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Abstract: Background: Freezing of Gait (FOG) is one of the most disabling motor complications of
Parkinson’s disease, and consists of an episodic inability to move forward, despite the intention to
walk. FOG increases the risk of falls and reduces the quality of life of patients and their caregivers.
The phenomenon is difficult to appreciate during outpatients visits; hence, its automatic recognition
is of great clinical importance. Many types of sensors and different locations on the body have been
proposed. However, the advantages of a multi-sensor configuration with respect to a single-sensor
one are not clear, whereas this latter would be advisable for use in a non-supervised environment.
Methods: In this study, we used a multi-modal dataset and machine learning algorithms to perform
different classifications between FOG and non-FOG periods. Moreover, we explored the relevance of
features in the time and frequency domains extracted from inertial sensors, electroencephalogram
and skin conductance. We developed both a subject-independent and a subject-dependent algorithm,
considering different sensor subsets. Results: The subject-independent and subject-dependent
algorithms yielded accuracies of 85% and 88% in the leave-one-subject-out and leave-one-task-out
test, respectively. Results suggest that the inertial sensors positioned on the lower limb are generally
the most significant in recognizing FOG. Moreover, the performance impairment experienced when
using a single tibial accelerometer instead of the optimal multi-modal configuration is limited to
2–3%. Conclusions: The achieved results disclose the possibility of getting a good FOG recognition
using a minimally invasive set-up made of a single inertial sensor. This is very significant in the
perspective of implementing a long-term monitoring of patients in their homes, during activities of
daily living.

Keywords: Parkinson’s disease; Freezing of Gait; multi-modal analysis; inertial sensors; electroen-
cephalogram (EEG); skin conductance (SC); machine learning; support vector machine (SVM); k-
nearest neighbor (kNN)

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative condition caused by the selective
degradation of dopaminergic neurons, especially in the mesencephalic substantia nigra pars
compacta, which is involved in several processes related to movement and cognition [1,2].
Idiopathic PD is considered a multi-factorial pathology, due to the complex interaction
between multiple genetic and environmental risk factors. The four cardinal signs of PD are
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tremor at rest, rigidity, bradykinesia and postural instability [3]. Non-motor symptoms
encompass depression, autonomic dysfunctions and, in the advanced stages of the disease,
possible cognitive impairment and dementia [4].

At present, a curative therapy of PD does not exist; however, both pharmacological
and surgical treatments can effectively manage symptoms for several years. Levodopa is
still the gold standard for the control of PD motor symptoms, even though it can induce
involuntary movements (i.e., dyskinesia) and response fluctuations (wearing off, OFF peri-
ods), especially after several years of administration [5]. The evolution of PD is monitored
with the help of internationally validated scales and questionnaires. The MDS-UPDRS
(Unified Parkinson’s Disease Rating Scale, promoted by the Movement Disorder Society -
MDS) is widely used to assess the severity and progression of the disease [6].

Freezing of Gait (FOG) is one of the most troublesome and enigmatic motor complica-
tions of PD. It is defined as a brief, episodic absence or marked reduction of forward progression
of the feet despite having intention to walk [7]. Its occurrence is related to high risk of falls, re-
duced functional independence and impaired quality of life [8]. Recent molecular imaging
studies have suggested a causal role of the supraspinal locomotor network involving the
primary motor cortex, the supplementary motor area, the parietal cortex, the basal ganglia,
the subthalamic nucleus, the mesencephalic locomotor region and the cerebellum [9]. How-
ever, the pathogenesis of FOG is not completely known and possibly not unique. Moreover,
several sub-types of FOG are recognized and different classification criteria co-exist [10,11].

The clinical evaluation of FOG is difficult and highly subjective. In fact, given their
sporadic nature, FOG episodes seldom occur during the brief medical examination, as their
incidence is dependent on the pharmacological status and on the patient’s attention devoted
to gait. Moreover, a moderate emotional stress (e.g., a medical visit) may inhibit FOG [12].
Consequently, at present, the FOG assessment is mainly based on diaries and questionnaires
self-managed by the patients themselves [13] and whose reliability is questionable. Direct
observation of the phenomenon may be improved using elicitation strategies, e.g., proper
walking and dual tasks administered to the patients [13–15]. However, this approach is
time-consuming and not compatible with the everyday clinical practice. Thus, it is clear
that FOG evaluation can greatly benefit from objective data, collected continuously with
proper sensors placed on the patient’s body and worn during activities of daily living
(ADLs) [16]. In perspective, this could disclose the possibility of performing the evaluation
in the patient’s own home, so enabling a more objective assessment of motor fluctuations
and complications during ADLs. Another challenge is the possibility to identify (or predict)
FOG events in due time so as to help their resolution (or even prevent their occurrence)
with the aid of visual, auditory, or somato-sensorial stimuli [17,18].

In the literature, the following sensors have been addressed in the study of the FOG
phenomenon.

