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ABSTRACT: Following a waste-to-wealth approach, humic acid (HA) was
exploited as a flame retardant additive. The effect of its addition alone and in
combination with urea (UR) and ammonium polyphosphate (APP) on the
thermal, fire, and mechanical performances of a bisphenol A diglycidyl ether
(DGEBA)-based epoxy resin modified with (3-aminopropyl)-triethoxysilane
(AP) and cured with aliphatic isophoronediamine (IDA) has been
investigated. Unlike in previous studies, a UL 94-V-0 classification was
achieved for epoxy resin containing HA at 6 wt % and APP at only 1 wt %
phosphorus (P) loading. The presence of silicon-modified epoxy chains
ameliorated the distribution of the biowaste within the resin, and the addition
of HA alone avoided melt dripping. Besides, APP and UR promoted a
remarkable reduction (up to 52%) of the peak heat release rate (pHRR) values
and a significant delay (up to 21%) of the time to ignition in cone calorimetry
tests, and hence an increase (up to 1.8 min) of the time to flashover, without any detrimental effect on the overall mechanical
behavior. The evolved gas, thermal, and fire analysis was used to propose the combined mode of action of HA, UR, APP, and silicon
in the fire performance improvement of the hybrid epoxy system.

KEYWORDS: humic acid, flame retardant, thermosetting polymer, biowaste valorization, bio-based additives, hybrid epoxy moiety

1. INTRODUCTION

In recent years, human beings have been responsible for
serious environmental impacts in terms of major environ-
mental concerns related to global warming, depletion of
natural resources, and increased waste production.1,2 However,
global awareness and governmental actions are now focused on
a transition from a linear economic model toward a more
sustainable circular approach, which allows for resources
savings and waste reduction as well. Indeed, considering
waste as a resource is mandatory to preserve human and
environmental health, though, at the same time, it can provide
a great opportunity for economic and technological growth.3

Thus, worldwide, governments have been providing economic
support for this transition through effective policies of
intervention.4 At the same time, the design and exploitation
of more sustainable products, with a low impact on health and
environment, have been attracting increasing interest from the
scientific community. Recently, a huge production of biowastes
has been recorded because of the human activities spanning
from households to industrial applications, including food
processing and biorefinery.5 In the manufacturing of polymer-
based products, some additives must be included to fulfill the
physicochemical and mechanical performance requirements as
defined by standards and regulations.6 However, such
compounds are mostly produced from nonrenewable sources

and can give rise to serious ecological concerns mainly linked
to the release of toxic species in the atmosphere.7 This issue
still poses huge limitations for the recycling of polymers.3

Among polymer systems, epoxy resins are used to develop a
large array of high-performance products, including linings and
components in the aircraft sector, where, along with the typical
requirements, severe fire safety standards and regulations must
be fulfilled.8 In this field, as greener alternatives than halogen-
based flame retardants, halogen-free additives (e.g., ammonium
polyphosphate (APP)), and bio-based and biomass-based raw
materials (e.g., chitosan, lignin, cyclodextrins) have been
investigated.8 However, a noticeable amount of these
compounds must be incorporated into the epoxy matrix to
achieve satisfying fire performances. As an example, Zhang et
al. prepared thermoplastic polyurethane composites through
the addition of 6.25 wt % of chitosan derivatives (CSD) and
18.75 wt % of APP.9 Further, extensive use of bio-based
compounds can destroy the earth’s regenerative capacity,
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giving rise to further environmental issues. Thus, in the context
of sustainable development, the reuse of biowaste materials as
functional flame retardant additives for polymer-based systems
may represent one of the most promising approaches for
moving toward a circular economy concept.5,10 Among
biowastes, humic acids (HAs) are the alkali-soluble fraction
of natural organic matter obtained by the biological and
chemical degradation of both vegetable and animal bio-
masses.11 HAs consist of a skeleton of aliphatic or aromatic
units, with a marked amphiphilic behavior. These moieties are
stabilized by weak hydrophobic, hydrogen, and metal-bridged
electrostatic bonds in supramolecular architectures that can
change their functionalities depending on the chemical
environment.12 Due to the presence of oxygen-containing
functional groups, a carbon-enriched chemical composition,
and supramolecular architectures, HAs can promote the
charring process during the epoxy degradation upon exposure
to a flame or an irradiative heat flux, and can establish good
physical interactions with the polymer matrix. Therefore, HAs
can provide epoxy resins with a huge potential as flame
retardants.13 However, the use of HAs as effective flame
retardants for polymer systems has been poorly investigated.
Liu et al. chelated HAs with four different metal ions and
incorporated them into a modified DGEBA resin to enhance
its flame retardance. In particular, as a result of the
incorporation of 10 wt % of HA-Fe and HA-Mn into the
epoxy matrix, the limiting oxygen index (LOI) increased from
21.2% for pristine resin to 26.6 and 25.3%, respectively;
meanwhile, the pHRR was reduced by 36 and 35.5%,
respectively.14 Despite HAs being used as a charring agent
following Liu et al., as far as we know, no self-extinguishing
materials using HA have been developed so far. Furthermore, a
complete characterization of the mechanical and fire behavior
of HA-containing epoxy systems is still missing, which is really
needed to enable any technological exploitation. An excellent
distribution of the flame retardants within the epoxy resin is
crucial to achieve uniform overall performances. To this
purpose, the reaction between DGEBA and (3-aminopropyl)-
triethoxysilane can yield hybrid silicon-containing epoxy
moieties can improve the interphase between the matrix and
the filler, because of their capability to interact with polar and
apolar components of the additives, hence enabling a fine

dispersion.15 Considering their amphiphilic nature, HAs are
expected to achieve a very good distribution into silicon-
modified epoxy resins and show promise towards obtaining
enhanced charring behavior and fire performances.
In this study, a detailed study on the role of HA biowaste as

