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Stack-CNN algorithm: a new approach for the detection

of space objects

A. Montanaroa,2,∗, T. Ebisuzakib, M. Bertainaa,1,∗

aDipartimento di Fisica, Università degli studi di Torino - 10125 Torino, Italy
bComputational Astrophyiscs Laboratory, RIKEN - 351-0198 Wakoshi, Japan

Abstract

We present here a new trigger algorithm based on a stacking procedure
combined with convolutional neural network that could be applied for any
object moving linearly or with a known trajectory in the field of view of a
telescope. This includes the detection of high velocity fragmentation debris
in orbit. A possible implementation is on an orbiting Space Debris (SD)
remediation system. The algorithm has been initially developed as offline
system for Mini-EUSO, on the International Space Station. We evaluated
the performance of the algorithm on simulated data and compared with those
obtained by means of a more conventional trigger algorithm. Results indicate
that this method would allow to recognise signals with ∼1% Signal over
Background Ratio (SBR) on poissonian random fluctuations with a negligible
fake trigger rate. Such promising results lead us to not only consider this
technique as online trigger system, but also as offline method for searching
moving signals and their characteristics (like speed and direction). More
generally any kind of telescope (from ground and from space) like those used
for space debris, meteors monitoring, cosmic ray science could benefit from
this automatized technique. The content of the current article is part of the
recent Italian patent proposal submitted by the authors (patent application
number: 102021000009845).
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1. Introduction

STACK-CNN stands for STACKing method plus Convolutional Neural
Network. It is a completely new detection system that combines two existing
algorithms in a peculiar way. The Stacking Method (SM) was first proposed
by Yanagisawa (1) for SD detection and independently developed as part of
the trigger system for JEM-EUSO (2).

It produces a stacked image, that is a sum-image made by overlapping
many frames shifted by one or more pixels according to the speed and the
(opposite) direction that an object (or a particle) can have in the Field of
View (FoV) of a telescope. Since all the possible motion parameters are not
known a priori, the SM produces a lot of combinations and distinguishing
the right ones from the wrong ones requires some decision algorithms. If in
the past such algorithms exploited the SBR enhancement for recognition of
a right combination (leading however not so high performances), today we
can exploit the most advanced algorithms for image recognition, Convolu-
tional Neural Networks (CNNs). CNN is one of the most famous and used
NNs. It finds application especially in computer vision: image classification,
video analysis, anomaly detection, drug discovery and so on. Since its in-
ception, physicists discovered its utility in astronomy, like for classification
of galaxies. Today, whenever there are images or video, like those recorded
by telescopes, CNN, and more in general Machine Learning (ML), can give a
fundamental contribution to their study. Nowadays applied CNNs come from
Le Cun proposal, LeNet-5 (3), which was first applied to hand written digits
classification. In the last years, notable improvements concerning new opti-
mizers in the learning phase (like Adadelta(4) used in this work) have been
introduced, and the automatization of training (advanced backpropagation
and available hardware accellerators) on open source platforms has made ML
accessible for different scientists. A CNN of this kind is considered in the
STACK-CNN algorithm with suitable adaptations ( see CNN description in
subsection 5.2).

In this paper we consider one of some possible applications for STACK-
CNN, SD detection, keeping in mind a possible implementation on board of
new remediation systems.

We have chosen this because SD have become a serious problem in the last
years and many space agencies are trying to figure out new tracking systems
assembled with new instruments to de-orbit or capture as much as possible
SD.
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Among these, a remediation system comprised of a super-wide field-of-view
telescope (EUSO) and a novel high-efficiency fibre-based laser system (CAN)
can become a feasible solution (5).

Such system could benefit from the STACK-CNN as trigger system be-
cause it is fast, simple to implement and can be mounted on Field Pro-
grammable Gate Unit (FPGA).