• Electromyography (EMG) measured on lower limbs [19]. Typical patterns have been
detected in muscle activity preceding and following FOG episodes [20,21].

• Electroencephalography (EEG) data were used to detect and predict FOG occur-
rence [22]. Coherence with EMG close and during FOG episodes has been revealed [23],
along with bilateral cortical excessive synchronization during locomotion [23], an in-
crease in the theta-band power in frontal and central areas [22,24], a decrease in power
during the voluntary arrest compared to FOG [25] and a less complex cortical activity
during the transition periods [26].

• Skin conductance (SC), encompassing selective information useful for FOG prediction
and detection [27], even considering the heavy subject-dependency.

• Inertial sensors. Single or multiple sensors have been placed on several body segments
(e.g., legs [28], wrist [29], waist [30]) for FOG detection [29,31] and prediction [28,29,32].
In particular, accelerometers are widely employed, due to their low energy consump-
tion and cost (in particular, those embedded in smartphones [15,33]). Significant
information is provided by the Freeze Index, defined as the ratio between the power
contained in the so-called freeze band 3–8 Hz [34] and that in the locomotion band
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0.5–3 Hz [29,35]. Entropy and statistical parameters such as mean value, standard de-
viation and variance are other sensible metrics [28,31]. Several features, extracted from
both the time and frequency domain and different machine learning (ML) algorithms
have been employed to classify FOG and pre-FOG events [36].

The integration of information from multiple sensors, considering a multi-modal
acquisition and processing system, could be useful to improve the identification of FOG. For
example, information from several sensor types was employed to improve the distinction
between complete akinesia and the standing or trembling FOG sub-type, which represents
a very difficult task using inertial sensors in a non-supervised environment [15].

Information from EEG and inertial sensors on lower limbs were combined in [35].
The comparison of the multi-modal and single-model (inertial sensors only) showed that
EEG was capable of improving the specificity but not the sensitivity of the system in
the detection of FOG. Moreover, impaired results were obtained (i.e., sensitivity 62%,
specificity 62%), possibly due to the small feature set considered. A multi-modal analysis
combining information from EEG, electrocardiogram (ECG), electro-oculogram (EOC),
accelerometers and foot-switches was proposed in [25]. Merging features extracted from
each sensor resulted in very good performance (i.e., sensitivity 97%, specificity 96%).
However, statistical analysis did not identified any significant difference between the
multi-modal approach and the accelerometers-only based approach. A FOG prediction
system based on pressure sensors positioned on insoles was discussed in a recent paper
[37]. Finally, the ECG was analyzed together with SC, observing significant variations just
before the occurrence of a FOG episode [27].

A multi-modal analysis, which is likely more effective in evaluating the FOG phe-
nomenon, has the obvious drawback of being more invasive, less comfortable, more
expensive, power consuming and hardly feasible in the non-supervised home environment.
The objective of the present study is to evaluate the possible improvements in FOG detec-
tion using several sensors, compared with simpler configurations (e.g., a single inertial
measure). Our goal is to understand which signals are the most significant to detect/predict
FOG and whether they carry complementary information. This could help choosing the
best trade-off between performance and complexity, defining the simplest possible system
able to satisfactorily monitor FOG during ADL.

Unlike previous studies [25,35], the walking tasks used in this study were defined
to resemble those of daily living. Moreover, as a reduced feature set may result in poor
performance [35], a very large feature set was extracted from each sensor in the present
work. This was done in order to take full advantage of the prediction capability of each
sensors’ configuration.

2. Materials and Methods

In this section, we describe the data and processing steps performed to detect FOG
episodes. Specifically, in Section 2.1 we describe the dataset used for the analysis, in-
cluding information regarding the population enrolled, the sensor systems used and the
experimental procedures. In Section 2.2, we describe the data processing steps, including
pre-processing (Sections 2.2.1 and 2.2.2), feature extraction (Section 2.2.3) and the implemen-
tation of both the subject-independent (Section 2.2.4) and subject-dependent (Section 2.2.5)
classification algorithms.

2.1. Dataset

The dataset includes recordings from 12 patients with PD, collected in Beijing Xuanwu
Hospital, China [38]. The inclusion criteria were:

• PD patients subject to FOG during OFF periods;
• PD patients able to walk independently during OFF periods;
• No severe vision or hearing impairment;
• No sign of dementia or other neurological/orthopedic disease.
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The research was conducted according to the declaration of Helsinki and ethical
approval was obtained from the Ethics Committee of Xuanwu Hospital, Capital Medical
University, Beijing, China (No. 2019-014). Written informed consent was obtained from
all participants. EEG, EMG, ECG, EOG, SC, inertial data from sensors positioned on the
lateral tibia of the left and right legs, fifth lumbar spine and wrist were recorded during
the experiments. EEG and EMG were acquired using a 32-channel wireless MOVE
system (BRAIN PRODUCTS, Germany), while inertial signals and SC were acquired using
self-designed hardware subsystems based on a TDK MPU6050 6-DoF accelerometer and
gyroscope, with a STMicroelectronics STM32 processor. The experimental procedure was
designed to include FOG triggering tasks. After reading and signing informed consent,
participants were subject to a physical examination. They did not take any drugs within
2 h before the experiment to ensure that they were in OFF conditions. After wearing the
multi-modal sensory equipment, they were asked to complete the following walking tasks,
schematically represented in Figure 1.