a flame retardant for epoxy resin has been undertaken. To this
purpose, hybrid silicon-modified epoxy composites were
synthesized via the sol−gel procedure from DGEBA and AP
and then cured with IDA as a cycloaliphatic hardener. HA, UR,
and APP were added, alone or in combination, to this resin
system in order to assess their role in flame retardance. Finally,
a composite material with superior fire performance (V-0 rated
in UL 94 tests) and low P-loading (not exceeding 1.0 wt %)
was obtained. Then, the effect of P-N synergism on the flame
retardance of the hybrid epoxy composites was investigated.
Fourier-transform infrared spectroscopy with attenuated total
reflectance (ATR-FTIR) was exploited for assessing the
chemical composition consistency of the epoxy samples and
the completeness of the reactions occurring between HA and
both the epoxy sample and the curing agent. The thermal and
fire behaviors of the obtained composites were thoroughly
investigated by means of thermogravimetric analysis (TGA),
differential scanning calorimetry (DSC), cone calorimetry, UL
94 vertical flame spread tests, and direct insertion probe-mass
spectrometry (DIP-MS). Furthermore, the effect of various
additives on the mechanical behavior of the epoxy resin was
studied by three-point bending tests.

2. MATERIALS AND METHODS
2.1. Materials. (3-Aminopropyl)-triethoxysilane (AP, N98%),

urea (ACS reagent, N99.0−100.5%), humic acid sodium salt (HA,
technical grade), and ammonium polyphosphate (APP) were acquired
from Sigma-Aldrich (St. Louis). Bisphenol A diglycidyl ether
(DGEBA, SX10) and isophoronediamine (IDA, SX10) were
purchased from MATES S.r.l. (Milan, Italy) and used as received.

2.2. Preparation of Hybrid Epoxy Composites. Pristine epoxy
resin was prepared by following the procedure reported elsewhere.16

Briefly, bisphenol-A-based epoxy resin (E, 15 g) was mixed with IDA
(26 wt % of E) at room temperature, and then the resulting mixture
was cured at 60 °C overnight, followed by post-curing at 80 °C for 4
h. In the preparation of epoxy composites (Table 1), AP was chosen
as the coupling agent and exploited to improve the dispersion of HA

Table 1. Compositions of the Epoxy Samples

sample E (g) IDA (g) HA (g) AP (g) UR (g) APP (g) P (%) Si (%)

E 15 3.9
E_12HA 15 3.9 2.3
E_UR 15 3.9 0.8
E_APP 15 3.9 0.8 1.3
E_URAPP 15 3.9 0.8 0.8 1.3
E_12HAUR 15 3.9 2.3 1.5
E_12HAAPP 15 3.9 2.3 1.5 2.2
E_12HAURAPP 15 3.9 2.3 1.5 1.5 2.1
E12AP 15 3.9 2.3 1.4
E12AP_12HA 15 3.9 1.1 1.1 0.7
E12AP_UR 15 3.9 2.3 0.8 1.3
E12AP_APP 15 3.9 2.3 0.8 2.1 1.3
E12AP_URAPP 15 3.9 2.3 0.8 0.8 1.1 1.1
E12AP_12HAUR 15 3.9 1.1 1.1 0.8 0.6
E12AP_12HAAPP 15 3.9 1.1 1.1 0.8 1.1 0.6
E6AP_6HAURAPP 15 3.9 0.6 0.6 0.4 0.4 0.6 0.4
E12AP_12HAURAPP 15 3.9 1.1 1.1 0.8 0.8 1.1 0.6
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within the polymeric matrix. Samples containing AP were produced
according to the following procedure:

• A specific amount of AP (6, 12 wt % of “E + IDA” mass) was
added to E (15 g).

• The mixture was stirred at 80 °C for 2 h, followed by the
addition of HA or HA/UR or HA/UR/APP with a fixed
weight ratio, as reported in Tables 1 and S1.

• The mixture was kept for 90 min at 80 °C; then it was cooled
down to room temperature before the addition of 3.9 g of
hardener (IDA) and finally mixed for 5 min.

• The resulting system was cross-linked at 60 °C overnight and
then post-cured (80 °C for 4 h).

The reaction between DGEBA and AP allows the formation of
silanized epoxy species (Figure 1a), which may be generated via
interaction of the −NH2 groups of AP and oxirane rings of DGEBA.
Silanized epoxy species result in hybrid epoxy moieties (Figure 1b)
throughout the polymer matrix,17−19 consisting of both polar (i.e.,
silane phase) and apolar (i.e., bisphenol A part) components.
Therefore, in the presence of HA, due to its amphiphilic nature,
these moieties may self-assemble in well-dispersed chemical
structures,15,20 accounting for a good distribution of HA into the
apolar moieties.1 Figure S1 shows the typical optical microscopy
images of E12AP_HA, prepared by using AP and HA, and of E_HA,
where the biowaste filler was directly added to the pristine polymer. It
is evident that the use of AP was crucial to obtain a good dispersion of
the filler, guaranteeing the reliability of the experimental results. The
typical reaction batches are reported in Tables 1 and S2, together with
the acronyms used throughout the paper.
2.3. Characterization. Fourier transformed infrared (FTIR)

transmittance spectra were determined using a Nicolet 5700 FTIR
spectrometer (Thermo Fisher, Waltham, MA) by means of a single-
reflection attenuated total reflectance (ATR) instrument with a
resolution of 4 cm−1 and 32 scans, and by exploiting the Thermo
Scientific OMNIC Software Suite (v7.2, Thermo Fisher, Waltham,
MA, 2005). The obtained spectra were normalized to the absorption
bands at 1607 and 1509 cm−1, attributable to the CC bonds of the

benzene rings present in the epoxy resin structure, to demonstrate
that they do not further change after the curing reaction.

