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Abstract—This work is about the transient modeling of the
thermal characteristics of outer rotor SPM machines by con-
sidering a lumped parameter thermal network based approach.
The machine considered here poses particular challenges for
the modeling, e.g., due to the semi-closed stator surrounded
by a rotor bell that provides a speed-dependent cooling of the
stator coils. Starting from a simpler basic network configuration,
model extensions and refinements are presented and discussed.
The subsequent parameter identification is done by means of
an initial design of experiments based sampling, and a subse-
quent single-objective and also a multi-objective optimization of
error functions for the components’ temperatures. Analyzing the
therefrom derived Pareto fronts and the consequent tradeoff
regarding achievable minimum modeling errors for different
system’s components gives insights into where and how the
modeling can be further improved. All the investigations are
based on experimental results obtained through operating a
particularly developed test setup.

Index Terms—electric machines, evolutionary algorithm,
lumped parameter thermal network, optimization, outer rotor,
permanent magnet synchronous machines

I. INTRODUCTION

An accurate temperature prediction for major components
of electric machines is crucial. A precise determination of
the thermal circumstances facilitates driving such devices at
maximum possible load and thus gaining highest utiliza-
tion. Furthermore, an in-depth understanding of the overall
thermal behavior at various operating points and different
installation situations can avoid over-engineering. By setting
proper boundaries, safety and reliability related aspects can be
properly considered. While often the focus was on predicting
machine temperatures for static conditions, nowadays it is
of highest interest to correctly estimate thermal aspects and
thus possible operational limits for the transient case. For this
reason, some previous analyses were at least partially based on
simulations, e.g., CFD-based modeling [1], [2]. Additionally,
a significant number of modeling approaches focuses on
characterizing thermal models based on experimental results
[3], [4]. In both cases, it is tried to minimize the overall
effort for obtaining an accurate modeling. Besides the clas-
sical modeling approaches, these days researchers deal with

emerging technologies, e.g., machine learning (ML-) based
approaches [5]. This gives maximum flexibility for achieving
high modeling accuracy, as well as regarding which inputs
and outputs are selected for modeling. While in approaches
based on the underlying physics, usually the losses are set
as inputs, the more flexible ML-based approaches allow for
alternatively specifying, e.g., torque and speed of the machine
as inputs. The latter, however, necessitates an experimental
setup or any other further source for acquiring the data used for
the modeling. A major drawback of such modern approaches
is that the heat flows in the electric machine cannot be (easily)
studied. Consequently, ML-based approaches are typically not
considered when there is interest in gaining better understand-
ing of the effects that take place inside electric machines.
For instance, discovering that a particular thermal resistance
and, thus, the corresponding heat flow, is speed-dependent can
hardly be achieved through applying ML-based techniques.
This is in contrast to lumped parameter thermal networks
(LPTNs) [6]–[8], where basic models lack in flexibility and
require all relevant losses as independent inputs. However, a
detailed evaluation of the thermal aspects is possible. Conse-
quently, they typically facilitate human-based improvements,
e.g., in [9]. The authors consider both, LPTNs as well as
ML-based approaches as promising approaches that shall be
selected based on the particular application and desired goals
to achieve. Here, a detailed analysis of the development of
an LPTN-based hybrid thermal modeling approach, starting
with the initial selection and modeling refinement, and the
subsequent single- and multi-objective optimization of optimal
parameter settings will be presented.

II. MOTOR UNDER TEST

In this paper, the focus is on a 3-phase, brushless SPM
machine in outer rotor topology, which is shown with dis-
assembled rotor bell in Fig. 1. The motor under test has a
rated power of 110 W at 150 mNm and 7100 rpm. Table I
summarizes its most important electrical characteristics. These
type of machines are typically used for fan applications in
the low-cost segment, for which reason a high utilization
for each individual application is desired. A major challenge



Fig. 1: Motor under test with disassembled outer rotor.

TABLE I: Characteristic motor data.

Motor under test: outer rotor SPM

Rated DC bus voltage 24 V

Rated DC bus current 5.1 A

Number of phases 3

Number of pole pairs 2

Phase connection ∆

Rated speed 7100 rpm

Rated torque 150 mNm

Terminal resistance (at 20 °C) 0.427 Ω

posed by developing a thermal model for this type of machine
is the rotating bell in the ambient air, which causes very
complex overall heat flows. Additionally, a large air gap of
approximately 4 mm between the mounting flange and the
bell couples the interior with the surrounding air. As a result,
an additional air flow depending on the rotor speed and
the internal temperatures occurs, and it causes an increased
heat exchange. Basically, these phenomena require complex
modeling approaches. The authors have consequently chosen
a data-based approach to model these characteristics.

