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Multi-view Human Parsing for Human-Robot Collaboration

Matteo Terreran, Leonardo Barcellona, Daniele Evangelista and Stefano Ghidoni

Abstract— In human-robot collaboration, perception plays a
major role in enabling the robot to understand the surrounding
environment and the position of humans inside the working
area, which represents a key element for an effective and safe
collaboration. Human pose estimators based on skeletal models
are among the most popular approaches to monitor the position
of humans around the robot, but they do not take into account
information such as the body volume, needed by the robot
for effective collision avoidance. In this paper, we propose
a novel 3D human representation derived from body parts
segmentation which combines high-level semantic information
(i.e., human body parts) and volume information. To compute
such body parts segmentation, also known as human parsing
in the literature, we propose a multi-view system based on
a camera network. People body parts are segmented in the
frames acquired by each camera, projected into 3D world
coordinates, and then aggregated to build a 3D representation of
the human that is robust to occlusions. A further step of 3D data
filtering has been implemented to improve robustness to outliers
and segmentation accuracy. The proposed multi-view human
parsing approach was tested in a real environment and its per-
formance measured in terms of global and class accuracy on a
dedicated dataset, acquired to thoroughly test the system under
various conditions. The experimental results demonstrated the
performance improvements that can be achieved thanks to the
proposed multi-view approach.

I. INTRODUCTION

Human-robot collaboration (HRC) aims to a close and di-
rect collaboration between robots and humans to reach higher
productivity and ergonomics thanks to the synergy between
human intelligence and robot mechanical power [1]–[3].
Especially in industrial environments, robots are regarded
as potential sources of danger: standard robotic cells have a
fixed barrier to prevent the human from getting in contact
with working machines. A first step toward human-robot
collaboration is to remove any physical system separating
the working environment of humans and robots, decreasing
the amount of space and costs for safety barriers, but this
requires alternative methods to ensure the safety of human
workers. When humans and robots operate simultaneously,
they may be working very close together as in Figure 1, and
accidental collisions between them must be avoided.

A common solution to guarantee safety in human-robot
collaborative tasks is based on vision systems such as camera
networks and people tracking algorithms [4]. Such systems
may exploit different representations to describe the human
pose and motion within the scene. In [5], people recognized
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Fig. 1. Example of human-robot collaboration scenario acquired with a
multi-view camera setup. Overlaid on each image, the segmentation output
of our multi-view human parsing system.

by the detection algorithm are represented by means of a
single point such as the person’s centroid; this allows a fast
detection and message passing to the robot, but it is also
less informative for the robot if it has to avoid possible
collisions. A simple improvement can be the construction
of a 3D bounding box around the centroid of the person [6],
which allows to describe also the human volume: with this
information the robot can then more easily avoid the space
occupied by the person. However, how to choose the size
of such a bounding box is not trivial, as it must be able
to describe a large set of people (tall or short, thin or thick)
without overestimating or underestimating the actual volume
of the person. Other common human representations are
based on skeletal models, namely a set of joints connected by
a set of links [7], [8]. Representing the person by means of
his/her skeleton has the advantage of giving a more detailed
and useful description for human-robot collaboration, since
it describes not only the position of the person but also the
position and orientation of all the limbs (e.g. arms, hands).
However, this is a very schematic representation: joints and
links do not provide information about the volume of the
person, thus limiting the possibility for the robot to avoid
collisions in very close collaborative tasks.

