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Abstract—Approximate Computing (AxC) allows reducing the
accuracy required by the user and the precision provided by the
computing system to optimize the whole system in terms of per-
formance, energy, and area reduction. Spiking Neural Networks
(SNNs) are the new frontier for artificial intelligence because they
better represent the timing influence on decision making, and
also allow for a more reliable hardware design. Unfortunately,
this design requires some area minimization strategies when the
target hardware reaches the edge of computing. This seminal
work introduces modeling of the approximation for data storage
that supports an SNN via Interval Arithmetic (IA) by extracting
the computation graph of the SNN and then resorting to IA to
quickly evaluate the impact of approximation in terms of loss in
accuracy without executing the network each time. Experimental
results comparing our model to the real network confirm the
quality of the approach.

Index Terms—approximate computing, spiking neural net-
works, interval arithmetic

I. INTRODUCTION

Using approximate computing techniques, it is possible to
trade off the accuracy of the computation and results for
gains in performance such as reductions in power consump-
tion, memory utilization, and execution time [1]. Therefore,
approximate computing techniques are widely employed in
applications that are intrinsically tolerant to some accuracy
loss. Among those applications, Artificial Neural Networks
(ANN) are certainly a large group [2]. ANNs perform billions
of arithmetic operations and require a lot of memory for saving
millions of weights and activations. As a result, ANNs can
benefit from approximation techniques to gain performance,
especially when the deployment target is a low-power de-
vice [3]–[5].

Approximate computing solutions range from circuit-
specific techniques, e.g., targeting adders or multipliers [6],
to data-specific techniques, e.g., fixed- and floating-point scal-
ing [7], [8]. All techniques can be exploited together and
with different tuning of their parameters, making the choice
of different approximate computing techniques difficult. More-
over, the exploration requires assessing the accuracy impact of
the choices and, if necessary, weighting it with other design
parameters, such as power consumption. To support the explo-
ration of approximate techniques and their parameters’ tuning,
the two most common approaches comprises (i) running the
application several times with different configurations [9], [10]
or (ii) devising modeling techniques to evaluate them in time-
optimized fashion [11], [12]. The first approach suffers from

the limitation of requiring an evaluation time that grows when
the exploration reaches an exhaustive search. To limit that,
most of the time, pruning techniques to the exploration space
are applied. In any case, the time required is bounded to the
time necessary to run a single application instance. In the ANN
case, it may translate into running the whole test set. On the
contrary, modeling techniques are more suitable for quickly
estimating the impact of a given approximation configuration
at the cost of some error margin in the accuracy evaluation.

Among ANNs [13], Spiking Neural Networks (SNNs) [14]
are an emerging class of ANNs in which information is
exchanged between neurons in the form of binary spikes.
SNNs have shown a great potential for achieving high ac-
curacy, requiring a small area footprint, and thus potentially
limiting the power/energy consumption due to their sparse
spike-based operations [15]. Moreover, SNNs reduce the width
of the connections between neurons to a single bit and
support unsupervised learning with unlabeled data using the
Spike-Timing-Dependent Plasticity (STDP) [16]. In the SNN,
the computation flow of each neuron consists of arithmetic
operations, i.e., additions, subtractions, multiplications, and
necessary weights and thresholds to operate. Hence, when the
SNN requires to be deployed into FPGA devices, it may be
helpful to reduce the complexity of the arithmetic components
and the storage of weights and thresholds using approximate
computing techniques.

In this paper, we propose a simplified model of an SNN
exploiting the Interval Arithmetic (IA) [17] concepts to eval-
uate the impact of the data reduction of trained weights
and thresholds after the integer quantization. Previous works
[18], [19] already exploited IA to analyze the effect of the
computation of neural networks in general. Still, they modeled
the overall functionality of the network and kept track of every
single value propagating during the calculation. In contrast, in
this work, we aim to reduce the impact of the analysis by
compacting the representation to distinguish the error range
and support further tuning optimizations based on that. It is
important to note that in this paper, the word ”error” refers to
the error introduced or propagated by applying approximation
techniques to the computations, not the error in classification
by the SNN. The experiments have been conducted on a pre-
trained spiking neural network [20], exploring the pruning of
the parameters’ size into the inference model to be transferred
into the FPGA. To assess the quality of the model, all the
approximated versions outputs of the SSN are compared with



the results elaborated using the IA-based model outputs.
The rest of the paper is organized as the following: In sec-

tion II the entire methodology is described. First, an overview
of the single neuron and the SNN architecture is provided.
Then the approximation method is explained, followed by a
description of the interval arithmetic-based modeling. Finally,
the computation flow of the network and the usage of these
methods are discussed. In section section III, the experimental
results are provided and analyzed. Eventually, section IV
draws conclusions and possible future works.

