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Abstract
We prove that the Ring Learning With Errors (RLWE) and the Polynomial Learning 
With Errors (PLWE) problems over the cyclotomic field ℚ(�

n
) are not equivalent. 

Precisely, we show that reducing one problem to the other increases the noise by a 
factor that is more than polynomial in n. We do so by providing a lower bound, hold-
ing for infinitely many positive integers n, for the condition number of the Vander-
monde matrix of the nth cyclotomic polynomial.

Keywords  Cyclotomic polynomial · Vandermonde matrix · Condition number · 
RLWE · PLWE

Mathematics Subject Classification  11C99 · 15A12 · 15B05 · 15B05 · 94A60

1  Introduction

Since the theoretical results of Ajtai  [1], lattice-based cryptography has gained 
increasing interest. Indeed, numerous lattice-based encryption and digital sig-
nature schemes, with performance comparable or even superior to that of their 
number-theoretic counterparts, have been proposed  [2, 10, 13, 16]. In particu-
lar, because of their presumed resistance against quantum attacks, lattice-based 
proposals are the most numerous in the final phase of the NIST post-quantum 
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standardization process, with finalist candidates in both key encapsulation [3, 5, 
11] and digital signature schemes [4, 15].

The main building block of lattice-based cryptographic schemes is the Learn-
ing With Errors (LWE) problem  [19], which, roughly speaking, consists of 
retrieving a secret vector s ∈ ℤn

q
 from a noisy random sample of matrix products. 

On the one hand, LWE-based encryption schemes enjoy good computational effi-
ciency and solid theoretical security bases. On the other hand, they require the 
ciphertexts or the public keys to be nearly quadratic with respect to the security 
parameters. To overcome this inefficiency, algebraic variants of the LWE problem 
have been introduced, which consider the problem no longer over ℤq but over the 
quotient ring ℤq[X]∕(f ) , where f ∈ ℤq[X] is a monic and irreducible polynomial. 
The variant known as Polynomial-LWE (PLWE), was first proposed using power-
of-two degree cyclotomic polynomials  [22]. Later, Lyubashevsky, Peikert, and 
Regev  [18] introduced the Ring-LWE (RLWE) variant over the ring of integers 
OK of a number field K = ℚ(�) (for surveys on RLWE, see [7, 14]).

The main advantage of RLWE (and of later generalizations such as Module-
LWE [17]) is the provable-security link with hard computational problems over 
(ideal) lattices, as for plain LWE. Nevertheless, most of the concrete construc-
tions of lattice-based schemes, while enjoying the security proofs of RLWE, are 
expressed in the simpler formalism of PLWE. The latter is in fact preferable in 
implementations, where the modular arithmetic between polynomials can be effi-
ciently implemented. For these reasons, it is interesting to study for which fami-
lies of polynomials f the RLWE and PLWE problems are equivalent, that is, every 
solution of the first problem can be turned in polynomial time into a solution of 
the second problem, and viceversa, incurring in a noise increase that is polyno-
mial in the degree of f. From a theoretical point of view, the problem of equiv-
alence between RLWE and PLWE was formalized for the first time by Rosca, 
Stehlé, and Wallet  [24], who also explained the relationship between the noise 
increase and the condition number of a certain Vandermonde matrix associated 
with f, as detailed below.

More precisely, let K = ℚ(�) be a monogenic number field of degree m, and 
let f ∈ ℤ[X] be the minimal polynomial of � , so that OK ≅ ℤ[X]∕(f ) . The geo-
metric notion of short element derives from a choice of a norm on K by embed-
ding the number field in ℂm . On the one hand, RLWE makes use of the canonical 
embedding (or Minkowski embedding) � from K to ℂm , where �i(�) ( i = 1,… ,m ) 
are the Galois conjugates of � . On the other hand, PLWE makes use of the coef-
ficient embedding, which maps each x ∈ OK to the vector (x0,… , xm−1) ∈ ℤm of 
its coefficients with respect to the power basis 1, �,… , �m−1 . As a linear map, the 
canonical embedding � has a matrix representation V ∈ ℂm×m , so that, for each 
x ∈ OK , we have �(x) = V ⋅ (x0,… , x

m−1)
⊺ . For the equivalence between RLWE and 

PLWE, it is important to determine when, whether ‖x‖ is small, then so is ‖�(x)‖ , 
and vice versa. This notion is quantified by V having a small condition number 
Cond(V) ∶= ‖V‖‖V−1‖ , where ‖V‖ ∶=

