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PAPER
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Abstract
Self-assembled memristive nanonetworks composed of many interacting nano objects have been
recently exploited for neuromorphic-type data processing and for the implementation of
unconventional computing paradigms, such as reservoir computing. In these networks,
information processing and computing tasks are performed by exploiting the emergent network
behaviour without the need of fine tuning its components. Here, we propose grid-graph modelling
of the emergent behaviour of memristive nanonetworks, where the memristive behaviour is
decoupled from the particular and detailed behaviour of each network element. In this model, the
memristive behavior of each edge is regulated by an analytical potentiation-depression rate balance
equation deduced from physical arguments. By comparing modelling and experimental results
obtained on nanonetworks based on Ag NWs, the model is shown to be able to emulate the main
features of the emergent memristive behaviour and spatio-temporal dynamics of the nanonetwork,
including short-term plasticity, paired-pulse facilitation and heterosynaptic plasticity. These results
show that the model represents a versatile platform for exploring the implementation of
unconventional computing paradigms in nanonetworks.

1. Introduction

In a period where Moore’s law is threatened by physical limitations, and classical von Neumann architec-
ture determines a bottleneck for computing performances, the scientific community is moving towards new
paradigms: one of the most promising is bioinspired and neuromorphic computing with the aim of emulating
the highly-efficient human brain functionalities [1]. Memristive devices represent one of the most promising
electronic devices to mimic functionalities of the biological synapse, a fundamental element in neuromor-
phic computing development [2, 3]. Nowadays, besides conventional cross-bar array memristive architectures
[4], self-organized memristive networks are attracting growing interest. These kinds of self-organized systems
including NW networks, percolating nanostructured networks and atomic switch networks, are character-
ized by a structural topology that is more similar to biological neural networks and have been shown to
exhibit structural plasticity, homo- and hetero-synaptic plasticity, paired-pulse facilitation (PPF) and collective
neural-like dynamics [5–15]. These dynamics have been exploited for the implementation of unconventional
computing paradigms such as reservoir computing [16–21]. While top-down realized crossbar arrays several
models have been developed, the development of models able to describe the emergent behaviour of self-
organized memristive networks at the macroscale still represent a challenge. In this context, Manning et al
[22] tried to reproduce the exact nanowire topology with its junction distribution by exploiting SEM image
processing. Each junction is represented as an edge in an abstract graph conceptualization, where each edge
dynamically evolves according to a power law as a function of the current. Besides the one-to-one mapping
of all the nanowire junctions, generating issues as soon as the system scales up, the model equation represents

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2634-4386/ac4d86
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-1983-6516
https://orcid.org/0000-0002-4703-7949
mailto:g.milano@inrim.it
mailto:carlo.ricciardi@polito.it


Neuromorph. Comput. Eng. 2 (2022) 014007 K Montano et al

Figure 1. Self-organizing memristive nanonetworks modelling. (a) SEM image of deposited Ag NWs coated by an insulating
PVP layer (scale bar, 2 μm). (b) Approximation of a dense NW network over a 2D continuous pixeled space. (c) Circuital
schematization with a grid graph which associates an equipotential node to each pixel of the 2D space and a memristor edge
among each neighbouring node couple.

a semi-empiric formula, not deduced from physical first principles. Hochstetter et al [6] and Zhu et al [12]
instead proposed, in their works, the generation of a random distribution of nanowires based on their mean
length and variance, and the association of a threshold model equation to model each edge dynamics. This
modelling approach, however, lacks an analytical solution due to the piecewise definition of its associate dif-
ferential equation and considers one-to-one mapping of all the nanowire junctions, hindering the modelling
of large scale NW networks. Also, all these models assume the same behaviour of all the NW junctions in con-
traposition with experimental results that show a distribution of resistance states and memristive response of
network junctions due to the stochasticity of the mechanical contact.

Here, the emergent memristive behaviour of nanonetworks is modelled by means of a memristive grid-
graph, where the dynamic behaviour of each edge is regulated by a physical-based potentiation-depression rate
balance equation. The model is shown to be able to emulate the main features of the emergent behavior of Ag
NW networks including spatio-temporal dynamics with short-term synaptic plasticity, PPF and heterosynaptic
plasticity. As a consequence, the grid-graph model can be exploited for exploring neuromorphic-type data
processing and for implementation of unconventional computing paradigms in nanonetworks.