II. METHODS

This section describes the original SNN and how the pre-
cision reduction on trained SNN data is applied. Eventually,
the IA modeling explanation is provided.

A. Spike Neuron Model and Network Description

Excitatory
layer

Inhibitory
layerInput layer

Fig. 1: An excitatory and an inhibitory layer of a SNN

Figure 1 depicts the general organization of an SNN,
describing the behavior of each single spiking neuron in terms
of excitatory and inhibitory layers. Spikes are generated by an
input layer transforming static data, i.e., pixels of an image,
into a sequence of spikes, enter the neuron through an excita-
tory layer and propagate back through an inhibitory layer. To
appreciate the computation flow more clearly, Figure 2 shows
the organization of a single layer.

The excitatory layer is responsible for increasing the mem-
brane potential (V0 in Figure 2) when input spikes are
detected. Each spike is represented as a single bit set to 1.
The increment is based on a weight value elaborated during
the training phase and associated with each connection to the
neuron (w0,i in Figure 2). Each time spikes enter the neuron,
V0 increases by the sum of all weights where an active spike is
detected. The membrane potential behaves like an ”electrical
charge.” When it reaches its maximum, the neuron fires a
spike (green and red connections out of the excitatory layer
in Figure 1 and V0 > Vthresh in Figure 2), and it is reset to a

special reset value (Vreset as it can be seen following the ”yes”
branch in Figure 2). Vthresh defines the threshold potential for
each neuron computed at training time. The inhibitory layer
is responsible for decreasing the potential of other neurons
when a spike is happening. Eventually, the membrane potential
also falls at each step if no active spike is detected in the
input using an exponential decay approach (V0 ≫ expdecay
in Figure 2). The decay is a far more complex operation
involving multiplication for an exponential time-related term
but, to occupy less area on an FPGA, the work in [20] proposes
a transformation of the exponential term into the closest power
of two, to replace the multiplication with a shift. Since the
exponent is negative, the actual shift is a right shift.

Eventually, each neuron is associated with a counter to keep
track of the output spikes generated by its excitatory layer.
They can be defined as the output of the SNN. Depending
on the network purpose, an extra layer can be placed after
the counters to make any classification decisions. For more
detailed information about the model and implementation, the
reader may refer to [20].

B. Data Quantization and precision reduction

The training task is responsible for computing, for each
neuron, the set of weights and thresholds and the reset value
necessary to operate the network. Since most of the train-
ing tools available compute those values in a floating-point
fashion [21], an extra step is required to deliver the network
into edge devices provided by some FPGA accelerators. To
reach this goal, in [20], a quantization of the weights has been
performed to reduce the memory occupation.

The quantization technique requires converting each
floating-point value into a 32-bit wise fixed-point value, with
the fractional part of 16 bits. Then a precision reduction of
the fractional part is introduced to provide an approximated
version of weights, thresholds, and reset values. The precision
reduction ranged from 16 to 1 single bit. Since the integer
part is not altered, each time the fractional part is reduced, the
produced error ϵ follows Equation 1, where k is the number
of bits removed from the fractional part and bi the value of
the original bit removed.

ϵ =

k∑
i=0

bi · 2−(16−i) (1)

For a general value undergoing a precision reduction of k
bits, the minimum and the maximum errors introduced are
defined in Equation 2. The maximum corresponds to all bits
cut equal to one, while the minimum to zero.

