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Abstract: We discuss the foundations of a model based on an extension of the Langmuir approxima-
tion for the adsorption–desorption phenomena, in which the phenomenological coefficients depend
on the bias potential, in addition to their dependence on the adsorption energy. The theoretical
analysis focuses on the effect of these effective coefficients on the electrical response of an electrolytic
cell to an external electric field, as predicted by the Poisson–Nernst–Planck model. Kinetic balance
equations govern the current densities on the electrodes when the adsorption phenomenon occurs
in the presence of an electric bias. The influence of the phenomenological parameters entering the
model, as well as of the symmetry of the cell on the cyclic voltammetry, is investigated.

Keywords: impedance; PNP model; electrolytes; voltammetry

1. Introduction

The adsorption of particles is a widespread phenomenon. It may be found in several
physical and chemical systems [1], and is also of practical importance in pharmaceutical
industries, food and chemistry [2], meta-organic systems [3], biomaterials [4], and in
the study of adsorption of ions in electrolytic cells designed for energy storage [5–16].
In regard to these recent applications, capacitive deionization cells have been used as
an efficient process because they operate using the cycles of adsorption and desorption,
without electrolysis reactions at the electrodes and with the help of an applied potential [11].

Due to the adsorption–desorption process at the interface, the cells may be polarized
without an applied external field. The origin of the polarization is related to the ionic
adsorption at the asymmetric electrodes, responsible for a nonuniform electric potential
between the surfaces [9]. Thus, a difference of potential, generated by the adsorption
process at the limiting surfaces, will work as a kind of internal bias [10].

In both cases, with an external bias or in the presence of cell polarization, the effective
adsorption process has to be reconsidered in order to take into account its possible effects
on the measured response of the cell to an applied electric field.

In what follows, we review and apply a simple conceptual framework in which
these effects may be quantitatively accounted for in a formalism based on the Langmuir
approximation for the adsorption phenomenon [17]. Our purpose here is to discuss the
fundamentals of the model proposed in [17] and used once to analyze some data arising
from cyclic voltammetry [18]. The main motivation is to clarify how the presence of an
effective surface potential, resulting from the presence of a bias, may be incorporated into
the kinetic equations governing the balance of particles at the interface of a fluid system (in
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which mobile charges are present) and a solid adsorbing–desorbing surface representing
idealized effective (and even porous) electrodes. To accomplish this task, we present the
detailed solutions for the fundamental equations governing the behavior of the mobile
charges in the bulk of a cell and connect them with the surface properties (which is carried
out employing appropriate boundary conditions) to build an overall response of the cell
to the external field (Section 2). The analytical solutions are necessary to obtain a closed
expression of the electrical impedance depending on the frequency of the external voltage
(Section 3). By means of this methodology, the approach is able to provide information
on the surface effects detected, for instance, in experiments for which I(V) curves are
available (Section 4). This implies that a general voltammetry analysis may be performed
directly from a drift–diffusion model for the mobile charges (Section 5). In this way as
well, a detailed analysis of the available experimental data may be carried out in strict
connection with the predictions of the conceptual framework. The main conclusions are
presented in Section 6.

2. Bulk Response and Adsorption Dynamics

For the theoretical analysis, we consider the kinetic balance equation governing
adsorption–desorption at the interfaces in the spirit of the Langmuir isotherm approach.
We assume that the number of adsorbing sites is very large when compared with the
effective density of adsorbed particles [19]. This point can be made more clear as follows.
What we refer to here as the Langmuir adsorption isotherm is connected with the following
kinetic equation:

dσ(t)
dt

= k
[

1− σ(t)
σ0

]
n(t)− 1

τ
σ(t), (1)

where n(t) indicates the bulk density of particles which, at time t, are located in a layer adja-
cent to the adsorbing surface; σ(t) is the instantaneous surface density of already adsorbed
particles, whereas σ0 denotes the maximum surface density allowed on the particular con-
sidered surface. This is a phenomenological equation in which two parameters intervene,
whose values are supposed to be inferred from the experimental data: k, the adsorbing
coefficient, and τ, a characteristic time, which is a measure of the desorption time [20,21].

In the approximation of a very large number of adsorption sites, the kinetic equation,
Equation (1), becomes

dσ

dt
= kn− 1

τ
σ. (2)

It was proposed some time ago by Maximus et al. [22], in the context of liquid crys-
talline materials research, as a way to investigate the role of the ions present in the sample
in the optical response of anisotropic materials to an external electric field. The same
assumption of σ0 � σ, employed to obtain Equation (2) from Equation (1), is also reason-
able here because the porosity of the electrodes is responsible for a very large (effective)
adsorbing surface.

