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Abstract—Incremental learning involves Machine Learning
paradigms that dynamically adjust their previous knowledge
whenever new training samples emerge. To address the
problem of multi-task incremental learning without storing
any samples of the previous tasks, the so-called Expert Gate
paradigm was proposed, which consists of a Gate and a
downstream network of task-specific CNNs, a.k.a. the Experts.
The gate forwards the input to a certain expert, based on the
decision made by a set of autoencoders. Unfortunately, as a
CNN is intrinsically incapable of dealing with inputs of a
class it was not specifically trained on, the activation of the
wrong expert will invariably end into a classification error.
To address this issue, we propose a probabilistic extension of
the classic Expert Gate paradigm. Exploiting the prediction
uncertainty estimations provided by Bayesian Convolutional
Neural Networks (B-CNNs), the proposed paradigm is able
to either reduce, or correct at a later stage, wrong decisions
of the gate. The goodness of our approach is shown by
experimental comparisons with state-of-the-art incremental
learning methods.

I. INTRODUCTION

In recent years, the extensive research carried on Deep
Learning (DL), with particular emphasis on Convolutional
Neural Networks (CNNs), has made this class of supervised
algorithms the undisputed state-of-the-art approach to im-
age classification tasks. Conventionally, a CNN elaborates
a large dataset of images, learning how to extract relevant
features to properly classify the training samples, and
then applies the obtained model to unseen images. In
this scenario, the classification task is well-known from
the beginning, with a fixed number of pre-specified class
instances. Moreover, all the training data (images and cor-
responding class labels) are available at the same time and
can be accessed in any order during the learning.

As the field of deep learning evolves, the dynamic nature of
many real-world situations, where we hardly have all data
and information gathered at once, are fostering the devel-
opment of more adaptable learning strategies. A peculiar
example is humanoid robot vision, where a robot progres-
sively improves its visual understanding capabilities based
on a continuous interaction with humans and surroundings.
In such scenario, the robot should be able to process new
training examples that become available over time and to
accommodate new class categories that were not originally
considered, modifying the learned knowledge accordingly.
On top of that, the computational and memory requirements
of the learning algorithm should remain bounded. This goes
by the name of Incremental Learning (IL).

Traditional deep architectures are intrinsically unfit to
learning incrementally. When new data is presented to a
CNN, the update on the net parameters affects the model

globally, typically destroying existing features learned from
earlier data. This is the so-called catastrophic forgetting [1].
To avoid that, when training on new data, all the previous
examples must be fed again to the network, and the model
must be retrained from scratch on both the old and the
new data. This makes the learning unfeasible, especially in
applications where computational and memory resources
are constrained.

A recent approach to address the problem of catastrophic
forgetting in a multi-task learning scenario exploits the so-
called Expert Gate paradigm [2, 3, 4]. In this paradigm,
the classification problem is split into a number of disjoint
tasks, where each task involves a certain number of classes.
The system consists of two consecutive layers, respectively
the Gate and the Experts. The experts are task-specific
models (typically, CNNs), one per each classification task.
At inference time, the gate decides which expert should
be activated on the input image, and the chosen expert
provides the final class. The learning is incremental, in that
the architecture can accommodate new classification tasks
added at a later time, without being retrained on the earlier
examples: a new expert trained on the new training data
can be sequentially added to the experts layer, and the gate
layer can be extended accordingly [4].

While the Expert Gate strategy has shown advantages over
alternate incremental solutions in terms of both perfor-
mance and computational requirements [4], it also has
an inherent weakness. As it is universally acknowledged,
a CNN is intrinsically incapable of dealing with inputs
of a class it was not specifically trained on. Hence, the
activation of the wrong expert will invariably end into a
classification error, no matter how well the experts were
designed and trained.

To address this issue, in this work we propose a proba-
bilistic extension of the classic Expert Gate paradigm [4],
leveraging Bayesian Convolutional Neural Networks (B-
CNNs). Differently from their deterministic counterparts,
B-CNNs provide a statistically significant estimation of
the level of uncertainty of the classification outcome. In
a probabilistic Expert Gate paradigm, this inherent ca-
pability can be exploited at two different levels: (i) to
improve the robustness of the gate, reducing the probability
of activating the wrong expert; (ii) to make the experts
identify, and possibly correct, wrong decisions of the
gate. To demonstrate the goodness of our approach, the
two incremental strategies (with Bayesian Gate and with
Bayesian Experts, respectively) are compared with their
state-of-the-art deterministic counterparts on two state-of-



the-art public benchmarks: ImageNet Large Scale Visual
Recognition Challenge (ILSVRC 2012) and CIFAR-100
data.