0︸︷︷︸
∀bi=0

≤ ϵ ≤
k∑

i=0

·2−(16−i)

︸ ︷︷ ︸
∀bi=1

= −1− 2k

32768
(2)

It is crucial to notice that the precision reduction is not
altering the integer part: at each drop, the number of integer
bits remains 16.
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Fig. 2: Computation Flow of SNN layer

C. The Interval Arithmetic Error Propagation Model

Using the error computed in subsection II-B, it was possible
to devise an Interval Arithmetic (IA) error propagation model.
The foundation of IA is the ability to define mathematical
operations over intervals. The most simple arithmetic opera-
tions are described, such as addition and multiplication. The
standard way to refer to an interval is by resorting to the
brackets notation in Equation 3.

[v] ≡ [v1, v2] (3)

Given the general definition of interval arithmetic error-
based value (|ian|), each value undergoing a precision reduc-
tion can be described as a pair of intervals {[v], [ϵ]}, where [v]
is the range of the original values and [ϵ] the range of errors
that the precision reduction may produce in the value interval.
It is crucial to notice that:

1) this is a simplification because the limits of the [v]
interval may display errors that belong to [ϵ] but they
are not necessarily its limit. This is a huge difference
with respect to previous works such as [19].

2) the errors come from Equation 2, thus they are strictly
monotonic, i.e., [ϵ] ≡ [ϵmin, ϵmax]. The same applies to
[v].

3) due to the nature of the precision reduction operation,
the relationship between [v] and [ϵ] is subtractive.

The second and third considerations are critical to defining
the mathematical operations required to translate all approxi-
mated values, i.e., weights, thresholds, and reset values, into
{[v], [ϵ]} intervals and being able to model the same operations
as in the original model. The standard [17] only defines a
subset of them and only for a single interval, not for a pair.

The complete set of required operations is quickly described
in the following subsections.

1) Addition / Subtraction: The addition and the subtraction
among two values, i.e., |ian1| and |ian2| can be defined
using the linearity of the two mathematical operations and
the monotonic shape of the ranges as in Equation 4 and
Equation 5.

|ian1|+ |ian2| = {[v1min
+ v2min

, v1max
+ v2max

]︸ ︷︷ ︸
[v]

,

[ϵ1min + ϵ2min , ϵ1max + ϵ2max ]︸ ︷︷ ︸
[ϵ]

} (4)

|ian1| − |ian2| = {[v1min
− v2max

, v1max
− v2min

]︸ ︷︷ ︸
[v]

,

[ϵ1min − ϵ2max , ϵ1max − ϵ2min ]︸ ︷︷ ︸
[ϵ]

} (5)

2) Multiplication: The multiplication is a special case in
which the common IA applied to a single range does not suit
our modeling. In fact, since the |ian| ≃ [v]− [e] from a single
value standpoint, the multiplication requires more complex
management. Equation 6 describes the steps toward a proper
|ian1| × |ian2| evaluation.



|ian1| × |ian2| = [min(A),max(A)]︸ ︷︷ ︸
[v]

,

[min(C)−min(B),max(C)−max(B)]︸ ︷︷ ︸
[ϵ]

(6)

The three components A, B, and C come from the eval-
uation of |ian1| × |ian2| as ([v1] − [e1]) × ([v2] − [e2]) and
are fully developed in Equation 7. It is important to highlight
that the modeling correctly relates the global error after the
operations with the values (even in IA fashion) involved in the
multiplication.

A → {v1min × v2min , v1min × v2max ,

v1max × v2min , v1max × v2max}
B → {v2min × ϵ1min , v1min × ϵ2min ,

v2min × ϵ1max , v1min × ϵ2max ,

v2max × ϵ1min , v1min × ϵ2min ,

v2max × ϵ1max , v1min × ϵ2max ,

v2min × ϵ1min , v1max × ϵ2min ,

v2min × ϵ1max , v1max × ϵ2max ,

v2max × ϵ1min , v1max × ϵ2min ,

v2max × ϵ1max , v1max × ϵ2max , }
C → {ϵ1min × ϵ2min , ϵ1min × ϵ2max ,

ϵ1max × ϵ2min , ϵ1max × ϵ2max} (7)

3) Right Shift: The last operation that is useful for the neu-
ron is the right shift for the operation involving the expdecay .
Equation 8 summarizes the modeling of that operation for a
|ian|.

|ian1| ≫ n = {[v1min
≫ n, v2max

≫ n]︸ ︷︷ ︸
[v]

,

[ϵ1min ≫ n, ϵ2max ≫ n]︸ ︷︷ ︸
[ϵ]