An EVO 15 scanning electron microscope (SEM) from Zeiss
(Oberkochen, Germany), coupled to an Ultim Max 40 energy-
dispersive X-ray (EDX) micro-analyzer by Oxford Instruments (High
Wycombe, U.K.) with AZtecLive integrated software, was exploited to
investigate the structure of the residual char after cone calorimetry
(CC) combustion. Fragments of the compounds obtained by a brittle
fracture were attached to conductive adhesive tapes and gold-
metallized. The dispersion of HA in the epoxy matrix was assessed
using a Wild M3Z binocular microscope with a resolution of 35−
400× (Wild, Heerbrugg, Switzerland), coupled to an Olympus digital
camera (Olympus, Tokyo, Japan).

Differential scanning calorimetry (DSC) tests were performed by
means of a Q20 TA Instrument apparatus (New Castle, DE), using
samples of about 8 mg stored in closed aluminum pans. The samples
were first heated (from 0 to 150 °C at 10 °C/min) to remove their
previous thermal history. Then, the materials were cooled (from 150
to 0 °C at −10 °C/min) and a second heating-up was carried out
(from 0 to 150 °C at 10 °C/min). The temperature post the curing
onset, temperature of the peak, and area were found on the first
heating-up. Tg was calculated as the midpoint between the onset and
end point of the inflectional tangents on the second heating-up curve.

The thermal behavior of the materials was investigated through
thermogravimetric analysis (TGA), using a Q500 system from TA
Instrument (New Castle, DE); the samples were heated from 50 to
800 °C at 10 °C/min, in nitrogen or air (gas flow: 60 mL/min). The
tests were performed by placing about 10 mg of the sample in open
alumina pans. T5% and T10% (temperatures at 5 and 10% of weight
loss, respectively), Tmax (temperature at which the maximum weight
loss rate is observed in the dTGderivativecurves), and residues
were measured.

The flammability of all composites was assessed by UL 94 vertical
flame spread tests (IEC 60695-11-10; sample dimensions: 13 × 125 ×
3 mm3).

The combustion behavior was studied by means of CC (Noselab
Ats, Nova Milanese, Italy) according to the ISO 5660 standard, by

Figure 1. (a) Silanized epoxy species (i.e., AP-modified DGEBA epoxy chain); (b) hybrid epoxy moiety.
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using squared samples (100 × 100 × 3 mm3), with a heat flux of 35
kW/m2, in horizontal configuration. Time to ignition (TTI, s), total
heat release (THR, MJ/m2), and peak of the heat release rate (pHRR,
kW/m2) were measured. The total smoke release (TSR, m2/m2) was
also evaluated. For each sample, the experiments were repeated at
least three times in order to ensure reproducible and significant data.
Direct inlet probe-mass spectroscopy (DIP-MS) was performed

with a Finnigan/Thermoquest GCQ ion trap mass spectrometer
(Austin, TX) equipped with a DIP module. Approximately 1 mg of
the sample was placed in a quartz cup located at the tip of the probe
and inserted into the ionization chamber operated at 70 eV ionization
voltage; the temperature of the ionic source was set at 200 °C and the
pressure was below 10−6 mbar. The probe temperature was varied
from 30 to 450 °C at 50 °C/min.
Dynamic mechanical analysis (DMA) was conducted by means of a

Q800 TA Instrument (New Castle) in single-cantilever configuration,
on rectangular specimens (35 mm × 10 mm × 4 mm of length ×
width × thickness, respectively), to measure the storage (E′) and loss
moduli versus temperature. The investigated systems were submitted
to the following ramp-up of temperature: from 30 to 150 °C, at 2 °C/
min and 1 Hz of frequency.
Tensile tests were performed using a Zwick Z100 dynamometer

(ZwickRoell S.r.l., Genova, Italy), following the ASTM D638
standard, on rectangular specimens (50 × 10 × 4 mm3), using a
100 kN load cell at 1 mm/min rate until 0.2% deformation was
reached. Then, the rate was increased up to 10 mm/min until the
specimen broke. Five specimens were tested for each formulation, and
the average values of the tensile modulus (Et), the elongation at break
(εB), and the tensile strength (σB) were calculated.

3. RESULTS AND DISCUSSION
3.1. Chemical Study of the Hybrid Epoxy Composites.

The completeness of the curing process was proved by the

disappearance of the characteristic adsorption bands of
uncured epoxy resin (ENC) at 970, 912, and 870 cm−1 in
the ATR-FTIR spectra of all cured epoxy systems (Figure S2).
Furthermore, an increase of adsorption bands at 1100, 950,
and 800 cm−1 was observed in the ATR-FTIR spectra of the
samples prepared using AP (i.e., for E12AP, E6AP_6HAUR-
APP, and E12AP_12HAURAPP samples).18 These features
might suggest the formation of a hybrid epoxy phase
containing silicon (i.e., of an organic−inorganic structure), as
already proved in previous papers.1,18 In addition, the increase
of the FTIR signals at about 3400, 2920, and 2870 cm−1,
related to the N−H asymmetric deformation vibration,21

confirms the presence of APP in E6AP_6HAURAPP and
E12AP_12HAURAPP samples.
The p re s ence o f HA in E6AP_6HAURAPP ,

E12AP_12HAURAPP, ENC+HA, and HA+IDA samples can
be supported by the appearance of the FTIR bands around
3300 cm−1, which are attributed to the O−H stretching of the
oxygen-containing functional groups (i.e., carboxyl, phenol,
and alcohol),1,13,22,23 and at 1580 cm−1, related to the CO
bonds, and ketone and quinone moieties (Figures S2−S4).
Moreover, these bands are more intense in the FTIR spectra of
the samples containing UR, proving its presence within the
matrix. Furthermore, physical mixtures of HA with ENC or
IDA, which underwent the same cure and post-cure treatments
as the other hybrid epoxy composites, did not evidence any
significant change in the related FTIR spectra, suggesting that
no reaction occurred between HA and ENC or IDA during the
curing process (Figures S3 and S4).

