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Spectral multiplier theorems of Euclidean type on new classes of
2-step stratified groups

Alessio Martini and Detlef Miiller

ABSTRACT

From a theorem of Christ and Mauceri and Meda it follows that, for a homogeneous sublaplacian
L on a 2-step stratified group G with Lie algebra g, an operator of the form F(L) is of
weak type (1,1) and bounded on LP(G) for 1 < p < oo if the spectral multiplier F' satisfies
a scale-invariant smoothness condition of order s > Q/2, where Q = dimg+ dim|g, g] is the
homogeneous dimension of G. Here we show that the condition can be pushed down to s > d/2,
where d = dim g is the topological dimension of G, provided that d < 7 or dim|[g, g] < 2.

1. Introduction

Let G be a 2-step stratified group. In other words, G is a connected, simply connected
nilpotent Lie group, whose Lie algebra g is endowed with a decomposition g = g; & go for some
nontrivial subspaces g1, g of g, called layers, such that [g1, g1] = g2 and [g, g2] = {0}. Let L be
a homogeneous sublaplacian on G, that is, a second-order, left-invariant differential operator
of the form L = -3, X7, where {X}; is a basis of the first layer g;. Since L is (essentially)
self-adjoint on L?(G), a functional calculus for L is defined via the spectral theorem and, for
all bounded Borel functions F : R — C, the operator F(L) is L2-bounded.

For the LP-boundedness for p # 2 of an operator of the form F(L), sufficient conditions
can be given in terms of smoothness assumptions on the spectral multiplier F'. Namely, let
Q = dim g; + 2dim g2 be the homogeneous dimension of G, denote by W the L? Sobolev space
of (fractional) order s, and let x € C2°(]0, 00[) be nontrivial. Then the following well-known
result holds.

THEOREM 1 (Christ [5], Mauceri and Meda [33]). If
sup || F'(t-) x|lws < o0
>0

for some s > ()/2, then the operator F(L) is of weak type (1,1) and bounded on LP(G) for all
p € ]1,00].

This theorem holds in fact for a stratified group of arbitrary step, but here we are interested
only in the 2-step case. Our aim is to improve Theorem 1, by pushing down the smoothness
condition to s > d/2, where d = dim g; + dim go is the topological dimension of G. Such an
improvement of Theorem 1 (corresponding in the Euclidean setting to the classical Mihlin-
Hormander theorem for the Laplacian L = —A on R?) is known to hold for specific classes
of groups [34, 20, 31, 29|, including the groups of Heisenberg type and more generally the
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Meétivier groups, but it is still an open problem whether it may be achieved for an arbitrary
2-step group. The main result of the present paper reads as follows.

THEOREM 2. Suppose that dimgs <2 ord < 7. If
sup [|F'(t-) x[lws < o0 (L1)
>0

for some s > d/2, then the operator F(L) is of weak type (1,1) and bounded on LP(G) for all
p €1, o0l

Necessary and sufficient conditions for the LP-boundedness of operators belonging to the
functional calculus of a (sub)elliptic operator L have been extensively studied in many contexts.
In some cases (e.g., for Laplace-Beltrami operators on Riemannian symmetric spaces of the non-
compact type, and for some sublaplacians on Lie groups of exponential growth) it is known that
the LP-boundedness of F'(L) for some p # 2 implies the existence of a holomorphic extension
of F to a complex neighborhood of a nonisolated point of the L2-spectrum of L [2, 3, 6, 8,
22, 25, 26, 38]. In contrast, in other cases (e.g., for sublaplacians on Lie groups of polynomial
growth, and more generally for operators with Gaussian-type heat kernel bounds on spaces of
homogeneous type), a condition of the form (1.1), requiring only a finite order of differentiability
s on F, is sufficient to guarantee the LP-boundedness of F'(L) for p € |1, 00|, provided s is
sufficiently large [1, 13, 21]. In this context, several works have been devoted to obtaining,
for some particular spaces and operators, the same smoothness condition as in the Euclidean
case, i.e., s > d/2, where d is the topological dimension of the space (see, e.g., [9, 10, 30, 32]
for works outside the realm of stratified groups).