Before proceeding, let us consider for a moment the role played by the parameters k
and τ. In a previous discussion [23], it was shown that k may depend on the adsorption
energy, whereas τ could be connected with the time involved in the diffusion of the particles
across an interfacial layer having a thickness comparable to the average range of the forces
promoting the desorption. We assume that both k and τ do not depend on the effective
density of adsorbed particles, σ(t). A more rigorous analysis of the adsorption when
charged particles are involved requires investigating the behavior of the adsorption energy
as a function of the density of adsorbed particles, following, for instance, the approaches
discussed in other contexts [24–26]. In what follows, we will not include the already
mentioned internal bias nor the dependence of the surface density of charges on the
adsorption energy, because these important effects may be superimposed to the effect of
the external bias, focused upon hereafter.

As indicated above, our problem concerns the adsorption of ions dissolved in an
insulating, isotropic liquid, for which a kinetic equation, such as Equation (2), holds for



Electron. Mater. 2021, 2 127

positive and negative ions. The liquid medium is considered as locally and globally neutral,
but when an external bias is present, the local equilibrium, mainly in the vicinity of the
electrodes, is perturbed. This implies a change in the density of potentially adsorbable
particles, n(t).

The isotropic liquid is characterized by a constant dielectric coefficient ε and contains
two group of ions: p, the positive ones, and m, the negative ones, both having an elemen-
tary electric charge, q. Before applying the electric field, in thermodynamic equilibrium,
a spatially uniform distribution of the ions across the cell is found, such that np and nm
denote a bulk density of positive and negative ions, respectively. The normalization is such
that, in equilibrium, np = nm = n0. In this way, when the electric field is applied to the
sample, a non-homogeneous distribution of ions is found, that is, np 6= n0 and nm 6= n0.
In addition, the sample is assumed as a slab of thickness d, filled with the insulating liquid
containing ions and limited by two flat electrodes (which is a simplification to model a
generic bulk system in which the electrodes are introduced), which allows one to treat the
mathematical problem as one-dimensional. The sample is submitted to an external time-
dependent periodic difference of potential, V(t) = V0eiωt, in which V0 is the amplitude
and f = ω/2π is the frequency.

We establish the notation by choosing the Cartesian reference frame such that the
x-axis is the one normal to the electrodes, placed at x = −d/2 (hereafter referred as
electrode A) and at x = d/2 (hereafter referred as electrode B). The internal structures
eventually found in the electrodes because they are porous are accounted for only in the
effective adsorption parameters entering the kinetic equations. These equations work as
the boundary conditions to be satisfied by the solutions of the bulk equations when the
adsorption is considered. In practice, all physical quantities entering the model to describe
the system are actually a kind of average, in a plane parallel to the electrodes, of the
real quantities. Since the frequency of the applied external voltage is small, the dielectric
constant of the liquid can be considered nondispersive. Practically, this means that the
frequency of the applied difference of potential has to be smaller than a few MHz.

Bulk Electric Response

In the cell filled with the liquid containing mobile charges, the current densities are
given by

jp = −Dp

(
∇np −

qnp

kBT
E
)

, (3)

jm = −Dm

(
∇nm +

qnm

kBT
E
)

, (4)

because the bulk density of ionic currents are due to drift and diffusion. In
Equations (3) and (4), Dp is the diffusion coefficient of the positive and Dm of negative ions
in the particular medium we are considering; the thermal energy is kBT and E is the electric
field. When no generation and recombination of ions are taken into account, the equations
of continuity,

∂np

∂t
= −∇ · jp, (5)

∂nm

∂t
= −∇ · jm (6)

state the conservation of the number of charged particles in the medium. This presence
is, in turn, responsible for a position-dependent electric potential distribution across the
sample, which is connected with the density of ions by means of the Poisson equation:

∇ · E =
q
ε
(np − nm). (7)
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We indicate by δnp and δnm the bulk density variations of the positive and negative
ions with respect to n0 due to the applied difference of potential, respectively. In this
framework, np = n0 + δnp and nm = n0 + δnm, and we assume, furthermore, that in the
frequency range of interest, the amplitude of the applied difference of potential is such that
|δnp| = |np − n0| � n0 as well as |δnm| = |nm − n0| � n0, known as linear limit. Thus,
Equations (5) and (6), for our one-dimensional problem, can be rewritten as :

∂δnp

∂t
= Dp

(
∂2δnp

∂x2 +
n0q
kBT

∂2V
∂x2

)
, (8)

∂δnm

∂t
= Dm

(
∂2δnm

∂x2 −
n0q
kBT

∂2V
∂x2

)
, (9)

and the Poisson equation as
∂2V
∂x2 = − q

ε
(δnp − δnm). (10)