In this work, we address the problem of human estimation
by proposing a novel representation based on body parts
segmentation as shown in Figure 1. Our proposed represen-
tation combines the advantages of the human representations
described above. On the one hand it is a representation that
contains the semantic information of the body parts like
skeletal representations with human joints, which allows to
know at any time the position of the person and his/her body
parts. On the other hand, it allows a good and more refined
estimation of the person’s volume compared to bounding
box representations; this can be particularly useful in human-



robot collaboration scenarios as an input for motion planning
algorithms to perform accurate collision avoidance. In par-
ticular, we aim to segment people into different fine-grained
semantic parts such as head, torso, arms and legs. In the
literature, such a problem is known as human parsing and
allows to obtain a detailed representation of the person useful
for high-level tasks such as recognition of human actions
and gestures. The main state-of-the-art algorithms for human
parsing tasks are based on deep learning networks [9]–[11],
and focus on human body parts segmentation of people in
RGB images. To the best of the authors’ knowledge, no
deep learning architecture has been proposed to deal with
human parsing directly on 3D data (e.g, point cloud); this
led us to develop a multi-view system to build a 3D semantic
representation by exploiting the human parsing results from
multiple points of view.

Our approach relies on a network of RGB-D cameras
to be robust to occlusions [12]. The images acquired by
each camera are segmented to recognise people and their
body parts, and then projected from 2D to 3D exploiting the
depth information acquired. The segmented 3D body parts
from each viewpoint are then aggregated together to obtain
a semantic 3D representation (i.e., segmented pointcloud)
of the people in the scene, where the semantic information
corresponds to the body parts. A 3D filtering method based
on the multiview information is also proposed, which further
improves the accuracy of the semantic 3D representation
by removing noise and outliers. Popular datasets for human
parsing tasks are composed of RGB images [13], [14] or
synthetic RGB-D images [15], but none of them contains the
same scene viewed from different points of view. Therefore,
to evaluate our approach, a multi-view RGB-D dataset with
human parsing manual annotations has been created on
purpose1, including various situations of increasing difficulty
(single person, occlusions, crowded scenes, moving robot).

Summarizing, the work presents 3 main contributions: (i) a
unified approach for people detection based on human body
parsing and 3D projection; (ii) a 3D segmentation refinement
step which exploits multiple views to reject misclassified
points; (iii) a new multi-view RGB-D dataset with human
parsing annotations, that can be used for testing algorithms
in a real scenario to further drive research in this field. The
remainder of the paper is organized as follows. Section II
reviews the works related to human parsing and people
detection. In Section III the main elements of our system
are described in details, while in Section IV the proposed
system is thoroughly evaluated on our dataset. Finally, in
Section V, conclusions are drawn and future directions of
research identified.

II. RELATED WORKS

Human detection and tracking are crucial elements for
human-robot collaboration, since the robot must be capa-
ble of perceiving the surrounding environment in order to
identify potentially dangerous situations for human workers.

1Available at http://robotics.dei.unipd.it/

Several representations can be adopted to describe human
position and motion, depending on the particular type of
collaborative operation.

In simple forms of collaboration, humans and robots share
the same workspace but not at the same time: when a
human enters this area, the robot must be stopped. In such
a scenario, it is important to know the position in the scene
and the volume of the person, using for example volumetric
representations [16] or 3D bounding boxes [6]. For more
direct collaborations, safety is ensured by maintaining at
least a protective separation distance between human and
robot at any time. Skeletal representations allow to monitor
the distance of the robot from the various joints of the
person’s skeleton [17], [18]. In [19] a volumetric voxel-
grid representation derived from skeletons is used to prevent
potential robot collisions with humans, while in [20] hu-
man occupancy is represented in terms of convex volumes
computed from skeleton joint positions. In [21] authors
propose a human body representation made of 3D primitive
shapes (e.g. spheres, cylinders), combining human skeleton
detection with body parts semantic segmentation: given an
RGB-D image, a set of shapes and parameters is estimated
using both 3D skeleton joints and segmentation masks of
each body parts (e.g. legs, arms).

In this work, we also investigate the use of body parts
segmentation to compute a 3D representation of the human
body, but without using any additional information on the
human pose such as skeletons. Moreover, while in [21]
authors focus on a single camera setup, we propose the
use of a multi-view system to compute the 3D human body
volume exploiting contributions from different viewpoints;
this allows to improve accuracy and robustness to occlusions,
typical of scenarios such as human-robot collaboration tasks
due to movements of the robot or objects handled.