Figure 2. (a, c) TGA curves and (b, d) DTG curves of EPO and epoxy composites under N2 (a, b) and air (c, d).
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3.2. Thermal Analysis. Figure 2a,c shows the thermogra-
vimetric curves of E, E12AP, E12AP_12HAURAPP, and
E6AP_6HAURAPP samples recorded in N2 and air atmos-
phere, respectively. In N2 atmosphere, a first weight loss occurs
at about 280 °C; this finding is ascribed to the production of
some volatile products, specifically acrolein, acetone, and allyl
alcohol, as already reported in the literature.24,25 The main
decomposition step of the cross-linked resin (beyond 340 °C)
occurs through the release of high-molecular-weight products
along with more complex phenolic compounds.25 Conversely,
no weight changes were observed between 400 and 600 °C,
due to the production of a very stable aromatic char (Figure
2a,b).
In air (Figure 2c,d), two main degradation steps around 350

and 500 °C are evident, in agreement with the degradation
pathways of an aliphatic epoxy resin.25,26

Besides, the incorporation of AP leads to the appearance of a
second degradation step at around 400 °C in N2 atmosphere
and to a shift of the oxidative degradation phenomena toward
higher temperatures in air atmosphere, possibly due to the
hybrid epoxy network that provides a higher thermal stability
to the epoxy matrix (Figure 2).27,28

The presence of any of the employed additives improves the
overall thermal behavior of the samples, providing higher
residues with respect to the neat resin E, which, conversely,
decomposes completely (Table S3).
HA positively affects the thermal behavior of the epoxy

systems, because of the generation of a stable aliphatic char
under inert atmosphere at high temperatures, resulting in an
increase of the residue as compared to E.14,29 In fact, the
addition of HA (i.e., EAP_HA and E_HA samples,
respectively, Table S3) leads to a faster decomposition of the
resin chains, due to the acidic features of HA, which favor the
char formation during the pyrolysis process.14,21 Notably, the
aromatic nature of HA allows the production of a more stable
char during the degradation of E in air atmosphere, preventing
the full oxidation of the resin with the formation of low-
molecular-weight molecules14,26,30 (Table S3, Section 3.1). In
addition, the combined presence of HA and each of the other
additives within the resin further improves the thermal
behavior: in fact, the charring phenomenon is further
supported by the presence of AP-modified DGEBA moieties
containing siloxane groups that show a weak acidic character.
In air, the presence of AP in the epoxy matrix leads to the

formation of a silicon-rich char, which acts as a thermal shield
and protective barrier, preventing oxygen diffusion, hence
further enhancing the thermo-oxidative stability (Table S3).
Besides, an abundant char formation is further expected by

the degradation of the samples containing APP, whose
decomposition produces acid phosphorus species and non-
flammable volatiles (i.e., P-species and N2), promoting a strong
dehydration of the polymer matrix. Then, the phosphoric acids
obtained by APP decomposition might react with the amino
groups of the AP-modified DGEBA moieties, generating P−
N−O substructures on the char surface, which improve its
intumescence, as well as its efficacy as oxygen barrier during
combustion.30,31 Also, the decomposition of UR produces NH3
that can be exothermically oxidized to N2, hence leading to a
dilution of the gas phase and a delay of the ignition time.16,30,32

Therefore, the E12AP_12HAURAPP sample may combine
the beneficial effects of HA, APP, and AP on the overall
thermal stability with those provided by UR, which is capable
of diluting the flammable volatiles in the gas phase and

generating an intumescent char with excellent fire retardant
properties.31 This hypothesis is confirmed by experimental
data showing that the E12AP_12HAURAPP sample has the
best thermal performance, combining one of the highest
residues with self-extinguishing properties.
Table S4 shows the glass transition temperatures (Tg)

measured by DSC analysis for pristine epoxy resin and all of
the epoxy composites. No residual exothermic peak was
observed during the first heating cycle, demonstrating the
completeness of the curing reaction in the adopted conditions.
It is worth pointing out that the presence of the silane

coupling agent in the polymer matrix (E12AP sample) does
not affect the Tg of the composite; hence, it does not influence
the epoxy chain’s mobility (Table S4).16,18

The incorporation of HA into the epoxy resin (E_12HA
sample) promoted an increase of Tg (by 17%) with respect to
the value recorded for E (Table S4). This finding may be
explained considering the formation of H-bonds between the
oxygen-containing functional moieties of HA (see Section 3.1)
and the hydroxyl groups formed during the cross-linking
process.1,30,33,34 In addition, the polar moieties of HA can
interact with the epoxy groups of DGEBA chains to assure
compatibility, hence contributing to enhance the stiffness of
the epoxy network.34 The effect of HA on the epoxy matrix
(E_12HA sample) is also supported by the DMA results
(Table S5) showing an increase of tan δ by 25%, as compared
to the cured neat epoxy resin. Table S5 and Figure 3 show that

the incorporation of HA into the epoxy resin accounts for
higher tan δ values compared to those not containing the
biowaste. Therefore, the mobility of the IDA aliphatic hardener
does not hinder the network curing, and the use of HA leads to
higher-cross-linked materials.35

Besides, UR is a diamide able to form a strong
intersegmental hydrogen-bonded network with epoxy resin
systems.36,37 It is known that APP can interact with melamine
polyphosphate flame retardants, which are employed for the
manufacturing of glass-reinforced epoxy composites.12 There-
fore, considering the DSC results obtained for E_URAPP, it
can be noted that APP and UR can strongly impact the epoxy
chain’s mobility, increasing the glass transition temperature
from 75 °C, for pristine resin, to 89 °C for E_URAPP (Table