It is convenient to work hereafter with the reduced quantities

up =
δnp

n0
, um =

δnm

n0
, and uv =

V
vt

, (11)

where vt = kBT/q is a reduced voltage, called the thermal voltage, which, at room tem-
perature, is in the order of 0.025V for univalent ions. This way, Equations (8) and (9)
become, respectively,

∂up

∂t
= Dp

(
∂2up

∂x2 +
∂2uv

∂x2

)
, (12)

∂um

∂t
= Dm

(
∂2um

∂x2 −
∂2uv

∂x2

)
, (13)

and

∂2uv

∂x2 = − 1
Λ2 (up − um), (14)

where Λ =
√

εvt/(n0q) is proportional to the Debye length [19]. Equations (12)–(14) are
the fundamental equations of the linear Poisson–Nernst–Planck model, written in terms of
reduced quantities, considered by several authors in different contexts [27–34].

3. The Electric Current Density

Once solved, the equations of the Poisson–Nernst–Planck model, built in the pre-
ceding section, yield up(x, t), um, (x, t), and uv(x, t) in terms of six integration constants.
Thus, the current densities, as given by Equations (3) and (4), may be rewritten, respectively, as

jp(x, t) = −n0Dp

[
∂up(x, t)

∂x
+

∂uv(x, t)
∂x

]
(15)

and

jm(x, t) = −n0Dm

[
∂um(x, t)

∂x
− ∂uv(x, t)

∂x

]
, (16)

together with the displacement current,

jD = ε
∂E
∂t

, (17)
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yielding the total electric current density across the sample in the simple form

j(x, t) = q[jp(x, t)− jm(x, t)] + jD(x, t). (18)

The total current is now written in terms of the unknown integration constants and so
is the electrical impedance of the system, as we shall demonstrate now.

To go on further, the method of separation of variables will be employed to search for
solutions to the previous equations [35]:

up,m,v(x, t) = {p(x), m(x), v(x)} eiωt, (19)

which reduces Equations (12)–(14), respectively, to the following ones:

iωp(x) = p′′(x) + v′′(x),

iωm(x) = m′′(x)− v′′(x), (20)

v′′(x) =
1

Λ2 [m(x)− p(x)].

The methodology pursued is the one used for ordinary differential equations, in which
the solutions have the form of linear combinations of e±µ+x and e±µ−x, where µ± will be
defined below. After some calculations, the solutions may be written as:

p(x) = c1 sinh(µ+x) + c2 sinh(µ−x) + +c3 cosh(µ+x) + c4 cosh(µ−x), (21)

m(x) = −k1c1 sinh(µ+x)− k2c2 sinh(µ−x) +−k1c3 cosh(µ+x)− k2c4 cosh(µ−x), (22)

and

v(x) = − 1 + k1

Λ2µ2
+

[c1 sinh(µ+x) + c3 cosh(µ+x)]− 1 + k2

Λ2µ2
−
[c2 sinh(µ−x) + c4 cosh(µ−x)]

+ cvz + c5, (23)

where
k1 = Λ2(µ2

+ − β2
p) and k2 = Λ2(µ2

− − β2
p), (24)

µ± =
1
Λ

√√√√ (β2
p + β2

m)Λ2 ±
√

4 + (β2
p + β2

m)
2Λ4

2
, (25)

and
β2

p =
1

Λ2 + i
ω

Dp
and β2

m =
1

Λ2 + i
ω

Dm
. (26)

In the case of a symmetric cell, when V(t) = V0 exp(iωt) is the external difference
of potential, such that V(±d/2, t) = ±(V0/2) exp(iωt), the property p(−x) = −p(x),
and m(−x) = −m(x) holds. Here, however, we are considering an asymmetric cell in
which the electrodes are different and, hence, impose different boundary conditions on the
surfaces. The symmetry of the problem is broken and, in the final solution, the even terms
in p(x) and m(x) are necessary.

The problem will be formally solved when the integration constants c1, c2, c3, c4, c5,
and cv are determined using the boundary conditions satisfied by the current densities of
positive and negative ions and by the electric potential at x = ±d/2. Using the solutions,
the current densities defined in (3) become

jp(x, t) = −n0Dp[p′(x) + v′(x)] exp(iωt),

jm(x, t) = −n0Dm[m′(x)− v′(x)] exp(iωt).
(27)
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Likewise, the displacement current, Equation (17), may be simply written as

jD(x, t) = −iωvtv′(x) exp(iωt). (28)

By using Equation (18), the total electric current density across the sample is

j(x, t) = −n0qcv(Dp + Dm + iΛ2ω) exp(iωt). (29)

We notice that it is position independent [36]. This is a necessary requirement to
achieve a sound definition for the electrical impedance. In the linear approximation we are
using here, that is, when the external electric excitation is a periodic function of time of
the type U(t) = V(d/2, t)−V(−d/2, t) = V0eiωt with a small amplitude, the impedance
of the cell, which is defined as Z = U(t)/I(t), with I(t) = jS, assumes the simple form:

Z(ω) = − u0

n0qcv(Dp + Dm + iΛ2ω)S
, (30)

where S is the surface area of the electrodes and u0 = V0/vt. A remarkable result is that
the final expression for the electric impedance actually depends only on cv, which is the
integration constant connected with the linear dependence of v on the x-coordinate, as
shown by Equation (23).