As a first step in this direction, the Mini-EUSO detector (6) on board
the ISS could be used to make a proof of principle of the detection strategy
and possibly tracking of SD. For this, STACK-CNN is totally adapted for
Mini-EUSO images, giving proof of its ability and encourage to explore its
power also as offline detection technique in the whole Mini-EUSO dataset.
It is compared to a standard trigger system developed in the framework of
cosmic ray science and adapted for SD.

The paper is structured in the following way. Section 2 explains what
SD are and what risks they can cause. Section 3 describes the observational
principle of space debris of the employed system detailing the Mini-EUSO
configuration. Section 4 describes the simulation approach developed to test
the trigger performance and the conventional method. Section 5 describes
the Stack-CNN method. Section 6 presents the results compared to the
conventional trigger. A discussion of the results and the conclusions are
reported in Section 7.

2. Space Debris

Over the last 60 years, since man began to explore space, several thousand
tons of satellites and missiles have been launched and there are about 18,000
objects in orbit; 1100 of them (6%) are still in operation, while the remaining
(94%) can be classified as Space Debris (SD) (ESA), which are mainly derelict
satellites, parts of rockets and space vehicles, no longer in use, and that
remain in orbit around the Earth. These objects travel at high speeds, of the
order of 7 - 9 km/s near the Low Earth Orbit, and can collide with spacecrafts
such as the ISS or other manned or unmanned spacecrafts, damaging them
and in turn producing new debris. The great majority of these objects are
not catalogued and, even if they were catalogued, usually tracking data are
not precise enough. Moreover, most of them are cm-sized, that makes their
detection even more difficult.
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Figure 1: Conceptual figure for the SD detection by a Mini-EUSO-like telescope. It detects
the reflected light of SD illuminated by the Sun. Size of objects is not in proportion.

3. Observation principle of space debris and the Mini-EUSO ap-
plication

SD itself do not emit light but an instrument can detect the reflected light
from the SD illuminated by a laser or by the Sun or by the Moon light (see
figure 1). In such a way, SD can be detected as tracks crossing the Field of
View (FoV) of the detector, enabling to identify and track the SD. In case
of Mini-EUSO this approach could be tested in two different ways: a) at
sunrise or sunset when the earth is still in umbra while the high atmosphere
is already illuminated by the Sun; b) with the ISS turned by 90◦ or 180◦,
and the Sun shines from the back to avoid direct sunlight as it happens in
case a) if the instrument is not properly shielded.

Mini-EUSO (Multiwavelength Imaging New Instrument for the Extreme
Universe Space Observatory or “UV atmosphere” in the Russian Space Pro-
gram) is a telescope operating in the UV range (290 - 430 nm) with a square
field of view of ∼44◦ and a ground resolution of ∼6 km (6). Mini-EUSO
was brought to the ISS by the uncrewed Soyuz MS-14, on August 22, 2019
and installed for the first time on the nadir-facing UV transparent window
in the Russian Zvezda module of ISS on October 7. Since then, it has been
taking data periodically, with installations occurring every couple of weeks
on average. The instrument is expected to operate for at least three years.
The scientific objectives of Mini-EUSO include among others the study of the
exposure for the space-based observation of ultra-high energy cosmic rays,
the UV mapping of the Earth, the detection of meteors and space debris,
the observation of Transient Luminous Events and bio-luminescence, as well
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Figure 2: Example of a simulated SD track using ESAF software.

as the search for strange quark matter. Examples of the various phenomena
observed in the first months of operations can be found in (8). The optical
system consists of two Fresnel lenses with a diameter of 25 cm. The focal
surface, or Photon Detector Module (PDM), consists of 36 MultiAnode Pho-
tomultipliers (MAPMTs) tubes, 64 pixels each from Hamamatsu, capable of
single photon detection. Readout is handled by ASICs in frames of 2.5 µs.
Single photon discrimination is 5 ns. Data are then processed by a Zynq
based FPGA board which implements a multiple level triggering, allowing
the measurement of triggered UV transients for 128 frames at time scales
of both 2.5 µs and 320 µs. An untriggered acquisition mode with 40 ms
frames (this is defined as 1 Gate Time Unit, GTU in the following) performs
continuous data taking (9). This is the acquisition mode considered for the
detection of SD.