Figure 3. Mechanical damping factor (tan δ) of pristine resin and
epoxy composites collected as a function of temperature.
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S4). Finally, the combined use of APP, UR, and HA
(E12AP_12HAURAPP , E6AP_6HAURAPP , and
E_12HAURAPP samples) may favor the occurrence of
hydrogen bond interactions between the oxygen-containing
functional groups of HA (see Section 3.1) and nitrogen-based
additives (i.e., UR and APP), resulting in an increase of Tg (up
to about 17%) with respect to E and E12AP samples (Table S4
and Figure 4).1,12,36

The DMA results shown in Table S5 additionally highlight
that the presence of hybrid epoxy moieties in AP-modified
DGEBA promotes the above-mentioned interactions between
HA und UR. E12AP_12HAUR shows 56% increase of E′
compared to the value shown by neat resin, though its tan δ
appears to be lower than that of E12AP_12HAURAPP, which
contains APP (Table S5).12,30,35 These findings can be
interpreted on the basis of the interactions occurring between
HA und UR in the presence of AP (i.e., the E12AP_12HAUR
sample), which lead to a material with a strong capability to
store energy in its elastic portion but showing an increased free
volume and thus a lower cross-linking density.35 The
incorporation of APP (i.e., the E12AP_12HAURAPP sample)
causes the establishment of H-bonds with UR and helps in
achieving a good compromise between tan δ and the storage
modulus, thus yielding a highly cross-linked epoxy system with
enhanced stiffness (Table S5 and Figure 5).12,37,38

3.3. Fire Behavior of the Hybrid Epoxy Composites.
Vertical flame spread tests were carried out on all of the epoxy
composites to assess their flammability. E12AP_12HAURAPP
was found to be self-extinguishing and V-0 rated (Figure S5).
On the contrary, all of the other investigated samples were not
classifiable (Table 2), though the formation of an abundant
and coherent char was observed in the composites containing
both AP and HA. The highest production of char occurred in
the E12AP_12HAAPP sample, where the acid phosphorus
compounds released by APP during its decomposition
contributed to dehydration of the epoxy resin, through a
synergistic effect with hybrid chains and HA additives. In
addition, the presence of both AP and HA in the epoxy matrix
prevented dripping (Table 2), due to the increase of the melt
viscosity of the burning system.39 Considering the afterflame
times (t1 and t2 values, Table 2) of E_URAPP, E12AP_UR-

APP, and E12AP_12HAURAPP samples, the incorporation of
HA into the epoxy resin was crucial to obtain V-0 rating; the
sample containing AP, HA (6 wt %), UR, and APP burned
partially, producing a very coherent char (Figure S5). This also
suggests a combined condensed-phase action exerted by HA
and the hybrid epoxy moieties, which strongly affects the
charring process from the early combustion stages. For
E_URAPP and E12AP_URAPP samples, a decrease in flame
inhibition after the first application of flame was observed
(Table 2). However, E12AP_URAPP showed lower t1 values,
which may be due to the high char-forming character of the
AP-modified epoxy network, able to generate a silicon-rich
char acting as a thermal shield and oxygen barrier for the
underlying polymer matrix.37 Conversely, the use of APP and
UR blowing agents was fundamental to positively influence the
t1 extinguishing time (sample E_URAPP, Table 2), especially
when the epoxy resin did not undergo sol−gel modifica-
tion.30,32,40 This finding was ascribed to the decomposition of
APP and UR, since the former acts in the gas phase, forming
phosphorus species, whereas the latter produces nitrogen-
based volatiles, leading to the dilution of flammable volatiles
and increasing the extinguishing time t1 with respect to the
other unmodified formulations.
During the CC tests, the decreases of pHRR (ranging from

39 to 52%) and THR (up to 23%) were more pronounced for
the composites containing HA, UR, and APP (Figures 6 and
S6, Table 3), though the presence of AP alone (the E12AP
sample) significantly lowered the aforementioned parameters.
However, an increase of the amounts of AP, HA, UR, and APP
delayed the time to pHRR (Table 3). This effect can mainly be
ascribed to the decomposition of APP and UR, as clearly
reported in the literature.27,33,41,42

Cone calorimetry results (Table 3 and Figure S6) confirm
that the highest impact on the flame retardance of the
composites is due to the acidic character of the hybrid epoxy
chains, exerting a strong condensed-phase activity through
dehydration of the network and leading to a remarkable
reduction of the pHRR, mass loss rate (MLR), and FPI, but
also to an increase of the residual mass and TTP. However, as
previously mentioned for the vertical flame spread tests, the
addition of HA in combination with AP, UR, and APP was
crucial to achieve self-extinction. Figure 6 shows a noticeable

Figure 4. Tg of pristine resin and hybrid epoxy systems.

Figure 5. Storage moduli (E′) of pristine resin and epoxy composites
collected as a function of temperature.
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broadening of the HRR curve for E12AP_12HAURAPP,
where the phosphorus species stop the hydrocarbon oxidation
reactions and slow down the branching and chain reactions
occurring in the gas phase, thus reducing the heat
production.33 An additional increase of the residue was
observed in E12AP_12HAURAPP and E6AP_6HAURAPP
samples (Table 3), where the additives favor the formation of a
coherent, swollen, and intumescent char (Figure 7). This can
be ascribed to the release of the nitrogen species and

dehydration of the matrix by the acidic hybrid epoxy moieties,
HA, and phosphorus species formed during combustion.32,43

The strong increase in CO/CO2 ratio observed for
E12AP_12HAURAPP and E6AP_6HAURAPP (Table 3 and
Figure S6) may be due to the APP that releases phosphorus
species in the gas phase, leading to an incomplete combustion
and consequently to the formation of CO. These phosphorus
species interrupt and slow down the branching and chain
reactions of the hydrocarbon oxidation reactions in the gas
phase, thus reducing the heat production and leading to flame
inhibition.33,41

