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On Optimal Clearing Payments in Financial Networks

Giuseppe Calafiore, Giulia Fracastoro, and Anton V. Proskurnikov

Abstract— Modern financial networks are characterized by
complex structures of mutual obligations. Such interconnections
may propagate and amplify individual defaults, leading in
some cases to financial disaster. For this reason, mathematical
models for the study and control of systemic risk have attracted
considerable research attention in recent years. One important
line of research is concerned with mechanisms of clearing,
that is, the mechanism by which mutual debts are repaid, in
the regular regime, or in a default regime. One of the first
models of a clearing mechanism was proposed by Eisenberg
and Noe in [1], which introduced the concept of clearing vector
of payments. In this paper, we propose a necessary and sufficient
condition for the uniqueness of the clearing vector applicable
to an arbitrary topology of the financial network. Further, we
show that the overall system loss can be reduced if one relaxes
the pro-rata rule and replaces the clearing vector by a matrix
of clearing payments. This approach shifts the focus from the
individual interest to the system, or social, interest, in order to
control and contain the adverse effects of cascaded failures.

I. INTRODUCTION

Globalization has led to highly interconnected financial
systems, where organizations are densely linked to each other
with an intricate structure of obligations. The behavior of
such financial interconnected system has been extensively
studied over the past years [2], [3]. Interconnections among
financial institutions create potential channels of contagion,
where a failure of a single entity can result in a threat to the
stability of the entire financial system. Recent examples of
such a behaviour include the collapse of Lehman Brothers,
being one of the reasons of the global-wide financial crisis in
2008, the government bailout of the giant insurance company
AIG in order to prevent a failure cascade, and the exposure
of European banks to potential defaults by some European
countries. For this reason, much effort has been invested in
understanding effects of systemic risk: how stresses, such as
bankrupts and failures, to one part of the system can spread
to others and lead to avalanche breakdown [1], [4]–[6].

An important line of research pursued in systemic risk the-
ory focuses on development of realistic models of clearing
procedures between financial institutions. Clearing allows to
reduce the absolute liabilities by a full or partial reimburse-
ment of credits in order to diminish eventual consequences
of defaults [7]. The seminal work in [1] introduced a simple
model of clearing in a financial network, in which financial
institutions have two types of assets: the external assets (e.g.,
incoming cash flows) and the internal assets (e.g., some
funds that banks lend to one another). The model from [1]
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assumes that the obligations of all entities (nodes) within the
financial system are paid simultaneously and are determined
by three fundamental rules: 1) limited liability, that is, the
total payment of each node can not exceed its available cash
flow; 2) the priority of the debt claims, that is, stockholders
receive no value until the node is able to completely pay
off all of its outstanding liabilities; 3) the proportionality,
or pro-rata rule, that is, all debts have equal priority, so
that all claimant institutions are paid proportionally to their
nominal claims. Under these assumptions, the matrix of
mutual interbank payments is determined by the so-called
clearing vector that is found from a nonlinear equation.
Using the Knaster-Tarski fixed-point theorem, it was shown
in [1] that a clearing vector always exists. Furthermore, such
vector is unique under certain regularity assumptions [1], [8].

The basic model offered in [1] has been later extended
in various directions, incorporating non-trivial features of
real-world financial networks. The models from [9]–[11], for
instance, take into account cross-holdings, cross-ownership
of equities and liabilities and seniorities of liabilities. The
papers [12], [13] introduce measures of liquidity risk. Other
works considered illiquid assets [14], decentralized clearing
processes [15] and clearing with multiple maturity dates [16].

The contribution of the present work is twofold. First,
we address the problem of the uniqueness of the clearing
vector. The first sufficient graph-theoretical condition for its
uniqueness was obtained in [1] (see also [7]): the clearing
vector is unique if the financial network is regular, which
means that every bank either has an outside asset, or has
a (direct or indirect) creditor with outside assets. Another
sufficient condition for uniqueness is formulated in [6]: the
clearing vector is unique if each node of the network has a
chain of liability to the external sector. Both conditions, even
though they hold in the generic situation, are only sufficient
yet not necessary. To the best of our knowledge, the only
necessary and sufficient condition for the clearing vector’s
uniqueness applicable to an arbitrary financial network avail-
able in the literature is the very general result from [17],
which examines the uniqueness of equilibria in a dynamical
flow network with saturations. As it will be discussed below
in Section IV, this criterion appears to be superfluous for the
classical Eisenberg-Noe model, being primarily motivated by
the more general models from [18]. In this paper, we give an
alternative necessary and sufficient criterion, which is simpler
for validation than the criterion in [17] (see Section IV-D).
Similar to the algorithm from [17], our method in fact allows
to find the polytopic set of all clearing vectors. We also derive
some properties of the maximal (dominant) clearing vector.