Let us return to the initial setting of a homogeneous sublaplacian L on a 2-step stratified
group G. The proof of Theorem 2 is reduced, by a standard argument (see, e.g., [28,
Theorem 4.6]) based on the Calderén-Zygmund theory of singular integral operators, to the
following L'-estimate for the convolution kernel X r(r) of the operator F'(L) corresponding to
a compactly supported multiplier F'.

PRrROPOSITION 3. Suppose that dimgy < 2 or d < 7. For all compact sets K C R, for all
Borel functions F : R — C with supp F C K, and for all s > d/2,

| Kreyllh < Cr sl Fllws -

Estimates of this kind on an arbitrary stratified group have been known for a long time [17,
Lemma 6.35] under a stronger assumption on s. In particular, in [33, Lemma 1.2] this L!-
estimate is proved! for s > /2, as a consequence of a weighted L?-estimate: if |- |g: G — R
is a homogeneous norm on G, then, for all 5 > o > 0 and all multipliers F' : R — C supported
in a compact set K C R,

IA+1-16)* Krw)ll2 < Crapll Fllyg- (1.2)

The known improvements of Theorem 1 are all based on an improved version of (1.2) entailing
an “extra weight” w: G — [1,00], i.e.,

A +1-1e)*w Krwy ll2 < Okl Fllyp- (1.3)

fIn [33, Lemma 1.2] the L'-estimate and the weighted L?-estimate (1.2) are stated under the hypothesis that
the compact set K does not contain 0. Nevertheless an inspection of the proof (based on [12]) shows that for a
nonabelian stratified group G this restriction on K can be removed. See also the discussion in [34], where even
the abelian case is covered.
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Different types of weights w are used in the various works [34, 20, 31, 29]; in particular, [20]
uses an extra weight depending (in exponential coordinates) only on the variables on the first
layer, whereas [31, 29] exploit a weight depending only on the variables on the second layer. In
any case, the presence of the extra weight is sufficient to compensate the difference do = dim go
between the homogeneous dimension and the topological dimension.

In the present work, however, no “global” L2-estimate of the form (1.3) is obtained. More
precisely, if Uy, ..., Uy, is a basis of go, then the sublaplacian L and the “central derivatives”
—iU1,...,—tUy, admit a joint functional calculus. If U denotes the “vector of operators”
(=iUy,...,—iUyg,), then, by the use of a suitable partition of unity {¢,}, here we decompose
the operator F(L) along the spectrum of U, thus

Krwy =Y Krwc(u)- (1.4)

For each piece Kp(r)¢,(uy We prove a weighted L2-estimate of the type (1.3), where the extra
weight w may depend on the piece, hence these estimates cannot be directly summed; however
they can be summed at the level of L!, after the application of Holder’s inequality, thus yielding
the improved L!-estimate of Proposition 3.

The decomposition (1.4) is related to the possible “singularities” of the algebraic structure
of G. Namely, let (-,-) be the inner product on g; determined by the sublaplacian, and define
for all n € g5 the skewsymmetric endomorphism J,, of g; by

(Jyz, 2"y = n([z,2']) for all z,2" € g;.