To better elucidate the fire behavior of the epoxy samples,
time to flashover (TTF) and flame propagation index (FPI)
were calculated (Table 3).43,44 The first parameter represents
the time available to escape a fire in a confined space44−46 (see
Section S4), while the second one depends on the flammability
(i.e., front flame movement). E12AP_12HAURAPP and
E6AP_6HAURAPP samples showed significantly increased
TTF and, therefore, were characterized by lower FPI, smoke
production rate (SPR), and total smoke release (TSR) with
respect to the pristine resin (Table 3 and Figure S6). The
decomposition of HA, UR, and APP generates greener
compounds replacing several aromatic structures (e.g.,
benzene, naphthalene, anthracene, among a few to mention),
which are normally produced during the last steps of the
carbonization and gas-phase combustion processes of a
DGEBA resin.47−51 These phenyl-based compounds are the
main components of smoke during the degradation of an epoxy
resin.25,48,52

Table 2. Results of Flame Spread Tests in Vertical Configurationa

sample t1 in s t2 in s UL 94/dripping

E not classifiable (NC)/yes
E_12HA NC/no
E_UR NC/no
E_APP NC/no
E_URAPP 8 7 6 7 8 NC/no
E_12HAUR NC/no
E_12HAAPP NC/no
E_12HAURAPP NC/no
E12AP NC/no
E12AP_12HA NC/no
E12AP_UR NC/no
E12AP_APP NC/no
E12AP_URAPP 3 3 4 5 3 NC/no
E12AP_12HAUR NC/no
E12AP_12HAAPP NC/no
E6AP_6HAURAPP NC/no
E12AP_12HAURAPP 0 0 0 0 0 0 0 0 0 0 V-0/no

at1 and t2 = Duration of flaming after the first and second flame application. The test was carried out 5 times for all of the samples.

Figure 6. Heat release rate (HRR) versus time for E, E12AP,
E6AP_6HAURAPP, and E12AP_12HAURAPP samples.

Table 3. Results from Cone Calorimetry Tests for the Investigated Samplesa

sample TTI [s] pHRR [kW/m2] TTP [s] THR [MJ/m2] TSR [m2/m2] RM [%] FPI TTF [min] CO/CO2

E 28 1471 125 111 3755 3 52 0.29
E12AP 25 856 160 111 3493 7 34 0.5 0.26
E6AP_6HAURAPP 34 902 78 86 2913 9 26 1.6 0.44
E12AP_12HAURAPP 28 704 128 88 3145 11 25 1.8 0.41

aTTI = time to ignition, pHRR = peak of the heat release rate, TTP = time to peak, THR = total heat release, TSR = total smoke release, RM =
residual mass, FPI = flame propagation index, TTF = time to flashover, FRI = flame retardancy index. FRI is not reported for EPO, because this
sample represents the neat polymer.
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3.4. Thermal Decomposition and Flame Retardant
Mechanism Studies. DIP-MS analysis was performed on E,
E12AP, E12AP_12HAURAPP, and E6AP_6HAURAPP to
further elucidate the decomposition mechanism and the
influence of each additive on the gases evolved. As already
reported for similar systems, the decomposition pathway for
epoxy resins in inert atmosphere and at high temperature
mainly leads to the formation of bisphenol A, 4,4′-(cyclo-
propane-1,1-diyl)diphenol, 4-isopropylphenol, 4-isopropenyl-
phenol, phenol, benzene, naphthalene, toluene, 2-methylpent-
2-en-1-ol, 3-hydroxy-2-methylpentanal, o-cresol, 2-ethylphenol,
and 2-allyl-4-methylphenol, along with low amounts of
aromatic products, which are recognized as the most abundant
products25,53,54 (Figure S7, Table S6).
Figure 8 shows the total ion thermograms for E, E12AP,

E12AP_12HAURAPP, and E6AP_6HAURAPP samples ob-
tained through DIP-MS analysis, which additionally confirmed

the formation of many decomposition products. Besides,
Figure S7 confirms that E, E12AP, E12AP_12HAURAPP, and
E6AP_6HAURAPP samples release approximately the same
amount of decomposed volatile species (namely, bisphenol A,
4,4′-(cyclopropane-1,1-diyl)diphenol, 4-isopropylphenol, 4-
isopropenylphenol, and phenol) by increasing the temperature
up to 450 °C. In particular, DIP-MS results (Figure S8)
h igh l i gh t the product ion o f more spec ie s fo r
E12AP_12HAURAPP and E6AP_6HAURAPP samples be-
tween 200 and 450 °C, as APP decomposes and phosphorus
species are released (Table S7).55 The presence of these
phosphorus compounds was already observed for APP,
although in a different polymer matrix.55,56 In air, PO• radicals
can act in the gas phase and consume active H• and OH•

species in the flame by recombining with them and favoring
flame inhibition.57,58 DIP-MS results and the detection of
phosphorus radicals agree with an increased value of CO/CO2

Figure 7. SEM images of the residual char obtained after the CC test of E (a), E12AP (b), E6AP_6HAURAPP (c), and E12AP_12HAURAPP (d)
samples.
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ratios for E12AP_12HAURAPP and E6AP_6HAURAPP
compared to E and E12AP samples, as assessed by cone
calorimetry tests (see Section 3.3). Figure S8 displays the
thermograms of each species formed from the decomposition
of APP.
Scheme S1 shows a possible mode of reaction between APP

and E during degradation in air. In the presence of APP, the
active radicals O• in the flame zone are neutralized and turned
into a notable amount of volatile species such as PO•, PO2