The second aspect addressed in this paper is the relaxation



of the proportionality (pro-rata) rule. Altough this rule seems
fair at the “local” level of a node (all debts have equal
priority) and allows in general to determine the matrix of
payments uniquely, we show that its abolishment allows
to reduce the total system loss, intended as the deviation
between the nominal and actual payment vector, in some
norm [6]. A natural question thus arises: what is the “price”
of a pro-rata restriction in terms of the system loss? Although
analytic comparison between the optimal proportional and
non-proportional clearing policies is difficult, we provide
a numerical experiment using a synthetic random network
model inspired by a standard “testbench” network from [19].
One downside of relaxing the pro-rata rule is the loss of the
clearing matrix uniqueness; furthermore, even the optimal
clearing matrix can be non-unique [20, Example 2].

The paper is organized as follows. Section II defines
the notation used in the paper. Section III introduces the
Eisenberg-Noe model and related concepts. Section IV offers
a necessary and sufficient condition for the clearing vector’s
uniqueness, in the situation where the pro-rata constraint is
adopted. In Section V, we consider clearing matrices that
do not satisfy the pro-rata rule and show that one such
matrix can always be found by solving a convex optimization
problem aimed at minimizing the system loss. Section VI
presents numerical simulations to compare the system losses
in the cases where the pro-rata rule is adopted and where
it is discarded. Section VII concludes the paper. For space
reasons, all proofs are omitted; they are available in [20].

II. PRELIMINARIES AND NOTATION

Given a finite set V , the symbol |V| stands for its cardinal-
ity. For two families of real numbers (aξ)ξ∈Ξ, (bξ)ξ∈Ξ, the
symbol a ≤ b (b dominates a, or a is dominated by b) denotes
the element-wise relation aξ ≤ bξ ∀ξ ∈ Ξ. We write a � b if
a ≤ b and a 6= b. The operations min,max are also defined
elementwise, e.g., min(a, b)

.
= (min(aξ, bξ))ξ∈Ξ. These

symbols apply to both vectors and matrices (usually, Ξ =
{1, . . . , n} or Ξ = {1, . . . , n} × {1, . . . , n} respectively).

Every nonnegative square matrix A = (aij)i,j∈I corre-
sponds to a weighted digraph G[A] = (I, E [A], A) whose
nodes are indexed by I and whose set of arcs is defined
as E [A] = {(i, j) : aij > 0}. The value aij can be
interpreted as a weight of arc (i, j). A sequence of arcs
i0 → i1 → . . . → is−1 → is constitute a walk between
nodes i0 and is. Set of nodes J ⊆ I is reachable from node
i if i ∈ J or a walk from i to some element j ∈ J exists; J
is globally reachable if it is reachable from every node.

A graph is strongly connected (strong) if every two nodes
i, j are mutually reachable. Otherwise, the graph has several
strongly connected components (for brevity, we call them
simply components). A component is said non-trivial if
it contains more than one node. A component is a sink
component if no arc leaves it.

A nonnegative matrix A ∈ RI×I is stochastic if all its
rows sum to 1:

∑
j∈I aij = 1∀i ∈ I (that is, A1 = 1) and

substochastic if
∑
j∈I aij ≤ 1 ∀i ∈ I (i.e, A1 ≤ 1). Here

1 ∈ RI denotes the column vector of ones.

III. FINANCIAL NETWORKS

We henceforth use the notation introduced in [6], except
for a few minor changes. A financial network may be repre-
sented as a weighted graph G = (V, E , P̄) whose nodes stand
for financial institutions (banks, funds, insurance companies
etc.) and whose weighted adjacency matrix P̄ = (p̄ij)
represents the mutual liabilities of the institutions. Namely,
entry p̄ij ≥ 0 stands for the obligation of payment from node
i to node j at the end of the current time period, and arc
(i, j) ∈ E from node i to node j exists if and only if p̄ij > 0.
By definition, p̄ii = 0∀i, so the graph contains no self-arcs.