Task 1- When ready, the participants had to rise from a chair and walk up to a narrow
space between the room and a corridor. Then, they turned right and walked into
the corridor. After bypassing a first obstacle (e.g., a chair), they went straight along
the narrow corridor, made a U-turn at the end of the corridor and went along in the
opposite direction. They had to bypass three further obstacles, reach the left end of
the corridor, make another U-turn, bypass two obstacles, reach the door of the room,
enter the room, walk back to the chair and sit down.

Task 2- Consisted of a repetition of Task 1.

Task 3- Patients were asked to perform a turn in a limited space and a square was drawn
on the ground for this aim. When the patient was ready, they had to stand up from
the chair, walk to the square mark, make a U-turn in the narrow square region and
then walk straight back to the chair and sit down.

Task 4- Consisted of a repetition of Task 3.

Figure 1. Sketch of the walking tasks executed during experimental procedures.

A video was recorded during the whole experiment for the physicians to define the
start/end of each FOG episode. In this study, we included inertial signals from the left
tibial and wrist positions, EEG and SC data, with the aim of seeing which sensors could be
excluded while ensuring a marginal reduction in performance. Other inertial sensors, ECG
and EMG were excluded as they were not available for all subjects or they did not have
sufficient quality. Even recognizing the importance of these additional data (e.g., the use
of both inertial and EMG allowed obtaining outstanding FOG detection accuracy in [21]),
excluding them has the advantage of making the recording system economic, simple and
energy saving. Moreover, even though we recognize that ECG can be closely related with
the physiological changes during FOG and can be useful for predicting FOG, the collection
of such data can be challenging [27], especially if performed in non-supervised conditions.

For the sake of consistency, all signals were re-sampled at a frequency of 500 Hz.
The information on the employed sensors is reported in Tables 1 and 2. Patients’ main
demographic and clinical characteristics are summarized in Table 3.
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Table 1. Signals used in the present study (for EEG, the International 10–20 System is employed);
*IO: Electrooculogram.

Type System Number of Sensors Location

28D-EEG Wireless
MOVE 28

FP1 FP2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 P7 P8 Fz
Cz Pz FC1 FC2 CP1 CP2 FC5 FC6 CP5 CP6 TP9

TP10 *IO

3D-Acc/Gyro MPU6050 2 Lateral tibia of left leg; Wrist

1D-SC LM324 1 Second phalanx of the index finger/middle
finger of the left hand

Table 2. Technical characteristics of the sensors.

System Range Resolution Sample Frequency

Wireless MOVE 1000 Hz

MPU6050 ± 2000 dps
± 16g

16.4 LSB/dps
2048 LSB/g 100 Hz

LM324 100 Hz

Table 3. Demographic and clinical information of enrolled patients (mean value ± standard devia-
tion); ADL: Activity Daily Living; FOG-Q: FOG Questionnaire; UPDRS: Unified Parkinson’s Disease
Rating Scale; MMSE: Mini-Mental State Examination; MOCA: Montreal Cognitive Assessment.

Subjects 12 PD

Age (years) 69 ± 7.9

Disease duration (years) 9.3 ± 6.8

ADL 81.3 ± 16.0

FOG-Q 16.2 ± 4.2

UPDRS-1 10.4 ± 5.5

UPDRS-2 16.3 ± 10.6

UPDRS-3 45.0 ± 16.0

UPDRS-4 2.2 ± 2.9

MMSE 28.2 ± 1.5

MOCA 23.6 ± 3.6

2.2. Data Processing

The diagram shown in Figure 2 represents an overview of the algorithms implemented
in this study. After proper filtering, signals were segmented and several features were
extracted in each window, as described later on in this section.

As mentioned, two different algorithms were implemented, namely the subject-
independent algorithm (SIA) and the subject-dependent algorithm (SDA). As for the SIA,
feature selection (FS) was performed on the entire dataset, encompassing data from all
involved subjects. On the other hand, in SDA, single patient data were employed. The re-
duced feature sets output by the FS procedure in either case were used to train, validate and
test different classifiers and the achieved classification performances were compared. Each
step of the two implemented algorithms is described in detail in Sections 2.2.4 and 2.2.5.
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Figure 2. Diagram of the implemented FOG detection algorithms.