III. EVOLUTION OF THE THERMAL NETWORK

The authors presented a five-node LPTN designed for the
thermal analysis of the most important motor temperatures
of the outer rotor SPM, namely the average temperatures of
the rotor (Tr), the air gap (Tair), the stator winding (Tw),
the stator lamination (Ts), and the stator fixture including the
mounting flange (Tf ), in [3]. This network topology, depicted
in Fig. 2a, and its initial parameter setting were selected
based on expert knowledge and preliminary measurements.
First, an individual weighting of the most important machine
components combined with the manufacturer’s information
about their material properties allowed a precise estimation of
the heat capacities Cr, Cteeth, Cs, and Csfix. Then, the uncer-
tain parameters Rra,0, Rair,0, Rsa, Rig, kra,s, kair,s, ∆Rra,0,
∆Rair,0, and ∆Rsa,0 had been optimized through an initial
design of experiments (DOE) based sampling, followed by
an evolutionary optimization strategy discussed in [3]. Hence,

a minimum averaged effective temperature error between
modeled and measured temperatures of etot = 2.28 °C was
achieved. In the following, a stepwise extension of the initial
network is proposed, in order to model further temperatures
required for a complete thermal monitoring of all critical motor
components, but also to further reduce the modeling error for
all, both existing and added, temperatures.
A precise monitoring of additional temperatures affecting the
motor’s lifetime, in particular the temperatures of the inner
and outer bearing (Tbi, Tbo), requires a subdivision of the
thermal path from stator lamination through stator fixture to
ambient into individual parts. Generally, the temperature level
and its transient development influence the durability of the
bearing grease. Consequently, a load-dependent monitoring of
this temperature together with the speed course over its life
cycle allows an estimation of the remaining bearing lifetime.
For this reason, additional thermal resistors and capacitors
are inserted in the heat path, along with two heat sources to
consider the bearing losses (Pbi, Pbo), as shown in Fig. 2b and
highlighted by dark blue color. A good estimate of the new
capacitances Cbi, Cbo, and Cf can be determined from the
optimized capacitance Csfix of the initial network, according to
their mass fractions on the entire object, consisting of the stator
fixture and flange and their individual material properties. The
separation of the thermal resistance Rsa into Rbio, Rsf , and
Rfa(n) is more challenging because of different propagation
directions of the heat flow, and the speed dependency of the
individual heat transfer mechanisms.
Additionally, detailed investigations based on the initial net-
work indicated the presence of additional cooling paths for the
winding system and the stator lamination through the air gap
between rotor bell and mounting flange. They can be modeled
by two speed-dependent thermal transition resistances Rcua(n)
and Rsa(n), as depicted in Fig. 2c.
Besides additional thermal resistances and heat capacities, the
aforementioned evolution of the initial LPTN also leads to a
higher amount of speed dependencies due to natural and forced
convection. Since such behavior cannot easily be described by
an analytical model, which on the one hand represents reality
as accurately as possible, but on the other hand contains as
few parameters as possible, the behavior should be calibrated
by using an optimization algorithm itself. Thus, three models,
shown in Fig. 3, with different characteristics are provided
to the optimization algorithm. Note that all models exhibit a
steep transition from natural to forced convection starting at
zero speed to speeds greater than zero, represented by a delta-
distribution. If the thermal resistance additionally decreases
linearly with speed, it can be described by

Ri(n) = Ri,0

(
1− |n|

nmax
(1− ki,s)

)
+ ∆Ri,0 δ(n) , (1)

where n is the rotational speed of the rotor bell, Ri,0 = Ri(0)
is the additive thermal resistance value at zero speed,
nmax = 7500 rpm is the maximum reachable speed of the rotor
bell, ki,s is the parameter to be optimized, and δ(n) is the



(a) Initial model (b) First evolution (c) Second evolution

Fig. 2: Evolution of the lumped parameter thermal network (LPTN) for modeling the characteristics of outer rotor SPM
machines - changes are highlighted by light blue and orange color, respectively.