The rest of the paper is structured as follows. Sec-
tion II presents the background of incremental learning
and Bayesian networks, that are the backbone of our
solution. Section III describes the proposed methodologies.
Section IV presents and discusses the experimental results
on the CIFAR and ImageNet datasets. Finally, Section V
concludes the paper a and presents future works.

II. BACKGROUND

A. Incremental learning

IL approaches can be categorized into three main
groups [3]:

1) Replay based methods store samples from the pre-
vious tasks, either in their raw format [5] or in
the form of pseudo-samples obtained by a gener-
ative model [6], and replay them while learning
a new task to avoid catastrophic forgetting. These
samples/pseudo-samples can be either used for re-
hearsal, which implies the joint training of previous
and current tasks, or to constrain the optimization of
the model on the new data [7]. Most frequent issues
are typically two. Methods storing previous samples
typically require unconstrained memory resources.
On the other hand, pseudo-samples obtained with
generative models may suffer from approximation
errors.

2) Regularization-based methods do not require the
storage of previous examples, as they try to avoid
catastrophic forgetting by adding some extra regu-
larization term in the loss function of the new data,
with the aim of consolidating features learnt on the
previous tasks [8, 9]. Main issue with this category
of methods is typically finding a good trade-off
between the optimization of the current and earlier
information, which is increasingly difficult at larger
number of tasks.

3) Parameter isolation-based methods dedicate a spe-
cific subset of the model parameters to each indepen-
dent task in order to completely prevent catastrophic
forgetting without storing any previous sample [10,
4]. This can be done by either extending the net-
work each time a new task is added while masking
the weight updates, by creating new independent
branches for new tasks, or by making a complete
copy of the model all-together [3].

In this work we focus on a parameter isolation-based
method, the Expert Gate, that differently from other ap-
proaches in the same category does not require any pre-
vious knowledge of the task at inference time [3]. Fig. 1
shows a schematic representation of the implementation
proposed by [4], that is taken as a reference.

As anticipated in Section I, it is made of two consecutive
layers, the gate and the network of experts. The gate
consists of a set of task-specific autoencoders, and the ex-
perts of a set of task-specific classifiers (more specifically,
CNNs). During the training, each autoencoder is trained
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Fig. 1. Expert Gate architecture.

simultaneously with the corresponding expert, that is in
charge of the class prediction (P , in Figure 1). By ensuring
that the autoencoders are independent from each other, one
can assume that the lower the reconstruction error of the
autoencoder, the more similar the input image is to the
ones the autoencoder was trained on. Hence, at inference
time, the gate decides on which expert to activate based
on the autoencoder (and hence, the task) that obtained the
minimum reconstruction error. This allows to identify the
task and to choose the CNN with the highest chance to
predict the correct class.

While this approach was demonstrated to outperform other
incremental learning techniques on a number of image
classification datasets [4], the deterministic nature of the
experts makes them unfit to recognize wrong decisions
taken by the gate [11]. On the other hand, the success of
the overall method is completely dependent on the gate,
and hence on the ability of the autoencoders to properly
reconstruct the input image, which is indeed a weakness
of the paradigm.

In this work, we try to address this inherent weakness of
the Expert Gate architecture by making the involved archi-
tectures able to provide a reliable measure of how confident
they are about their decisions. For this purpose, our solution
is built on top of Bayesian neural networks.

B. Bayesian Convolutional Neural Networks

Recently, researchers have shown an increased interest in
quantifying uncertainty for DL predictions. Speaking about
CNNs, the traditional softmax probability is based on a sin-
gle set of network parameters, and hence prone to be over-
confident [12]. This makes traditional networks incapable
of communicating their uncertainty about a prediction.
Conversely, a fully probabilistic treatment would consider
a distribution over network parameters instead of a point
estimate, providing a probability distribution also over
predictions. This predictive distribution can be obtained
by integrating over all possible parameters settings for the
model, and exploited to communicate uncertainty.