2.2.1. Filtering and Standardization

First of all, signals (here indicated by s) were normalized using the z-score normaliza-
tion formula reported in Equation (1), in order to reduce inter-patient variability

s′ =
s−mean(s)

std(s)
(1)

Then, data were processed as follows.
Inertial signals: acceleration and angular velocity signals were band-pass filtered in

the band 0.5–16 Hz using 4th order high-pass and 5th order low-pass Butterworth filters.
Notice that during walking the acceleration spectrum mainly lies in 0.5–3 Hz (locomotion
band), while during FOG it is centered in 3–8 Hz (freeze band).

EEG: a longitudinal bipolar configuration was used to reduce the common mode and
obtain more selective information, resulting in a total of 18 channels. Then, the signals were
band-pass filtered in the band 1.6–30 Hz using 5th order high-pass and 6th order low-pass
Chebyshev filters. The blinking artifacts and the EMG artifacts were removed using the
toolbox proposed in [39].

SC: the signal was pre-processed, as in [27]. Specifically, the galvanic resistance
provided by the sensor was converted into skin conductance by performing the reciprocal
of each resistance value. As the signal exhibits slow variations over time, high-frequency
components and artifact transients are not significant and must be suppressed. To this
end, a 5th order Butterworth low-pass filter with a cutoff frequency of 2 Hz was applied,
while the rapid transients were removed using a moving average of 3–6 s centered on the
artifact. Subsequently, a 5th order Butterworth high-pass filter with cutoff frequency of
0.5 Hz was applied to extract the phasic component (skin conductance response-SCR); the
tonic component (skin conductance level-SCL) was then obtained by direct subtraction [40]:

SCL = SC− SCR (2)

2.2.2. Labeling and Segmentation

The labeling of FOG episodes was performed by specialized clinicians via direct
inspection of video recordings. Signals were divided into windows (w) of fixed duration,
properly overlapped to avoid loss of information (Figure 3). The window length is inversely
proportional to the temporal resolution of the detection algorithm [15]; for this reason, a
short window duration allows the identification of short FOG episodes. However, choosing
too short of windows heavily affects computation efficiency. In order to achieve a trade-
off between these aspects, 3 s windows with 90% overlap were selected. Each window
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was labeled as “non-FOG” or “FOG” based on the classification of the largest number
of samples.

Figure 3. Signal segmentation scheme with 90% overlapping windows.

2.2.3. Feature Extraction

Many time- and frequency-domain features were computed, as suggested in the
literature on FOG prediction and detection [15,22,25–32,34,35]. The features extracted
from the inertial signals measured at the leg were calculated on the three components
independently (i.e., vertical, medial-lateral and antero-posterior). On the other hand, at the
wrist level, features were computed from the signal norm, besides the three components
separately, according to [32]. Regarding the EEG, the features were extracted from all
the bipolar channels. Moreover, the magnitude squared coherence (MSC) was computed
for each pair of channels in the different frequency bands (i.e., delta, theta, alpha, beta1
and beta2). Concerning the skin conductance, the phasic component, its first and second
derivatives and the tonic component were used. A separated feature set was obtained for
each sensor and normalized using the range normalization formula reported in Equation (3).

f ′ =
f −min( f )

max( f )−min( f )
(3)

Table 4 reports the full list of features extracted in this work, grouped by sensor type
and domain, i.e., time or frequency. The total number of features extracted from each sensor,
considering all signal components, is reported in Table 5.

Table 4. Features in time and frequency domain addressed in this study; *Der1/Der2 represent the
1st and 2nd derivative signals of the SC phasic component.

Domain Acc/Gyro Lateral Left Tibia

Frequency

Total Power, Mean Power, Max Power, STD Power, Locomotion Band Power, Freeze Band
Power, Locomotion Band Power STD, Freeze Band Power STD, Freeze Index, Freeze Ratio,

Skewness, Kurtosis, Energy, Entropy, Dominant Frequency, Mean Frequency, Median
Frequency

Time
RMS, Mean, STD, Number of zero-crossing, Zero-crossing rate, Number of peaks, Mean

distance between peaks, Mean height of the peaks, Energy, Max Amplitude, Min
Amplitude, Range, Integral, Axes correlation

Domain Acc Wrist

Frequency

Signal magnitude: Total Power, Mean Power, STD power, Power [0–1, 1–2, . . . , 15–16 Hz],
Locomotion Band Power, Freeze Band Power, Power 9–12 Hz, Power 13–16 Hz

Signal components: Total Power, Mean Power, STD Power, Max Power, Dominant
Frequency, Mean Frequency, Median Frequency

Time
Signal magnitude: RMS, Mean, STD, Axes correlation

Signal components: Total Power, Mean Power, STD Power, Max Power, Dominant
Frequency, Mean Frequency, Median Frequency
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Table 4. Cont.