•,
and HOPO2

• (flame inhibitors).30,41

The E12AP_12HAURAPP sample shows a larger amount of
PO• radicals released during the combustion compared to
E6AP_6HAURAPP, confirming that the involved gas-phase
mechanism accounts for the excellent performance in the UL
94 test of this sample. A higher production of flame inhibitors
from the early stages of epoxy degradation and the formation
of a continuous swollen multicellular char may further justify
the self-extinguishing behavior of E12AP_12HAURAPP
compared to the E6AP_6HAURAPP sample. Also, DIP-MS
analysis of these samples showed the release of nitrogen
species at around 250 °C without any significant change in the
epoxy resin degradation. These nitrogen-based compounds are
produced by the decomposition of UR and APP, as reported in
the literature for other composites.48 In particular, UR mainly
affects the flame retardance of hybrid epoxy composites
through the activity of N2 that dilutes the combustible gases,
hence playing a physical role in the general mode of reaction
between APP and E.27,32 Therefore, UR influences the
flammability of resin (Section 3.3, Tables 2 and 3) without
any chemical interaction with the main degradation products
of the epoxy network. For these reasons, UR does not appear
in Scheme S1.
Based on elemental (Table S8) and SEM analyses of residual

char (Figure 7), a combined effect of HA, UR, APP, and AP
acting in both condensed and gas phases is proposed (Figure
9). It is well known that epoxy resins are well-established
charring polymers and undergo carbonization processes during
combustion.59 As previously observed in thermogravimetric
analysis (Section 3.2), HA may boost the dehydration kinetics
because of its acidic character, affecting decomposition
temperatures and the final residue under N2 atmosphere. A
similar condensed-phase activity occurs due to the presence of

the hybrid domains, which address the pyrolysis toward the
formation of a silicon-rich char on the material surface.60 The
latter works as a thermal shield toward the spread of gaseous
species supplied from the decomposing polymer bulk, and of
oxygen.52 The detection of silicon elements in addition to C,
H, and N, which are dominating in the char of the pristine
epoxy sample (E sample, Figure 9a), proves the production of
a silicon-rich char in the case of E12AP (Table S8, Figure 9b).
As regards SEM analysis (Figure 7a,b), it is evident that the
char morphology of E12AP is more compact and coherent
compared to that of E, in which fractures and holes are present.
These findings justify the improved fire behavior of E12AP
compared to E observed in the forced-combustion tests (Table
3),18 as the hybrid epoxy network is responsible for a reduction
of pHRR as high as 42%.
The scientific literature well reports that UR and APP

degrade at around 250 °C, releasing NH3 that undergoes
exothermic decomposition, forming N2.

58,61 Besides, the
degradation of APP produces acid phosphorus compounds
during combustion, which, together with HA, are responsible
for the generation of an intumescent and abundant char along
the dehydration.32,40 In addition, NH3 may also react with
polyphosphoric acid to produce P−N−O substructures, hence
providing insulating properties to the intumescent char.30,31

Further, the combined use of HA, UR, and APP (the
E6AP_6HAURAPP sample) is responsible for the formation
of an intumescent char characterized by the presence of P−N−
O−Si−O−P polymeric substructures on the surface (Figure
9c).31,43 The latter are obtained through condensation
between silanol groups (i.e., Si−O−Si) of the hybrid epoxy
network and P−N−O substructures. This char behaves as a
thermal shield and oxygen barrier at the boundary layer,40,52,53

leading to a high retention of P for E6AP_6HAURAPP (Table

Figure 8. DIP-MS total ion thermograms of E, E12AP,
E12AP_12HAURAPP, and E6AP_6HAURAPP samples.

Figure 9. Proposed mechanism of E-AP/APP-UR-HA in oxygen (O2)
atmosphere. (a) E, (b) E12AP, (c) E6AP_6HAURAPP, and (d)
E12AP_12HAURAPP. Black arrows show the direction of rising
bubbles (white balls) from the hot polymer matrix (borrow region).
Yellow circles indicate the sol−gel hybrid epoxy moieties in the
network. In particular, the yellow border line around the black
carbonaceous char indicates the presence of a silicon-rich char
(thermal shield and oxygen barrier) on the surface of the burning
sample.
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S8) and a strong delay in the ignition time and time to
flashover (Table 3). However, the synergism of these effects
was not enough to achieve self-extinction (Table 2). In this
regard, the E12AP_12HAURAPP sample (Figure 9d),
prepared with a higher amount of additives, showed a swollen
multicellular intumescent char and higher retention of P as
compared to E6AP_6HAURAPP (Figure 7c,d, Table S8).
Therefore, it is reasonable to hypothesize that this swollen
multicellular intumescent char contains a higher number of P−
N−O−Si−O−P polymeric substructures on the surface.30

SEM analysis supports this hypothesis, since the char
morphology of E6AP_6HAURAPP appears intermediate
between those produced by E12AP and those produced by
E12AP_12HAURAPP, because the multicellular structures are
not uniformly formed yet (Figures 7 and 9).
Hence, E12AP_12HAURAPP may exert a strong con-

densed-phase mechanism, resulting in excellent performances
in UL 94 (V-0 class) and CC tests (52% of pHRR reduction,
Table 3), despite the use of an aliphatic amine (IDA) as the
hardener.
The interaction of hybrid moieties, phosphorus flame

retardants, and nitrogen additives to form a stable char and
resulting in an improved fire performance is well known for
other polymeric systems, though, based on the best knowledge
of the authors, this is the first time that a biowaste (i.e., HA)
becomes a crucial component in the flame retardance of an
epoxy-based system.14,31,62,63