Along with mutual liabilities, the banks have outside
assets. The outside asset c̄i ≥ 0 is the total payment due from
non-financial entities (the external sector) to node i; these
numbers constitute vector c̄ = (c̄i)i∈V . Similarly, one can
consider the outside liability of node i is the total payment
b̄i ≥ 0 from node i to the non-financial sector. Often the
outside liabilities are replaced by payments to an additional
“fictitious” node, representing the external sector [1]. Adding
this “virtual” node to V , we may assume that b̄ = 0.

The nominal in-flow and out-flow, referred to also as the
asset/liability sides of the node i’s balance sheet, are

φ̄in
i
.
= c̄i +

∑
k 6=i

p̄ki, p̄i
.
= φ̄out

i
.
=

∑
k 6=i

p̄ik. (1)

The nodes with p̄i = 0 have no outgoing arcs and, according
to the graph-theoretical terminology, they are called sinks. As
mentioned before, one such node can be fictiously defined
for the purpose of collecting the debts to the external sector.
In general, however, other sinks may exist in the network.

Normally, φ̄in
i ≥ φ̄out

i , that is, each bank is able to pay its
debts at the end of the current period. The main concern of
systemic risk theory is the situation where some banks suffer
financial shocks, and their outside assets drop to smaller
values ci ∈ [0, c̄i). In this situation, it may happen that

ci +
∑
k 6=i

p̄ki < p̄i,

in which situation node i is unable to fully meet its payment
obligations and hence defaults. When in default, a node pays
out according to its capacity, thus reducing the amounts paid
to the adjacent nodes, which in turn, for this reason, may also
default and reduce their payments, etc. As a result of default,
the actual payment pij ∈ [0, p̄ij ] from node i to node j, in
general, may be less than the nominal due payment p̄ij . A
natural question arises: which matrices of actual payments
P = (pij) ≤ P̄ may be considered as “fair” in the case of
default? We shall see that the pro-rata rule is a commonly
accepted rule for allocating payments in the case of default,
but we shall also explore an alternative approach that aims
at minimizing the overall loss over the financial system.

Denote the vectors of actual in-flows and out-flows by

φin .
= c+ P>1, p

.
= φout .

= P1. (2)

The minimal requirements to the matrix of actual payments
P = P (c) are as follows [1]:



i) (limited liability) The total payment of node i does not
exceed the in-flow, that is, φin ≥ φout;

ii) (absolute priority of debt claims) Either node i pays
its obligations in full (pi = p̄i), or it pays all its value
to the creditors (pi = φin

i ).
Recalling that P ≤ P̄ and thus p = P1 ≤ p̄, conditions i)-ii)
may be reformulated in the following compact form

P1 = min(p̄, c+ P>1). (3)

Definition 1: A matrix P is called a clearing matrix (or
matrix of clearing payments) corresponding to the vector of
outside assets c, if 0 ≤ P ≤ P̄ and (3) holds.

Notice that (3) is a system of n .
= |V| nonlinear equations

with n2 variables pij . Hence, one cannot expect to find a
unique solution. Often, the third requirement is introduced
[1] known the proportionality or pro-rata rule, which ex-
presses the requirement that all debts have equal priority and
must be paid in proportion to the initial claims. As discussed
in [15], [21] the proportionality rule is implemented in
the bankruptcy law across the globe. Mathematically, this
requirement reduces the number of unknowns to n = |V| and
replacing the clearing matrix by the clearing vector. The pro-
rata is also related to other mathematical properties of the
clearing matrix, e.g. the invariance to “mitosis” [21] (splitting
of a financial institution into multiple agents or merging of
a group of agents into a single institution).

The clearing vector always exists [1], also, one such
vectors can be found by solving a convex optimization
problem with n variables. In Section IV, a necessary and
sufficient criterion for such a vector’s uniqueness is offered
along with an algorithm that find the set of all possible
clearing vectors, which is the first contribution of this work.

Also, an idea we propose in this work is the possibility
of turning away from the pro-rata rule, and compute instead
an optimal clearing matrix which guarantees the best pos-
sible system-level performance. Such clearing matrix can
be computed by solving a convex optimization problem in
n2 variables, as discussed in Section IV. The underlying
philosophy is that while the pro-rata rule is enforced in order
to be fair locally for the individual nodes involved in the pay-
ment obligations, the optimal clearing matrix approach aims
at being fair globally, by devising clearing payments that
minimize the overall impact of defaults on the whole system.
This second approach indeed outperforms the method of pro-
rata clearing vector in terms of the overall system loss, as will
be demonstrated in Section VI by numerical experiments.