Domain Gyro Wrist

Frequency

Signal magnitude: Total Power, Mean Power, STD Power, Locomotion Band Power, Freeze
Band Power

Signal components: Total Power, Mean Power, STD Power, Max Power, Dominant
Frequency, Mean Frequency, Median Frequency

Time Signal magnitude and components: RMS, Mean, STD

Domain EEG

Frequency
Total Power, Mean Power, STD Power, Skewness, Kurtosis, Energy, Entropy, Dominant
Frequency, Median Frequency, Mean Frequency, Delta Band Power, Theta Band Power,

Alpha Band Power, Beta1 Band Power, Beta2 Band Power, Magnitude Squared Coherence

Time RMS, Mean, STD

Domain Phasic Component SC

Frequency Total Power, Mean Power, STD Power, Skewness, Kurtosis, Energy, Entropy, Dominant
Frequency, Median Frequency, Mean Frequency

Time RMS, Mean, STD, Median, Min, Max, Range, Number of local min, Number of local max

Domain *Der1/Der2 Phasic Component SC

Frequency –

Time Mean, Median, STD, Min, Max, Range, Number of local min, Number of local max

Domain Tonic Component SC

Frequency Total Power, Mean Frequency, Median Frequency

Time Slope

Table 5. Number of features for each signal type evaluated in this study.

Signal # Channels # Feature

Inertial—Lateral Left Tibia 6 186

Inertial—Wrist 6 168

EEG 18 1107

SC 1 39

2.2.4. Subject-Independent Algorithm

This algorithm carries out the feature selection from data related to all patients, thus
identifying the most informative characteristics independently of the subject. In particular,
features with at least moderate correlation with the output (r ≥ 0.35) and with p-value <
0.05 were retained and redundant features (i.e., with cross-correlation r ≥ 0.86) suppressed,
keeping only those with maximal correlation with the output.

The selected features were input to two ML models, namely k-nearest neighbor (kNN)
and support vector machine (SVM). The main advantage of kNN lies in its simple imple-
mentation and the ability to identify nonlinear decision boundaries; on the other hand, SVM
is a typical choice in FOG detection studies as it generally yields high performance [15,28].
Leave-one-subject-out (LOSO) was performed for both the validation and the test procedure.
LOSO consists of training the model with data from all patients except one, which is used
for testing. This provides a robust and realistic assessment of the classifier performance. For
each patient under test, models were optimized using data from the remaining N-1 patients.
Specifically, during the validation phase, the model parameters were optimized using
LOSO validation. The entire procedure is reported in Algorithm 1, where parameterList
refers to the list of parameters reported in Table 6.
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Table 6. List of model parameters optimized in this study, along with their range of values.

Model SVM k-NN

Parameter kernel
function

kernel
scale cost # neighbors distance

metric
distance
weight

Value

linear
quadratic

cubic
gaussian

0.1–100 0.1–100 1–180
cityblock
euclidean

squared-euclidean

equal
inverse

squared-inverse

Algorithm 1 Algorithm for model optimization and performance evaluation in the Subject-
Independent case

procedure OPTIMIZEDMODEL(Data),PERFORMANCE(Data) .
for i← 1 to N do . Perform N times test procedure

[trainingSet]←data from all subject except for ith .

[testSet]← data from ith subject .
for j← 1 to N − 1 do . Perform N-1 times validation procedure

[trainingSet]←data from trainingSet except for jth subject .

[validationSet]← data from jth subject of trainingSet .
for each model← [SVM,k-NN] do .

for each parameter← [parameterList] do .
trainedModel← Train(model(trainingSet,parameters))
prediction← predict(trainedModel(validationSet,parameters))
per f ormanceVal ← performance(prediction, label)

end for
end for
bestPer f ormance←max(performance)
optimalParameters← parameters(bestPer f ormance) .

end for
prediction← predict(model, optimalParameters, testSet) .
per f ormanceTest← per f ormance(prediction, label) .

end for
return model, optimalParameters, per f ormance .

end procedure

The choice of the optimal model was made by evaluating both accuracy and F-score.
Specifically, the model that exhibited the maximum value for both metrics was selected;
if the same model did not yield the maximum value for both metrics, that providing the
maximum F-score was chosen. Once the model was selected, the classification performance
was evaluated by means of accuracy, precision, sensitivity, specificity and F-score on the
test set. The definitions of the metrics are reported in Equations (4) and (5).

Sensitivity =
TP

TP + FN
Speci f icity =

TN
TN + FP

Precision =
TP

TP + FP
(4)

Accuracy =
TP + TN

FP + FN + TP + TN
F− score =

2 · Precision · Sensitivity
Precision + Sensitivity

(5)

TP (TN), FP (FN) being the number of true positive (negative) and false positive (negative)
classifications. TP is defined as the number of those windows labeled as FOG and classified as
FOG by the algorithm; FP refers to non-FOG data identified by the model as FOG; FN represents
the number of undetected windows labeled as FOG; finally, TN is defined as the number of
non-FOG windows correctly identified by the classification algorithm.
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2.2.5. Subject-Dependent Algorithm

This algorithm aims to select significant features of each subject by carrying out the
feature selection on the data related to each individual patient. The feature set dimension
was reduced by keeping only features with a Pearson correlation coefficient r ≥ 0.4 with
the target and with a corresponding p-value < 0.05; subsequently, the redundant features
were suppressed (cross-correlation r ≥ 0.86). The correlation coefficient threshold was
selected according to Evans’ classification [41], as a Pearson’s correlation coefficient value
of 0.4 represents the edge between weak and moderate correlation.