} (8)

4) Comparison: One of the non-re-usable parts in the
IA theory is the definition of the comparison between in-
tervals. The model implements the decision making of the
|ian1| > |ian2| operator, using the definition of subtraction
and applying a range reasoning on the results when compared
to 0, such as |ian1| − |ian2| > 0. Equation 9 reports the
evaluation of such comparison in the IA modeling.

|ian1| − |ian2| = |ianr| > 0

⇒ (vrmax
− ϵrmax

)− (vrmin
− ϵrmin

) > 0 (9)

Basically, due to the monotonic property, if the difference of
two endpoints of the bounds (including the errors) falls into the

positive field, the comparison is true, making the comparison
a majority voting. Again, in this case, this is a simplification
to allow a fast model evaluation, and it might introduce some
errors. In fact if both (vrmax

− ϵrmax
) and (vrmin

− ϵrmin
) are

of the same sign, the comparison result is the same for any
value in the interval, but if they have opposite signs, in the
reality, they model a scenario where the real comparison might
be either true or false depending on the value in the interval.

III. EXPERIMENTAL RESULTS

After modeling the approximation on all necessary
operands, a data computation flow of the SNN was extracted.
The flow is similar to the one depicted in Figure 2, where all
values are |ian| and mathematical operations are implemented
accordingly to subsection II-C. The model’s input is the se-
quences of spikes, and the output is the sequences of produced
spikes.

The trained SNN from [20] is used in this paper. To
train and test the network, the MNIST dataset was used as
reference [22]. The MNIST dataset comprises 60,000 training
images and 10,000 testing images of handwritten digits. Since
the resolution of each image is 28x28 pixels, in total, 784
pixels of an image are used to produce input spikes for the
SNN. The SNN defines an input layer to transform each
image pixel into a sequence of spikes using a random Poisson
process [23] with an average frequency corresponding to the
numeric value in the input. After this process, each image
results in 3500 spikes.

The SNN structure includes one layer with 400 neurons. The
membrane potential of each neuron is reset to its rest potential
at the end of each image. The network’s outputs include: (i)
the associated spike counter and (ii) the classification decision
made by the final decision layer. This network was first
trained in full precision (floating-point), then all parameters
were converted to 32-bit fixed-point values, verifying that the
classification results were comparable. The experimental setup
of this work starts after this conversion.

Figure 3 depicts the experimental workflow for each k value
of precision reduction. All data from the original SNN network
are extracted and stored for further use. Then, the previous
work implemented the red part of the workflow. Once the
k value is set, all data require re-computation to apply the
precision reduction, and then the approximated SNN can run.
Since we aim to assess the quality of the IA error-based
modeling in this work, the final classification is not of interest.
The primary output is the counting of the spikes because it is
where the IA modeling ends with the comparison described in
subsection II-C and replacing the V0 > Vthresh of the original
network. Of course, the error introduced by approximation
may lead to errors in different output spike counts which
may affect the final classification adversely. However, it is
important to note that the classification itself is not part of
this work. Hence, Comparing the SNN classification accuracy
of our model to the precise SNN, is just supplemental proof
of the quality of the model.
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Fig. 3: Experimental workflow. For each image and k precision reduction, the red part evaluates the real values running the
full network, while the green part depicts the model where only error are computed for each k.

The green blocks in Figure 3 describe the IA error-based
modeling. Once the network data is defined, from each k,
an automated procedure derives the [ϵ] part of each value to
describe the |ian| versions adequately. The process relies on 1
to estimate the [ϵ] for every data of the network undergoing the
approximation. Since it’s a pure mathematical elaboration, it
is already faster and more flexible than evaluating all numbers
anew. Then the model runs following the computational flow
depicted in Figure 2 to compute the spike counter for each
neuron. This is where the proposed approach still relies on
all input spikes processed in the same way as the original
network. The nature of the SNN requires that the sequence is
respected to be able to compare the final results. Moreover,
the input generated from the original SNN execution is stored
and used for the model to make any counting comparable.

Since the primary goal of this work is to establish if the IA
based-modeling is suitable for optimizing the SNN parameters
in case of precision reduction exploitation, to check whether
our model can produce similar outputs concerning the original
model, two different sets of experiments have been conducted.