To complete the solution of the problem, the integration constants in the
solutions (21)–(23) have to be determined using the boundary conditions, as we will dis-
cuss now.

4. Boundary Conditions

The boundary conditions will be stated in terms of the values assumed on the inter-
faces by these currents.

4.1. Blocking Electrodes

The first one refers to the case of completely blocking electrodes, which are

jp

(
x = ±d

2
, t
)
= 0 and jm

(
x = ±d

2
, t
)
= 0, (31)

together with the boundary conditions on the electric potential, related to the presence of
the external power supply, that we assume to be of the type

V
(

x = ±d
2

, t
)
= ±V0

2
eiωt. (32)

Using Equation (27), the boundary conditions may be rewritten as

p′(x = ±d
2
) + v′(x = ±d

2
) = 0,

m′(x = ±d
2
)− v′(x = ±d

2
) = 0, (33)

v(x = ±d
2
) = ±u0,

where, in the present case, u0 = V0/2vt. In this case, both electrodes behave identically.
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4.2. Adsorbing Surfaces

The boundary conditions in the presence of adsorbing surfaces will be expressed in
terms of the kinetic equations as follows. At the electrode A (placed at x = −d/2) and B
(placed at x = d/2), they are:

j(A)
α

(
x = −d

2
, t
)
= − d

dt

[
δσ

(A)
α (t)

]
j(B)
α

(
x =

d
2

, t
)
=

d
dt

[
δσ

(B)
α (t)

]
,

(34)

in which
d
dt

[
δσ

(A)
α (t)

]
= k(A)

α δnα

(
x = −d

2
, t
)
− 1

τ
(A)
α

δσ
(A)
α (t)

d
dt

[
δσ

(B)
α (t)

]
= k(B)

α δnα

(
x =

d
2

, t
)
− 1

τ
(B)
α

δσ
(B)
α (t),

(35)

where, for compactness, we have introduced the subscript α = p (for the positive ions) and
α = m (for the negative ones). We thus have four boundary conditions to which we have
to add a supplementary condition on the electric potential, that is

u(A)
v

(
x = −d

2
, t
)
=

V
(

x = − d
2 , t
)

vt
= u(A)

0 (t)

u(B)
v

(
x =

d
2

, t
)
=

V
(

x = d
2 , t
)

vt
= u(B)

0 (t),

(36)

At this point, the connection between the bulk behavior of the currents, that is, the dy-
namics of the mobile charges in the liquid medium and the surface dynamics, which is
indeed the dynamics at the electrodes, is formally complete. All the integration constants
can be determined using the boundary conditions in Equations (34) and (36).

In this approach, the surface dynamics are represented by a kinetic equation in the
Langmuir approximation, which, as discussed before, contains the phenomenological
parameters k and τ. To keep our analysis in this framework, we have to take into account
other effects influencing the effective values of these parameters, which are the only ones in
this approach. We shall now propose a way to incorporate a bias voltage dependence into
their effective values by invoking arguments based on the classical Boltzmann statistics.

4.3. Adsorption in the Presence of the Bias

For simplicity, we analyze what happens on the electrode placed at x = d/2 (electrode
B) and suppress hereafter, without loss of generality, the index B. We recall that we
are working in the approximation of small amplitude for the external voltage, that is,
|δnp| � n0 as well as |δnm| � n0. Before proceeding, an important remark is in order
here. This approximation means that the bulk dynamics are such that the medium behaves
like a linear one. This does not imply that the surface dynamics are linear too. Indeed,
the physical problem may be seen as formed by two media in contact: a linear, bulk,
medium in contact with the surface, that is, the electrodes, having independent dynamics.
The set of boundary conditions stated in Section 4 puts these two media in contact and
helps in building a whole electrical response of the sample to the external field, using the
impedance spectroscopy technique.