Bayesian probability theory offers a mathematically well-
founded system to investigate model uncertainty. Let X =



{x1, x2, ..., xN} be our training set of N input samples and
Y = {y1, y2, ..., yN} their matching output labels. We want
to approximate a function from our observations y = f(x),
able to generalize the data. We define a prior distribution
over the space of functions p(f), expressing a prior belief
about which functions are more or less likely with respect
to the observed data. The posterior distribution over the
space of functions, given our dataset (X,Y ), can be written
as

p(f |X,Y ) ∝ p(Y |X, f)p(f) (1)

We can now consider a CNN to put (1) into effect,
assuming the net to be completely described by a finite
set of random variables ω ∈ Ω. Here Ω is the space of all
possible bias and weights parameters. In a classification
fashion, we are interested in the predictive distribution for
a new input x∗, given by

p(y∗|x∗, X, Y ) =

∫
Ω

p(y∗|x∗, ω)p(ω|X,Y )dω, (2)

where y∗ is the predicted label. As it can be gathered from
(2), the integration of p(ω|X,Y ) with respect to the whole
parameters space Ω, makes the predictive posterior of a
CNN really hard to be analytically computed. To overcome
this limitation, MacKay introduced the Laplace approxi-
mation to the posterior computation, with the drawback
of a introducing a poorly reliable approximation [13]; on
the other hand, Neal proposed the Markov chain Monte
Carlo method to sample the posterior distribution without
directly computing it, but with a prohibitive computational
cost [14].

More recent studies proposed to find approximating solu-
tions for (2) via variational inference [15]. In this sense,
the Bayesian posterior is approximated by the variational
distribution qθ(ω), defined by a variational parameters
θ. The optimal variational distribution among the family
Q = {qθ(ω)} is the one closest to the posterior, where
closeness is evaluated in terms of the Kullback-Leibler
(KL) divergence between qθ(ω) and p(ω|X,Y )

KL{qθ(ω)||p(ω|X,Y )} =

∫
Ω

qθ(ω) log
qθ(ω)

p(ω|X,Y )
dω

(3)
Minimizing KL divergence is known to be equivalent to
maximizing the so-called evidence lower bound (ELBO)
[16], given by∫

Ω

qθ(ω) log p(y|x, ω)dω −KL{qθ(ω)||p(ω)} (4)

Maximizing (4) with respect to the approximating distri-
bution qθ(ω) produces two different effects. The first term
maximizes the likelihood of the training data, and it is, as
in traditional CNNs, a model fit term. The second term
takes care of approximating the true distribution by the
variational one.

More recently, a key insight from Gal and Ghahramani
demonstrated that the KL term in (4) corresponds exactly
to a L2-regularization term in dropout networks [12]. It
follows that obtaining model uncertainty for a given image
is as simple as keeping the dropout mechanism switched on
at inference time and performing multiple predictions for

the same input. This method has been referred in literature
as Monte Carlo (MC) dropout.

In a later work by [17], uncertainty was decomposed
into two main components: aleatoric uncertainty, which
captures the noise of the observation, and epistemic un-
certainty, which stems from the model’s parameters and
architecture. It follows that the total uncertainty of a
prediction can be measured by averaging the results over a
number of stochastic forward passes of the inputs through
the model, which is also the approach used for our imple-
mentation.

While the theory of Bayesian inference and uncertainty
estimation for DL models is well-established, the link with
the incremental paradigm has received to date very little
attention. In our work, uncertainty estimations in Bayesian
models with MC dropout are exploited to improve the
accuracy and robustness of the Expert Gate incremental
architecture.

III. METHODS

Our work addresses multi-task incremental learning, build-
ing upon the Expert Gate paradigm shown in Figure 1. As
anticipated in Section I, this strategy has a weakness: as a
consequence of the deterministic nature of all the involved
models, a wrong decision of the gate will activate an expert
that is inherently incapable of identifying the correct class
for the given input, ending into a classification error.

In our probabilistic version of the Expert Gate paradigm,
we exploit Bayesian deep models, that are able to commu-
nicate a measure of their prediction uncertainty on a given
input. This can be exploited at two different levels:

1) at the Gate level, as a substitute of the reconstruc-
tion error of the autoencoders. The rationale of this
approach, referred to as Bayesian Gate, is that the
gate should activate the task that is identified with
the lowest level of uncertainty. This will possibly
improve the robustness of the task identification, and
hence the chances of a correct classification.