Fig. 3: Three different approaches for modeling the speed-
dependent forced convection with a minimum number of
parameters.

delta-distribution, already presented in [3]. For many prob-
lems, the thermal resistance decreases more than linear with
speed. This can be approximated by introducing a quadratic
model

Ri(n) = Ri,0

(
ki,s +

( |n|
nmax

− 1
)2

(1− ki,s)

)
+ ∆Ri,0 δ(n) , (2)

which requires the same number of parameters as (1). If no
relevant change in thermal resistance occurs after the abrupt
transition from natural to forced convection due to an increase
in speed,

Ri(n) = Ri,0 + ∆Ri,0 δ(n) (3)

can be used. In order to handle the increased number of
parameters, an efficient and improved optimization concept is
required. For compensating this rising number of variables to
be optimized, serial resistors can be merged, such as Rsbi and
Rsair. Note that besides the introduced extensions will enhance
the achievable accuracy of the temperature monitoring, the
complexity of the corresponding parameter identification is
more challenging and it takes additional effort, as will be
discussed in Section V.

IV. EXPERIMENTAL SETUP

In order to facilitate a data-based optimization of the
parameter presented in the LPTN, a test setup featuring
an accurate measurement of the machine’s temperatures is
essential. Generally, the transient temperature characteristics of
individual motor components strongly depend on the dynamic
load profile that the machine is exposed to. Thus, a large
number of measurements at various load torques and speeds
are required to obtain a globally accurate thermal model.
Accordingly, an experimental setup shown in Fig. 4 was
designed and built up for both the operation of the machine at
different operating points by controlling speed and torque with
an field-oriented control, and the continuous acquisition of the
temperatures defined in the network illustrated in Fig. 2c.
By utilizing the power electronics (a), the stator current
excitation is realized to control the speed of the motor under
test (b). The desired load torque is applied through a hysteresis
brake (c), and it is measured by the torque sensor (d).
Furthermore, measuring the total active power consumption
at various load points with a power analyzer allows the
determination of power losses dissipated within the motor.
Based on these measurements, the various power loss sources
in the thermal network can be quantified by an individual
loss separation method, which already was presented in [3].
All temperatures are measured with thermocouples (type K),
and the rotor temperature, which approximately represents
the averaged permanent magnet temperature, is acquired by
using a thermographic camera shown in Fig. 4. Note that the
magnets’ temperature cannot be directly measured due to the
given motor topology.
Another particular challenge is the identification of tempera-
ture profiles to be measured that contain all essential informa-
tion about the thermal behavior of the PMSM across the entire
torque-speed-range and thus allow an optimal identification
of the uncertain parameters. Thus, randomly selected speed-



Fig. 4: A CAD model of the test bench for acquiring the
thermal characteristics at various operating points.

Fig. 5: Random selection of different torque-speed combina-
tions within the SOAR and their transformation into transient
load profiles.

torque-combinations within the safe operating area (SOAR) of
the SPM, cf. Fig. 5, are converted to transient load profiles to
be measured. The specimen is driven at constant speed and
load torque for a predefined time interval, defined with a so-
called step width. If this parameter is varied as well, both more
or less dynamic load profiles can be considered, which results
in static and dynamic thermal states in the motor. In this work,
the database includes several measurement cycles with 120 h
transient temperature curves in total.
Typical resulting transient characteristics of all measured
temperatures, the applied speed and torque profile, and the
measured total input power are illustrated in Fig. 6. As can be
observed, the winding temperatures are the highest, followed
by the stator lamination, the inner bearing, and the flange. This
is due to the fact that the Joule losses are the dominating loss
component. Depending on the rotor’s speed, their main cooling
takes place either via the stator, the stator fixture and the
mounting flange, or via the air gap between bell and mounting
flange and the rotor bell itself. More details on the performed
measurement series are discussed in [3].

V. SINGLE- AND MULTI-OBJECTIVE BASED PARAMETER
OPTIMIZATION

The presented evolution of the LPTN in combination with
additional measured data sets by the test bench allow a
renewed parameter identification compared to the initially
focused approach, that was presented in [3]. Again, the

TABLE II: Optimal parameter set determined by analyzing the
single-objective optimization problem.