Then —Jg can be decomposed according to the spectral theorem, i.e.,

M
2 _ 1\2 p7n
—Jy =2 )P
j=1
for some distinct b7, ..., b}, € ]0,00[ and some projections Py, ..., P}, on mutually orthogonal

subspaces of g1 of even ranks. By the use of the representation theory of the nilpotent group
G, a formula for the (Euclidean) Fourier transform Kz u) of the convolution kernel of an
operator H(L,U) in the joint functional calculus can be written, involving the quantities
bl,...,b%;, Pl,..., Py, Weighted L?-estimates of Kz ) correspond, roughly speaking, to
L2-estimates of derivatives of K H(L,U); therefore we are interested in controlling the derivatives
of the (algebraic) functions 1+ b7 and 7~ P},

The singularities of these functions lie on a homogeneous Zariski-closed subset of g5. For the
groups considered in [34, 31, 29], the only relevant singularity is at the origin of g5, and the
derivatives of the b? and Pf can be simply controlled by homogeneity. This is not the case for
more general 2-step groups. Nevertheless, if dim go = 2, then the singular set is a finite union
of rays emanating from the origin; by the use of a finite decomposition (1.4) we can consider
each of these rays separately, and classical results for the resolution of singularities of algebraic
curves allow us to obtain the desired estimate.

For the case d < 7, it remains then to consider some examples where dim go = 3. It turns out
that in most examples the singular set is a finite union of lines and planes, and an adaptation
of the technique used when dim g = 2 works here too. However there is an (essentially unique)
example where the singular set has a nonflat component, namely a conic surface. In this case,
in the neighborhood of the cone we exploit an infinite decomposition (1.4) analogous to the
“second dyadic decomposition” used in [36] to prove sharp LP estimates for Fourier integral
operators. Due to the “too large amount” of pieces, this technique alone would give only a
partial improvement of Theorem 1; however a further extra weight can be gained in this case
by a variation of the technique of [20, 23] (as extended in [28, §3] to the joint functional
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calculus of commuting operators), and the combination of the two techniques yields eventually
the wanted result.

The rest of this paper is devoted to the proof of Proposition 3. Namely, in §5 below the case
dim g2 < 2 is considered, while in §6 and §7 we deal with the groups of dimension at most 7.
First, however, in §2 we obtain the formula for K (7, v), and in §4 we develop a technique to
deal with derivatives of this formula; these preliminary results are valid on all 2-step groups.

2. Joint functional calculus and kernel formula

Let G be a connected, simply connected 2-step nilpotent Lie group. Let g be its Lie algebra,
and let g = g1 @ go be a stratification of g; in other words, [g1,81] = g2 # {0} and [g, g2] = {0},
and in particular go = [g, g] is contained in the center of g. The group G can be identified with
its Lie algebra g via the exponential map, and the Haar measure on G corresponds to the
Lebesgue measure on g. In particular, an element of G' can be written as (z, ), where = and
u denote the components in g; and g respectively. A homogeneous norm |- |¢ on G is then
defined by

(@, u)le = |z| + ul'/? (2.1)

for any choice of norms on gy and go (see [19, §1.2] for a more general definition of homogeneous
norm).

A homogeneous sublaplacian L on G is an operator of the form — Zj ij for some basis
{X,}; of the first layer g;. A homogeneous sublaplacian L on G determines uniquely an inner
product (-, -) on g1 so that L = — 3, XJZ for any orthonormal basis {X;}; of g1; vice versa, an
inner product (-,-) on g; determines a homogeneous sublaplacian L.

Let dy = dim g, and let {Uy}x be a basis of go. Then the operators

L,—ilh,...,—iUq, (2.2)

are essentially self-adjoint and commute strongly on L2(G), hence they admit a joint
functional calculus (see, e.g., [27, Corollary 3.3]). Denote by U the “vector of operators”

(—iUy,...,—iUqg,). If g3 is identified with R9 via the chosen basis {Uj}s of g2, then the
operator H(L,U) is well-defined and bounded on L?(G) for all bounded Borel functions
H :Rx g5 — C. Since L, —iUy, ..., —iUy, are left-invariant, the same holds for H(L, U), and

we denote by Kp(r vy its convolution kernel.
For all n € g5, define J,, as the unique endomorphism of g; such that

<‘]?7x’ JZ,> = 77([957 l‘/])

for all ,2" € g1. Note that J, is skewadjoint for all n € g5, hence —J,? = JyJy is selfadjoint

and nonnegative. Let p, be the characteristic polynomial of —J%, ie.,

pn(A) = det(A + Jg) (2.3)
We show now that the polynomials p, admit a “simultaneous factorization” when 7 ranges in a
Zariski-open subset of g5. This is in fact a classical result based on the theory of discriminants

and resultants (for which we refer the reader, e.g., to [11, §3.5], [16, §A.1], and references
therein), nevertheless we sketch a proof here for completeness.