4. Simulation studies and standard trigger results

In order to study the performance of Mini-EUSO detector in recognizing
the presence of SD in the FoV at sunset or sunrise by means of the Stack-CNN
algorithm we used the EUSO Simulation and Analysis Framework (ESAF)
(10). ESAF is an end-to-end simulation of the phenomenon from the light
emission at the source, the propagation through the environment, to the
simulation of the detector response and its reconstruction algorithms.

The Mini-EUSO configuration in ESAF is implemented and it includes
the simulation of a light track from a SD. Figure 2 shows an example of the
expected light signal on the PDM of Mini-EUSO.

5



Figure 3: Example of a simulated SD moving from one GTU to another in Poissonian
background condition. The scale refers to both images.

The simulations with ESAF allowed also to develop the detection strat-
egy, by testing different trigger algorithms. Hence, our proposed method is
compared to a standard technique used for Mini-EUSO data (11). In such
approach, 25 ’virtual’ Elementary Cells (ECs) are defined and the trigger
scans the entire PDM and looks for an excess in neighboring pixels, which is
lasting 5 consecutive GTUs. One EC consists of 4 MAPMTs. Neighbouring
ECs are overlapping each other by 2 PMTs vertically or horizontally, or by
1 PMT diagonally. With a threshold on pixel counts, which is 3σ above the
average background in the pixel (µpix), µpix + 3×σbkg, the fake trigger rate
becomes low enough (order of 10−5 - 10−6 Hz). More details can be found in
(11).

Despite the good performancse of this technique, we challenged the pos-
sibility to push further the detection, going below 3×σbkg threshold, by in-
troducing the STACK-CNN. The simulated background follows the Poisson
statistics (as good approximation for real background). An example of faint
SD can be seen in figure 3.

5. The STACK-CNN trigger algorithm

5.1. Stacking Method

Let’s consider a SD that has a fixed speed |−→v | and direction θ. For
semplicity the debris has only an horizontal velocity (vz = 0) and starts at
position (x0,y0,h), where h = 0 km means on the ground. At h the size of
one pixel lp is calculated knowing the altitude of the detector (400 km) and
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the size of one pixel lg on the ground (∼6 km). Naming α the aperture angle
of one pixel:

lp = (400− h)× tan(α) =
400− h

400
× lg (1)

the detector stores n+1 packages starting from GTU t0, where SD is detected
for the first time, until GTU tn where SD is visible for the last time. Naming
I(ti) the 48×48 image at GTU ti and ∆t the time difference between two
GTUs the stacking consists of two iterative steps: a Shift and an Add. The
image I(t1) is shifted of dx along x-axis and dy along y-axis according to SD
motion but in opposite direction:

dx = |−→v | ×∆t× cos(−θ)
dy = |−→v | ×∆t× sin(−θ) (2)

Assuming SD starts in the center of a pixel, if dx (dy) is smaller than lp/2,
then the matrix is not rolled (meaning that the debris moves within the space
projected by the pixel), otherwise it is rolled by one or two pixels depending
on whether dx (dy) is bigger then lp/2 or lp/2 + lp. Once I(t1) is rolled, it
is added to I(t0) to form a summed image ΣI1. The procedure is iteratively
applied for all the considered n frames. After the last step the value of ΣIn
in a pixel (x,y) follows this formula:

ΣIn(x, y) = Σk=0,nI(x+ k · dx, y + k · dy, tk) (3)

ΣIn is the stacked image and is more advantageous than a single image be-
cause the Signal / Noise Ratio (SNR) is increased by

√
n factor due to the

random Poissonian fluctuations and coherent signal. The specific parame-
ters of a SD are not known a priori and stacking method has to produce all
possible combinations; there will be one or more that match SD motion and
the rest will be wrong. Once the right combination is found, SM gives speed,
direction and the starting pixel position of SD according to the chosen ref-
erence frame. This is an important aspect, because the reference frame fixes
an height and a corresponding pixel size that lead to a particular horizontal
speed. The number of combinations is a significant aspect too. All possible
combinations could lead to an huge amount of images. For this reason a
CNN is used to help recognizing the right combinations.