3.5. Mechanical Behavior. The tensile properties of E,
E12AP, E12AP_12HAURAPP, and E6AP_6HAURAPP sam-
ples were measured according to the ASTM D638 standard
(Table 4). It is well known that the formation of silicon-

containing hybrid moieties can be considered an effective
method for increasing the toughness of epoxies.64 The
presence of hybrid epoxy chains in the polymer matrix slows
down the kinetics of the energy dissipation mechanisms, as for
example the crack growth occurring from filler debonding.
Thus, the incorporation of a hybrid epoxy network into neat
epoxies promotes an increase of fracture toughness.64 There-
fore, the E12AP sample, which was synthesized by following
the first step of a sol−gel method already exploited by the
authors in several similar systems,16,18,30,48 is characterized by
uniformly distributed hybrid moieties that increase its fracture
strength “σB” and elongation break “εB” compared to the E
sample (Table 4). The incorporation of HA, UR, and APP into
the hybrid epoxy composites (E6AP_6HAURAPP and
E12AP_12HAURAPP samples) does not seem to significantly
affect the overall mechanical behavior of the cured epoxy resin
(Table 4).
The literature indicates that self-extinction can be achieved

for DGEBA-based systems in a P-containing bio-resin,
prepared with itaconic acid (IA) and 9,10-dihydro-9-oxa-10-
phosphaphenanthrene 10-oxide (DOPO), which was used as a
bio-based flame retardant in the DGEBA system.65 This

modification allowed the formation of a phosphorus-containing
bio-epoxy resin system, where the synthetic resin completely
changes its structure and can be cured using methyl
hexahydrophthalic anhydride. Even though this methodology
was very effective in terms of fire behavior, it required a high
concentration of phosphorus (∼4 wt %) to achieve V0 class in
UL 94 vertical flame spread tests.66 Conversely, the addition of
HA in combination with AP, UR, and APP (i.e.,
E12AP_12HAURAPP sample) helps in achieving self-
extinction with 1.1 wt % of phosphorus only. Besides, it is
well known from the literature that phenethyl-bridged DOPO
derivatives in combination with organo-modified aluminum
hydroxide (OATH) can provide DGEBA-based epoxy systems
with flame retardant features.67−69 In particular, 10 wt %
phenethyl-bridged DOPO derivative and 60 wt % OATH were
incorporated into DGEBA cured with 2-ethyl-4-methylimida-
zole. The resulting system achieved UL 94 V0 rating thanks to
the “sink effect” provided by OATH, which delayed the TTI of
the composite.70 Despite the achievement of self-extinction
features, the high OATH loading showed a detrimental effect
on the mechanical performances, which exhibited a significant
loss of toughness.69 On the contrary, our proposed strategy
does not negatively affect the mechanical behavior of the epoxy
system, as clearly shown by the values of stiffness and
elongation at break presented in Table 4 (see
E12AP_12HAURAPP s amp l e ) . I n con c l u s i on ,
E12AP_12HAURAPP shows mechanical performances com-
parable to the neat epoxy matrix, as well as self-extinguishing
capability, which make this formulation very promising for
possible future industrial applications.

4. CONCLUSIONS
In this work, humic acid (HA) as a biowaste flame retardant
(i.e., active in condensed phase), urea (UR) as nitrogen source,
and ammonium polyphosphate (APP) as a phosphorus-based
intumescent flame retardant were added to a silicon-modified
epoxy resin to improve its fire performances. Thermal and
microscopy analysis revealed that the incorporation of HA
strongly promotes the thermal stability of the epoxy system by
boosting the char-forming process; therefore, HA is the
contributing factor to the strong condensed-phase activity
due to its chemical structure. Furthermore, the presence of
humic acid in the epoxy system prevented melt dripping during
the vertical flame spread tests, and the formulation containing
HA (6 wt %), UR (4 wt %), and APP (6 wt %) allowed to
achieve self-extinguishing capability with an unprecedented
very low phosphorus concentration (∼1 wt %). Forced-
combustion tests showed that the addition of HA, UR, and
APP to the hybrid epoxy system promoted a strong reduction
of pHRR values up to 52%, together with an increase of the
time to flashover and residue. The excellent flame retardant
results were ascribed to the formation of an N−P−O−Si chain
containing intumescent char, which acts as a thermal shield
and oxygen barrier, and a gas-phase activity of APP linked to
the flame inhibition mechanism.
In conclusion, we demonstrated that a biowaste flame

retardant such as humic acid can be well dispersed into a
silicon-modified DGEBA resin, since silicon-containing hybrid
epoxy moieties help in achieving a uniform distribution of the
filler. In addition, a simple combination of inexpensive
additives (HA, UR, and APP) with a low amount of
phosphorus accounts for the excellent flame retardant features
of epoxy resins even cured with an aliphatic hardener, without

Table 4. Tensile Test Results of Pure Epoxy Resin (E) and
Epoxy Composites for Comparison

sample Et [MPa] σB [MPa] εB [%]

E 1900 ± 157 38.3 ± 17.7 3.7 ± 2.3
E12AP 1760 ± 33 60.4 ± 2.5 10.0 ± 3.2
E6AP_6HAURAPP 1810 ± 156 36.3 ± 15.1 3.3 ± 2.1
E12AP_12HAURAPP 2030 ± 68 38.6 ± 4.1 3.5 ± 0.6
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any negative effect on the overall mechanical performances.
This study may contribute to the setting up of effective
methodologies to exploit the flame retardant features of HA
toward the development of new green, effective composite
materials. Finally, this strategy may inspire the design of more
sustainable products, where the polymer matrix is also bio-
based.
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with Stöber Silica Nanoparticles. Polymers 2020, 12, 982.
(2) Venezia, V.; Pota, G.; Silvestri, B.; Vitiello, G.; Di Donato, P.;
Landi, G.; Mollo, V.; Verrillo, M.; Cangemi, S.; Piccolo, A.; et al. A
study on structural evolution of hybrid humic Acids-SiO2
nanostructures in pure water: Effects on physico-chemical and
functional properties. Chemosphere 2022, No. 131985.
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