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On the Exactness of Rational Polynomial Chaos
Formulation for the Uncertainty Quantification
of Linear Circuits in the Frequency Domain

Paolo Manfredi and Stefano Grivet-Talocia

Abstract We discuss the general form of the transfer functions of linear lumped
circuits. We show that an arbitrary transfer function defined on such circuits has a
functional dependence on individual circuit parameters that is rational, with multi-
linear numerator and denominator. This result demonstrates that rational polynomial
chaos expansions provide more suitable models than standard polynomial chaos for
the uncertainty quantification of this class of circuits.

1 Introduction

The polynomial chaos expansion (PCE) method [1] has emerged in the macromodel-
ing and model-order reduction communities because of the remarkable accuracy and
efficiency in the uncertainty quantification by stochastic systems, including electric
and electronic circuits [2]. Stochastic output variables of interest are approximated
with a suitable polynomial model w.r.t. random input parameters, from which statis-
tical information is inexpensively extracted. While the method was demonstrated to
provide very high accuracy with a very limited expansion order in many application
scenarios, the modeling of resonant and/or distributed circuits may require large or-
ders and the accuracy of the calculated PCE coefficients may be deteriorated by the
large variability of the outputs.

A rational polynomial chaos (RPC) model with tensor-product truncation was
recently introduced [3] and was shown to provide better performance, compared to
the conventional single PCE with total-degree truncation that is used in most engi-
neering applications, specifically in electrical engineering [2]. In this work, we show
that the general form of any transfer function defined for a linear lumped circuit is
rational w.r.t. both frequency and element values. Specifically, both numerator and
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2 Paolo Manfredi and Stefano Grivet-Talocia

denominator are multi-linear functions of element values. We provide a rigorous and
formal proof of this fundamental theoretical result that is somewhat well-known in
electrical engineering [4], but unavailable in an unambiguous and explicit form.
Thanks to the theoretical findings herein presented, we are able to show that the
RPC model is exact and should be the method of choice for lumped circuits.

2 Rational Polynomial Chaos Expansion

Given an arbitrary transfer function, generically denoted with Z and defined on a
linear lumped electrical circuit with d uncertain elements collected into vector ξ =
(ξ1, . . . , ξd), its RPC model reads [3]

Z(s, ξ) ≈
∑L
`=1N`(s)ϕ`(ξ)

1 +
∑L
`=2D`(s)ϕ`(ξ)

(1)

where s is the Laplace variable (complex frequency). In (1), the basis functions ϕ`
are multivariate orthogonal polynomials in the uncertain variables ξ, and the co-
efficients N` and D` are computed using a linearized and iteratively re-weighted
regression. It was empirically shown [3] that, for the uncertainty quantification of
electric circuits, the RPC (1) is more accurate than the standard PCE [2]. The pur-
pose of this work is to provide a rigorous justification.

3 Transfer Functions of Linear Lumped Circuits

We review the basic modified nodal analysis (MNA) formulation [5] of lumped lin-
ear time-invariant (LTI) circuits with RGLC components. The main objective of this
derivation is to reveal in explicit form the functional dependence on the individual
circuit parameters of any transfer function that can be defined on such circuits.

3.1 Basic MNA Formulation for RGLC Circuits

Let us consider a lumped LTI P -port circuit with n nodes and b branches (one-
port elements). The branches are split into bR resistors with resistance Rk, bG re-
sistors with conductance Gk, bL inductors with inductance Lk, and bC capacitors
with capacitance Ck, where k is an index identifying individual components. We
distinguish between resistance-defined and conductance-defined resistors to allow
additive variations of either parameter. In addition, the last bJ = P branches are
assumed to represent the P ports of the structure. We place ideal current sources Jk
providing an excitation to the circuit, with the objective of characterizing the P ×P
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impedance matrixZ(s) in the Laplace domain by computing the corresponding port
voltages as outputs.

