
18 October 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Application of a Machine Learning Algorithm for the Structural Optimization of Circular Arches with Different Cross-
Sections / Melchiorre, Jonathan; Manuello, Amedeo; Marano, Giuseppe. - In: JOURNAL OF APPLIED MATHEMATICS
AND PHYSICS. - ISSN 2327-4352. - STAMPA. - 9:(2021), pp. 1159-1170. [10.4236/jamp.2021.95079]

Original

Application of a Machine Learning Algorithm for the Structural Optimization of Circular Arches with
Different Cross-Sections

Publisher:

Published
DOI:10.4236/jamp.2021.95079

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2915876 since: 2021-07-29T14:42:00Z

Scientific Research Publishing



Journal of Applied Mathematics and Physics, 2021, 9, 1159-1170 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2021.95079  May 31, 2021 1159 Journal of Applied Mathematics and Physics 
 

 
 
 

Application of a Machine Learning Algorithm 
for the Structural Optimization of Circular 
Arches with Different Cross-Sections 

Jonathan Melchiorre, Amedeo Manuello Bertetto*, Giuseppe Carlo Marano 

Department of Structural Building and Geotechnics, Politecnico di Torino. Corso Duca degli Abruzzi, Torino, Italy 

 
 
 

Abstract 
Arches are employed for bridges. This particular type of structures, characte-
rized by a very old use tradition, is nowadays, widely exploited because of its 
strength, resilience, cost-effectiveness and charm. In recent years, a more 
conscious design approach that focuses on a more proper use of the building 
materials combined with the increasing of the computational capability of the 
modern computers, has led the research in the civil engineering field to the 
study of optimization algorithms applications aimed at the definition of the 
best design parameters. In this paper, a differential formulation and a MATLAB 
code for the calculation of the internal stresses in the arch structure are pro-
posed. Then, the application of a machine learning algorithm, the genetic al-
gorithm, for the calculation of the geometrical parameters, that allows to mi-
nimize the quantity of material that constitute the arch structures, is imple-
mented. In this phase, the method used to calculate the stresses has been con-
sidered as a constraint function to reduce the range of the solutions to the 
only ones able to bear the design loads with the smallest volume. In particu-
lar, some case studies with different cross-sections are reported to prove the 
validity of the method and to compare the obtained results in terms of opti-
mization effectiveness. 
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1. Introduction 

Arch is a very old structural typology due to its effective structural shape that 
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can bear the loads in a very efficient way. The main idea behind the arch is to 
transfer the vertical loads to the supports with a structure that is mainly com-
pressed. The efficiency of the load transfer is strongly related to the arch geome-
try. Nowadays, arch girders have become again more and more interesting for 
designers and architects due to their strength, resilience, cost-effectiveness and 
the possibility of shaping their various forms, influencing, in certain context, the 
landscape itself [1]. The design of the arch structures goes undoubtedly through 
their shape. The arches have always been designed looking for the best shape to 
reduce the internal stress state and, for some applications, for those particular 
geometries able to ensure, for the greatest number of loading configurations 
possible, a prevailing compression only condition. In addition, recently, the re-
search of the most performing arch shape together with the study of increasingly 
detailed calculation methods for the verification of the most diffused geometries, 
has been accompanied by analysis focused on the varying of the sections 
along the axis line. Recently some papers investigated the best design para-
meters concerning the cross-section of arches [2] [3]. Results for optimal shapes 
of plane-statically determined arches under uniform vertical loads were recently 
presented [4] [5] [6]. Some papers have been published related to the shaping of 
the arch axis and shell structures subjected to different loading and constrain 
conditions [7]-[12]. Concrete arches were studied by Houšt et al. [13], in this 
case, the best shape configurations were reached in correspondence of the mi-
nimization of the maximal stresses. The issue of minimization of the maximal 
stress over an arch structure in the context of linear elastic thin shell theory was 
analyzed by [14]. Examples of the determination of the optimum shape of brick 
masonry arches under dynamic loads by cellular automata were presented by 
Kumarci et al. [15]. The optimal design of a steel arch bridge by genetic algo-
rithm was considered in recent paper by Park et al. [16]. Shape optimization of 
concrete open spandrel arch bridges using the simultaneous perturbation sto-
chastic approximation algorithm was studied [17]. An analytical formulation for 
the calculation of the internal stresses of arches, characterized by different 
shapes cross-sections is proposed in Section 2. This formulation is based on the 
solution of a sixth order differential equations system solved respect to the six 
unknowns represented by the displacements of the arch along the curvilinear 
abscissa and their first derivative. This formulation, as explained in Section 4, 
was solved by using the boundary value solver “bvp4c” [10] [18] implemented in 
the software MATLAB [19] by considering the case of a fully restrained arch to 
define the boundary conditions as in the Section 3. Finally, the solution obtained 
has been used as constraint function to be implemented in the genetic algorithm 
[20] [21] that is a machine learning algorithm for the solution of the optimiza-
tion problem. Nowadays a good design process cannot disregard the evaluation 
of the structural efficiency aimed to the identification of the most cost-effective 
structure’s geometry that, in general, is the one with the lowest volume of em-
ployed material. The increasing of the computational capability of the last dec-
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ades allowed the computer science to be a crucial tool in many research fields 
and in the optimization research field. The aim of this research work is then to 
outline a tool that can help the designer in the definition of the best arch geome-
try in the pre-design phase. To this scope in Section 5 are presented and com-
pared some cases of optimized arch subjected to different loads. 