The reduced feature sets were used to train, validate and test the ML models. A 10-fold
cross-validation was employed for validation and model optimization, while a leave-one-
task-out (LOTO) has been used for the test phase. This choice was made considering that,
for some of the involved subjects, FOG episodes were observed during the execution of
only two activities; therefore, in these cases, LOTO cannot be used for both steps.

The validation phase has been carried out for the ML models by tuning the same
hyper-parameters previously discussed. The selected model was used to evaluate the
classification performance through the same metrics previously addressed, reported in
Equations (4) and (5).

Majority voting (MV) was applied both for SIA and SDA. It removes localized classifi-
cation errors considering more subsequent windows and selecting the most represented
activities within them. Five epochs have been used in this study, corresponding to approxi-
mately 4 s (considering windows of 3 s with 90% overlap), thus keeping a time resolution
compatible with short FOG episodes.

3. Results and Discussion

Among the 18 recruited patients, we completed 12 valid experiments and made
available 3.7 h of data (17 ± 10 min each patient). The number of detected FOG events was
334 (25.7 ± 17 for each patient), with a total FOG duration of 88.3 min (6.8 ± 7.6 min for
each patient). The duration of each FOG event ranged from 1 to 201 s; approximately 35%
of episodes lasted less than 5 s and about 50% of episodes lasted less than 10 s, consistently
with the clinical evidence. FOG episodes lasting less than 3 s were excluded from the
analysis, as inferior to the time resolution after MV; this led to a total number of 264 events
considered. The rest of this section reports the classification results achieved by the SIA
(Section 3.1) and the SDA (Section 3.2).

3.1. Subject-Independent Algorithm

Table 7 lists the features selected when using data from all patients. The FS procedure
extracted 12 (11) features from the acceleration (angular velocity) signal and all of them
were obtained from the sensor positioned on the leg. During FOG, a shift toward the
high frequencies was observed, as demonstrated by the increase in median and dominant
frequency, freeze index and freeze ratio and a decrease in locomotion band power. Moreover,
a lower movement intensity was observed, as demonstrated by the decreasing of RMS value.
Finally, movement regularity decreased, as proven by the increase in the spectral entropy.

In order to investigate the effect of reducing the number of sensors, we compared uni-
modal classifications (performed using either the accelerometer or the gyroscope data) and
a multi-modal classification involving both signals. The confusion matrices of uni-modal
classifiers are depicted in Figure 4, whereas Table 8 reports the performance of uni-modal
classification in terms of sensitivity, specificity, accuracy, precision and F-score.
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Table 7. Features selected by the optimized subject-independent classifier (all derived from left tibial
acceleration and angular velocity sensors).

Accelerometer r (p-Value) Gyroscope r (p-Value)

Kurtosis-PSD x-axis −0.35 (<0.0001) Max power y-axis −0.48 (<0.0001)

Median frequency x-axis 0.37 (<0.0001) Freeze ratio y-axis 0.46 (<0.0001)

Locomotion band power x-axis −0.49 (<0.0001) Max amplitude y-axis −0.36 (<0.0001)

Freeze ratio x-axis 0.59 (<0.0001) Skewness-PSD z-axis −0.45 (<0.0001)

Median frequency y-axis 0.38 (<0.0001) Entropy-PSD z-axis 0.58 (<0.0001)

Dominant frequency y-axis 0.45 (<0.0001) Dominant frequency z-axis 0.40 (<0.0001)

Locomotion band power y-axis −0.50 (<0.0001) STD Locomotion band power
z-axis −0.50 (<0.0001)

Freeze index y-axis 0.37 (<0.0001) Freeze ratio z-axis 0.64 (<0.0001)

Zero crossing rate y-axis 0.48 (<0.0001) RMS z-axis −0.55 (<0.0001)

Freeze ratio z-axis 0.40 (<0.0001) P-max Max amplitude z-axis −0.41 (<0.0001)

Locomotion band power z-axis −0.36 (<0.0001) Zero crossing rate z-axis 0.61 (<0.0001)

Zero crossing rate z-axis 0.35 (<0.0001) – –

Figure 4. Performance of the subject-independent algorithm in uni-modal configuration. (a) Con-
fusion matrix obtained with SVM; left lateral tibial accelerometer. (b) Confusion matrix obtained
with kNN; left lateral tibial accelerometer. (c) Confusion matrix obtained with SVM; left lateral tibial
gyroscope. (d) Confusion matrix obtained with kNN; left lateral tibial gyroscope.

