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Abstract—This paper presents a new and efficient method
to generate a dataset for brain stroke classification. Exploiting
the Born approximation, it derives scattering parameters at
antennas locations in a 3-D scenario through a linear integral
operator. This technique allows to create a large amount of data
in a short time, if compared with the full-wave simulations or
measurements. Then, the support vector machine is used to create
the classifier model, based on training set data with a supervised
method and to classify the test set. The dataset is composed by 9
classes, differentiated for presence, typology and position of the
stroke. The algorithm is able to classify the test set with a high
accuracy.

I. INTRODUCTION

In the last years, microwaves entered the world of medical
diagnostic. This technology allows the creation of a portable,
low cost and low power intensity device. These particular
characteristics make the device very versatile and suitable for
brain stroke detection and monitoring [1].

For what concerns the use of microwaves in brain stroke
detection and classification, there are two main approaches: the
deterministic one, based on the solution of the electromagnetic
scattering problem [2], and a machine learning (ML) approach
as in [3]–[5]. ML is a great alternative because it does not
need specific theoretical requirements. However, it involves
a large amount of data, and for this specific application,
the collection of measurement data and full-wave simulations
requires significant time. In order to overcome this limit,
here we propose to synthesize the dataset through high-speed
simulations, based on a linear integral operator that allows the
creation of a large dataset in a short time. Then, the support
vector machine (SVM) is the algorithm used to classify the
data with a supervised method [6].

II. DATASET GENERATION

This section contains a description of the method used to
generate the dataset. The considered 3-D scenario is consti-
tuted by a human head phantom wearing a helmet formed by
an antenna array, where each antenna acts as transmitter and
receiver as described in [7], [8]. The features of the SVM
algorithm will be the scattering parameters S at the antennas
ports. The imaging domain corresponds to the head, with a
complex relative permittivity equal to the average of dielectric

properties of brain tissues. The dielectric contrast is defined
as

∆χ(r)
∆
=
εr(r)− εb(r)

εb(r)
, (1)

where εb and εr are the dielectric complex permittivity of the
average brain and stroke area, respectively. Instead, r is the
position vector in the domain of interest (DOI). Considering
Stot and Sinc as the scattering matrix at antennas ports with
and without the stroke in the DOI, the differential scattering
matrix is

∆S = Stot − Sinc. (2)

Exploiting the Born approximation, for each pair of antennas
m and n, ∆χ and ∆S are related by means of a linear integral
operator:

∆Sm,n = − jωεb
2aman

∫∫∫
V

Eb,m(r) · Eb,n(r)∆χ(r) dr (3)

where, ω = 2πf is the angular frequency, am and an are
the power waves, at antenna port m and n, respectively. The
symbol ” · ” identifies a dot product between the background
fields Eb,m and Eb,n radiated by antennas m and n.

The evaluation of ∆S via (3), allows to obtain results
close to a full-wave approach (e.g. the finite element method
described in [9]), with a significant reduction in time of around
3 orders of magnitude. The first step for dataset creation is
the definition of ∆χ that is different from zero only in the
stroke. In the results reported here, the stroke is a sphere
with a fixed radius of 1.5 cm, and it assumes a different
value of contrast depending on the type of stroke (ischemic
or hemorrhagic). Different types of scenario are created by
moving the target randomly in the brain. Once created the
contrast, we sum white noise with an order of magnitude
equal to 1/10 of ischemic dielectric contrast (the smaller
one). The noise allows to have data variety also in the case
without the target. Now, we calculate ∆S parameters through
the integral operator in (3), summing the Sinc in order to
obtain Stot. The S parameters matrix is symmetrical, so we
consider only the superior triangular matrix. The machine
learning does not work with complex number, for this reason
for each S parameter there are two features: the real and
the imaginary part. The final dataset has 9 classes based on



presence, typology (ischemic or hemorrhagic) and position of
stroke. In Fig. 1 there are the 4 regions of the head used
for classes division: front-left, front-right, back-left and back-
right. Each class contains almost 500 records, with a total
number of 4500 records in the dataset. The time to generate the
whole dataset with a not yet parallelized code, on a standard
laptop is around 1 hour.

Fig. 1. Transverse plane view of human head. Subdivision in 4 regions: front
left (FL), front right (FR), back left (BL), back right (BR).

III. NUMERICAL RESULTS

The dataset is divided into training set and test set with a
percentage of 80 and 20, respectively. The first step, is the
selection of SVM hyperparameters that are the regularization
parameter C and the kernel used in the algorithm [10]. They
are selected with the grid search method, which chooses the
combination of parameters that minimize a metric, in our
case the accuracy of the model. Fig. 2 shows the normalized
confusion matrix obtained with SVM. The diagonal values
are very high, moreover looking at the 3 macro-classes (no
target, ischemic and hemorrhagic stroke) they are completely
differentiated. Analysing the positions classification in some
cases the algorithm assigns an unexpected class: this happens
when the target is located in an ambiguous position, i.e. the
center of the sphere is very close to the axis that divided two
regions. Three important metrics for machine learning perfor-
mance evaluation are recall, precision, and accuracy [11]. For
each class they assume values very close to 1, in particular
recall > 0.93, precision > 0.89 and accuracy > 0.98.

IV. CONCLUSION AND PERSPECTIVES

An important drawback of applying machine learning in
brain stroke classification is the need for a large amount of data
to train the algorithm. This paper presents a novel and fast way
to generate a dataset for brain stroke classification. The dataset,
composed of S parameters at the antennas ports, is created
using a linear integral operator, obtained applying the Born
approximation. The operator allows passing from the space of
dielectric contrast in the domain of imaging to the space of
S parameters. The results obtained using the SVM algorithm
have shown that the three macro-classes (no target, ischemic
and hemorrhagic stroke) are easily distinguishable. Moreover,

Fig. 2. Confusion matrix. The 3 macro-classes are identified by the colored
squares: yellow for N (no target), green for I (ischemic stroke) and red for
H (hemorrhagic stroke). The acronyms FL, FR, BL, BR identify the 4 spatial
regions (front-left, front-right, back-left and back-right).

the algorithm always found the stroke position, except when it
is located in an ambiguous position. Future work will deal with
exploiting this method also with measurements data obtained
with the system described in [7].
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