2. Differential Equations for the  
Solution of the Circular Arch 

Consider a plane curved beam segment, composed of homogeneous linear elas-
tic material having Young modulus E and with a constant curvature radius R, 
subject to the external loads Pt and Pn, applied respectively along the tangential 
and normal direction, and the external distributed moment m. The static, kine-
matic and constitutive equations [22], neglecting the beam elongation 0ε =  
and the shear strain 0γ = , can be combined to get the following sixth order 
system of differential equations that relates the external loads applied to the 
beam with the correspondent strains: 

2

2 2

1
S t

d u u dvEA GA P
R ds Rds R

ϕ   − − − + − =   
  

              (1) 

2

2 2

1 1
S n

du v du d v dEA GA P
R ds R ds dsR ds

ϕ  + − − + − =  
   

          (2) 

2
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R ds ds

ϕϕ − − + − − = 
 

                (3) 

where N, V and M the internal axial force, shear force and bending moment, γ 
and χ are the elongation, shear strain and elastic curvature of the beam, while φ, 
u and v are the rotation and the tangential and normal displacements of the ge-
neric beam cross-section which the geometrical properties A, AS and I are re-
spectively the area, the shear-area and the bending inertia of the cross-section of 
the beam. 

3. Boundary Conditions and External Loads 

The method described in the Section 2 is a general method that can be applied to 
different load shapes and restraints. In the following one, a simplified analysis is 
considered based on the assumption of a fully restrained arch subject to an ex-
ternal distributed load constant along the arch axis s and the self-weight of the 
structure. 

The restraints can be introduced in the differential equations system by consi-
dering the boundary conditions. For a fully restrained arch, it is possible to con-
sider null the strains in the two restrained extremities of the arch. Being Larch the 
length of the arch along the curvilinear axis s, the boundary conditions result: 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0arch arch archu u L v v L Lϕ ϕ= = = = = =      (4) 

The external loads are given by two different contributions: the overload q0 
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and the self-weight qsw. The two loads are given in vertical direction and, to be 
applied in the differential equations system, should be projected in local system 
and in the directions tangential and perpendicular to the arch axis. Thus, given 
the self-weight as swq Aγ= , it is possible to calculate Pt and Pn as: 

( ) ( )0 0sin cosn t
s sP A q P A q
R R

γ θ γ θ   = + + = + +   
   

        (5) 

4. Numerical Solution 

The ordinary differential equations (ODEs) systems, in general, admit infinite 
solutions, hence it is necessary to add boundary conditions and to define a 
boundary value problem (BVP). The BVP is a system of ordinary differential 
equations subjected to a specified boundary condition in correspondence of 
more than one point. Therefore, the main goal is to find a solution to the ODEs 
which also satisfies the boundary conditions. In particular, the system defined in 
Section 2 is a sixth order differential equations system that can be solved by ap-
plying the sixth boundary conditions in the Equation (4). The BVP presented in 
the previous chapter can be solved by using the software MATLAB [19] and, 
in particular, the function “bvp4c” that allows to solve problems that have 
two-boundary conditions, multipoint conditions, singularities in the conditions 
and unknown parameters. According to Shampine [18], to run the solver, the 
equation should be reduced to a system of first order equations, since the solvers 
implement a collocation method to approximate the solution of BVPs subjected 
to general nonlinear, two-point boundary conditions. Thus, the system formed 
by the three 2nd order differential Equations (1), (2) and (3) can be rewritten as 
system of formed by six 1st order differential equations by defining the first de-
rivatives of the strain as unknowns of the system: 

1 1 1 2 2 2
du dv du u v v u v
ds ds ds

ϕϕ ϕ ϕ= = = = = =       (6) 

Under the previous assumptions, it is possible to rewrite the sixth order diffe-
rential equations system as follows: 
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where \SD GA EA=  and \I
SD GA EI= . Moreover the arch was considered 
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fully fixed at each end as in Figure 1 for this reason the boundary conditions can 
be imposed as in the Equations (4). The calculation method presented in this 
paper has been validated by comparing the obtained results in MATLAB [19] 
with the results obtained by building a finite element equivalent model in the 
software MidasGen [23]. In particular, the results are compared in terms of in-
ternal actions (Figure 2), displacements calculated in the global coordinate system 
(x,y) (Figure 3), rotations (Figure 4) and combined compressive and bending  

 

 
Figure 1. Restraints and external load acting on the arch. 