From Table 8a, it can be seen that SVM and kNN provided similar performance when
considering acceleration signals. In more detail, kNN provided fewer FP and more FN
than SVM, thus leading to larger specificity and lower sensitivity with respect to SVM. As
for the results achieved using the gyroscope, it is possible to notice that both SVM and
kNN provide classification metrics comparable to those achieved with the accelerometer
(Table 8b). For example, the F-score values obtained by the two uni-modal classifiers are
similar in the case of SVM and differ by 2% in the case of kNN.
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Table 8. Performance of subject-independent algorithm, using uni-modal classification with ac-
celerometer and gyroscope at the left tibial level.

(a) Lateral left tibial accelerometer.

Performance SVM kNN

Accuracy (%) 84.11 83.40

Precision (%) 87.50 88.36

Specificity (%) 87.21 88.61

Sensitivity (%) 81.30 78.67

F-score (%) 84.26 83.23

(b) Lateral left tibial gyroscope.

Performance SVM kNN

Accuracy (%) 84.44 85.13

Precision (%) 88.43 87.94

Specificity (%) 88.38 87.53

Sensitivity (%) 80.85 82.96

F-score (%) 84.47 85.38

The performance of the multi-modal classification, which combines accelerometer and
gyroscope data, is reported in Figure 5 in terms of confusion matrices and in Table 9 in
terms of accuracy, precision, specificity, sensitivity and F-score. Both SVM and kNN multi-
modal classifications yield slightly improved performance with respect to the uni-modal
classification employing the accelerometer alone; however, an improvement in F-score of
1% is not consistent, thus suggesting the choice of a simple and cost-effective solution using
the accelerometer alone.

Figure 5. Performance of subject-independent algorithm with multi-modal classification, using left
lateral tibial accelerometer and gyroscope. (a) Confusion Matrix obtained with SVM. (b) Confusion
Matrix obtained with kNN.

Table 9. Performance of subject-independent algorithm with multi-modal classification using left
lateral tibial accelerometer and gyroscope data.

Performance SVM kNN

Accuracy (%) 85.12 85.06

Precision (%) 88.72 89.37

Specificity (%) 88.55 89.40

Sensitivity (%) 82.20 81.11

F-score (%) 85.23 85.04
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3.2. Subject-Dependent Algorithm

When considering data from each patient separately, the FS procedure selected signif-
icant features from the inertial sensors on the left lateral tibia and on the wrist, together
with some EEG characteristics, while no feature from SC data was selected. In particular,
the search for subject-dependent information led to significant correlations also for signals,
which were not included in the subject-independent algorithm. As for the inertial signals
recorded from the sensor on the tibia, during FOG a shift towards high frequencies was
observed, with a consequent increase in the dominant and median frequencies and in
freeze indices. Moreover, a decrease in the range of motion was observed by a decrease of
RMS and maximum amplitude of the signal. Finally, the low number of peaks suggests
a reduced forward progression. Concerning the inertial signals recorded at the wrist, an
increase in the dominant and median frequencies in the vertical direction was observed
during FOG. As for the other features, different patterns were observed among the patients,
thus suggesting that movements of the upper limbs during FOG are rather heterogeneous
across subjects.

The EEG signal was found to be informative in 5 out of 11 patients. All the selected
features concern the frequency domain, especially for data recorded from the frontal-
central and the central-parietal regions, which are likely involved in the phenomenon,
as also reported in [22,24,26]. The features computed using the cross-spectra of channel
pairs express, for some patients, a decrease in coherence in the delta band and in others
an interesting increase in coherence in the beta1 and beta2 frequency bands. Although
preliminary, this result may suggest an increase in the synchronization between central and
parietal regions, in order to "by-pass" the most affected regions, usually localized in the
central area.

In order to verify the relative importance of using multiple sensors, the following
conditions were compared.

• Single-sensor classification, considering accelerometer data from the left tibial sensor
only (Minimal Setup);

• Multi-sensor classification, using data from all sensors that provided significant fea-
tures for each individual patients (Complex Setup), i.e., acceleration and angular velocity
at tibial level, acceleration and angular velocity at wrist level and EEG.

The F-scores achieved with the two configurations, using SVM and kNN classifiers,
are reported in Figure 6. Only the F-scores of subjects for which relevant features were
extracted from at least two sensors are reported; furthermore, in the case of Subject 10,
EEG features were not selected. As can be seen, for both the SVM and kNN models, the
F-score was similar between the two different configurations. In particular, in the case
of SVM, the minimal and complex setups yielded F-scores in the ranges 82.6–93.4 and
84.1–92.3, respectively. The largest improvement provided by the complex setup was 3.75%
(Subject 8). As for kNN, the minimal and complex setups yielded F-scores in the ranges
82.17–90.4 and 83.58–93.97, respectively, with the largest improvement of 5.34% observed
in Subject 11. Even though these results are necessarily preliminary, due to the reduced
number of subjects involved, the outcomes suggested that the complex setup provides quite
limited performance improvements with respect to the minimal configuration. Hence, this
latter may represent a good option in a context where low cost, low power consumption
and patient’s comfort are key issues, as in the case of continuous monitoring during ADL.
Table 10 shows the overall performance of SDA in terms of accuracy, sensitivity, precision,
specificity and F-score. Only those patients for which the comparison between minimal and
complex setup was possible (i.e., features selected from at least two sensors) are reported.