5.2. Convolutional Neural Network

The type of CNN considered for this algorithm is a shallow-CNN, that
means a CNN as simple as possible and with few parameters. The reasons
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Figure 4: CNN architecture for Stacking Method. The first column shows the layer type,
the second the corresponding output and the third one the associated weights parameters.

are two. The first one is that we would like to develop a system that could
be mounted on board of new telescopes through FPGA. It’s obvious that a
huge network with milions of parameters would be difficult to adapt to this
system. The second one is that a CNN with few parameters can learn very
well features associated to stacked images, and so deep architectures are not
necessary. The CNN considered for this purpose has only 16,825 parame-
ters. Figure 4 shows the layers structure (first column) and the number of
parameters associated to each layer (third column). From this it is clear that
convolutional layers get involved with few parameters and the greatest part
of parameters is associated to Fully Connected layers. Although more per-
forming CNN can be computed, it turns out that this very simple network
is very effective for our purpose.

The final output of the network is one unit: it is a value between 0 and
1, where 0 means wrong combination and 1 right combination. This archi-
tecture was found after several attempts, keeping always in mind different
theoretical aspects: the simplicity of the images that have to be learnt, us-
ing few max-pooling to avoid information loss and few filters for elementary
shapes in the images.

A dataset for CNN study includes three subsets:

- Train: It is the biggest one and has all the images that statistically
cover the phase space. Through this, the network updates its weights
minimizing a loss function.
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Radius Pixel Position Speed Range Direction Range Height
cm pixel (X,Y) km/s deg km
1 (12 - 34 , 12 - 34) 5 - 12 0◦ - 360◦ 370

Table 1: Space Debris Parameters simulated with ESAF.

Figure 5: Right combination coming
from SM over 12 frames.

Figure 6: Background Combination
coming from SM over 12 frames.

- Validation: Usually it is a percentage of the training dataset that is
not used for training but for validating the performance of the network
and seeing if there are some overfitting or loss of generalization.

- Test: It includes a lot of images never seen before and it is used for
determining the final accuracy and error of the network.

A set of 80 debris simulated with ESAF with the parameters indicated
in table 1 is used as a training set. The background level is set to 1 count
pix−1 GTU−1 ( where 1 GTU is a data sampling of 40 ms ) which is a typical
value for the background measured by Mini-EUSO on oceans, due to the UV
nightglow and absence of Moon light see(8). Images are shifted in θ direction
through steps of 15◦, from 0◦ to 360◦, and with a step of 2 km/s for speed
starting from 5 km/s until 11 km/s. This leads to 4 combinations of speed
and 24 combinations of directions, for a total of 96 combinations. For 80 SD,
in total there are 7680 combinations. A couple of them are shown in figures
4-5.

The images are transformed in grey scale values (i.e. values between 0
and 1) through the following formula:
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Figure 7: TPR for CNN trained
with different SBRs and different
stacked images.

Figure 8: FPR for CNN trained with
different SBRs and different stacked
images.

GV =
PV −mV
MV −mV

(4)

where PV indicates the pixel value and mV and MV the minimum and
maximum value recorded by the pixel, respectively. The training dataset
consists of about 500 stacked images, one half with right combinations and
the other with background ones. The 3% of this set is passed to the validation
dataset. All the training process, weights updating and model evaluation is
done exploiting the high-level API Keras, running on platform Tensor- Flow.
These Python programs are executed on the interactive enviroment Google
Colab notebook (Google Colab). The few parameters allow to train CNN in
short time and without implementation of hardware accellerators.

We select the best CNN to assemble to SM, training the same architecture
but with a dataset made by different Signal over Background Ratio (SBR),
3%, 1.5% and 0.7%. The network is even trained over different stacked images
with 0, 4, 8 and 12 integrated GTUs.