2. Results and discussion

The proposed grid-graph model of memristive nanonetworks relies on two main steps: (i) approximation of a
high-density memristive nanonetwork as a continuous medium, (ii) parcellation of the 2D continuous domain
and subsequent approximation as a regular grid graph. As theoretically proven by Forrò et al [23] and exper-
imentally shown by Sannicolo et al [24], for sufficiently dense conductive NWs, the voltage distribution over
the sample is linear, resembling the electrical behaviour of a continuous medium. The approximation turns out
to be valid even over few NW lengths scale for normalized nanowire density D > 2Dc, where Dc = 5.63 is the
percolation critical density [25]. Also, previous works [26, 27] on NW network conductivity mapping by elec-
trical resistance tomography have outlined a nearly homogenous conductivity distribution across NW network
by tailoring drop-casting. Experimental data of Ag NW networks [5] considered here have been measured on a
sample (figure 1(a)) with an estimated normalized density D = 39.06, well above the percolation limit. In these
devices, the emergent behaviour arises from resistive switching phenomena in NWs and in NW junctions [5].
The typical I–V characteristics of the Ag NW network showing the emergent memristive behaviour is reported
in supplementary figure S1 (available online at http://stacks.iop.org/NCE/2/014007/mmedia). When a voltage
difference is present in between two Ag NWs, an Ag conductive filament connecting Ag metallic cores can be
formed across the polyvinylpyrrolidone insulating shell that surrounds the NW as a consequence of the Ag NW
synthesis process. These Ag filaments are volatile, where the driving forces of the spontaneous dissolution are
related to the minimization of the interfacial energy and electromotive force effects [28, 29]. As a consequence,
the volatile behaviour of Ag filaments reflects in short-term emerging dynamics of Ag networks.

2.1. Modelling nanonetworks as grid-graphs
The 2D plane representing the continuous material can be parcelled by an N × M mesh (figure 1(b)). Exper-
imental two-terminal measurements on these devices [5] exhibit a memristive behaviour highlighting short-
term plasticity (STP) property, hence the pixeled network can be represented as a regular grid of memristors
that endow short-term memory dynamics (figure 1(c)). Note that a similar parcelling of a continuous material
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followed by approximation as a grid of memristors or resistors has been performed in simulations to model a
memristive material [30], as well as for modelling the insulating layer of a ReRAM cell [31, 32]. Also, a regular
square array of memristors have been considered from the theoretical point of view to show the possibility
of memristive networks to solve shortest-path optimization problems [33] and to solve mazes [34]. Here, the
grid graph model is built by associating a grid-graph node to each pixel of the parcelled domain, where mem-
ristive edges let the neighbour nodes communicate. Each grid-graph node was assumed to be equipotential.
Moreover, in order to take into account the isotropic nature of homogenous deposited NW networks, diagonal
memristive edges are added to the graph with a random orientation between diagonal nodes. The exclusion
of an orientation for each possible diagonal is necessary to avoid the generation of a 3D graph, keeping the
model as a 2D framework. Note that the proposed model considers the effective behaviour of the network over
a large spatial scale, without mapping the exact topology of the network with all its nanowires and junctions,
overcoming the impossibility of one-to-one mapping of the exact network topology in a spatial scale of the
order of cm2 through SEM images and to deal with the stochasticity of memristive behaviour of single NW
junctions. Thus, the memristive behaviour of each edge of the grid-graph represents an average memristive
behaviour resulting from a multitude of NW junctions in the corresponding area of the sample.

2.2. Memristive dynamics of grid-graphs
The emergent network dynamics, driven out of equilibrium by input voltage signals, depends on the evo-
lution of each single memristive edge in the model design. Based on a previous work [35], where a model
for mimicking STP in a single memristive cell was developed, each edge dynamics can be modelled by an a
potentiation-depression rate balance equation:

dg

dt
= kp

(
1 − g

)
+ kdg (1)

with g the normalized conductance and kp, kd the potentiation and depression coefficient respectively, defined
as a function of input voltage only:

kp = kp0
eηpV (2)

kd = kd0 e−ηdV . (3)

Equations (2) and (3) derive from the physical description of the ionic diffusion [29, 36, 37], making the model
a physics-based one. Defining the conductance range of each edge as [gmin, gmax], the current flowing into it
will follow the first Ohm’s law:

I (t) =
[
gmin

(
1 − g (t)

)
+ gmax

(
g (t)

)]
V (t) . (4)