In order to validate the effectiveness of the minimal configuration, we verified the
actual algorithm capability of detecting FOG episodes. Table 11 reports the number of real
FOG episodes (as labeled by the clinicians after video inspection) and that provided by
the subject-dependent and independent algorithms with minimal setup configuration. As
evident from Table 11, the system was capable of detecting 232/264 FOG events (87.9%),
with detection rate larger than 90% in all patients except for subjects 9 (who experienced
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FOG episodes during less than 4 s) and 11. These latter patients manifested several FOG
episodes (22 and 36, respectively), with only a part of them recognized by the algorithm.
This seems to prove that episodes of the same patient are not necessarily correlated.

Table 10. Performance of subject-dependent algorithm with minimal and complex setup configuration
for subjects 1-4-7-8-10-11.

Performance Minimal Setup Complex Setup
kNN SVM kNN SVM

Accuracy (%) 84.59 85.71 87.65 88
Sensitivity (%) 82.65 81.76 86.04 85.14
Precision (%) 86.18 84.49 88.86 87.71

Specificity (%) 82.60 87.23 86.13 88.38
F-score (%) 82.63 84.41 86.08 86.73

(a) SVM (b) kNN

Figure 6. Subject-dependent algorithm. F-score (%) obtained with minimal (left tibial accelerometer
alone) and complex (multi sensor) setup in each subject.

Table 11. Number of true and detected episodes with minimal setup configuration.

Subject Episodes Length (Range) (s) Episodes Detected
with SIA

Episodes Detected
with SDA

1 22 12.12 (3.3–35.4) 22 19

2 1 3.3 1 –

3 33 52.33 (3.3–238.5) 32 32

4 15 9.22 (4.5–25.20) 15 8

6 22 16.5 (5.4–32.4) 22 21

7 28 12.02 (3.3–43.5)) 27 27

8 44 19.98 (3.3–58.20) 39 37

9 22 4.25 (3.3–8.4) 7 0

10 30 25.48 (4.2–64.20) 30 30

11 36 12.58 (3.3–45) 26 34

12 11 22.42 (4.5–46.5) 11 11

Tot 264 17.29 (3.79–54.6) 232 219
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4. Conclusions

In this study, we explored different types of sensors and positioning for FOG detection
through optimized ML algorithms. A total of 12 patients with PD were included and 11 of
them experienced FOG episodes while performing different motor tasks. We addressed
both a subject-independent and a subject-dependent algorithm. In the former case, only
inertial signals recorded from the left lateral tibia were selected, while in the latter case,
features from EEG data and from the inertial sensor positioned on the wrist were also
selected. The LOSO and LOTO validations yielded F-scores and accuracy in excess of
83%. As for SIA, the classification performance was compared considering either uni-
modal (i.e., accelerometer and gyroscope alone) or multi-modal classification (sensors
combination), obtaining similar results. As for SDA, a minimal configuration, including
only the accelerometer positioned on the lateral left tibia, was compared with a more
complex condition, including features selected from the other sensors (EEG and inertial
sensors at wrist and leg). Although the use of multiple sensors results in a performance
improvement, the difference was found to be limited. This suggests that the adoption of the
minimal configuration could be a good compromise between classification accuracy and
the need for comfort and energy savings, which are important in continuous monitoring
during ADL.

The main limitation of this work is represented by the small number of patients
involved. Moreover, technical issues have prevented the use of the EMG signal, which is
likely significant for FOG detection. Future research will be in the direction of increasing the
available dataset and validating the present results on an extended database. Experiments
will be devised in order to verify the feasibility of a minimal configuration to be tested in
ADL conditions. Finally, the clinical significance of the extracted features, especially from
EEG data, will be explored.
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Abbreviations
The following abbreviations are used in this manuscript:

ADL Activities of Daily Living
ECG Electrocardiogram
EEG Electroencephalogram
EMG Electromiogram
EOC Electrooculogram
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FN False Negative
FOG Freezing Of Gait
FOG-Q Freezing Of Gait Questionnaire
FP False Positive
FS Feauture Selection
kNN k-Nearest Neighbor
LOSO Leave-One-Subject-Out
LOTO Leave-One-Task-Out
MDS Movement Disorder Society
ML Machine Learning
MMSE Mini-Mental State Examination
MOCA Montreal Cognitive Assessment
MSC Magnitude Squared Coherence
MV Majority Voting
PD Parkinson disease
SC Skin Conductance
SCR Skin Conductance Response
SCL Skin Conductance Level
SDA Subject Dependent Algorithm
SIA Subject Independent Algorithm
SVM Support Vector Machine
TP True Positive
TN True Negative
UPDRS Unified Parkinson’s Disease Rating Scale
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