According to the literature, such representation based
on the segmentation of body parts is known as human
parsing [13], that is the task of segmenting a human figure
in an image into different fine-grained semantic parts such
as head, arms and legs. Several ideas have been proposed
in the literature about how to define such semantic classes.
For example, JPPNet [13] segments human body parts based
on clothes. Other conventions, such as the one used in
the Pascal-Person-Part [14] dataset, consider several classes
of interest that are independent of the clothes worn and
close to the human model also considered in skeleton-based
algorithms (i.e., Head, Torso, Upper arms, Lower arms,
Upper legs, Lower legs); in our work, we focus on such
convention due to its close relation with the skeletal models
commonly considered in the human pose estimation for
human-robot collaboration.

Nowadays, state-of-the-art performance on the Pascal-
Person-Part are achieved by deep learning architectures such
as SCHP [9] and CDCL [10]. The former builds upon the
model proposed by [22], which merges the segmentation
information with a deep edge extractor module, proposing
a cyclically learning scheduler to improve the model per-
formance by progressively refining the noisy labels during



Fig. 2. An overview of our multi-view human parsing system. First, body parts segmentation masks and people bounding boxes are computed from the
frames of each camera in the network; then single-view segmentation masks are projected from 2D to 3D and aggregate by means of our 3D filtering
method. The final output of our system is a 3D semantic representation of the person, from which also a more high-level representation made of the
centroids of the various body parts can be derived.

the training stage. The latter, in addition to the segmentation
into body parts, also provides in output the skeleton of the
person. The segmentation mask is obtained by training the
model on a synthetic dataset, while the skeleton information
allows to reduce the gap between synthetic and real data
and to make the model more robust to real data. The idea
of helping segmentation through the human pose has been
also proposed in other works [11], [23], [24]. For example,
the WSHP architecture [11] extracts the pose of a person,
finds a set of stored segmentation masks with a similar
pose, gets the average of them, and finally refines the mask
generated with an encoder-decoder neural network that also
takes as input the 3D pose of the person. A comparison
between such architectures will be reported in Section IV.
From such comparison, we selected the best candidate to be
implemented in our system.

III. METHODS

In this section, we provide a detailed description of the
main parts of our system. A schematic representation of the
proposed pipeline is shown in Figure 2, highlighting the main
steps involved. In the first stage, a 2D human estimation is
computed on RGB-D frames from multiple points of view,
acquired by means of a camera network; for each viewpoint,
people in the scene are segmented with respect to their body
parts by means of our human-parsing module while an object
detector localizes people with a bounding box, used later on
for refinement. Single-view body parts segmentation masks
are projected from 2D to 3D to obtain segmented point
clouds from each camera, which are then aggregated together
to overcome possible occlusions. A multi-view refinement
is also used at this stage to remove noise and outliers by
means of the single-view bounding boxes. The final output
of our system is a 3D semantic representation of each person
in the scene; two representations are available, a segmented
point cloud describing the person’s volume and a high-level
representation made only of the centroids of the body parts.

A. Camera network system

We developed our multi-view human parsing system upon
a previous work that addresses people and skeletal track-
ing in multi-view camera systems. In particular, we rely
on OpenPTrack [5] and its user-friendly calibration proce-
dure to setup and quickly calibrate the camera network.
OpenPTrack2 is a scalable and distributed multi-camera peo-
ple tracking system with support for a heterogeneous set of
cameras and 3D sensors (e.g., Asus Xtion, Microsoft Kinect
One, Intel Realsense). It allows to perform people tracking
within a network of RGB-D sensors by distributing people
detection and centralizing the tracking process: each sensor
is directly attached to a computer which analyzes the data
stream and performs people detection; only the detections are
sent through the network, in order to be merged at the track-
ing level after being referred to a common reference frame by
means of calibration data, describing the pose of each camera
within the network. Calibration data are obtained by means
of a calibration procedure with checkerboards developed in
ROS3, the Robot Operating System.