LEMMA 4. There exist a nonempty, homogeneous Zariski-open subset g3, of g5 and
numbers M € N\ {0}, 7o € N, r1,...,rp € N\ {0} such that

PN = A= G- (A = @)D
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for all n € g5, where the n — b;' are continuous functions on g5 and real analytic functions on
95, homogeneous of degree 1, such that

IS0 and 1AV ifj A
for alln € g5, and j,j" € {1,..., M}.

Proof. For all n € g5, the roots of p, are the eigenvalues of —Jg, which are all real
and nonnegative, and moreover the nonzero eigenvalues have even multiplicity, since they
correspond to pairs of conjugate eigenvalues of J,,. What remains to show is essentially that
the number and the multiplicities of the roots of p,, do not change when 7 ranges in a nonempty
homogeneous Zariski-open subset of g5, and that the roots are real analytic functions of 7 there.

Since Jy, is a linear function of 7, the coeflicients of p,, are polynomial functions of 7; hence
1+ p, can be identified with an element p, of R[g5][\], that is, with a polynomial in the
indeterminate A whose coefficients are polynomials on g3.

R[g5][A] is a unique factorization domain, hence we can write

pe = ApTL oy (2.4)

i

where sp € N, n,s1,...,5, € N\ {0}, and the p;. are monic and irreducible elements of
R[g5][A], pairwise coprime and coprime with .

Suppose first that n = 1. Let g be the degree (in ) of p1 . and, for all n € g5, let R} <--. <
R} be the increasing enumeration of the roots of p; ;, repeated according to their multiplicities.
By Rouché’s theorem, the n — R? are continuous on g3. Since p; . is monic, irreducible and not
divisible by A, its “constant term” C. = p1 .(0) and its discriminant D, are nonzero elements
of Rlg3]. For all n € g3, if D, # 0, then the roots of p;, are simple. Therefore, if we set
g5, ={n: Dy, -C, # 0}, then, for all n € g5, the R} are nonzero and distinct, and do not
annihilate O\pi1,, and in particular they are analytic functions of 7 € g5, by the implicit
function theorem. Moreover, by (2.4), R; is a root of p, of multiplicity s; for all n € g3 ,.

Suppose instead that n > 1. Then, proceeding as before, for each irreducible factor p; . of p.
we find a system of nonnegative continuous functions 7 +— RZ j (j=1,...,q) such that

paN) =[[x-Rl), R, <. <R}, (2.5)

J
for all n € g5, and moreover we find a Zariski-open set A; such that, for all n € A;, the quantities
R;’ 1,---, R arenonzero and distinct, and analytic functions of € A;. In particular, by (2.4),

7,93
ASOHHA R} ).

It is however possible that roots RZ j and Rz', J coming from two distinct factors p; . and py «
coincide for some n € Ay N--- N A,. To circumvent this, we consider the resultant S; ;s . of p .
and py ., which is a nonzero element of R[g3], because p; . and py . are coprime. By setting
g, =0, 4N ﬂl#l,{n Siirm # 0}, we obtain that the R); are all distinct and nonzero for all
n € g5, hence R} is a root of p, of multiplicity s; for all 17 €95,