2) at the Experts level, to make the task-specific clas-
sifiers able to identify at inference images of a task
they were not specifically trained for. This approach,
referred to as Bayesian Experts, can be exploited to
correct wrong decisions of the gate at a later stage,
possibly improving the classification performance.

In the following, we describe the implementation details of
the two strategies.

A. Bayesian Gate strategy

The first methodology is schematically represented in
Fig. 2(a). This solution differs from the one in Fig. 1
because the gate consists of a set of task-specific B-CNNs
instead of autoencoders.

To design each B-CNN we put [12] into effect, lever-
aging MC dropout both during training and inference.
More specifically, we used a VGG16 model pre-trained
on ImageNet and inserted a Dropout layer with a 0.25 rate
after each convolutional, pooling and fully connected layer.
Our choice stems from the necessity of obtaining a robust
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Fig. 2. Proposed Expert Gate solutions (a) with Bayesian Gate (b) with Bayesian Experts.

image representation with a limited number of iterations:
indeed, from our preliminary experiments we found that the
weights initialization on the ImageNet makes the training
of the B-CNN much more straightforward and faster that
a standard random initialization.

Before training each model on the dataset of the cor-
responding task, we pre-processed the samples by zero-
centred normalization. ImageNet is known to be a good
approximation of the distribution of general purpose im-
ages. Hence, we used the statistics based on ImageNet to
perform the normalization, as in [4].

Each task-specific B-CNN was trained with AdaGrad op-
timizer [18], setting ε parameter to 10−8, weight decay to
0.005 and learning rate to 0.001. As a result, seen N tasks,
we obtain a gate made of N Bayesian decision-makers (see
the schematic representation in Fig. 2(a)).

At inference time, the input image is given to all the N
Bayesian models to compute the respective uncertainty
values. Finally, a decision is made based on the task
that provided the lowest uncertainty value. Based on this
decision, the input is forwarded to the corresponding ex-
pert.

To obtain a measure of the uncertainty, we do as follows.
As anticipated in Section II-B, the predictive uncertainty of
a B-CNN may be worked out as the sum of the predictive
variances of each class [19], which can be decomposed into
the aleatoric component, able to model the noise of the
observation, and the epistemic component, which comes
out of the model’s parameters and architecture:

1

T

T∑
t=1

diag(p̂t)− p̂⊗2
t︸ ︷︷ ︸

aleatoric

+
1

T

T∑
t=1

(p̂t − p̄)⊗2

︸ ︷︷ ︸
epistemic

(5)

Here p̄ =
∑T
t=1 p̂t/T ; p̂ = Softmaxf(ωt, x

∗) and T
is the number of forward passes for input x∗. T has
been empirically set to 100 as the best trade-off between

computational time and reliability of the uncertainty value
for the given sample x∗.

As it can be gathered from Fig. 2(a), the downstream
stage of our architecture consists of a network of N task-
specific deterministic experts, as in the classic Expert Gate
paradigm. In our solution, each expert is a VGG16 model
designed and trained with the very same procedure of the
gate, with the only difference of having set the MC dropout
layers to zero.

B. Bayesian Experts strategy

Our second methodology is schematically represented in
Fig. 2(b). In this case, the gate includes a set of unreg-
ularized one-layer under-complete autoencoders, just like
in the classic Expert Gate architecture. For each task, the
corresponding autoencoder is trained only on the task-
specific data, using the mean squared error criterion as loss
function. As shown in [20, 4], this estimates the negative
log-likelihood.

At inference time, the reconstruction error erj of the j-th
autoencoder is the output of the loss function for the input
sample x∗. A softmax layer receives the reconstruction
errors of all the autoencoders for the same input x∗, and
returns a probability vale pj per each task, computed as
follows:

pj =
exp(−erj/t)∑N
j exp(−erj/t)

, (6)

where t is the so-called temperature, set to 2 as in
[4].

Based on equation (6), the gate decides which task-specific
expert should be activated. That is, the lower the recon-
struction error of the j − th autoencoder on the input
sample x∗, the higher the probability of activating the j−th
expert.