In the linear approximation mentioned above, Equation (2) for the positive ions,
relative to the electrode at x = d/2, under the potential V(d/2, t) imposed by the external
power supply, is

dδσp

dt
= kpδnp −

1
τp

δσp, (37)
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in which δσp and δnp are the surface variations of the density of adsorbed ions and bulk
density of positive ions due to the presence of the bias, respectively. The general solution
of Equation (37), such that δσp(0) = 0, is

δσp(t) = kp e−t/τp

∫ t

0
et′/τp δnp(t′) dt′. (38)

In the dc case, the bias is a step function. This way, δnp = δnp0 does not depend on
time, and from Equation (38), we obtain

δσp(t) = kp τp δnp0

(
1− e−t/τp

)
. (39)

From (39), it follows that for t→ ∞, δσp → kpτpδnp0. Furthermore

dδσp

dt
= kp δnp0 e−t/τp . (40)

For the negative ions, the situation is similar, that is,

dδσm

dt
= km δnm0 e−t/τm . (41)

When a dc bias is present, δnp0, close to the adsorbing electrodes, is determined by

δnp0 = np(d/2)− n0 = n0

{
e−bu − 1

}
, (42)

where u is connected with the bias, namely,

u =
1

2vt
V(d/2), (43)

and b is a parameter related to a screening effect [17]. For the negative ions, an analysis of
the same kind gives

δnm0 = nm(d/2)− n0 = n0

{
ebu − 1

}
. (44)

The approach is very similar when the the electrode at x = −d/2, at the electric
potential V(−d/2), is considered. It follows that, in the dc regime, the electric current
density is

j = q
(

d δσp

dt
− d δσm

dt

)
= q

(
kp δnp0 e−t/τp − km δnm0 e−t/τm

)
, (45)

where δnp0 and δnm0 are given by Equations (42) and (44). Equation (45) describes the
charge accumulation on the adsorbing electrode and has the following final form:

j = n0q
{

kp e−t/τp
(

e−bu − 1
)
− km e−t/τm

(
ebu − 1

)}
. (46)

When the electrode polarization is small, from Equation (46), we get

j = −n0qb
(

kp e−t/τp + km e−t/τm
)

u, (47)

that is, the electric current density is proportional to u.
When V(d/2, t) is an arbitrary function of t, and then u(t) = (1/2vt)V(d/2, t), by in-

voking Equation (38) for δσp and the corresponding one for δσm, and taking into ac-
count that

δnp(t) = n0

{
e−bu(t) − 1

}
, δnm(t) = n0

{
ebu(t) − 1

}
,
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we obtain

j = n0q
{

kp

[
e−bu(t) − 1

]
− km

[
ebu(t) − 1

]
−
∫ t

0
H(t, t′) dt′

}
, (48)

which expresses the total current density by means of the kernelH, defined as

H(t, t′) =
1
τp

e−(t−t′)/τp
[
e−bu(t′) − 1

]
− 1

τm
e−(t−t′)/τm

[
ebu(t′) − 1

]
. (49)

We underline that this kernel depends on the surface properties, because it is expressed
in terms of the relaxation times τp and τm, and the screening parameter, b. Furthermore,
Equation (48) connects the surface current with the electrode polarization; it represents
an equation to determine the current for adsorbing electrodes, and is an immediate con-
sequence of the kinetic theory we are proposing for a capacitive process occurring at the
electrode–solution interfacial layer.

5. Voltammetry from a Drift–Diffusion Model

The current–voltage characteristics analyzed here deal with a cell under a periodic
potential, of period T, expressed as

V(t) =
∞

∑
k=−∞

Vkeikω0t, (50)

where ω0 = 2π/T and

Vk = 4iV0
(−1)k

(πk)2 sin
(

k
π

2

)
, (51)

which represents an alternate triangular difference of potential.
In our analysis, the voltammetry is carried out by solving the fundamental equations

of the PNP model presented before. This is not the usual procedure and represents a more
sophisticated strategy. We adopt it here because it permits us to investigate the surface
effects on the experimental results, by exploring, for instance, just the I(V) curves.

The whole approach is based on the linear approximation. In this framework, the current
is connected with the impedance spectroscopy measurements by means of the expression:

I(t) =
∞

∑
k=−∞

Ikeikω0t, (52)

with
Ik =

Vk
Zk

, (53)

in which, for Zk, the expression (30) holds and may be rewritten as Z(kω0). Thus, the I(V)
curves for the cases relevant to the boundary conditions discussed before may be built
by using Equations (50) and (52), and are experimentally accessible quantities. The area
limited by this kind of curve is typically related to the power dissipated per cycle in the
cell [37–43]. It is possible to show that it may be obtained as [44]

A =
1
2

∫ t0+T

t0

[
I(t)

dV(t)
dt
−V(t)

dI(t)
dt

]
dt. (54)

If Equations (50) and (52) are used, remembering that the functions in the set {eiωkt}
are orthogonal in t0 ≤ t ≤ t0 + T, the area becomes:

A = 2πi
∞

∑
k=1

kVk I−k = 2πi
∞

∑
k=1

kVkV−k/Z−k. (55)
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Thus, once the electrical impedance is evaluated, the power dissipated per cycle in the
cell can be also obtained directly from the experimental data.