The branch voltage and current vectors v, i ∈ Rb are split according to element
types as

v =
(
vTR,v

T
G,v

T
L,v

T
C ,v

T
J

)T
, i =

(
iTR, i

T
G, i

T
L, i

T
C , i

T
J

)T
,

where vν , iν ∈ Rbν for ν ∈ {R,G,L,C, J}, and where the passive sign convention
is used for each branch, including sources. The branch characteristic equations are
collectively written for each class of components as

vR = RiR R = diag(R1, . . . , RbR) (2a)
iG = GvG G = diag(G1, . . . , GbG) (2b)

vL = L
d

dt
iL L = diag(L1, . . . , LbL) (2c)

iC = C
d

dt
vC C = diag(C1, . . . , CbC ) (2d)

iJ = −J J = (J1, . . . , JbJ )T. (2e)

Note that the current Jk of each source is incident into its positive node.
Circuit connectivity is described by the (reduced) incidence matrixA ∈ Rn−1,b,

with the n-th node serving as reference for the definition of the set of nodal voltages
e ∈ Rn−1. The incidence matrix columns are partitioned according to the branch
classes as

A =
(
AR,AG,AL,AC ,AJ

)
. (3)

Combining Kirchhoff’s current law (KCL) equationsAi = 0 and Kirchhoff’s volt-
age law (KVL) equations vν = AT

νe for ν ∈ {R,G,L,C, J} with the characteris-
tics (2), leads to the system of linear differential-algebraic equations

G x+ C d

dt
x = Bu (4a)

y = BT x, (4b)

which represents the standard MNA formulation. In (4), u = J denotes the port
currents, considered as inputs, y = vJ denotes the corresponding port voltages,
considered as outputs, vector x ∈ Rm, with m = n − 1 + bR + bL, collects the
MNA variables e, iR, iL, and

G =

AGGA
T
G AR AL

−AT
R R 0

−AT
L 0 0

 , C =

ACCA
T
C 0 0

0 0 0
0 0 L

 , B =

AJ

0
0

 . (5)

Throughout this work, we denote with 0 an all-zero matrix or vector, whose size is
inferred from the context.
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The so-called stamps of the individual circuit elements in the MNA system (4)
are now easily characterized. A straightforward derivation shows that

G(θ) = G0 +

ba∑
k=1

(pkp
T
k ) θk, C(ζ) =

bd∑
k=1

(qkq
T
k ) ζk, (6)

where

• ba = bR + bG is the number of adynamic components with values collected in
vector θ ∈ Rba , having elements {θk}bak=1 = {Rk}bRk=1 ∪ {Gk}

bG
k=1;

• bd = bL + bC is the number of dynamic components with values collected in
vector ζ ∈ Rbd , having elements {ζk}bdk=1 = {Lk}bLk=1 ∪ {Ck}

bC
k=1;

• the constant vectors pk ∈ Rm collect the sets {pk}
ba
k=1 = {rk}bRk=1∪{gk}

bG
k=1 in-

dividually defined as rk =
(
0,1T

bR,k,0
)T

and gk =
(
aT
G,k,0,0

)T
, where 1bν ,k

denotes the Euclidean basis vector in Rbν with all vanishing elements except the
k-th component equal to 1, and aG,k is the k-th column ofAG;

• the constant vectors qk ∈ Rm collect the sets {qk}
bd
k=1 = {lk}bLk=1 ∪ {ck}

bC
k=1

individually defined as lk =
(
0,0,1T

bL,k

)T
and ck =

(
aT
C,k,0,0

)T
, where aC,k

is the k-th column ofAC ;
• the constant matrix G0 is defined as

G0 =

 0 AR AL

−AT
R 0 0

−AT
L 0 0

 . (7)

3.2 Parameterization for Uncertainty Quantification

For the uncertainty quantification problem to be well posed, we assume that the
circuit is well defined and uniquely solvable for all parameter configurations, i.e.,
∃s ∈ C for which det(G(θ) + sC(ζ)) 6= 0. Equivalently, the pencil (G,C) is
regular for any θ, ζ. We further consider a nominal parameter configuration θ = θ̄
and ζ = ζ̄. For instance, this nominal configuration can be considered as the set
of expected values of the circuit element values, assumed to be stochastic variables.
The initial hypothesis also implies unique solvability for this nominal parameter
configuration, which is the only assumption required by the following derivations.