After training, CNN is tested over 30 SD never seen before and 30 back-
ground images as well. A True Positive Rate (TPR) and a False Positive
Rate (FPR) is defined and calculated over the different configurations (fig-
ures 6-7).

A 100% TPR was reached with 4 stacked images with 3% SBR while 12
stacked images were necessary for the other two SBR levels. However, with
12 stacked images only the 3% SBR had a FPR of 0 while for the other two
it was much higher (13% and 70% for 1.5% and 0.7% SBRs, respectively).
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This preliminary test shows that the network trained over 0.7% and 1.5%
SBRs certainly does not provide acceptable results (because it is not able to
extract clear informations from faint debris). It should be kept in mind that
the final solution should have a rate of FPs of the order of 1 per hour to
avoid, for example, unnecessary shooting of the CAN laser when being part
of a full-remediation system. To investigate more deeply the performance
of the network with 3% SBR condition, 4.8×104 background images were
created with Poissonian fluctuations around the same average background
level. This corresponds to a 33 minutes equivalent time for Mini-EUSO. All
of them are splitted in 4000 packages each one with 12 GTUs. SM acts on
these, creating 96 × 4000 = 3.84×105 combinations. After running the CNN
it turned out that even with a threhsold of 0.99 for a positive results (i.e.
for good combination the CNN output must be bigger than 0.99), a FPR of
0.25% is obtained, which corresponds to 1 event every ∼3.3 minutes and it
is still not acceptable.

Looking more carefully at these fake events, it turned out that they re-
ally hold some brighter pixel that deceives the network leading to a wrong
prediction. This also means that SM creates, in the space of all possible
combinations, some stacked images that are overlays of positive fluctuations;
the more combinations are performed, the greater is the risk to get false pos-
itives. The best solution is to exploit the difference between a SD and a fake
background combination, which is the fact that SD has a steady coeherent
movement for long time. When SM finds a right combination, it gives the
speed and direction associated to that combination. If SD moves through
the focal surface for long time, it stands for more than 12 GTUs. For this
reason, starting from the two parameters it is possible to repeat the stack-
ing operation once more but this time for many more GTUs. Moreover, it
is possible to produce more correct combinations according to a fine tuning
around the selected speed and direction. Such operation can enhance an
optimized combination making more contrast between spot and background.
On the contrary, for a false positive, repeating SM for many GTUs allows to
kill the fake event. After producing these new stacked images, it is the task
of CNN to recognize if these are again right combinations. The CNN is the
same as in the first level of the algorithm, because it has to perform the same
task, therefore, it is not useful re-training a new network. As last condition
characterizing the whole system, if CNN has recognized a right combination
in both first and second trigger levels these two selected images must have
an overlapping maximum in a neighborhood of at maximum two pixels. All
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Figure 9: The STACK-CNN trigger system.

this system is called STACK-CNN and it is summarized in Figure 9. It is
the last version of STACK-CNN and its robustness is proven over different
tests as explained in the next section.

6. Results of the Stacking-CNN algorithm

First of all, the whole STACK-CNN is tested on pure background level
for FPR evaluation: 1.08×105 Poissonian events (with mean 1 count pix−1

GTU−1 ) are simulated. This means a total of 1 h and 13 min equivalent
acquisition time. This time is organized in packages of 40 GTUs for a total
of 2700 packages. Each package is passed through STACK-CNN that auto-
matichally generates 96 combinations in the first trigger level. Here the CNN
performs a first threshold, that is it outputs for each combination a value be-
tween 0 and 1, and if one is bigger than 0.5 then the event is passed to the
second trigger level where other 9 combinations are produced (shifting and
adding 40 frames) according to a fine tuning around its speed and direction.
CNN searches again for a good combination; if this is the case then the last
test checks if the two maxima are overlapped in the same pixel positions (in
a neighborood of two pixels). Figure 10 shows two clear examples on how
STACK-CNN avoids false positives.