First, we run a complete comparison with ϵ = 0. This is not
the actual usage of the methodology, as described previously,
but it is the proof that the model presented in subsection II-C
is sound and solid. For all possible k in the exploration (from 0
to 15), the recomputed data used by the SNN have been used
as the [v] part of each |ian| keeping the [ϵ] to zero. Being
the error 0, the computation should display precisely the same
results of the SNN without carrying any of the simplification
errors that the modeling might introduce. Results confirmed it
and, for all k, the counter difference was always 0, showing
that the model using interval arithmetic is behaving the same
as the original network. For the sake of simplicity, we avoid
reporting these results here.

Second, we run for the same k precision reductions the
complete model, computing only the errors and relying on the

original data for the [v] part. The results are reported in Table I.
For each precision (16 − k), the table displays the range of
errors reported in the counters and the percentage of wrong
counters among the 400 ones. Eventually, the last column
reports whether the classification done using the counters
computed from the model is still the same. Once again, it is
crucial to highlight that the classification itself is not part of
this work and this last information is just supplemental proof
of the quality of the model.

As displayed by the Errors columns, for the first k reduction
(from 0 to 3, referring to precision 16 to 13), the model does
not show any discrepancy from the original SNN. Starting
from k = 4 (precision 12), the simplification introduced by the
error modeling introduces some deviation from the counting.
A negative value indicates that the model is producing (hence
counting) fewer spikes than the original network, while a
positive value otherwise. Nevertheless, the average deviation
is always negligible. The average increases for the higher k
values (precision reduced to 6 bits or lower) confirm two
facts: (i) that the simplifications are somehow present but not
limiting the effectiveness of the modeling and (ii) that the SNN
itself starts to be unreliable after a specific precision reduction.
Both facts are linked to the fact that half of the weights in the
network see the fractional part reduced to 0 when k reaches
10/11 bits.

However, looking at the counters as a whole, the worst
wrong counter observed percentage is at 5-bit precision (k =
11). Still, it does not exceed 7%, which is still negligible
because the classification output is the same. This confirms
that the modeling approach is very reliable in predicting the
propagation of the error introduced by approximation.

IV. CONCLUSION

We introduced modeling of the approximation for data
storage that supports an SNN via Interval Arithmetic by



Precision Errors Wrong Accuracy
(bits) Min Max AVG Counters (%) Comparison

16 (full) 0 0 0 0 Same
15 0 0 0 0 Same
14 0 0 0 0 Same
13 0 0 0 0 Same
12 -1 0 -0,0025 0,25 Same
11 -1 0 -0,0025 0,25 Same
10 -1 0 -0,005 0,5 Same
9 0 1 0,015 1,5 Same
8 -1 0 -0,0025 0,25 Same
7 -1 1 0 2,5 Same
6 -1 1 0,0275 5,25 Same
5 -1 1 -0,0625 6,75 Same
4 -1 0 -0,0575 5,75 Same
3 -1 1 0,015 3,5 Same
2 -1 0 -0,025 2,5 Same
1 -2 0 -0,035 2,5 Same

TABLE I: IA Model results on spike counters and related
accuracy in prediction. Precision column accounts for the
number of bits used, where 16 is a full precise reference. Errors
columns display the minimum, maximum and average error
(negative values corresponds to a lower counting in the IA
model, while positive the opposite). Wrong counters column
shows the percentage of counters showing a deviation from
the original value, while Accuracy comparison reports if the
final prediction is the same or not.

extracting the computation flow of the SNN and then resorting
to IA to quickly evaluate the impact of approximation in
terms of loss in accuracy without executing the network each
time. This is especially important because exploiting the AxC
techniques commonly goes into long exploration phases where
the selected methods require tuning to balance the accuracy
reduction with the expected improvements.

We conducted the experiments for a trained SNN executed
in inference mode with the computation flow of the network
modeled using interval arithmetic. We compared the results
of different approximated network versions obtained with pre-
cision reduction techniques. Experimental results comparing
our model to the original network confirm the quality of
the approach. At the same time, the maximum percentage
of wrong counters observed is only 6.75%, and the network
accuracy is untouched.

For future work, we can extend the model to other Neural
Networks and employ different approximation techniques to
investigate this approach’s opportunities further.
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