We introduce the variable transformation

θ = θ̄ + ε, ζ = ζ̄ + δ, (8)

where each element of vectors ε and δ is a zero-mean stochastic variable, and we
denote Ḡ = G(θ̄) and C̄ = C(ζ̄). Due to linearity, (6) can now be written as
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G = G(ε) = Ḡ +

ba∑
k=1

(pkp
T
k ) εk, C = C(δ) = C̄ +

bd∑
k=1

(qkq
T
k ) δk. (9)

We see that both the static (G) and the dynamic (C) MNA matrices are expressed
as a finite sum of rank-one updates with respect to the nominal circuit formulation.
Each rank-one update pertains to a single individual stochastic circuit element. The
corresponding constant rank-one matrices pkp

T
k and qkq

T
k are recognized as the

standard MNA stamps of the various circuit elements.
Let us now consider the Laplace-domain solution of (4), which in the present

case corresponds to the impedance matrix of the considered P -port element and
reads

Z(s; ξ) = BT [G(ε) + sC(δ)]
−1 B =

N(s; ξ)

D(s; ξ)
, (10)

where we have collected all stochastic parameters in a single vector ξ having el-
ements {ξk}dk=1 = {εk}bak=1 ∪ {δk}

bd
k=1, with d = ba + bd being the total num-

ber of uncertain circuit elements, as previously defined in Section 2. In (10), the
scalar denominator D(s; ξ) coincides with the determinant of the MNA matrix
Y(s; ξ) = G(ε) + sC(δ), whereas each element of the numerator N(s; ξ) is a
linear combination of the determinants of the submatrices (minors) obtained from
Y(s; ξ) by deleting one row and one column.

We now provide an explicit characterization of the numerator and denominator
of (10). To this end, we collect all stochastic parameters in a diagonal matrix

Ξ = diag(ξ1, . . . , ξd), (11)

which we use to cast the MNA matrix in the compact form, by restating (9) as

Y(s; ξ) = Ȳ(s) +UΞS(s). (12)

The matrix Ȳ(s) = Ḡ + s C̄ corresponds to the nominal configuration, and

U =
(
P Q

)
, S(s) =

(
P sQ

)T
, (13)

where the constant matrices P and Q collect as columns all the vectors pk and qk,
respectively. From now on, we will omit the dependence on the Laplace variable s,
since we are interested in the dependence on the stochastic variables ξ.

We introduce two useful lemmas:

Lemma 1. Given a square invertible matrixX and two matrices U ,V of compati-
ble size, we have

det(X +UV T) = det(I + V TX−1U) · det(X).

The above Lemma 1 is known as matrix determinant lemma, see [6] for a proof.

Lemma 2. Let a matrix W ∈ Rn,n have elements in the form Wij = Fij + ξiBij ,
where Fij , Bij are constants for i, j = 1, . . . , n, and ξi are independent parameters.
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Then,

det(W ) =
∑
k

βk

n∏
`=1

ξαk`` , (14)

where αk` ∈ {0, 1} ∀k, `, and βk are real constants.

Proof. We use an induction argument, noting that the statement is trivially verified
for n = 1. Assuming that the statement holds for size n − 1, we evaluate det(W )
for size n, for whichW reads

W =


F11 + ξ1B11 F12 + ξ1F12 · · · F1n + ξ1B1n

F21 + ξ2B21 F22 + ξ2F22 · · · F2n + ξ2B2n

...
...

. . .
...

Fn1 + ξnBn1 Fn2 + ξnFn2 · · · Fnn + ξnBnn

 .

Expanding det(W ) using Laplace’s formula along the first row, we get

det(W ) =

n∑
j=1

(−1)1+j(F1j + ξ1B1j)M1j , (15)

where M1j is the determinant of the submatrix of size n − 1 obtained by deleting
row 1 and column j fromW . By the induction ansatz, we have

M1j =
∑
k

βk

n∏
`=2

ξαk`` , αk` ∈ {0, 1} ∀k, `. (16)

Inserting (16) into (15) leads to

det(W ) =

n∑
j=1

(−1)1+j(F1j + ξ1B1j)
∑
k

βk

n∏
`=2

ξαk``

=
∑
k

n∑
j=1

(−1)1+j

[
F1jβk

n∏
`=2

ξαk`` +B1jβkξ1

n∏
`=2

ξαk``

]
=
∑
k

β̂k

n∏
`=1

ξαk`` ,

where αk` ∈ {0, 1} for ` = 1, . . . , n and ∀k, and β̂k are constants. ut

We are now ready to calculate the denominator D(s; ξ) in (10) as

D = det
(
Ȳ +UΞS

)
. (17)

Applying Lemma 1 with V T = ΞS andX = Ȳ , we have

D = det (I +ΞB) · det
(
Ȳ
)
, (18)

where bothB = SȲ−1
U and det

(
Ȳ
)

depend only on s and are thus constant with
respect to the stochastic parameters ξ. We have
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I +ΞB =


1 + ξ1B11 ξ1B12 · · · ξ1B1n

ξ2B21 1 + ξ2B22 · · · ξ2B2n

...
...