Different people detection and tracking solutions are avail-
able in OpenPTrack, representing people either by means of
a single centroid or with a skeleton. In our work, we propose
a novel representation based on body parts segmentation
which, unlike the skeleton, allows to describe also the
volume of the person. Since it is based on segmentation,
our representation is more robust to possible occlusions
compared to OpenPTrack skeletons, as it will be shown
in Section IV. Pose estimation methods based on skeletal
models estimate the position of few points of interest (i.e.,
the skeleton joints), which can be quite inaccurate when the
person is not entirely visible. Using semantic segmentation
instead, we provide a pixel-level classification of the input
highlighting each single body part and its pixels; only if a
given body part is visible we can obtain the corresponding

2http://openptrack.org/
3https://www.ros.org



segmentation, thus reducing cases of incorrect predictions
and improving the final 3D human representation obtained
by combining information from multiple viewpoints. Our
system relies on OpenPTrack essentially for network cali-
bration, data exchange, and for collecting data from cameras
through ROS; the segmentation-based approach developed is
independent of OpenPTrack, although easy to be integrated
into such framework in the future.

B. Human parsing module

Our human parsing module is based on the SCHP [9]
network, which proved to be the best candidate among the
various models considered as reported in Section IV-A. The
SCHP network, derived from CE2P architecture [22], is
composed of a feature extraction backbone based on ResNet-
101 and three main modules: context embedding mod-
ule, high-resolution embedding module and edge perceiving
module. The first module aims to extract global context
information from the input image and involves a pyramid
pooling module to generate features at multiple scales. Such
features are then concatenated with low-level features from
the backbone in the high-resolution module, which aims
to recover lost details and provide output with high-level
semantic and high-resolution spatial information. Finally, the
edge perceiving module aims at learning the person contours
to further refine the final prediction; multi-scale edge maps
are computed by means of learned convolutions from the
low-level feature maps of the backbone network, and then
concatenated together into the output of the high-resolution
module to predict the pixel-level human parts. Building upon
this architecture, SCHP’s authors propose a cyclical training
procedure to progressively refine the noisy labels in the
data, which further improves generalization performance and
robustness of the model on several datasets. In our work, we
used the original SCHP implementation4 in PyTorch, using
the pretrained network weights provided by the authors after
training on the Pascal-Person-Part dataset.

C. Multi-view refinement

In the last stage of our system, the detections coming
from all the views are fused together. This is done by
projecting the segmentation masks provided by each view
from 2D to 3D and concatenating them together to obtain
a 3D representation (i.e., point cloud) of each person in the
scene including body parts semantic information. A common
problem which arises in segmentation tasks is related to
the false positives and false negatives: in both cases the
segmentation model predicts a wrong class with respect to
the ground truth. This leads to segmentation masks that may
not perfectly match the edges of the subject, which is further
amplified when projecting in the 3D space the segmentation
output because mislabelled pixels could be projected onto
surrounding objects, creating 3D clusters of human body
parts that can confuse the robot.

Moreover, in a human parsing task the objective is to
segment all the body parts in an image without distinction

4https://github.com/PeikeLi/Self-Correction-Human-Parsing

between the various instances of whole persons. This is
a limitation in the case of human-parsing applications for
human-robot collaboration scenarios, where the presence of
robots and objects makes it difficult to recognize the number
of people in the scene: due to occlusions, a single person
can be segmented into a few distant body regions, making it
difficult to know which person instance they belong to.

To solve both of the problems above, we propose a 3D
refinement approach based on people detection and box
filtering. We exploit the detection model YOLOv4 [25] to
predict a 2D bounding box for each person in the scene; a
3D bounding box is then computed for each detected person
considering both its 2D bounding box and the human parsing
segmentation output. More in detail, we define P as the set
of points p such that:

p = [x, y, z, label, id] ∈ R5 ,

where x, y, z are 3D space coordinates, label represents the
segmented body part and id is the instance number of the
detected person.