 

 
(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 2. Comparison of Internal forces: Axial Force (MATLAB (a) and Midas (b)), Shear Force (MATLAB (c) and Midas 
(d)), Bending Moment (MATLAB (e) and Midas (f)). 
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(a)                                                      (b) 

 
(c)                                                      (d) 

Figure 3. Comparison of the Displacements in the global coordinate system (x, y): Displacements in the x-direction 
(MATLAB (a) and Midas (b)), Displacements in the y-direction (MATLAB (c) and Midas (d)). 

 

 
(a)                                                      (b) 

Figure 4. Comparison of the Rotations (MATLAB (a) and Midas (b)). 
 

 
(a)                                                       (b) 

Figure 5. Comparison of the Normal stresses (MATLAB (a), and Midas (b)). 
 

stress (Figure 5). In the following, it is reported the example of the results com-
parison for some steel arches characterized by a span 100L m=  and hollow 
circular cross-section with a radius 0.50r m=  and a thickness 0.05t m= . The 
arches are subjected to an external load 0 50 /q kN mZ= −  and the results are cal-

culated for different height in the midspan [ ]10,20,30,40f m= . 
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5. Optimization and Genetic Algorithm 

The aim of this paper is to propose a tool useful in the pre-design phase for the 
definition of the arch geometry, able to bear the design loads and, at the same 
time, that requires as less material as possible. In particular, the selected optimi-
zation algorithm is the genetic one that, according to the MATLAB User Guide 
[19] and Goldberg [20] [21], is a machine learning algorithm based on a stochas-
tic optimization method for solving both constrained and unconstrained opti-
mization problems. The method is based on the mechanics of natural selection 
and natural genetics, process that drives biological evolution [24]. The genetic 
algorithm iteratively modifies a population of individual solutions: at each step, 
it selects individuals at random from the current population to be parents, used 
to produce the “children” for the next generation. Over successive generations, 
the population “evolves” toward an optimal solution [25]. The algorithm re-
quires the definition of the variables, the objective function and the constraints. 
In this analysis it is defined a vector of variables that is used to define the geo-
metry of the arch, the first variable is the angle θ (in Figure 7) that defines the 
shape of the arch while the others are the dimensions of the cross-section. For 
simplicity it is decided to restrict the field of the analysis to cross-sections that 
can be fully defined by two parameters at most, in such a way that the variables 
to be optimized will be no more than 3. The selected optimization objective 
function is the volume of the arch. It is proportional to the amount of material 
and has to be calculated at each iteration as a function of the design variables 
until the geometry corresponding to the minimum volume is found. Finally, the 
constraint of the optimization problem is represented by the maximum normal 
stresses that arise on the arch structure due to the application of the loads. The 
algorithm must verify that the value of the maximum stress applied maxσ  is less 
than the maximum yield strength of the material that constitutes the arch yf . A 
simplified analysis is chosen that considers only the stresses perpendicular to the 
cross-section and that are given by the combination of the axial force and the 
bending moment. The shear stresses are not considered. Moreover, the analysis 
is performed without accounting for the instability effects [26], but being the 
method quite general it is possible to add such constraints in further develop-
ments. The algorithm has been tested by optimizing an arch with a span 

100L m=  made of a structural steel S355 with a yield strength 355yf MPa= . 
The arch has been optimized by applying different external loads  

0 [ 250, 350, 450, 550, 650] /q kN m= − − − − − . Initially the analysis has been per-
formed by considering a filled circular cross-section with a number of design va-
riables 2varn = . The first variable θ, defined in Figure 6, is the angle between 
the line that connect the arch center to the restraint at the base and the horizon-
tal plane; this angle fully describes the geometry of the arch. The second variable 
is represented by the radius of the cross-section r as in Figure 7. 

Once that the optimization is performed for the different load amounts, it has 
been checked the effectiveness of the algorithm by plotting in the same graph 
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both the stresses acting on the optimized arches and both the yield strength of 
the used steel yf . 