. . .
...

ξnBn1 ξnBn2 · · · 1 + ξnBnn

 .

This matrix verifies the conditions of Lemma 2 with F = I . Therefore

det (I +ΞB) =
∑
k

βk

n∏
`=1

ξαk`` (19)

with αk` ∈ {0, 1} for all k, `, which in turn implies that

D(s; ξ) =
∑
k

dk(s)

n∏
`=1

ξαk`` , αk` ∈ {0, 1} ∀k, `. (20)

Due to the lumped nature of the system under consideration, the coefficients dk(s)
are polynomials in s of degree up to the dynamic order N of the circuit.

The same arguments used for the denominator D(s; ξ) can be seamlessly adopted
to show that also the elements of the numerator matrix N(s; ξ) in (10) have the same
structural dependence on frequency s and parameters ξ. Therefore, we conclude that
any element (i, j) of the impedance matrix Z(s; ξ) has the following structure

Zij(s; ξ) =

∑Nij
k=0 ak;ij(ξ)sk∑N
k=0 bk(ξ)sk

, (21)

where all numerator and denominator coefficients ak;ij(ξ) and bk(ξ) have a multi-
linear dependence in the stochastic parameters, i.e., they are multivariate polyno-
mials in which each element of ξ appears with up to order one. In conclusion, any
impedance element is a rational function of any stochastic parameter ξi with both
numerator and denominator degrees that cannot exceed one.

Based on the above result, the RPC model (1) is exact for linear lumped circuits,
provided that the polynomial basis functions ϕ` are multi-linear. This is readily
achieved by adopting a tensor-product truncation of order one [3]. By extension,
the model turns out to be more accurate also for distributed circuits and electro-
magnetic systems, albeit with higher-degree approximations, as was effectively and
empirically demonstrated based on a number of application examples in [3].

4 An Illustrative Example

We consider the filter of Fig. 1 (left), which is designed to exhibit both a band-
and a high-pass behavior. All 9 circuit elements are uncertain, with inductances and
capacitances having independent Gaussian variations with a 20% standard deviation
around the nominal values indicated in the schematic.
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The right panel in Fig. 1 shows the variability of the insertion loss of the filter.
The gray lines are a subset of random samples from a reference Monte Carlo (MC)
simulation with 10000 runs, whereas the solid blue line is the standard deviation
of the MC samples. The dashed red and green lines are the standard deviations ob-
tained with a conventional PCE having a maximum total degree of three, and with a
tensor-product RPC model having a maximum degree of one, respectively. The con-
ventional model has 220 terms in its single PCE, and the corresponding coefficients
are calculated by means of an ordinary least square regression [2]. The RPC model
has a total of 1023 terms (512 in the numerator and 511 in the denominator), and
the coefficients are calculated with an iterative linearized least-square regression [3].
In both cases, we use a number of regression samples that is twice the number of
unknowns.

As expected, the RPC provides an exact model, and the result is therefore con-
sistent with the reference MC curve. This is further confirmed by the mean squared
deviation of the two models from the MC samples, which is 3.8574 × 10−2 and
2.6264× 10−10 for the conventional PCE and the RPC model, respectively.

146 nH

73.6 pF

312.5 nH

116.6 pF

92 nH

250 pF

73.6 pF

312.5 nH

146 nH

port 1 port 2

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Fig. 1 Left: filter schematic. Right: variability of the insertion loss of the filter. Gray lines: MC
samples; solid blue, dashed red, and dashed green lines: standard deviation obtained with MC,
conventional PCE, and proposed RPC methods, respectively.

5 Conclusions

This work presented a formal derivation that any frequency-domain transfer func-
tion defined on linear lumped circuits is a rational function with multi-linear depen-
dence on the circuit element values. This results provides a rigorous motivation for
using a Rational Polynomial Chaos (RPC) model for the uncertainty quantification
of the frequency-domain responses of electrical circuits, and more generally of elec-
tromagnetic systems. Our findings are illustrated based on a lumped filter example.

While a first-order tensor-product truncation provides an exact model for lumped
circuits, a more compact total-degree truncation (possibly of higher order) can be
used to improve the efficiency, especially for applications in which the exactness no
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longer holds. This is the case, for example, of distributed, electromagnetic, and/or
photonic systems. We are also currently investigating a compression strategy, based
on principal component analysis, that avoids having to optimize the model coeffi-
cients separately for each frequency.
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