5.1. Polarized Cell

The analysis presented above refers to the current–voltage characteristics in which
the cell is submitted to an alternate electric excitation V(t), where the time average of the
applied difference of potential vanishes. However, for experimental purposes, it is helpful
to consider V(t) as a periodic function of time, whose average, on one period, is not zero.
In the case where

V(t) =
{

2(V0/T)t for 0 ≤ t ≤ T/2
2V0(1− t/T) for T/2 ≤ t ≤ T,

(56)

the average value on one period is indeed not zero, i.e., the cell is polarized. Since V(t) is a
periodic function, it can be expressed in terms of a Fourier series, namely:

V(t) =
V0

2
+

∞

∑
k=−∞

Vkeikω0t, (57)

where

Vk = −
1− (−1)k

(kπ)2 V0, (58)

and, as before, ω0 = 2π/T. In this case, as discussed above, it is possible to evaluate the
impedance of the cell, and to analyze the current–voltage characteristics in the framework
of our model for the adsorption. In the following section, we analyze the I = I(V) curve
for an excitation of the kind (57), to investigate the different role of the phenomenological
parameters entering the model. We consider first the case of a symmetric cell, in which
the limiting electrodes are identical, although their properties with respect to the positive
and negative ions can be different. This way, the importance of the adsorbing coefficients
and of the desorption time can be discussed in a simple situation. The case in which the
electrodes have different physical properties, very important for technological applications,
allows us to investigate the effect of the asymmetry on the performance of the cell and, in
particular, of the screening parameter.

5.2. The Current–Voltage Characteristics

To build the I(V) curves, we start from the values of the effective adsorption param-
eters obtained from the analysis of the experimental data reported in Ref. [17]. When an
external positive triangular potential of amplitude V0 is applied on the electrodes, for any
given values of period T and the total current I(t), Equation (52), written for the polarized
cell, depends on the set of parameters k(A)

p , k(B)
p , k(A)

m , k(B)
m , and τ

(A)
p , τ

(B)
p , τ

(A)
m , τ

(B)
m , where

the A and B stand for the electrodes placed at −d/2 (grounded) and at +d/2, as well as
the values of the screening parameters b(A) and b(B). In the following section, we limit our
numerical analysis to the case in which the two limiting surfaces have the same adsorbing
properties with respect to the positive and negative ions, and hence kA

p = kA
m, kB

p = kB
m,

as well as τA
p = τA

m , τB
p = τB

m. Special attention is devoted to the influence of the screening
parameter b on the I = I(V) curve.

The electric response of an electrolytic cell having the same adsorption parameters k for
the positive and negative ions changes substantially when the desorption time τ increases.
Analyzing the adsorption equation in the Langmuir approximation (Equation (35)) for very
small values of τ, the desorption term increases, and the conduction contribution to
the electric current decreases. Hence, the electrodes show blocking behavior and the
voltammetry plot presents a capacitive form. For large values of τ, the desorption term
decreases, the conduction current increases, and the electrode shows Ohmic behavior. From
the electrical point of view, the cell is well described by a circuit made by a resistance Rs,
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taking into account the presence of the metallic layer deposited on the limiting surfaces,
and by a series of two parallels formed by a resistance, R, and a capacitance, C, and Rb
and Cb charged to describe the interface electrolyte–electrode and the bulk of the cell,
respectively. The bulk capacitance Cb = εS/d, in the frequency range explored by us, is
equivalent to an open circuit, and does not contribute to the current in the external circuit.
The bulk resistance Rb, for the ionic concentration considered in our simulation, is rather
small. Consequently, the parallel Rb ‖ Cb is reduced to a small resistance. This electric
circuit formed by lumped elements and, in the following section, will be indicated as
Rs − R ‖ C. According to this equivalent circuit, the resistance of the bulk is included in
Rs. The capacitance of the interface is usually very large, since the surface layer is of a few
nanometers, and smaller than Λ [44].

To extend the analysis published in Ref. [17], a set of simulations of the parametric
curves I = I(V) for an electrolyte submitted to a triangular positive potential of the type
represented by Equation (37), with anode in B, is reported. It is relevant to different
values of the phenomenological parameters k and τ, and for the screening parameter b.
For all the simulations, the values T = 80 s, V0 = 0.2 V, ε = 80× ε0, S = 1.21× 10−4 m2,
d = 5.5× 10−3 m, Dp = 1.61× 10−9 m2/s, Dm = 1.28× 10−9 m2/s, n0 = 6.06× 1026 m−3

are fixed. These values correspond to an aqueous solution of NaCl at a concentration of
1 M.