Parameter at 20 °C Optimized value

Rcus 2.75 K W−1

Rbi 2.49 K W−1

Rbio 1.92 K W−1

Rbof 0.71 K W−1

Rsair 1.85 K W−1

Rra,0 2.57 K W−1

Rfa,0 7.19 K W−1

Rcua,0 19.47 K W−1

Rsa,0 126.10 K W−1

Rairr,0 4.53 K W−1

kra,s 0.19
kfa,s 0.52
kcua,s 0.22
ksa,s 0.42
kairr,s 0.60
∆Rra 9.1 K W−1

∆Rfa 2.9 K W−1

∆Rcua 31.5 K W−1

∆Rsa 30.1 K W−1

∆Rairr 5.0 K W−1

modeling errors for all considered machine’s temperatures are
combined, and the overall sum is considered for minimization
within a single objective optimization scenario. For instance,
in case n temperatures are considered, and Ti(k) and T̂i(k)
are the i-th measured and modeled temperature sequence with
k representing the sample index, then some formulation like

etot =
1

N

N∑
i=1

√√√√ 1

P

P∑
k=1

(
Ti(k)− T̂i(k)

)2

, (4)

which gives the root mean squared error (RMSE), is applied.
In case of thermal modeling, this quantity can be interpreted
as an effective temperature error. By extending and improving
the initial approach given in [3], it was possible to reduce
the effective temperature error from e∗tot = 2.28 °C to e∗tot =
0.85 °C. The superscript * is used here for indicating a result
received through solving a single-objective optimization prob-
lem. As can be observed, the results constitute a significant
improvement in the modeling accuracy by a factor of 2.7.
Comparable improvements would not have been possible with
the initially proposed network topology. Table II summarizes
the identified parameters based on the single-objective opti-
mization.
While formulations like (4) follow an easier-to-handle op-

timization problem even in case multiple temperatures are
modeled, they neither do provide (too much) insight about
the temperature errors of the different components, nor which
minimum individual temperature errors could be achieved.
Moreover, no potential tradeoff regarding achievable tempera-
ture errors for different components can be studied. However,
the latter would facilitate a better understanding of how the



Fig. 6: Characteristic dataset for transient load variations including the motor component’s temperatures, the speed and torque
signals, and the total power loss of the motor.

model further can be improved. Consequently, the authors also
consider a multi-objective formulation for the present problem,
with objectives subjected to minimize defined as:

e =
[
ew es ebi ebo ef er

]
(5)

with

ei =

√√√√ 1

P

P∑
k=1

(
Ti(k)− T̂i(k)

)2

, (6)

and i ∈ {w, s,bi,bo, f, r}, where the ei give the individual six
effective temperature errors of the major components of the
setup, cf. Fig. 2.

An initial sampling of the design space is performed before
the optimization algorithm is applied. The varied parameters
include both the nominal values of network elements and sev-
eral coefficients for modeling the speed-dependencies. Those
dependencies were described in detail within Section III.

VI. RESULTS

In order to compare the results of the multi-objective
optimization problem with the original results obtained for the
single-objective counterpart, all errors were normalized using

rj =
ej
e∗j

(7)

with j ∈ {tot,w, s,bi,bo, f, r}. Hence, rj gives the individual
relative errors, and rj < 1 depicts an improvement compared
to the single- objective optimization scenario.

The multi-objective optimization problem was analyzed
using the software SyMSpace [10], which allows for distribut-

ing computationally expensive jobs to a computer cluster. In
total, 80,000 parameter combinations were evaluated during
the optimization process. The overall results are presented in
Fig. 7.

All relative loss values are plotted against each other in
matrix form. The plots above the main diagonal represents the
results for all investigated combinations, while the maximum
values for the plot limits were set to 20 for reasons of
visibility. These plots are considered interesting for studying
which possible outcomes are possible based on there applied
LPTN, cf. Section III. While some measures are strongly
correlated, e.g., the total and the inner bearing temperature
error rtot, rbi in the first row, fourth column, abbreviated
as (1,4), or the errors regarding outer bearing and flange
temperature estimation rbo, rf in (5,6), others feature a far
less correlation. In particular, the rotor temperature estimation
seems somewhat detached from the temperature estimations
for the other components. Along the main diagonal, the same
quantity is plotted both on the x- and y-axis. It thus comes as
no surprise that the graph depicts an equality relation.

The plots below the main diagonal in Fig. 7 give further
insights to this multi-objective optimization problem. The
orange-colored markers all give Pareto-optimal results when
considering all the temperature errors as objectives. As can be
observed, more or less significant improvements can be made
compared to the single-objective solution. However, overall the
tradeoff regarding these improvements has to be considered,
as an improvement in one temperature modeling can cause
a degradation for another quantity. By investigating a multi-
objective problem, it is possible to study the correlations of
the objectives in detail. The gained insights cannot be derived
if a single-objective optimization problem is focused.