IV. PRO-RATA RULE AND CLEARING VECTORS

One standard approach to determine the clearing payments
is based on imposing additional restrictions on the payments
pij , stating that the payments of node i to the claimants
should be proportional to the nominal payments p̄ij . Intro-
duce the stochastic matrix of relative liabilities

A = (aij), aij =


p̄ij
p̄i
, p̄i > 0,

1, p̄i = 0 ∧ i = j,

0, otherwise,
(4)

the pro-rata (known also as the proportionality or the equal
priority) rule can be formulated as

pij = piaij , ∀i, j ∈ V. (5)

If this condition holds, then P>1 = A>p, which allows to
rewrite (3) in the equivalent vector form

p = min(p̄, c+A>p). (6)

Definition 2: Under the assumption (5), the vector p is
said to be a clearing vector if p ≥ 0 and (6) holds.

The existence of a clearing vector is usually proved by ap-
pealing to the general Knaster-Tarski fixed-point theorem [1],
[7]. This theorem implies that the set of clearing vectors is
non-empty and, furthermore, constitutes a complete lattice
(with respect to the relation ≤), therefore, the minimal and
maximal clearing vectors do exist. This monotonicity-based
approach allows to prove the existence of clearing vectors in
more complicated models [7], [22].

Below, we examine the properties of the maximal (or
dominant) clearing vector, which can be found in several
ways. One way for finding it is to solve a convex optimization
(e.g., LP or QP) problem with n variables and 2n linear con-
straints (we use this approach in our numerical experiments).
A modification of the fictitious default algorithm proposed
in [8] finds the maximal clearing vector in no more than n
steps, and at each step one has to solve a non-degenerate
system of linear equations of the dimension O(n).

In degenerate situations, the clearing vector may be non-
unique. For instance, if A = In, p̄ = 0 and c = 0, every
vector p such that 0 ≤ p ≤ p̄, obviously, satisfies (6).
We will see that the existence of such a “closed” subgroup
of banks that are unaffected by the remaining network and
external sector is in fact the only reason for non-uniqueness
(Theorem 2 below). Below we find necessary and sufficient
conditions for the clearing vector’s uniqueness and show that,
even if this condition does not hold, some of the clearing
vector’s elements are uniquely determined by A and c.

A. The dominant clearing vector – Extremal properties

Although the existence of a maximal clearing vector is
usually proved via the Knaster-Tarski fixed-point theorem,
we consider an alternative construction, which also clarifies
the geometrical meaning of this vector.

Consider the convex polyhedron

D = [0, p̄] ∩ {p : c+A>p ≥ p}. (7)

Obviously, the set D is non-empty (containing, e.g., the null
vector), being thus a convex hull spanned by several extreme
points (or vertices). The following lemma shows that one of
the extreme points is the maximal (with respect to ≤ relation)
element of D, and also the maximal clearing vector.

Definition 3: Function F : [0, p̄] → R is non-increasing
(respectively, decreasing) if F (p1) ≥ F (p2) (F (p1) >
F (p2)) whenever p1, p2 ∈ [0, p̄] and p1 ≤ p2 (p1 � p2).

Lemma 1: [20, Lemma 2] Convex polyhedron D is
featured by the following properties:



1) a maximal point p∗ ∈ D exists that dominates all other
points p∗ ≥ p∀p ∈ D;

2) p∗ is a global minimizer in the optimization problem

minF (p) subject to p ∈ D (8)

whenever function F : [0, p̄] → R is non-increasing. If
F is decreasing, then p∗ is the unique minimizer in (8).

3) p∗ is a clearing vector for the financial network.

The clearing vector p∗ from Lemma 1 is henceforth
referred to as the dominant clearing vector, because it
dominates all elements of D (and, in particular all clearing
vectors). Lemma 1 implies that one of the clearing vectors
can be found by solving the convex QP problem (8) with
F (p) = ‖φ̄in − φin‖22 or the LP problem (8) with F (p) =∑n
i=1(φ̄in

i − φin
i ). It can be easily shown that both of these

functions ‖φin − φ̄in‖22 and ‖φin − φ̄in‖1 = 1>(φ̄in − φin)
are decreasing on [0, p̄], and hence, the unique minimizer
p = p∗ exists. It should be noted that the optimization
problems to find the dominant clearing vector admit various
reformulations; some of them were used in [23] to study the
sensitivity of the clearing vector to system’s parameters.

The extremal property of the dominant clearing vector p∗

allows to prove the following lemma.
Lemma 2: [20, Lemma 3] The element p∗i of the domi-

nant clearing vector is positive if and only if i is not a sink
node (p̄i > 0) and one of the following conditions holds:

1) i has outside assets, that is, ci > 0;
2) i is reachable from some node j 6= i with cj > 0;
3) the strongly connected component of graph G to which

i belongs is a sink component (has no outcoming arcs).