The low computational cost of the model is linked to the analyticity of the solution, which can be casted
into a recursive fashion on a discretized time domain, emphasizing the memory property of the memristive
edges:

g (t) =
kp

kp + kd

{
1 −

[
1 −

(
1 +

kp

kd

)
g (t −Δt)

]
e−(kp+kd)Δt

}
. (5)

In this context, the model consists of 7 parameters (kp0
, kd0 , ηp, ηd, g0, gmin, gmax) that can be retrieved from

interpolation of experimental measurements. A similar approach was exploited in a previous work [35], where
parameters of the potentiation-depression rate-balance equation were retrieved from experimental data in case
of single NW memristive elements. Note that the same equation was exploited to describe dynamics of both
diagonal and non-diagonal edges.

The parameter g0 is the initial conductance value of the memristive element from which the recursive
solution (equation (5)) starts. In the original model conception, g0 is physically associated to the pristine state
of the memristive edge before the stimulation. Moving from single memristive cell to a network of them, the
natural approach would be to generalize the concept of a single value g0 to a tensor value g0 to describe the
initial state of each edge. However, usually, the initial conductance distribution across the physical nanowire
network is not known. By assuming a uniform and homogeneous network in the pristine state, g0 was assumed
to be identical for each edge. The g0 value for each edge was defined as the value such that the experimental
pristine conductance measurement of the network (i.e. the effective conductance in between two points of the
network) across two terminal is reproduced through data interpolation. This approach is further corroborated
by the fact that the effect of initial state of the network vanishes after few iterations of the model solution. This
simplified approach may also lead to a value of g0 falling outside the range [gmin, gmax], which is the result of
decoupling the meaning of g0 from a pure physical quantity.

While equation (5) describes each memristor evolution according to the input voltage on each single edge,
the modified voltage node analysis [38] (MVNA) algorithm is exploited to compute, at each time step, the
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Figure 2. Algorithm for modelling the memristive emergent dynamics of the network. After initialization and pristine state
evaluation, graph edges are updated after each timestep according to the potentiation-depression rate balance model during
electrical stimulation (blue box).

voltage distribution across the network by solving the Kirchhoff current law for each node of the network.
The MVNA is a generalization of the voltage node analysis (VNA), offering the additional possibility to deal
with voltage sources and branch currents. The voltage distribution then serves for the successive update of the
network edges conductance. Remarkably, the MVNA does not deal with transients, but just looks at the circuit
as a network of resistances (memristors frozen in a particular state) in a certain time instant, providing the
regime solution of the circuit for each timestamp. The computational algorithm for modelling the memristive
dynamics of the memristive network is conceptualized in figure 2.

2.3. Modelling emergent behavior of nanonetworks
Next, it is shown that the model is able to capture the main experimental features of the emergent behaviour of
memristive neuromorphic nanowire networks including short-term homo-synaptic plasticity, PPF and hetero-
synaptic plasticity [5]. Homo-synaptic plasticity is an input-specific phenomenon, generating a change in the
synapse strength (namely, the effective electrical conductance in the modelled device) in between pre- and
post-synaptic neurons which are involved directly in the stimulation. When two or more identical electrical
stimuli are close enough in time (temporally correlated), this kind of devices exhibits PPF [28, 39]: the synaptic
weight potentiation benefits from the facilitation of previous stimulus, progressively leading to a higher con-
ductance state over stimulation pulses. Hetero-synaptic plasticity, instead, is an input-unspecific phenomenon
where synaptic changes are observed to be induced also at synapses that were not directly stimulated [40]. For
this purpose, the model graph has been defined as a 21 × 21 node structure with random diagonals added
to a regular grid of memristors, whose dimension guarantee spatial positioning of electrodes according to
fabricated devices reported in a previous work [5], by keeping relative distances among them. In the follow-
ing, the position of electrodes reflects the geometry of the experimentally measured devices. Additionally, the
extra constraint of no common edges between electrodes has been considered for the grid graph dimension
definition.