Fig. 7: Results for the multi-objective optimization problem. All errors in temperature modeling rj are given with reference to
the results for the single-optimization problem. The corresponding definition can be found in (7).

Furthermore, the blue-colored markers represent Pareto-
optimal results in case only the two quantities of any individual
plot would be considered as objectives. For instance, in case
the total error rtot and the error in winding temperature
estimation rw would have been considered only, illustrated
in (2,1), a potential reduction in (i) the error for the modeled
winding temperature ot up to 50% compared to the original
value, causing an increase of the total error to 145%, or (ii)
both a decrease of the winding-related error to about 75%
and the total error to 85% can for instance be accomplished.

From the latter it can be concluded that both objectives can si-
multaneously be significantly improved in case other modeled
temperatures are of less interest. This can be interesting in
case the focus is on the winding temperature, which considers
the hotspot for almost the entire torque speed range for this
design, which can also be observed from Fig. 6. In the end,
it is the user’s choice to decide which objectives are more or
less relevant to consider. Obviously, again a weighting can be
introduced to finally derive a single parameter setting to be
used.



Fig. 8: Relative frequency of particular values set for the design parameters of the multi-objective optimization problem. Only
Pareto-optimal designs were considered for this evaluation.

Fig. 8 gives the probability density function (pdf), i.e. a
measure for the relative frequency of the parameters’ values
to appear for the Pareto-optimal designs. Therefore, the Pareto-
front for the multi-objective case featuring all seven relative
temperature errors was considered. The presented results allow
for studying if more or less diverse settings regarding any in-
dividual parameter were obtained. For instance, a very distinct
small parameter region is observed for Rcua,0 regarding the
Pareto-optimal designs, while for ∆Rra more diverse values
were derived.

The plot limits along the x-axis correlate with the mini-
mum and maximum boundary that was set for the individual
parameter variation, while no discretization but continuous
parameter ranges were specified for the parameters within the
first two rows. Based on the pdfs, one can further analyze
if the enlargement of some parameter range might follow
better results. This most likely is the case if a pdf features
a peak value close or at the left or right particular x-axis
boundary. In addition, a comparison of the obtained values
with parameters solely obtained through applying engineering
knowledge facilitates studying the reasonability of the derived
values. In case they are considered as unreasonable, the applied
modeling must be re-evaluated in more detail and potentially
improved.

The bottom row of Fig. 8 contains the parameters that
specify the per design selected speed-dependency, as explained
in Section III. Hence, only the integer values 0, 1, and 2
are considered for the variation. It is interesting to study the
parameters’ distribution for the Pareto-optimal results and thus
observe if no, a linear, or a quadratic speed dependency follows
the best results. Most of the quantities feature a quite distinct
preferred setting. Investigating these results in more detail can
help understanding the heat flow within outer rotor machines

better, which is very complex for this machine type. This
particularly holds when considering its speed-dependency.
Hence, the results presented here can stimulated future mod-
eling improvements. Future work could be about modeling
the speed-dependency as function of multiple components at
once, e.g., a linear and a quadratic term, and analyzing if this
follows even better results.

VII. CONCLUSION

This paper was about improvements for measurement-based
optimization of thermal models for electric machines by con-
sidering a lumped parameter thermal network based approach.
As device under test, an outer rotor PM synchronous machine
was selected. Modifications of the thermal network for a more
accurate temperature modeling were presented, which included
the introduction of additional paths for the heat flow, as well
as analyzing no, a linear, or a quadratic speed dependency for
selected temperature resistors.

The parameters of an existing network were optimized by
considering a single-objective problem first. The objective to
be minimized was defined based on the temperature mod-
eling errors for the six major parts of the arrangement. In
addition, a multi-objective problem was studied. Thereby, the
six individual errors for the temperature modeling as well as
their particularly defined sum were considered as, in total,
seven objectives. The results of the latter optimization problem
facilitated studying potential tradeoffs in terms of achievable
accuracy with regard to the individual modeling errors. More-
over, investigating the ideal design parameter settings for the
Pareto-optimal combinations revealed interesting insights, e.g.,
about if no, a linear, or a quadratic speed dependency for
the individual thermal resistances followed improvements in



modeling accuracy. The results can stimulate further model
refinements.

Future work shall include combining multiple temperature-
dependent components for modeling the speed dependency
of particular resistors at once, as for instance a linear and a
quadratic term, and analyzing potential further improvements.
Moreover, the temperature dependency of the heat flow paths
and the loss development will be studied in more detail.
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