√
Tr(V∗V) is the Frobenius norm of V, and 

V∗ is the conjugate transpose of V. Precisely, for the equivalence of the RLWE and 
PLWE problems it must be Cond(V) = O(mr) for some constant r > 0 , depending 
only on the family of polynomials f.
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The equivalence problem can be studied in general for any number field. 
Although equivalence has been proved for restricted families of polynomials 
defining number fields [24], the greatest interest arguably concerns cyclotomic 
fields, which are the most used in cryptographic applications. For cyclotomic 
fields, the equivalence is well known for the power-of-two case [22] and recently 
the problem has received more attention both from a theoretical point of view 
[6, 12] and in practical applications [25]. However, to the best of our knowledge, 
prior to this work a general result on RLWE and PLWE equivalence for cycloto-
mic fields was still missing. When K = ℚ(�n) is the nth cyclotomic field, Vn ∶= V  
is the Vandermonde matrix of the nth cyclotomic polynomial �n(X) , that is,

where �n,0,… , �n,m−1 are the primitive nth roots of unity, and m = �(n) is the Euler 
totient function of n. Note that �n(X) has degree m. If n is a power of 2, then it is 
easy to show that Vn is a scaled isometry, so that Cond(Vn) = m and consequently 
RLWE and PLWE are equivalent. Blanco-Chacón [6] (see also [8, 9]) proved that 
Cond(Vn) = O(nrk ) , where rk > 0 is a constant depending only on the number k of 
distinct prime factors of n. Therefore, RLWE and PLWE restricted to the positive 
integers n with a bounded number of prime factors are equivalent. Furthermore, in a 
previous work [12], the authors gave an explicit formula for the condition number of 
Vn when n is a prime power or a power of 2 times an odd prime power.

Our main result is the following.

Theorem 1  There exist infinitely many positive integers n such that

In particular, for every fixed r > 0 , we have that Cond(Vn) ≠ O(nr).

As a consequence of Theorem 1 and the previous considerations, one immedi-
ately gets the following corollary.

Corollary 1  RLWE and PLWE over cyclotomic fields are not equivalent.

Corollary 1 settles the question of the equivalence between RLWE and PLWE 
over cyclotomic fields by answering it negatively. Therefore, from both a practi-
cal and a theoretical point of view, future investigations have to keep in mind 
that, in general, results on RLWE over cyclotomic fields cannot be translated into 
results on PLWE over cyclotomic fields, and vice versa, unless further restric-
tions on the generating polynomials are imposed.

Vn ∶=

⎛
⎜⎜⎜⎜⎜⎝

1 �n,0 �2
n,0

⋯ �m−1
n,0

1 �n,1 �2
n,1

⋯ �m−1
n,1

1 �n,2 �2
n,2

⋯ �m−1
n,2

⋮ ⋮ ⋮ ⋱ ⋮

1 �n,m−1 �2
n,m−1

⋯ �m−1
n,m−1

⎞
⎟⎟⎟⎟⎟⎠

,

Cond(Vn) > exp
�
nlog 2∕ log log n

�
∕
√
n.



	 A. J. Di Scala et al.

1 3

An interesting direction would be to determine the maximal order of Cond(Vn) 
and, in particular, if the lower bound of Theorem 1 can be improved significantly. 
For a plot of the values of Cond(Vn) up to n = 10, 000 , see Fig. 1. The library used 
for the calculation of Cond(Vn) is available in [21].

2 � Proof of Theorem 1

Throughout this section, let n be a positive integer and put m ∶= �(n) . We write Idk 
for the k × k identity matrix, and we count rows and columns starting from 0, so that 
the first row or column is the 0th. Furthermore, let

be the m × mn matrix obtained by “continuing” Vn to the right.

Lemma 1  We have WnW
∗
n
= mnIdm.

Proof  The scalar product of the ith row of Wn and the jth column of W∗
n
 is equal to

Wn ∶=

⎛
⎜⎜⎜⎜⎜⎝

1 �n,0 �2
n,0

⋯ �mn−1
n,0

1 �n,1 �2
n,1

⋯ �mn−1
n,1

1 �n,2 �2
n,2

⋯ �mn−1
n,2

⋮ ⋮ ⋮ ⋱ ⋮

1 �n,m−1 �2
n,m−1

⋯ �mn−1
n,m−1

⎞
⎟⎟⎟⎟⎟⎠

mn−1∑
k= 0

(
�n,i�n,j

)k

=

{
mn if i = j;

0 if i ≠ j;

Fig. 1   The condition number of V
n
 with n squarefree, 1 < n < 10, 000 . The data is partitioned according 

to the number �(n) of prime factors of n 
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where we used the formula for the sum of a geometric progression. The claim fol-
lows. 	�  ◻

Let an(j) denote the coefficient of Xj in the nth cyclotomic polynomial �n(X) , that is,

The study of the coefficients of the cyclotomic polynomials has a very long history, 
which goes back at least to Gauss. For a survey, see  [20]. Let A(n) be the maxi-
mum of the absolute values of an(0),… , an(m − 1) . We need the following result of 
Vaughan [23].