It remains to dlscuss the homogeneity of g5, and the n+— R77 Note that the function
(n,t) = p,(t?) is homogeneous; in other words, if we define an algebra gradation v on R[g3][)]
by assigning the standard polynomial degree to the elements of R[g5] and degree 2 to A, then
Ps is y-homogeneous. By (2.4) we then infer that the factors p; . are also y-homogeneous.
The homogeneity properties of discriminants and resultants (cf. [16, §A.1.3]) allow us then to
conclude that g3, is homogeneous; moreover, since the roots Rz . are uniquely determined by
(2.5), the 'y—homogenelty of the p; . implies that the n — R ; are homogeneous of degree 2. []
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LEMMA 5. With the notation of Lemma 4, we can write
M
—Jp=> (b1)*P] (2.6)
j=1

for all n € g5 ,, where the P]” are orthogonal projections on g1 of rank 2r; for all n € g3 ,,
with pairwise orthogonal ranges. In fact the Pj" are (componentwise) real analytic functions of
n € g5 ,, homogeneous of degree 0, and are rational functions of n, bl,...,b},. Moreover

1/2

M
S o) = (e (T gy)) (2.7)
j=1

and the last expression, as a function of 1, is a norm induced by an inner product on g3.

Proof. For all ) € g3 ,, (2.6) is the spectral decomposition of the selfadjoint endomorphism
fJg given by the spectral theorem; the uniqueness of this decomposition, together with the
homogeneity of the maps n — J, and n — b;’, implies the homogeneity of the maps n — P;’.

From the spectral decomposition (2.6) one deduces that P} = Fj,(—J2) for all (Borel)
functions Fj,, : R — C such that Fj,(0) = 0, Fj,((b])?) = 1, and F; ,((b7,)%) = 0 for j" # j. I
we choose as I}, the interpolating polynomial

AL (A = (b})Z)
(07)2 I1 15 ((0])% = (8],)%)°
then it is clear that the P;7 are rational functions of 7,b7,...,b7, and that they are analytic
on g;r.
The identity (2.7) is an immediate consequence of (2.6). The right-hand side of (2.7) is the
pullback of the Hilbert-Schmidt norm via the map 1+ J,, and since this map is injective
(because ga = [g1, g1]) the conclusion follows. O

an()\) =

ul
1

From now on, let g5 ., M, ro,r1,...,7nm, bl,...,b0,, P/ ..., P] be defined as in Lemmata 4
and 5, and set P =1— (P/'+---+ Pj;). Moreover, for all n,k € N, let

t=ket (dN\" .
Lglk)(t): — (dt) (tk-’rle t)

be the n-th Laguerre polynomial of type k, and define
LP(t) = (—=1)"e " LP (20);

for convenience, set Eslk) =0 for all n < 0. In terms of these quantities, we can now write
a formula for the convolution kernel of an operator in the joint functional calculus of L, U.
Namely, for all H : R x g5 — C, let mpy : RM® x R x g5, — C be defined by

M

mr(n,p,n) = H | Y (2n; + ;)b + o | - (2.8)
j=1

PROPOSITION 6. Suppose that H : R x g5 — C is in the Schwartz class. Then, for all
(z,u) € G,

ol ) )
/cHu,m(x,u):WL J V(g n) e et dg dy, (2.9)
gor V01
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where |r| =1 + -+ + 7y and

Vem) = Y mu(n,|Pfn H L=V (PTE /b)), (2.10)
neNM
Proof.  Analogous to the proof of [29, Proposition 4]. |

The following identities are easily obtained from the properties of Laguerre polynomials (see,
e.g., [14, §10.12]).

LEMMA 7. Forallk,n,n’ € NandteR,

L e00) = L8500 — £4), (2.11)
0o (n+k)! . —
J LR £ (1) ¢k e = § 2w =10 (2.12)
0 0 otherwise.

Proposition 6, together with the Plancherel formula for the Euclidean Fourier transform
and the orthogonality properties (2.12) of the Laguerre functions, allows us to compute the
Plancherel measure associated to the system (2.2) of commuting operators in the sense of [27,
28].