B. Uniqueness of the clearing vector: a sufficient condition

In this subsection, we offer a sufficient condition ensuring
that no clearing vectors other than the dominant clearing
vector p∗ exist. Furthermore, we show that some elements
of the clearing vectors are always determined uniquely.

We start with introducing some auxiliary notation. Let
C+ .

= {i : ci > 0} stand for the set of nodes that have
outside assets and S

.
= {i : p̄i = 0} stand for the set of

sink nodes that owe no liability payments (and thus have no
outcoming arcs in the graph). We introduce the set

I0
.
= C+ ∪ S = {i : ci > 0 ∨ p̄i = 0}. (9)

The following lemma establishes a sufficient condition for
uniqueness of the clearing vector.

Lemma 3: [20, Lemma 4] If set I0 is globally reachable
in the graph G, then the dominant clearing vector p∗ is the
only clearing vector corresponding to the vector of outside
assets c. More generally, let I ′0 ⊇ I0 stand for the set of all
nodes in the graph G, from where I0 can be reached. Then,
for every clearing vector p we have pi = p∗i ∀i ∈ I ′0.

Remark 1: Since each (simple) path in the graph ends in
one of the sink components, it can be easily proved that the
condition from Lemma 3 admits the following equivalent
reformulation: each sink component of graph G is either
trivial (contains the only node) or has node i such that ci > 0.

C. Uniqueness of the clearing vector: the general case

In this subsection, we derive two necessary and sufficient
criteria of the clearing vector’s uniqueness. The first of them
(Theorem 1) assumes that the dominant clearing vector p∗ is
known. This result and the algorithm on which it relies allow
to describe the whole set of admissible clearing vectors.
If, however, one is interested only in the uniqueness of a
clearing vector, a simpler graph-theoretic criterion can be
used (Theorem 2) that does not require knowledge of p∗.

Assume that the condition from Lemma 3 does not hold,
that is, I ′0 6= V . The banks corresponding to nodes from
V1

.
= V \ I ′0 neither have outside assets (V1 ∩ C+ = ∅) nor

pay to nodes from I ′0 (otherwise, they would also belong to
I ′0). Hence, matrix A1 .

= (aij)i,j∈V1 is stochastic.
At the same time, nodes from I ′0 can have liability

payments to nodes from V1, which payments depend only
on the dominant vector p∗ and constitute the vector

c(1) .
= (c

(1)
i )i∈V1 , c

(1)
i = c

(1)
i (p∗)

.
=

∑
k∈I′0

akip
∗
k, i ∈ V1.

We can now apply Lemma 3 to a reduced financial network
G1 with the node set V1, the normalized payment matrix A1

and the vector of external assets c(1). Introducing the set1

I1 = {i ∈ V1 : c
(1)
i > 0}

and denoting I ′1 ⊇ I1 all nodes from which set I1 is reachable
(banks that are connected by chains of liability to nodes
from I1), Lemma 3 ensures that the elements of the reduced
network’s clearing vector pi, i ∈ I ′1, are determined uniquely.
The definition (6) entails that for if p is a clearing vector for
the original network, then its subvector p1 = (pi)i∈V1 is a
clearing vector for the reduced network G1. This also applies
to p∗. Lemma 3 entails now that for each clearing vector p
(in the original network) one has pi = p∗i ∀i ∈ I ′1.

If I ′0∪ I ′1 = V , we have uniqueness of the clearing vector.
Otherwise, we have a group of banks V2 = V \ (I ′0 ∪ I ′1)
that are not in debt to any node from I ′1 ∪ I ′0, however, can
receive liability payments from I ′1. For the group V2, these
payments may be considered as outside assets. Denote

c(2) .
= (c

(2)
i )i∈V2 , c

(2)
i

.
=

∑
k∈I1

akip
∗
i .

If the set I2 = {i ∈ V2 : c
(2)
i > 0} is non-empty, one can

consider the set I ′2 ⊇ I2 of all nodes from where I2 can be
reached. Lemma 1 implies that the elements pi, , i ∈ I ′2 of
the clearing vector are uniquely determined: pi = p∗i ∀i ∈ I ′2.

We arrive at the following iterative procedure, which
allows to test the clearing vector’s uniqueness (and, in fact,
even to find the whole state of clearing vectors).