Theorem 2  We have A(n) > exp
(
n
log 2∕ log log n

)
 for infinitely many positive integers n.

Let Cn be the companion matrix of �n(X) , which is the m × m matrix defined as

and let

be the m × mn matrix obtained by the juxtaposition of the first n powers of Cm
n

.

Lemma 2  We have V−1
n
Wn = Sn.

Proof  Let K ∶= ℚ(�n) be the nth cyclotomic field. For each k ∈ {0,… ,m − 1} we 
have that 1, �n,k, �2n,k,… , �m−1

n,k
 is a basis of K over ℚ . Moreover, multiplication by 

�n,k is a ℚ-linear map K → K whose transformation matrix respect to the aforemen-
tioned basis is equal to Cn . Therefore, if z0,… , zm−1 ∈ K satisfy

for some c0,… , cm−1 ∈ ℚ , then it follows that

�n(X) =

m∑
j= 0

an(j)X
j.

Cn ∶=

⎛
⎜⎜⎜⎜⎝

0 0 ⋯ 0 − an(0)

1 0 ⋯ 0 − an(1)

0 1 ⋯ 0 − an(2)

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 − an(m − 1)

⎞
⎟⎟⎟⎟⎠
,

Sn ∶=
(
Idm ∣ Cm

n
∣ C2m

n
∣ ⋯ ∣ C(n−1)m

n

)

⎛⎜⎜⎜⎝

z0
z1
⋮

zm−1

⎞
⎟⎟⎟⎠
= Vn

⎛
⎜⎜⎜⎝

c0
c1
⋮

cm−1

⎞⎟⎟⎟⎠
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for every integer j ≥ 0 . Consequently, we have that

for every integer j ≥ 0 . Therefore, by juxtaposition of  (1) for 
j = 0,m, 2m,… , (n − 1)m , we obtain that Wn = VnSn . The claim follows. 	�  ◻

Lemma 3  We have ‖V−1
n
‖2 = 1

mn

∑n−1

k=0
‖Ckm

n
‖2.

Proof  From Lemmas 1 and 2, it follows that

Moreover, by the definition of Sn , we have that

and the claim follows.

Lemma 4  Let k be a positive integer and let

Then, for every integer j ∈ [1, k] , the (k − j) th column of Cj is equal to (
c0 c1 ⋯ c

k−1

)⊺.

⎛
⎜⎜⎜⎜⎝

�
j

n,0
z0

�
j

n,1
z1

⋮

�
j

n,m−1
zm−1

⎞
⎟⎟⎟⎟⎠
= VnC

j
n

⎛
⎜⎜⎜⎝

c0
c1
⋮

cm−1

⎞
⎟⎟⎟⎠

(1)

⎛⎜⎜⎜⎜⎝

�
j

n,0
�
j+1

n,0
⋯ �

j+m−1

n,0

�
j

n,1
�
j+1

n,1
⋯ �

j+m−1

n,1

⋮ ⋮ ⋱ ⋮

�
j

n,m−1
�
j+1

n,m−1
⋯ �

j+m−1

n,m−1

⎞⎟⎟⎟⎟⎠
= VnC

j
n
Idm = VnC

j
n
,

mn‖V−1
n
‖2 = mnTr

�
V−1
n

�
V−1
n

�∗�
= Tr

�
V−1
n
WnW

∗
n

�
V−1
n

�∗�
= Tr(SnS

∗
n
).

Tr(S
n
S
∗
n
) = Tr

��
Id

m
∣ Cm

n
∣ ⋯ ∣ C(n−1)m

n

� ⎛⎜⎜⎜⎝

Id
m

(Cm

n
)∗

⋮�
C
(n−1)m
n

�∗

⎞
⎟⎟⎟⎠

�

=

n−1�
k= 0

Tr
�
C
km

n

�
C
km

n

�∗�
=

n−1�
k= 0

‖Ckm

n
‖2,

C ∶=

⎛
⎜⎜⎜⎜⎝

0 0 ⋯ 0 c0
1 0 ⋯ 0 c1
0 1 ⋯ 0 c2
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 ck−1

⎞
⎟⎟⎟⎟⎠
∈ ℂ

k×k.
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Proof  Actually, a stronger claim holds: For every integer j ∈ [1, k] , the 0th, 1th, ..., 
(k − j) th columns of Cj are equal to the (j − 1)th, jth, ..., (k − 1) th columns of C, 
respectively. This follows easily by induction on j.

We are ready to prove Theorem 1. From Lemmas 3 and 4, it follows that

In turn, this implies that

As a consequence, Theorem 2 yields that

for infinitely many positive integers n. Therefore, for every fixed r > 0 , we have that

so that Cond(Vn) ≠ O(nr) . The proof is complete.
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