We did simulations over a large range of parameters. In the following section, we
present the results obtained in a narrower range for clarity. The observed trend, shown in
the figures reported below, is, however, valid in general.

Let us consider first the situation in which, in the kinetic equation at the interface,
Equation (2), the desorption contribution is negligible when compared with the adsorption
contribution. This limit is recovered when τ → ∞. In this case, the adsorbed particles
remain on the electrode. We limit the analysis to a symmetric cell with electrodes having
the same adsorption properties for positive and negative ions. In Figure 1 are shown the
I = I/(V) curves for τ → ∞, with k = 10−6 m/s, k = 2× 10−6 m/s, and k = 3× 10−6

m/s. In these cases, the parametric curves I = I(V) are of the Ohmic type. From this curve,
it follows that the electric resistance of the interface is proportional to 1/k, and the interface
capacitance is negligible. This result is valid in general, and hence R ∝ 1/k.
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Figure 1. Parametric curves I(V) for an electrolytic cell with identical electrodes having the same
adsorption properties for positive and negative ions, when the screening parameter is b = 0.04, in the
absence of the desorption phenomenon (desorption time tending to ∞). The adsorption coefficients
are 10−6 m/s (a), 2× 10−6 m/s (b), and 3× 10−6 m/s (c).
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The symmetric case is also of interest, in which the adsorption contribution is negli-
gible when compared with the desorption contribution. In this case, for finite τ, k → 0.
In Figure 2, the I = I(V) curve is shown for a symmetric sample of the type considered
in Figure 1, assuming k = 0 and τ = 1 s. In this framework, the characteristic I = I(V)
corresponds to that of an ideal condenser, in agreement with the conclusion that R ∝ 1/k,
reported above. A simple analysis allows us to show that the capacitance of the interface
is C = 2

√
2εS/Λ. In fact, as discussed elsewhere [45], in the dc limit, the electrolytic

cell behaves as a real condenser of total capacitance Ct =
√

2εS/Λ. Since there are two
interfaces in series, the capacitance of the interface is C = 2Ct. Hence, the displacement
current is I = C(2V0/T), in agreement with the numerical result of Figure 2. As expected,
in this limit, the I = I(V) characteristic is independent of the desorption time.
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Figure 2. Parametric curves I(V) for an electrolytic cell with identical electrodes having the same
adsorption properties for positive and negative ions, when the screening parameter is b = 0.04, in the
absence of adsorption (k = 0), with τ = 1 s. In this case, the parametric curve is independent of the
desorption time, and it is typical for an ideal condenser.

Figure 3 shows the parametric curves I(V) for an electrolytic cell with identical
electrodes, with the same adsorption properties characterizing positive and negative
ions, submitted to a triangular positive potential with anode in point B, with screening
parameter b = 0.04. The adsorption coefficients are 10−6 m/s. From this figure, it follows
that, for τ = 0.5 s and τ = 1 s, the shape of the plot is capacitive, whereas for τ = 2 s,
the behavior of the cell changes in a significant manner. In this case, increasing the
desorption time τ, the maximum value of the current increases. This result, using the
equivalent circuit Rs − R ‖ C, can be easily understood. In fact, increasing the desorption
time decreases the desorption contribution in the interfacial kinetic equation. More ions
are accumulated just in front of the electrode. Hence, it increases the surface capacitance,
responsible for a current contribution given by CdV/dt = (V0/T)C.

In Figure 4, for a fixed value of the desorption time, τ = 1 s, and the screening
parameter b = 0.04, the dependence of the voltammetric curves on the adsorption pa-
rameter is shown, for an adsorption coefficient ranging from 5× 10−7 m/s to 2× 10−6

m/s. The curves present a pronounced capacitive shape only for very small values of k,
the adsorption within the electrodes being small, and the capacitive effect is due to the
dielectric constant of the electrolyte. For large values of k, a larger amount of ions is stuck
into the electrodes, increasing the effective dielectric constant so that the displacement
current becomes larger. As in the previous case, shown in Figure 3, when increasing
the adsorption coefficient, the adsorption phenomenon increases in the kinetic equation,
and again the capacitance increases, and with it, so does the maximum current.
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Figure 3. Parametric curves I(V) for an electrolytic cell with identical electrodes having the same
adsorption properties for positive and negative ions, when the screening parameter is b = 0.04.
The adsorption coefficient is 10−6 m/s. Desorption times are 0.5 s (a), 1 s (b), and 2 s (c).
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Figure 4. Parametric curves I(V) for an electrolytic cell with identical electrodes having the same
adsorption properties for positive and negative ions, when the screening parameter is b = 0.04.
The curves are drawn for desorption time 1 s, and adsorption coefficient 5× 10−7 m/s (a), 10−6 m/s
(b), and 2× 10−6 m/s (c).