Example 1. Algorithm 1 is illustrated by Fig. 1, which
displays a network with n = 15 nodes that contains only
one sink node (S = {0}) and three nodes with outside
assets (C+ = {1, 2, 3}), which four nodes constitute the
set I0. Lemma 2 entails that in this situation p∗i > 0∀i 6=
0, 9 (notice that nodes 13-15 constitute a sink component,

1Notice that unlike I0, the set I1 contains no sink nodes. By construction,
all sink nodes of the graph G belong to I0.



Algorithm 1 The clearing vector’s uniqueness test.
Initialization. Compute the dominant clearing vector p∗.
Set q ← 0, I0 ← C+ ∪ S = {i : ci > 0 ∨ p̄i = 0}. Find
the set I ′0 ⊇ I0 of all nodes, from which I0 is reachable.
repeat

1) q ← q + 1;
2) Vq ← V \ (I ′0 ∪ I1 . . . ∪ I ′q−1);
3) compute the vector of payments from I ′q−1 to Vq

c(q) = (c
(q)
i )i∈Vq , c

(q)
i

.
=

∑
k∈I′q−1

akip
∗
k ∀i ∈ Vq;

4) find the set Iq = {i ∈ Vq : c
(q)
i > 0};

5) find the set I ′q ⊇ Iq of nodes from Vq , from where
Iq can be reached in G.
until Vq = ∅ or c(q) = 0.

satisfying thus condition 3) from Lemma 2). The set I ′0
contains I0 and two nodes 4, 5 that owe liability payments
to nodes 0 and 2. The set I1 contains nodes that have
no liability payments to I ′0, however, receive the liability
payments from 4 and 5. Hence, c(1)

6 , c
(1)
7 , c

(1)
8 > 0. The nodes

6, 7, 8 constitute the set I1; the set I ′1 is obtained by adding
node 9 paying liability to one of them. On the next iteration
of the algorithm, one computes the sets I2 = {10, 11} and
I ′2 = {12} ∪ I2. The nodes of the graph are not exhausted,
however, the next vector c(3) will be zero, because the
remaining nodes of the graph constitute an isolated group.
Hence, the clearing vector is not unique, however, for each
clearing vector p one has pi = p∗i , ∀i = 0, . . . , 12.

Theorem 1: [20, Theorem 1] Algorithm 1 stops in a finite
number of steps s ≥ 0. The elements of a clearing vector,
corresponding to indices i ∈ I ′0 ∪ I ′1 ∪ . . . ∪ I ′s, are uniquely
determined: pi = p∗i . The clearing vector is unique if and
only if Vs = ∅, otherwise, there are infinitely many clearing
vectors. Precisely, p is a clearing vector if and only if

pi =

{
p∗i , i ∈ I ′0 ∪ I1 . . . ∪ I ′s,
ξi, i ∈ Vs,

(10)

where ξ ∈ RVs can be any vector satisfying the constraints

B>ξ = ξ, 0 ≤ ξi ≤ p̄i ∀i ∈ Vs, B
.
= (aij)i,j∈Vs . (11)

Notice that although the subvector ξ in (10) is defined non-
uniquely, some its elements are in fact uniquely determined
due to Lemma 2. As we know, ξi = p∗i = 0 whenever i does
not belong to a sink component and is not reachable from
C+. Combining Theorem 1 with the result of Lemma 2, we
can establish an alternative uniqueness criterion, which does
not require knowledge of the vector p∗.

Theorem 2: [20, Theorem 2] The following two condi-
tions are equivalent:

(i) the clearing vector is unique (and equals p∗);
(ii) each non-trivial sink component of G either has a node

from C+ or is reachable from C+.

D. Theorems 1 and 2 vs. previously known results

In this subsection, we briefly summarize differences be-
tween our results and previously known ones.

1) Criteria from [1] and [6]: The uniqueness criterion
from [1] states that the clearing vector is unique if the
set C+ is globally reachable, being thus a special case of
Lemma 3. The direct proof of this criterion (found in [1]
and simplified in [7]) can be extended, with some variations,
to more general models [7], [18]. The criterion from [6]
can be considered as another special case of Lemma 3. It
guarantees uniqueness in the situation where all nodes are
connected to the external sector by chains of liability. Adding
a fictitious sink node standing for the external sector, this
node is thus reachable from all other nodes (that is, S is
globally reachable). It should be noted that the works [1], [6],
[7] did not present parameterizations of all clearing vectors.

