, 123–133.445

Rizwan, A.M., Dennis, L.Y., Chunho, L., 2008. A review on the generation, determination and mitigation of446

Urban Heat Island. Journal of environmental sciences 20, 120–128.447

Rosenzweig, C., Solecki, W.D., Parshall, L., Chopping, M., Pope, G., Goldberg, R., 2005. Characterizing448

the urban heat island in current and future climates in New Jersey. Global Environmental Change Part B:449

Environmental Hazards 6, 51–62.450

Santamouris, M., 2007. Heat island research in Europe: the state of the art. Advances in building energy451

research 1, 123–150.452

Stewart, I.D., 2007. Landscape representation and the urban-rural dichotomy in empirical urban heat island453

literature, 1950–2006. Acta Climatologica et Chorologica 40, 111–121.454

Stewart, I.D., 2011. A systematic review and scientific critique of methodology in modern urban heat island455

literature. International Journal of Climatology 31, 200–217.456

Stewart, I.D., Oke, T.R., 2012. Local climate zones for urban temperature studies. Bulletin of the American457

Meteorological Society 93, 1879–1900.458

Tam, B.Y., Gough, W.A., Mohsin, T., 2015. The impact of urbanization and the urban heat island effect on459

day to day temperature variation. Urban Climate 12, 1–10.460

19



REFERENCES REFERENCES

Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A.J., Li, F., et al., 2010.461

The urban heat island and its impact on heat waves and human health in Shanghai. International journal462

of biometeorology 54, 75–84.463

Theeuwes, N.E., Steeneveld, G.J., Ronda, R.J., Holtslag, A.A., 2017. A diagnostic equation for the daily464

maximum urban heat island effect for cities in northwestern Europe. International Journal of Climatology465

37, 443–454.466

Theeuwes, N.E., Steeneveld, G.J., Ronda, R.J., Rotach, M.W., Holtslag, A.A., 2015. Cool city mornings by467

urban heat. Environmental Research Letters 10, 114022.468

Tzavali, A., Paravantis, J.P., Mihalakakou, G., Fotiadi, A., Stigka, E., 2015. Urban heat island intensity: A469

literature review. Fresenius Environmental Bulletin 24, 4537–4554.470

Wilks, D.S., 2011. Statistical methods in the atmospheric sciences. volume 100. Academic press.471

Wu, F.T., Fu, C., Qian, Y., Gao, Y., Wang, S.Y., 2017. High-frequency daily temperature variability in China472

and its relationship to large-scale circulation. International Journal of Climatology 37, 570–582.473

20