COROLLARY 8. For all H : R x g5 — C in the Schwartz class,
J | Kprn,uy(z,w)? do du
G
M

— (2m)ii-im | S o) TL[007 (4 da (o) di,

930 '[[0’00[ neENM j=1
where |r| =11 + -+ + Tz, Oy, is the Dirac delta at 0 if ro = 0, and

ro/2 du
— ro/2 21
1l = p

ifrg > 0.

3. Self-controlled functions and differential polynomials

By (2.9) and integration by parts, the multiplication of Kz uy(x,u) by polynomial
functions of u corresponds to taking n-derivatives of V(&,7n) in (2.10); we are then interested
in estimating n-derivatives of V(£,n) in terms of derivatives of the multiplier H, or rather of
its reparametrization my. The expressions for these derivatives obtained from (2.10) can be
quite complicated; nevertheless we will show that they have a specific form, which is “self-
reproducing”, so that they can can be estimated (under suitable assumptions on 7-derivatives
of b{,...,b%,, P,..., Py;) by (finite sums of) expressions analogous to (2.10), where my is
replaced by some derivative of my. In order to give a precise meaning to these ideas, in this
section we introduce some definitions and notation, which will be then exploited in the following
84 to deal with derivatives of V (&, 7).
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Let © be a smooth manifold. Let D = (Dq,...,D,) be a system of smooth commuting
vector fields on Q. Set D* = D" --- DY and |a| = aq + - - - + «, for all multiindices oo € N,
Inequalities between multiindices shall be interpreted componentwise.

For all £ € N and all functions g : Q@ — C, let BDgyD(g) be the set of the smooth functions
f:Q — C such that there exists a constant C' > 0 such that for all « € N™ with |o| < k,

|D*f| < Clgl

(BD stands for “bounded derivatives”); the minimum of these constants C' will be denoted
as Hf”BD’;Z’D(g)' We denote moreover by BDg ,(g) the intersection (1, oy BDI&D(Q). When f
is a smooth R™-valued function on £, we will write f € BD€7D(9) to express that all the
components of f belong to BDé)D(g).

In the following we will have to deal with expressions given by linear combinations of products
of iterated derivatives D f of a given function f. Since we need to keep track of the form of these
expressions, independently of the choice of f or D, it is convenient to introduce the following
definition. Fix a system (X, )qen» of indeterminates (one should think of each indeterminate
X, as representing an iterated derivative D*f). For all k € NU {oo} and r € N, let HDP¥ (r) be
the set of homogeneous polynomials of degree r with complex coeflicients and indeterminates
from (Xo)aenn jaj<x (HDP stands for “homogeneous differential polynomial”). If p € HDP®(r)
and v € N", we denote by 07p the polynomial given by

Op
Yy
Jp: Ea KXoty N

(note that only a finite number of summands is nonzero). Further, if p € HDP;°(r) and f €
C>(Q), we denote by p(D; f) the function obtained from p by replacing the indeterminate
X, with D®f for all & € N™. The basic properties of the classes HDP are summarized in the
following lemma.

LEMMA 9. Let f,h:Q — C be smooth, x € [0,00[, k,7 € N.
(i) If p € HDPX (1), then 8 p € HDP¥*1I(r) and (87p)(D; f) = D (p(D; f)).
(ii) If p € HDP; (r) and | fllgpy ) < &, then [p(D; )| < Cpulhl".

Proof. Part (i) follows from Leibniz’ rule, while part (ii) is immediate from the definitions.
O

For all k€ NU {0}, let SCS,D be the set of the smooth functions f: € — C such that
fe BDgD(f) (SC stands for “self-controlled”). When k < oo, we set || f|lgcx

ko ||f||BD§27D(f)-
Note that

IMllses , = IFllscs (3.1)

for all A € C\ {0}. We now show some closure properties of the classes SC.