2) An extension of the Eisenberg-Noe model and the
uniqueness criterion from [17]: The original Eisenberg-Noe
model assumes that, in case of default, the available assets
of the bank are distributed pro rata between all creditors,
including the external ones. At the same time, one can
suppose that some external payments (e.g., operational costs)
cannot be reduced in spite of the dropping outside assets. In
this situation, vector c ≥ 0 is replaced by vector e ∈ RV
whose elements may be negative. Such an extension leads to
a modified definition [18] of the clearing vector

p = min(p̄,max(A>p+ e, 0)). (12)

Obviously, in the case where e = c ≥ 0, the definition of
the clearing vector (12) is equivalent to (6). However, the
criteria developed for studying uniqueness of the generalized
clearing vectors (12) appear to be superfluous and inconve-
nient in the classical model with e ≥ 0. The most general of
such criteria, proposed in [17], requires to know not only the
irreducible decomposition of the matrix A (equivalently, the
structure of the network’s strongly connected components),
but also to find the left and right Perron-Frobenius eigenvec-
tor for each irreducible block. Theorems 1 and 2 (restricted to
the case e ≥ 0) do not require such an information. The result
from [17] extends the previously known result from [24] that
was confined to strongly connected financial networks.

V. RELAXING THE PRO-RATA CONDITION

We next examine the case of clearing payments without
the pro-rata rule. As soon as the pro-rata constraint is
removed, the clearing matrix is no longer unique. One matrix
corresponds to the pro-rata rule (as we have seen, this matrix
always exists and, under some natural assumption, is unique),
however there are other clearing matrices that can be found,
e.g., by solving optimization problems similar to (8).

There are several reasons to consider clearing matrices
different from the pro-rata matrix. One reason is that, as
discussed in [6], [15], the creditors of different standings may
have different priorities, and the principles of proportionality
and priority are equally important. Another reason is that the
relaxation of the pro-rata constraint can visibly reduce the
systemic loss as will be shown in the next section.



Fig. 1. The sets Is (encircled by blue lines) and I′s (encircled by red lines) for a special financial network with n = 15 nodes with p∗i > 0∀i 6= 0.

Recalling that [0, P̄ ] = {P ∈ Rn×n : 0 ≤ pij ≤ p̄ij ∀i, j},
we consider the convex polyhedron in the space of matrices

Dn×n = [0, P̄ ] ∩ {P ∈ Rn×n : c+ P>1 ≥ P1}.

We call a function F : [0, P̄ ] → R decreasing if F (P 1) >
F (P 2) whenever P 1 � P 2. For any such function, consider
the optimization problem

minF (P ) subject to P ∈ Dn×n. (13)

Lemma 4: [20, Lemma 5] For a decreasing function F :
[0, P̄ ]→ R, each local minimizer in (13) is a clearing matrix.

Notice that Lemma 4 does not require the function to be
continuous. For a continuous function, the global minimum
always exists due to compactness of Dn×n. Two examples
of functions continuous and decreasing on [0, P̄ ] are

‖φ̄in − φin‖22 = ‖(c̄− c) + (P̄ − P )>1‖22, (14)
n∑
i=1

(φ̄in
i − φin

i ) = 1>(c̄− c) + 1>(P̄ − P )>1 (15)

Both these functions provide a global measure of the impact
of individual defaults on financial network as a whole.

As it follows from Lemma 1, the set of matrices obeying
pro-rata constraint 5 always has a maximal element, cor-
responding to the dominant clearing vector p∗. Also, this
set is closed with respect to the operation max, because the
maximum of two clearing vectors, as can be easily seen, is
also a clearing vector. In some situations, clearing matrices
automatically satisfy the pro-rata rule (for instance, if each
node of the graph has only one outgoing arc). However,
in general the set of all clearing matrices has a non-trivial
structure and is not a complete lattice [20, Example 2].

VI. NUMERICAL EXPERIMENTS

Imposing a pro-rata rule on the payments has a systemic
impact on the network, which we can evaluate by comparing
it with the minimum level achievable by an optimal clearing
matrix. Indeed, using a global loss function such as, e.g.,
function (14) or (15), we can compute the minimal system
loss when the pro-rata rule is respected (pij = aijp

∗
i , where

p∗ is the optimal clearing vector) and when the pro-rata
rule is relaxed to (3). As a testbench for the numerical

experiments, we used synthetic random networks similar to
ones proposed in [19] as described in the Subsect. VI-A.