We also define B as the set of boxes b such that:

b = [pmin, pmax, pmean] ,

where pmin, pmax, pmean ∈ P and all correspond to the
same person instance (i.e., they all have the same id value).
The objective is to find a set of boxes {b1, . . . , bN} where
N is the number of detected people in the scene and bi is a
3D bounding box enclosing all the segmented points of the
i-th person, as depicted in Figure 3.

Fig. 3. Example of the 3D bounding boxes computed for the people
detected in the scene, enclosing all the segmented body parts of each person.
The colored points outside the boxes are noise that will be filtered out.

The procedure is shown in Algorithm 1. The inputs are
the human parsing segmentation masks, the depth image, and
the detections extracted from the people detector. Given the
human parsing segmentation mask, we extract the contour
of each body parts and compute the corresponding center
of mass. If the center of mass is outside the contour (e.g.,
in the case of crossed arms), the function iterateToCenter()
searches iteratively for a point belonging to the contour along
an axis passing by the center of mass; the point found is
then considered as the new center of mass in the following
calculations. The z coordinate of a point is computed as



Algorithm 1: Single view box creator
input : hpImage, depthImage, detections
output: boxes

boxes ← null;
points ← null
contours ← findContours(hpImage)

foreach contour in contours do
point ← contour.centerOfMass()
if not(isInsideContour(contour, point))

then
point ← iterateToCenter(contour,
point)

end
point.z ← meanDepth(depth, point.x, point.y)
point.id ← id
id ←
findNearestDetectionIndex(detections,
point)

if id != -1 then
point.label ← hpImage[ point.y, point.x ]
point ← transformToWorld(point)
points.push back(point)

end
end
for i=0 to i < max(ids) do

mean ← findMean(points, i)
points ← removeOutliers (points, mean, i)
min,max ← findMinMax (point, i)
mean ← (min + max)/2
box ← [ min, max, mean ]
boxes.push back(box)

end

the mean of the neighbours’ points in the depth image. The
function findNearestDetectionIndex() returns the index of the
detection containing the center or, if no detections are found,
it returns the value −1. In the case of overlapping detection
boxes, the index of the one with the nearest center to the
box is returned. Finally for each set of points, identified by
their corresponding id, we compute pmin, pmax and pmean

coordinates. The points too far from the mean are removed.
This constraint is relaxed if the points are labelled Lower
legs or Lower arms, because they tend to be more distant
in common human poses. The boxes created from each view
are then merged associating the mean positions to the nearest
one if the distance is less than a given threshold. The result
is a set of 3D bounding boxes, one for each person, built
around the semantic 3D representation of the people detected
in the scene as depicted in Figure 3. Points labelled as body
parts outside these 3D bounding boxes are actually outliers,
which can then be easily identified and removed. Thanks
to this multi-view refinement, which exploits segmentation
masks and 2D bounding box from multiple viewpoints,
we can further improve the accuracy of our semantic 3D
representation as demonstrated by our experimental results.

IV. EXPERIMENTAL RESULTS

The multi-view human parsing system presented so far
has been evaluated on a custom dataset that was created on
purpose. The dataset is composed of RGB-D frames acquired
from multiple points of view using a camera network of
Microsoft Kinect One sensors. For each sensor, intrinsics and
extrinsics parameters were estimated using the calibration
procedures implemented in OpenPTrack [5]. The dataset
includes 168 RGB-D frames from 3 different points of
view, acquired under different conditions (i.e., one or more
people, presence of strong occlusions, presence of a robot
manipulator) to test and analyse the proposed approach
in various scenarios. All the acquired frames have been
manually annotated using Django Labeller5, a light-weight
and open-source image labelling tool with support for many
annotation shapes (e.g., polygons, boxes, oriented ellipses)
and several utilities such as the automatic generation of
polygonal outlines of objects identified by the user with a
few clicks.