LEMMA 10. Let k € NU {co}.
(i) The constant functions belong to SC’;L D-
(ii) If f,g € SC§ p and f,g > 0, then f + g € SCg .
(iii) If f,g € SC§ p. then fg € SC§ p.
(iv) If f € SC§ p, |f| > 0, and r € Z, then f" € SC§ p.
(v) If f € SC.p, f >0, and r € C, then " € SC§, .
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If moreover k < oo and | fllscx . [l9llsck | < & for some r € [0, 00, then [|f + gllsc

Q,D s Q,D
[ fallscr < Crnpws 1/ lscy, , < Cnoyre in the cases (i), (iii), (iv) and (v) respectively.

Q,D

<K,

Proof. Part (i) is trivial. Part (ii) follows from the linearity of D and the fact that | f + g| =
|f] + |g| when f,g > 0. Part (iii) follows from Leibniz’ rule. As for part (iv) and part (v), from
the identity D;(f") = rf"~'D, f one deduces inductively via Leibniz’ rule and Lemma 9(i) that
Do(fr) = fr711®, o (D; f), where ®, o € HDPJM(|a]), and consequently | D*(£7)| < Cha.x|f7|
whenever |a| < k by Lemma 9(ii). O

The following lemma deals with the behavior of the class SC under composition; it will be
particularly useful in proving uniform estimates for cutoff functions.

LEMMA 11. Let k€N and k € [0,00[. Let I CR be open, f:Q2 — 1T and g:I — C be
smooth. Suppose that Hf”scg,Da lgllcxp)y < K, f(2) Nsuppg C [~k, k]. Then:

(i) gof€BDGp(1) and |lgo fllppy (1) < Cnkri
(ii) if moreover |g(z)| > k= Yz| forallx € f(2), thengo f € SC;%’D and ||g o fHSCé,D < Chkok-

Proof. Let o € NV be such that |a| < k. If @ =0, then it is obvious that |D(go f)| is
bounded by k and also by |g o f|. Suppose instead that a # 0. Iterated application of Leibniz’
rule and Lemma 9(i) gives that

|

D¥(go f) = (9" o f) Wan(D;f),

h=1
where U, , € HDPI®/(h). Since the [¢™| are bounded by  on U, from Lemma 9(ii) we obtain

||

ID%(go )l < Cape Y (G0 f)IfI",
h=1

where g is the characteristic function of supp g. Since supp g C [—k, ], from this inequality
we deduce immediately that |[D%(g o f)| < C, ., hence part (i) follows. Since h > 1 in the sum
above, the same inequality yields also |[D%(g o f)| < Cy x| f]; in the case |g(z)| > £~ |x| for all
x € f(2), we have |f| < k|go f|, and part (ii) follows. O

Let us now specialize to the case where ) is an open subset of R™, with coordinates
(My.-smn), and D = (910, , ..., Mn0y, ). In this case, homogeneity properties (together with
the compactness of the unit sphere S"~! of R™) can be used to show that a function belongs
to some classes BD or SC. In fact, one can obtain estimates independent of the choice of
(orthonormal) coordinates.

LEMMA 12. Let Q CR"™\ {0} be open and homogeneous. Let f : Q\ {0} — C be homo-
geneous of degree r € C and admitting a smooth extension to some open neighborhood of
Q\ {0} in R™ \ {0}. Then, for all k € N, there exists Cy, € [0,00[ such that, for all choices of
orthonormal coordinates (1, ...,N,) on R”, if D = (10, . ..,Mn05, ), then

() 1 fllmg, , (rsofoy < Cri and,
(ii) if moreover f does not vanish in Q \ {0}, then Ifllscy , < Cr-
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Proof. Denote by V* f the symmetric k-tensor of kth-order derivatives of f. If (é1,...,&,)
is the orthonormal basis of R™ associated to the coordinates (71,...,7,), then o f =
(Vielf 29 @ ... @ é2en) and consequently