A. A model of random network

The random graphs used for simulations are constructed
using a technique inspired by [19]. The topology of the graph
is given by the standard Erdös-Renyi G(n, p) graph. The
interbank liabilities p̄ij for every edge (i, j) of the random
graph are then found by sampling from a uniform distribution
p̄ij ∼ U(0, Pmax), where Pmax is the maximum possible
value of a single interbank payment. In the experiments
we set Pmax = 100. Unlike [19], the values p̄ij can thus
be heterogeneous. Also, we do not consider payments to
external sector (deposits etc.): as it has been discussed, we
can always get rid of them by introducing a fictitious node.

Following [19], we define the total amount of the external
assets E = β

1−β I , where I =
∑n
i,j=1 p̄ij is the total amount

of the interbank liabilities and β = E/(E+I) is a parameter
representing the percentage of external assets in total assets at
the system level; in our experiments β = 0.05. The nominal
asset vector c̄ is then computed in two steps: 1) each bank
is given the minimal value of external assets under which its
balance sheet equals zero; 2) the remainder of the aggregated
external assets is evenly distributed among all banks.

The financial shock is modeled by randomly choosing one
bank of the system and nullifying its external financial assets.

B. The price of pro-rata rule: a numerical study

To evaluate the “price” of imposing the pro-rata rule,
we consider the affine function of system loss proposed
in [6], that is l .=

∑
i(p̄i − pi), where pi =

∑n
j=1 pij (this

function is equivalent to (15)) . Obviously, this function is
strictly monotone. Hence, its minimal value over all matrices
obeying the pro-rata constraint (5) is lpr =

∑
i(p̄i − p∗i ),

where p∗ is the dominating clearing vector from Lemma 1,
which is found by solving problem (8) with F (p) = ‖φ̄in −
φin‖22. Relaxing the pro-rata constraint, we find the globally
optimal clearing matrix P ∗, resulting in the system loss
lnopr = 1>(P̄ − P ∗)1. The price, or global effect, of the
pro-rata rule is estimated by

G =
lpr − lnopr

lpr
∈ [0, 1].
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Fig. 2. Gain obtained by relaxing the pro-rata rule.
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Fig. 3. Number of defaulted nodes with or without the pro-rata rule.

If G = 0 (as e.g. in Example 2 from [20]), where all clearing
matrices are optimal), the imposition of pro-rata constraint
is “gratuitous” in the sense that it does not increase the
aggregate system loss: lpr = lnopr. The larger value G we
obtain, the more “costful” is the pro-rata restriction.

It seems natural that G is growing as the graph is becoming
more dense, since in this situation the pro-rata rule visibly
reduces the number of free variables in the optimization
problem. We have tested this conjecture using the random
model described above. The random graph contained n = 50
nodes, whereas the average node degree d = np varied from
0 to 35. The resulting gain G was averaged over 50 runs. The
resulting dependence between G and d is shown in Fig. 2.
The relaxation of the pro-rata rule can give gain up to 19%.

To evaluate the price of the pro-rata rule, we also consid-
ered a metric which measures the number of defaulted nodes.
This metric evaluates the dimension of the failure cascade
caused by the initial shock. Figure 3 compares the number
of defaulted nodes with or without the pro-rata rule. We
can observe that relaxing the pro-rata rule can significantly
reduce the failure cascade.

VII. CONCLUSIONS

Based on the financial networks model of [1], we explored
in this paper the concept of a clearing vector of payments,
and we developed new necessary and sufficient conditions
for its uniqueness, together with a characterization of the
set of all clearing vectors, see Theorem 1 and Theorem 2.
Further, we examined matrices of clearing payments that
naturally arise if one relaxes the pro-rata rule. Optimal
clearing matrices can be computed efficiently by solving a
convex optimization problem. Using numerical experiments
with randomly generated synthetic networks, we showed that
relaxation of the pro-rata rule allows to reduce significantly
the overall systemic loss and the number of defaulted nodes.

Many aspects remain to be explored. First and foremost,
the biggest gap from theory to practice is that, in practice,
the overall structure of the financial network is not known
precisely, let alone the inter-bank liability amounts. For effec-

tive practical implementation, therefore, one should develop
a system-level (i.e., global) approach whose iterations are
based only on local exchange of information between nodes.
The development of such distributed and decentralized op-
timal clearing payment algorithm is the subject of ongoing
research. Another interesting aspect arises if one allows the
liabilities to be spread over some interval of time, rather than
cleared instantly, as it is supposed in the mainstream model
of [1]. This would lead to dynamic clearing payments, and
to the ensuing optimal dynamic optimization problems.
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