A. Human parsing model selection

The selection of the body parts segmentation model has
been done by testing three of the most accurate architectures
for which pretrained weights were already available, namely:
SCHP [9], CDCL [10], WSHP [11]. Such architectures have
been tested on the Pascal-Person-Part dataset, the results are
reported in Table I below. The performance of the three
methods has been evaluated both in terms of Intersection
Over Union (IoU) and the time required for inference (sec-
onds). In particular, inference time was not mentioned for all
networks in their corresponding papers; testing each model
on a same dataset with the same hardware was important in
order to choose the best candidate for our system among
these models. For the tests we used a Nvidia Geforce
GTX1650 GPU with 4 GB of graphic memory. The results
show that CDCL is the best model in terms of accuracy, but
the time needed for predicting the mask on a single image
frame is much higher than the other architectures. Since
this work addresses human robot collaboration scenarios, we
finally chose SCHP; this network gives the best trade-off
between IoU and inference speed, that is not irrelevant in
such applications that aim to almost real-time requirements.

B. Multi-view Human parsing evaluation

One of the main modules of our method is our multi-
view refinement algorithm, introduced to improve the quality
of the final 3D segmentation by removing any outliers due
to other objects in the scene. To measure the improvement
brought by our refinement strategy, we compared its perfor-
mance with that of a simple procedure that combines the
single-view pointclouds without using any filtering.

Results are reported in Table II, where the two strategies
are evaluated in terms of mean Intersection over Union
(mIoU), Global Accuracy (GA), Average Precision (AP),
and F1-score. To improve clarity in Table II the results of

5https://github.com/Britefury/django-labeller



TABLE I
EVALUATION OF THE HUMAN PARSING ARCHITECTURES ON THE PASCAL-PERSON-PART DATASET [14]. FIRST COLUMNS SHOW IOU PER CLASS,

WHILE THE LAST COLUMN REPORTS THE AVERAGE INFERENCE TIME FOR EACH MODEL.

Model Head Torso Upper arms Lower arms Upper legs Lower legs Background Avg Runtime per img(s)
SCHP 87.41 73.80 64.98 64.70 57.43 55.62 96.26 71.46 0.127
CDCL 86.39 74.70 68.32 65.98 59.86 58.70 95.79 72.82 0.845
WSHP 87.15 72.28 57.07 56.21 52.43 50.36 97.72 67.60 0.609

segmentation into individual body parts have been combined
into a single Body class, framing the comparison as a
binary segmentation between Body and Background; for both
classes the corresponding mIoU value is also reported.

From the obtained results we can see that our refinement
procedure introduces a significant improvement in person
segmentation: in all scene types of our dataset there is a
remarkable improvement in terms of mIoU on the Body class.
The performance improvement is mainly due to the ability
of our method to recognize and remove all the segmentation
masks that are not body parts (e.g., robot or objects in
the scene) and filter out any outliers, such as those points
along the contours of the segmented body parts that are
projected onto the background when projecting from 2D to
3D. Indeed, the best improvement is achieved for the data
acquired in the presence of occlusions, namely Occlusions
and Crowd + occ in Table II, because in these scenarios
the single-view segmentation mask predicted by SCHP tends
to incorporate objects in the scene and the 3D filtering
becomes fundamental to remove outliers. In terms of GA
we do not obtain significant improvements because the class
Background has a higher number of points correctly labelled,
which makes the errors of body parts negligible.

TABLE II
EVALUATION OF OUR MULTI-VIEW REFINEMENT (MVR) METHOD IN

DIFFERENT SCENARIOS. CENTRAL COLUMNS SHOW IOU PER CLASS,
GROUPING ALL BODY PARTS INTO A SINGLE CLASS “BODY”.