Though two spots are visible in the two triggered combinations at the
first trigger level (top images), when the second stacking occurs starting
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Figure 10: Two examples showing how STACK-CNN manages false positives. If in the top
images two spots are visible and correctly found by CNN with the first triggering level,
after stacking over 40 GTUs these disappear and CNN classifies them as background.

from the selected parameters, the resulting images (bottom images) do not
have anymore such spots and so the CNN classifies them as background. The
final result is that no background event gives rise to a false positive in 1 hour
and 13 minutes of integrated time.

As a second test the performance of STACK-CNN is verified on debris
of different size and distance, and compared with the performance of the
standard trigger system. The SD reflectivity is set at 50% for a more realistic
scenario.

Figure 11 shows two examples with SD. Compared to the background
cases shown before, after applying the second level trigger, the spots become
brighter (about a factor of

√
40 with respect to the signal in a single image)

and they are located in the same portion of the FoV. Therefore, the SD is
correctly classified as a true positive. The results of the comparison with the
standard trigger are presented in Figure 12.

Red points show the detection limit for the standard method, instead blue
points show detection limit for STACK-CNN, both tested over the same
dataset produced with ESAF. The improvement of STACK-CNN is clear
at all distances, preserving a TPR = 100%. The STACK-CNN can reach
maximum distances showed by green points, accepting a TPR = 50%. In
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Figure 11: Two examples showing how STACK-CNN manages SD candidates. If in the
top images two spots are visible and correctly found by CNN with the first triggering level,
after stacking over 40 GTUs these spots are brighter and CNN correctly classifies them as
SD.

terms of SNR this means that the STACK-CNN is able to detect signals up
to SNR = 1.3 against SNR = 4 for the standard method. This means that
even if CNN is trained over SD with SNR = 4, it is able to find fainter debris
up to SNR = 1.3 thanks to this peculiar combination of the two methods.

Stack-CNN should be able to detect real SD around this value. This result
is reassuring and even indicating that if the ISS will be turned by 90◦ or 180◦

Mini-EUSO should be able to detect SD in GEO orbit within acceptable
distances and sizes.

7. Discussion and conclusions

A new trigger algorithm based on a stacking procedure combined with
convolutional neural network that could be applied for any kind of light-
sources moving linearly (or with a known trajectory) has been presented. Its
application on the detection of high velocity fragmentation debris in orbit is
shown as first adaptation. A possible future implementation is on an orbiting
debris remediation system comprised of a super-wide field-of-view telescope
like EUSO and a novel high-efficiency fibre-based CAN laser system. The
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Figure 12: Comparison between the detection limit for STACK-CNN and standard
method.

algorithm has been developed based on an initial proof of concept stage
of this system which is the Mini-EUSO detector on the ISS. By means of a
simulation code of space debris we evaluated the performance of the algorithm
and compared with the results obtained by means of a more conventional
trigger algorithm. Results indicate that this method would allow to recognise
signals with ∼1% SBR on poissonian random fluctuations with a negligible
fake trigger rate. This has been done assuming the average background level
seen by Mini-EUSO on the ISS and pointing nadir. Most probably the typical
background level pointing towards the zenith would be lower by at least a
factor of two, increasing its sensitivity.

The next step would be to test it either from ground or with space-based
observatories pointing towards the zenith to mimic more realistic conditions.

In parallel, the flexibility of this approach allows to test this logic directly
on Mini-EUSO data to search for SD, meteors and other point-like sources
which have a speed comparable to the one this algorithm has been trained
for. Moreover, by simply re-adapting the speed range of STACK-CNN it
could also be applied to cosmic ray science as an offline scanning algorithm.
Other practical applications about events not related to physics could be
considered too.

The “light” CNN involved and the computational speed of the whole
STACK-CNN allow the system to be mounted on board of future telescopes
(such as for SD removal) inside FPGA. Indeed, the last objective will be
seeing STACK-CNN that autonomously triggers and classifies events, taking
a step forward for the artificial intelligence of space systems.
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