In Figure 5, the influence of the screening coefficient b on the I = I(V) parametric
curve, in the case of a symmetric cell, is shown. Increasing b the I = I(V) curve shows
an increase in the current close to the maximum voltage, related to the Boltzmann factor
exp(bu0) responsible for the accumulation of ions in front of the electrodes. The presence of
this term increases the effective adsorption coefficient. Only for small b can the parametric
curve be described by the circuit Rs − R ‖ C formed by constant elements. This is because



Electron. Mater. 2021, 2 138

the elements R and C, taking into account the electrode–bulk interface,depend on the
difference of potential between them. As expected, in a polarized cell, the maximum
effect of the parameter b is localized close to maximum value of the applied difference
of potential.
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Figure 5. Parametric curves I(V) for an electrolytic cell with identical electrodes, with the same
adsorption properties with respect to positive and negative ions. The adsorption coefficients are 10−6

m/s and the desorption times are 1 s. The screening parameters are 0.04 (a), 0.08 (b), and 0.12 (c).

In Figure 6, the effect of different adsorption coefficients at the two surfaces on the
I = I(V) is considered. The case in which the two electrodes have the same adsorption
properties for positive and negative ions is analyzed. The desorption times and screening
parameters are assumed to be identical for the two adsorbing surfaces, and equal to 1 s and
to 0.04 s, respectively. The adsorption coefficients on the B electrode are equal to 10−6 m/s.
On the electrode A, they are equal to 5× 10−7 m/s, (a), 10−6 m/s, (b), and 2× 10−6 m/s,
(c). As in Figure 4, when increasing the adsorption coefficient on one electrode, the current
increases. These results can be easily understood when taking into account that the surface
capacitance is increasing with the adsorption coefficient, as follows from Figure 4. Since
the total capacitance of the system is the series of the two surface capacitances, it increases
when the capacitance of one of the interfaces increases and, with it, the maximum current in
the cell. A similar influence is observed when the two electrodes have the same adsorption
coefficient and different desorption times. We underline that, for a small screening coeffi-
cient, such as that considered in Figure 6, the parametric curves remain symmetric with
respect to the point (0, 0). This result is related to the circumstance that when changing the
adsorbing parameters of a surface, the interface capacitance and resistance change, but the
current is sensitive only to the total resistance and capacitance of the cell. Increasing the
screening parameter, as shown in Figure 5, the I = I(V) curves become asymmetric, but the
effect is not related to the difference in the adsorption coefficients, nor in the desorption
times, but to the screening parameter.
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Figure 6. Effect of different adsorption coefficients on the two surfaces on the I = I(V) curve. The two
electrodes have the same adsorption properties for positive and negative ions. Desorption times τ = 1 s,
screening coefficient b = 0.04. The adsorption coefficients on the B electrode are equal to 10−6 m/s.
On the electrode A, they are equal to 5× 10−7 m/s (a), 10−6 m/s (b), and 2× 10−6 m/s (c).

6. Concluding Remarks

A generalization of the Langmuir model for ionic adsorption in the presence of an
electric bias is proposed. Assuming that the effective adsorption energy depends on
the surface potential according to the Boltzmann statistics, it is possible to deduce the
dependence of the effective adsorption coefficients on the bias. In the proposed model,
the surface drop of potential is related to a screening parameter, b, defined in terms of
the dielectric properties of the electrode and of the bulk, in addition to the thickness of
the porous electrode over which the adsorption phenomena take place. In the model,
the adsorption characteristics of the electrodes are the adsorption coefficient and the
desorption time. They are related to the electric current across the electrode and to the
diffusion time of the ions through the porous electrode. In order to analyze the importance
of the different phenomenological parameters entering the model on the the whole electric
response of the cell to an external excitation, we have evaluated the cyclic voltammetry
of a standard cell for different values of the adsorption coefficients, k, desorption time, τ,
and screening parameter b, in the presence of an external positive triangular potential of
amplitude V0 and period T. The analysis revealed that for symmetric cells, the I(V) curves
present a pronounced capacitive behavior only for very small values of k. In the limit of
small desorption, the behavior of the cell is resistive, with electric resistance of the interface
proportional to the inverse of the adsorption coefficient. In the opposite limit of small
adsorption, the behavior of the cell is of the capacitive type, with an interface capacitance of
the order of the double layer of thickness of the order of Debye. The effect of the screening
parameter results in an asymmetry of the I = I(V) curve near to the maximum value of
the applied difference of potential. For small screening parameters, the I = I(V) curve
remains symmetric with respect to the center of the I = I(V) loop even in the case of a
large difference between the adsorption parameters, since it depends only on the total
resistance and capacitance.
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