2.3.1. Short-term memristive dynamics
Figure 3 depicts the input-specific experimental data and the model reproduction of the network behaviour
when stimulated with an input voltage pulse (4 V, 10 s) and following relaxation where the conductance state
was probed with a reading voltage of 5 mV. As can be observed in figure 3(a), the grid-graph model is in
good agreement with experimental results, both during potentiation and relaxation. Even though the good
agreement between experimental data and modelling, it is necessary to point out that the model is not able to
reproduce discrete steps in network conductance related to stochastic switching events in NW junctions. Such
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Figure 3. Modelling short-term synaptic plasticity in NW networks. (a) Experimental 4 V input voltage pulse and associated
measured and modelled conductance. Potentiation stimulus lasts 10 s, with a following network relaxation at V read = 50 mV for
70 s. (b) Spatio-temporal evolution of the network conductance distribution emphasizing both conductive path formation and
subsequent dissolution. Red intensity of edges is proportional to the edge conductance, blue intensity of each node is
proportional to the node voltage while arrows indicate the current direction and black nodes represent input pads. The left
electrode was biased while the right one was kept as ground.

discrete steps, that can occur during both potentiation and relaxation, are hardly reproducible during the
experiments, and they were reported also by other authors [9, 22]. The recursive solution of the state equation
in equation (5) does not take into account of such discrete changes of device conductance, since the model
aims to reproduce the emergent collective behavior of the system (including potentiation/relaxation temporal
dynamics and heterosynaptic phenomena). Comprising the stochastic behavior of single NW junctions would
lead to a more accurate simulation, but probably at the cost of a remarkably increased computational time and
power. Indeed, a key aspect of our results is that the equations exploited in our model can show the emergent
behavior and dynamics of the network with a simple personal computer in the timescale of few minutes/hours.
Indeed, the model represents a useful tool to investigate the conductance distribution evolution across the net-
work and its voltage distribution (figure 3(b)). The emergent behaviour of the collective memristors evolution
results in the formation of a conductive path connecting source and ground electrodes. This is in agreement
with direct experimental observation of a conductive path connecting stimulated areas by means of lock-in
thermography, as reported by Li et al [41].

2.3.2. Effect of stimulation amplitude
The model allows also to investigate the effect of the voltage stimulation amplitude on the conductive path
morphology. Figure 4(a) shows modelling and experimental results of the effective conductance potentiation
and subsequent spontaneous relaxation by increasing the voltage stimulation amplitude in the range 1–4 V,
respectively. As can be observed, in all cases the modelled effective conductance well interpolates experimen-
tal data. Also, the (b) panels report the corresponding obtained conductive path morphology after 10 s of
stimulation (at the end of the stimulation, before relaxation). As can be observed, a higher voltage amplitude
stimulation results in a strengthening of the conductive path. This is in agreement with experimental observa-
tions by Manning et al [22] that observed by means of passive voltage contrast SEM images an increase of the
conductive pathway size by increasing the stimulation strength. The spatiotemporal growth and dissolution of
the of the conductive path during stimulation with 1–4 V pulses and following relaxation can be visualized in
supplementary movies 1–4, respectively.

2.3.3. Paired-pulse stimulation
Additionally, the grid-graph model was exploited for simulating the gradual increase of the effective network
conductance upon stimulation with temporally correlated pulses to emulate PPF. Figure 5(a) shows both the
input stream and the associated measured and modelled current upon network stimulation with a train of
20 pulses with a 10 V amplitude and a 1 kHz frequency. Thanks to the memory property, the potentiation of
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Figure 4. The effect of stimulation amplitude on short-term synaptic plasticity dynamics. (a) Experimental and modelled
conductance curves obtained from 10 s input pulses with an amplitude of 1 V, 2 V, 3 V, 4 V respectively, followed by a relaxation
region at an input voltage V read = 50 m and (b) corresponding conductive path observed at the end of the potentiation region
(time = 10 s). In panel (a), the dashed line divides the stimulation region (in grey) and the following relaxation. In panel (b), red
intensity of edges is proportional to the edge conductance, blue intensity of each node is proportional to the node voltage, black
nodes represent input pads while arrows indicate the current direction. The left electrode was biased while the right one was kept
as ground.

a given pulse facilitates the potentiation of successive pulses, leading the current to increase more and more
up to a saturation region. This gradual increase of the effective NW network conductance results from the
competition in between conductive pathway formation during pulses and spontaneous relaxation in the wait-
ing time in between pulses. As can be observed, the model clearly follows the same experimental trend. It is
worth noticing that the model works well also on the millisecond timescale, beside the second timescale shown
previously. Again, investigation on the conductive path formation can be performed, here as a function of the
number of pulses sent to the network (figure 5(b)), emphasizing the widening of the conductive region as the
number of pulses increases.