Type of scene MVR Body Bkgd GA AP F1 mIoU
Simple X 72.40 99.47 99.21 92.13 91.86 85.93
Simple 67.16 99.15 98.9 88.31 90.01 83.16
Occlusions X 64.91 99.33 99.07 88.84 89.19 82.12
Occlusions 58.38 98.94 98.68 84.21 86.71 78.66
Crowd X 69.06 98.79 98.13 90.32 90.55 83.92
Crowd 65.05 98.23 97.60 87.42 89.02 81.64
Crowd + occ X 66.84 98.81 98.31 88.80 89.41 82.33
Crowd + occ 61.04 98.24 97.78 85.26 87.57 79.64
Average X 68.13 99.11 98.68 90.03 90.30 83.62
Average 63.26 98.65 98.25 86.50 88.49 80.96

A detailed analysis of the performance of our multi-view
refinement on each semantic class is given in Table III. Our
method shows good performance on the classes Head and
Torso in terms of mIoU, achieving good results even in the
case of occlusions. The most critical class is Lower arms,
for which we achieve low performance even in fairly simple
scenarios. However, this result is a direct consequence of the
performance of 2D human parsing models, which generally

struggle with this particular category, as shown in Table I.
Our 3D filtering method can only refine the segmentation
masks by exploiting the multi-view information, but cannot
segment body parts that were previously missed in the single-
view segmentation.

C. Comparison with People and Skeletal tracking

As pointed out in Section I, our human representation
based on 3D body parts segmentation combines the advan-
tages of other human representations typically considered
in the literature, namely volume and semantic information.
Moreover, our representation is very flexible and allows
to easily derive the other representations. For example, by
considering the centroid of each 3D body parts, we can
estimate a schematic representation of the person similar
to its skeleton’s joints as shown in Figure 2. We can also
construct an ellipsoid around the centroids of each body part
by means of PCA, obtaining a representation similar to [20]
and suitable for implementing collision avoidance algorithms
in human-robot collaboration scenarios.

We rely on such an analogy between body parts’ centroid
and skeletons to evaluate the tracking performance of our
system. In particular, for each type of scene in our dataset,
we compared the trajectories described by the OpenPTrack
people tracking algorithm with the trajectories of some
centroids extracted from our representation. In OpenPTrack,
the people tracking algorithm returns a centroid for each
detected person positioned at belly height, while in our
representation we consider the centroids of the classes Head
and Torso, and the centroid of the pointcloud representing
a whole person. We chose these centroids because they
are generally aligned along the z-axis (perpendicular to the
floor plane) with the centroid provided by OpenPTrack, thus
allowing us to measure the tracking performance in terms of
mean error along the x- and y-directions.

The result of this comparison has been obtained by per-
forming 5 different test runs, that correspond to 5 different
task settings: people walking on a straight line without any
camera occlusion, people walking on a straight line with
occlusions, people walking on a random path and 2 people
walking randomly in the workspace. In the last setting, the
error has been computed by considering each person instance
in the scene. Results are given in Table IV, showing that,
for all runs, the average error does not exceed 0.07 meters
even when occlusions with other people occur. Among the
various types of centroids considered, the one corresponding
to the Head class achieves the best results on the different



TABLE III
CLASS AND GLOBAL PERFORMANCES ON THE CUSTOM DATASET, SUBDIVIDED PER TYPE OF SCENE. FIRST COLUMNS SHOW IOU PER CLASS. LAST

COLUMNS SHOW THE GLOBAL PERFORMANCE IN TERMS OF GLOBAL ACCURACY, AVERAGE PRECISION, F1 SCORE AND MEAN IOU.