Differently from the standard Expert Gate architecture,
in our approach the downstream network of task-specific
classifiers consists of B-CNNs, whose implementation is



similar to the one described in Section III-A. Each expert
provides a measure of prediction uncertainty on the input
sample (U , in Fig. 2(b)). This uncertainty is exploited to
identify input samples that were inappropriately assigned to
that expert, as follows: the uncertainty value Uj returned by
the j−th expert is compared with an uncertainty threshold
Tuj ; If Uj < Tuj , the gate’s decision of activating
the expert j is considered reliable, and the corresponding
prediction Pj is accepted. Otherwise, the input sample x∗

is forwarded back to all the other experts, and the final
prediction will be the one provided by the expert with the
lowest uncertainty value. This procedure is represented by
the Uncertainty Analysis block in Fig. 2(b).

For a generic task j, the uncertainty threshold Tuj is
computed as follows. First, we put equation (5) into effect
on the training set of task j. By doing so, we obtain
a distribution of uncertainty values that is typically bi-
modal, as already observed in previous literature [21]
(see the histogram of Fig. 3). In this histogram, the first
mode (with the highest peak) is associated to samples
classified with a high level of confidence. Conversely, the
second mode is associated to low-confidence predictions:
this may be due to noise, bad cropping, bad scaling of the
corresponding samples, but can also identify samples of a
different task.

hill-climbing

Fig. 3. Computation of the uncertainty threshold.

Starting from this consideration, finding the optimal value
of Tuj can be approached as if it was a histogram
thresholding problem, with following two-steps.

1) First, we apply Otsu thresholding algorithm. By
doing so, we obtain the uncertainty value Toj that
splits the histogram into two groups with maximum
inter-group variance;

2) Starting from Toj , we apply a hill-climbing approach
in the direction of growing uncertainty, and stop
the search in the point of maximum slope. This
corresponds to the final value Tuj (see Fig. 3).

IV. EXPERIMENTAL RESULTS

In this section we present the experimental validation of
our Bayesian incremental IL solutions (Fig. 2) compared
to the baseline Expert Gate (Fig. 1).

To do so, we compare the classification accuracy of the
task-incremental learning methods on the same classifica-

tion tasks, adopting the validation protocol suggested by
[5].

1) Given a multi-class classification dataset, the avail-
able classes are randomly split into N different
tasks, each including a disjoint sub-set of the original
classes.

2) Each method is trained in a task-incremental way on
the corresponding training data. That is, first on task
1 alone, then adding task 2, task 3, etc. up-to task
N .

3) Downstream the training phase for the j−th task, the
resulting classifier is evaluated on the test set made
up of only the classes of tasks 1 to j, for which the
model has been trained on.

As a result of the validation protocol, for each incremental
approach we obtain the mean accuracy of the classifier in
a task-by-task fashion.

As introduced in Section II-A, both our probabilistic solu-
tions and the corresponding deterministic baseline belong
to the category of the parameter isolation-based methods.
To better contextualize our validation, in the following we
also provide results of the most representative algorithms of
the other two categories: respectively, iCaRL [5] for replay-
based methods and LwF-MC [8] for regularization-based
methods.

This protocol has been put into effect on two well-
established public benchmarks.

A. ImageNet benchmark

For the first set of experiments, we used the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC 2012).
It includes 1,281,167 images for training and 50,000 im-
ages for validation. The 1000 available classes were split
into 10 incremental tasks of 100 classes each.

The obtained results are shown in Fig. 4, where the y-
axes reports the mean accuracy of the classifier, and the
x-axes the corresponding number of classes on which this
accuracy was computed. Different lines and markers are
associated to our proposed solutions (respectively, the one
with Bayesian Experts and the one with Bayesian Gate)
and to the baseline Expert Gate architecture. Dashed lines
refer to iCaRL and LwF-MC, which belong to different
categories of IL methods.

Fig. 4. Task-incremental classification accuracy on ImageNet, at increas-
ing number of classes seen by the model.



Fig. 5. Task-incremental classification accuracy on CIFAR-100, at increasing number of classes seen by the model. Graphs from left to right and
from top to bottom show experiments with with 2, 5, 10, 20 and 50 tasks, respectively.

As it can be observed from the plot, for all the approaches,
the mean classification accuracy decreases in a similar-
exponential way at increasing number of classes shown
to the model. This is consistent with previous litera-
ture.

iCaRL overcomes all the other IL solutions: this was ex-
pected, as the storage of previous training samples confers
a superior capability to defeat catastrophic forgetting [3].
Nonetheless, as already discussed, this strategy suffers from
well-known memory limitations compared to the other IL
categories.