2.3.4. Heterosynaptic plasticity
The spatial information provided by the model can be exploited to model hetero-synaptic plasticity, where a
direct stimulation of the network across two terminal is responsible for changes in the effective conductance
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Figure 5. Modelling PPF in NW networks. (a) Input voltage square wave characterized by 10 V amplitude and 1 kHz frequency,
considering 20 pulses in 20 ms. Model current fitted over 10 different experimental repetitions of the same stimulation process.
(b) Spatio-temporal evolution of the network conductance distribution as a function of the pulse number. Red intensity of edges
is proportional to the edge conductance, blue intensity of each node is proportional to the node voltage, black nodes represent
input pads while arrows indicate the current direction. The left electrode was biased while the right one was kept as ground.

across other pathways in between electrodes. Figure 6(a) shows the network schematization where five elec-
trodes have been considered, in order to model the experimental results reported in reference [5]. An example
of modelling hetero-synaptic plasticity is reported by direct stimulation of electrodes I and II. Here, by inter-
polating the input-specific curve associated to the potentiation of terminals I–II (figure 6(b)), the conductive
path generation after the end of stimulation can be observed between the involved electrodes (figure 6(c)).
In order to assess the quantitative analysis of the model, correlation matrix of resistance variation after the
stimulus has been evaluated both for experiment and the model (figures 6(d) and (e), respectively). Note that
the resistance variation was calculated as ΔR = −(Rpost_stimulus − Rpre_stimulus) and the variation of ΔR has to
be intended as a decrease in resistance of the synaptic pathway after stimulation. Besides the good reproduc-
tion of resistance variation just after the stimulus, the dynamics predicted by the model is in good agreement
with the experimental measurement, as can be observed from figures 6(f) and (g). Comparisons of simulated
with experimental data of heterosynaptic plasticity effects by direct stimulation of synapses I–III, I–IV and
I–V are reported as supplementary figures S2–S4, respectively. It is worth noticing also that the here reported
grid-graph dynamic model enables one to model variations of resistances in between electrodes quantitatively,
while the previously reported static model [5] allowed only for a qualitative analysis.

Short-term dynamics and heterosynaptic plasticity effects of NW networks endow the system the capabil-
ity of processing spatio-temporal inputs in multiterminal configuration for the implementation of reservoir
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Figure 6. Modelling heterosynaptic plasticity effects in NW networks. (a) Grid-graph model structure designed as a grid of
21 × 21 nodes with regular and random diagonal edges. Five electrodes have been considered by preserving the reciprocal
distances of experimental setup and by avoiding each electrodes couple having a common edge. (b) Fitting of input-specific
response across electrodes I–II due to an input pulse of 8 V amplitude and 1 s duration, followed by a long relaxation region at
low input voltage. Inset shows details on the potentiation region. (c) Conductive path formation across stimulated electrodes.
Red intensity of edges is proportional to the edge conductance, blue intensity of each node is proportional to the node voltage
while arrows indicate the current direction and black nodes represent input pads. Pad I was biased while pad II was kept as
ground. (d) Experimental and (e) modelled correlation matrix of resistance variation (ΔR) before and after stimulation of
pads I–II (e). (f) Experimental and (g) modelled evolution of resistance variation (ΔR) before and after stimulation of pads I–II.
In panels (d)–(g), directly stimulated synapses are highlighted in blue.

computing, where the reservoir state is represented by the network conductivity map [16]. In this framework,
the model that is able to reproduce both temporal dynamics and heterosynaptic behavior of the reservoir state
for arbitrary input voltages (including pulses) can be exploited for simulating different strategies of comput-
ing implementation to solve both static and time-dependent tasks. Furthermore, despite non-idealities, it can
even be beneficial for reservoir computing in order to enhance the extraction of relevant features, the effect
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of stochastic discrete steps—observed in experimental data, but not reproduced by the model—has to be
evaluated.

3. Conclusions

In conclusion, we have reported grid-graph modelling of the emergent behaviour of memristive nanonetworks,
where the dynamical evolution of the grid-graph edges is regulated by a physical-based potentiation-depression
rate balance equation. In good accordance with experimental data obtained in multiterminal Ag NW networks,
the grid-graph model is shown to emulate the emergent spatio-temporal dynamics of memristive nanonet-
works, including short-term synaptic plasticity, PPF and heterosynaptic plasticity. These results show that the
model can be exploited as a versatile tool for the implementation of unconventional computing paradigms in
nanonetworks towards the realization of self-assembled neuromorphic systems able to process data similarly
to our brain.
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