In Figure 8 all the curves that represent the maximum acting stress maxσ  are 
tangent to the lines that stay for yf . The tangency can be interpreted as the 
proof that optimization is effective because means that the optimized configura-
tions are the ones that require a quantity of material that is just sufficient to bear 
the design loads. The second test of the algorithm has been performed by consi-
dering the same span length L, the same design loads 0q  and the same material 
of the previous case, but different cross-section, considering a filled ellipsoidal 

 

 
Figure 6. Geometrical parameters of the arch. 

 

 
Figure 7. Geometrical parameters of the cross-sections. 

 

 
Figure 8. Filled circular cross-section: Comparison between the stresses on the optimized 
arches subjected to the design loads maxσ  and the yield stress of the material yf . 
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one to test the algorithm with 3varn = . The first design variable is the angle θ 
used to define the geometry of the arch. The second and third variables 
represent the dimensions of the cross-section as for the ellipse represented in 
Figure 7. Even in this case, it has been compared the acting normal stresses with 
the yield strength of the material and, as in the previous case, it is possible to no-
tice in Figure 9 how the acting stress curves are tangent to the yield strength 
limit. 

The last optimization example refers to the same arch of the previous two case 
studies but with a hollow circular cross-section. Even in this case, the algorithm 
is tested with a number of design variables 3varn =  but the idea is to use a steel 
cross-section that has the capability of develop a higher inertia by using the same 
amount of material. The first design variable is the angle θ, while the second and 
third variables are respectively the external radius and the thickness of the 
cross-section, as represented in Figure 7. In Figure 10, it is possible to observe 
the same behavior of the maximum acting stress curves already observed in the 
previous case studies. 

Finally, Figure 11 shows how the volume of materials that constitute the op-
timized arch configurations varies as a function of the applied design loads. It 
can be observed how, increasing the acting load, the quantity of material will in-
crease. Furthermore, it is possible to compare the volume of material required to 
carry the same applied loads with different arch’s cross-section. It can be noticed 
that the configuration with 3 design variables is more efficient than the one  

 

 
Figure 9. Filled ellipsoidal cross-section: Comparison between the stresses on the opti-
mized arches subjected to the design loads maxσ  and the yield stress of the material yf . 

 

 
Figure 10. Hollow circular cross-section: Comparison between the stresses on the opti-
mized arches subjected to the design loads maxσ  and the yield stress of the material yf . 
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Figure 11. Comparison of the volumes of material required by the different arch confi-
gurations to bear the design loads. 

 
characterized by just twos. This is quite normal as, having more variables, the 
algorithm can optimize one more geometrical quantity and thus will result in a 
more efficient configuration. It can also be noticed that the arch with the hollow 
cross-section is the one that requires the less volume of material as these types of 
steel cross-section are universally recognized as more efficient with respect to 
the filled ones. 

6. Conclusion 

An analytical-numerical formulation and a MATLAB [19] based solution pro-
cedure is here proposed for the calculation of the internal stresses for circular 
arches subjected to distributed loads combined with their own weight. The for-
mulation is based on the solution of a sixth order differential equation system 
through the boundary value problem solver algorithm “bvp4c” implemented in 
the software MATLAB [19]. The solution of the equations system allows the 
calculation of the arch displacement and consequently of the internal actions 
and stresses. The formulation and the method are validated by the comparison 
of the results computed for different case studies with the ones obtained with a 
commercial FEM software. The method is, then, implemented as a constraint 
function in the genetic algorithm that is used to obtain the optimal geometrical 
parameters of arches with different cross-sections and subject to different load-
ing configurations. The results have been plotted together with the yield strength 
of the material to verify the effectiveness of the optimization algorithm. It has 
been studied the cases of filled circular, filled ellipsoidal and hollow circular 
cross-sections. The aim of this choice was to compare the different degree of op-
timization that can be achieved with different geometries and shapes. The filled 
circular case study is the simplest one, since a single parameter to fully describe 
the cross-section geometry was sufficient, while the case of ellipsoidal cross-section 
has been chosen because two parameters are necessary to the definition of the 
cross-section geometry. Moreover, the case of hollow circular cross-section was 
investigated, because, as the ellipsoidal one, in this case, two parameters are ne-
cessary to define the cross-section geometry and, in addition, because the hollow 
steel cross-sections are very used in civil constructions and it is universally con-
sidered very efficient. Also in the simulations, here proposed, the confirmation 
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of the validity of the last section typology lies in the fact that the volumes of op-
timized arches, with this cross-section, are the lowest ones. Finally, the results 
reported in the present paper represented a valid application of artificial intelli-
gence algorithms for the structural optimization of circular arches. 
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