The proposed Bayesian approaches generally outperform
the corresponding deterministic Expert Gate method. The
strategy with Bayesian Experts has the lowest improvement
(around 4%, but only at higher incremental batches). On
the other hand, the Bayesian Gate outperforms the deter-
ministic baseline by around 20%, with a slower decreasing
trend at increasing number of classes seen by the model.
At higher number of classes, the Bayesian Gate becomes
comparable with iCaRL in terms of accuracy and outper-
forms LwF-MC by around 17%.

B. CIFAR-100 benchmark

To investigate the accuracy of the incremental approaches
at varying experimental conditions, we exploited a smaller
dataset, the CIFAR-100 benchmark. It consists of 60,000
32x32 colour images in 100 different classes, with 600
images per class (respectively, 500 for training and 100 for
testing purposes).

For this second set of experiments, we repeated the vali-
dation protocol at increasing number of tasks: respectively
2, 5, 10, 20 and 50. That is, first we split the 100-classes
dataset into 2 tasks of 50 classes each, then 5 of 20 classes
each, and so on, up-to a last configuration of 50 binary
classification tasks.

Fig. 5 shows the overall results of these experiments. Each
plot represents the outcome of the validation at increasing
number of tasks (respectively, the top-left plot shows the

experiment with 2 tasks and the bottom-right the one with
50 tasks), where the total number of tasks corresponds
to the total number of values that are displayed in the
graph.

From the analysis of the obtained results, the following
considerations can be made.

• Again, the mean classification accuracy decreases in
a similar-exponential way at increasing number of
classes shown to the model.

• Again, iCaRL overcomes the accuracy of the other
non-replay-based IL strategies. Nonetheless, its per-
formance sensibly decreases in experiments with
higher number of tasks.

• When considering experiments with a small number
of multi-class tasks, (see first three plots of Fig. 5),
the Bayesian approach generally outperforms both
the deterministic Expert Gate and LwF-MC. The
configuration which shows the best improvement is
the one with a total number of 10 tasks, of 10
classes each. In this configuration (third plot), both
our Bayesian solutions overcome the other non-replay-
based methods. In particular, the Bayesian Gate im-
proves LwF-MC by 15%-20%. This is consistent with
the analogous experiment on the ImageNet dataset,
where the number of tasks was exactly the same.

• When the total number of tasks is higher (and, con-
versely, the number of classes per task is small), the
two Bayesian strategies behave very differently (see
last two plots of Fig. 5). The approach with Bayesian
Experts is the one with the highest performance,
but with progressively decreased improvement over
the deterministic Expert Gate baseline. As regard to
LwF-MC, our Bayesian Experts improves by more
than 20% and 30%, respectively for experiments with
20 and 50 tasks (last two plots of Fig. 5). In the
most extreme configuration (50 tasks of 2 classes
each, last plot), the accuracy of the Bayesian Experts
is the same as the deterministic Expert Gate, but
overcomes iCaRL by almost 10%. On the other hand,



the approach with Bayesian Gate is the one with the
worst performance, with accuracy degrading quickly
at increasing number of tasks. A possible explanation
is that a B-CNN trained on a smaller task tends to
be less uncertain of its predictions, and hence the
uncertainty level becomes less discriminative in this
case.

When considering different numbers of classes per task,
the strategy with Bayesian Experts is to be preferred: at
best, it compensates wrong decisions of the gate, improving
the overall performance of the incremental learner; at
worst, it is as good as the corresponding deterministic
method.

V. CONCLUSIONS AND FUTURE WORKS

As demonstrated by our experiments, in a Bayesian Expert
Gate paradigm, prediction uncertainty can be exploited to
make the gate more robust, as well as to identify and
correct wrong decisions of the gate at the experts level.
Future works will focus on (i) improving the robustness
of the Bayesian Gate for small classification tasks. This
includes the exploration of adaptive dropout policies, where
the dropout rate (and hence, the probabilistic behaviour
of the model) is automatically adapted to the number of
classes; (ii) integrating the strategies with Bayesian Gate
and Bayesian Experts; (ii) experimenting on different deep
architectures as base-learners.
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