Type of scene Head Torso Upper arms Lower arms Upper legs Lower legs Background GA AP F1 mIoU
Simple 76.94 79.80 58.88 47.49 79.65 68.79 99.47 99.21 85.05 83.75 73.00
Occlusions 78.88 76.31 58.77 40.73 65.99 51.27 99.33 99.07 79.97 79.62 67.32
Crowd 81.68 76.43 53.45 52.76 73.36 61.07 98.79 98.13 81.80 82.33 71.08
Crowd + occ. 80.42 75.21 58.04 49.25 65.37 51.35 98.81 98.31 79.26 80.32 68.35
Average 80.13 76.66 56.49 49.00 71.11 58.78 99.11 98.68 81.47 81.71 70.18

runs. Since our centroids are not the same as the one used by
OpenPTrack, a detailed comparison to establish the accuracy
of our trajectories is not possible; however, the experiment
shows how the centroids derived from our representation can
prove to be an interesting alternative for tracking people,
especially in human-robot collaboration scenarios: either to
monitor a safe distance between the robot and the human, or
whether a large part of the person is occluded by the robot
and only certain parts of the body are visible.

We also compared our semantic 3D body representa-
tion with the skeletal tracking solution implemented in
OpenPTrack, just from a qualitative point of view, since
our centroids cannot be directly expressed as a function
of the skeletal joints. Some examples of such comparisons
are depicted in Figure 4, showing OpenTrack’s skeleton
and our semantic representation on the same input data.
Our representation proves to be more stable and robust
to occlusions, unlike skeletons that require most of the
person’s body to be visible. For example, in the left image
of Figure 4 with two people walking very close to each
other, one of the people’s skeleton is not detected while our
semantic representation is computed for both people with
good accuracy. Also regarding stability, our approach gives
better results: the joints of the skeleton are often mistakenly
found on objects in the scene resulting in a representation
with wrong proportions, joint positions and directions of the
links, as in Figure 4 on the right. Instead our representation
is always very close to the person and so are the centroids
that can be extracted from them.

TABLE IV
COMPARISON BETWEEN OUR APPROACH AND OPENPTRACK [5] PEOPLE

TRACKING ALGORITHM. THE ENTRIES SHOW THE MEAN DISTANCE

BETWEEN THE BODY PARTS CENTROIDS AND THE OPENPTRACK’S

CENTROID IN DIFFERENT SCENARIOS [RESULTS IN METERS].

Type of scene Head Torso Body
Straight line 0.030 ± 0.019 0.039 ± 0.023 0.034 ± 0.033
Straight line + occ 0.032 ± 0.019 0.039 ± 0.020 0.037 ± 0.020
Random walk 0.064 ± 0.032 0.056 ± 0.039 0.061 ± 0.036
Two people - 1 0.056 ± 0.032 0.069 ± 0.048 0.076 ± 0.041
Two people - 2 0.051 ± 0.029 0.058 ± 0.034 0.062 ± 0.038

Fig. 4. Comparison between OpenPTrack skeletal tracking output (light
blue) and our proposed 3D body parts segmentation. On the left, example
of a person not detected by OpenPTrack but recognized with our semantic
representation. On the right, example of an inaccurate skeleton estimated
by OpenPTrack due to wrong joints positions.

V. CONCLUSIONS

In this work, we proposed a multi-view human parsing
system capable of estimating a semantic 3D volume of
people in a scene. Considering human-robot collaboration
scenarios, our representation presents several advantages
with respect to the representations commonly adopted such
as bounding boxes and skeletons: flexibility, robustness and
it also combines semantic and volume information, useful
for implementing human collision avoidance strategies. The
system is based on a camera network that provides RGB-
D frames of the same scene from various viewpoints, and
on a state-of-the-art human parsing network that segments
the body parts of the people in each view; the single-view
segmentations are then aggregated together by mean of a
multi-view refinement method to obtain a semantic 3D repre-
sentation of the people. In our experiments, we demonstrated
how our multi-view refinement approach helps to achieve
higher segmentation accuracy and provided a thorough per-
formance analysis on the single body parts classes using a
novel multi-view RGB-D dataset collected on purpose with
scenes of various difficulty levels. Moreover, we compared
our semantic representation with the representations used
in people and skeletal tracking algorithms, highlighting the
flexibility and robustness of our approach. As future research
directions, we will investigate how to further improve the
fusion of semantic information from individual views, and
the possibility to combine our 3D representation with skeletal
models to make them more robust.
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