D2 F)| = | X Cap 107 (1)| < Co maacx nl*[V* £ (1)
BLa -

From this inequality, the continuity of yk f and the compactness of S"~'NQ, we deduce
that | D f| can be majorized on S"~! N Q by a constant C , not depending on the choice of
coordinates; since D f is homogeneous of degree r, we then deduce that

|D*f(n)| < Cyalnl™

for all n € 2\ {0}, and part (i) is proved. On the other hand, if f does not vanish on Q \ {0},
then by compactness and homogeneity we deduce that

[n*" < Crlf ()

for all n € Q\ {0}, and part (ii) follows by combining the two inequalities. O

A multivariate analogue of the previous argument, exploiting the compactness of the product
of unit spheres, yields immediately the following result.

LEMMA 13. Let Q= (R" \ {0}) x --- x (R" \ {0}). Suppose that f:Q — C is smooth
and multihomogeneous of degree r € C*| i.e.,

FOun, - Aams) = AT AT (- 5ms),

for all A1,...,As €]0,00[ and = (n1,...,ns) € Q. Then, for all k € N, there exists Cy €
[0,00[ such that, for all choices of orthonormal coordinates (M 1,...,Mn,) on R™ for | =
1,...,s, if

D= (ﬁ1718ﬁ1,1’ s 77717“18771,” Yo 778,16775,1’ s 7775,715 aﬁs,ns )7
then

(i) ||f||BDé"27D(n>—>|n1|§R7'l...‘ns‘mﬁ;) < Cy and,

(i) if moreover f does not vanish in Q, then | fllscx = < Cp.

— )

We conclude this section by briefly recalling the construction of smooth homogeneous
partitions of unity on R™ \ {0} (i.e., partitions of unity made of smooth functions homogeneous
of degree 0) depending on a thinness parameter € (i.e., corresponding to the choice of an e-
separated set I. of unit vectors), which have been extensively used in the literature (see, e.g.,
[15, 7, 36]), and will be useful in §7 below. The language introduced above can be used
to express the uniformity in e of the estimates on the derivatives of the components of the
partitions of unity.

LEMMA 14. For all € €]0,1], there exist a finite subset I. of S™! and a smooth
homogeneous partition of unity (Xeu)ver. on R™ \ {0} such that

(i) the cardinality of I is at most Cel ™"
and, for all v € I,
(ii) supp Xe,o C{§ 1 €/4 <[§/[E] — v] < 4e};
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(iii) if (&7,...,&Y) are orthonormal coordinates on R™ such that v corresponds to (1,0,...,0),
then, for all o € N" and £ € R™\ {0},

|a§avX5,v(€)| < Ca‘€|7|a|€041*|a|;
(iv) if moreover Dy = (§1 0y, .-, &;.0¢y), then, for all k € N,

||X6’v||BDn}§ﬂ\{0},Dv (1) < Ck:.

Note that the above constants C,C,,C) do not depend on € or v, but may depend on the
dimension n. Note further that, differently from the standard construction, here we require
Xe,v DOt only to be supported in a conic neighborhood of the direction v, but also to vanish on
a smaller conic neighborhood of v; this property will be convenient to estimate from above and
from below the size of the “transversal component” (£3,...,£") of a point £ in the support of

Xe,w-
Proof. We follow, with slight variations, the construction given in [37, §IX.4]. Let I, be a
subset of S™~! such that
|v — 0’| > € for all v, € I, with v # v’

and maximal among the subsets of S”~! with this property. A moment’s reflection shows that
(i) is satisfied, that

for all v € I, there exists v € I, such that € < [v —v'| < 2¢,
and that
for all £ € S"! there is v € I, such that (1/2)e < |v —£&| < (5/2) . (3.2)
Choose a smooth ¢ : R” — R such that ¢(§) = 1for 1/2 < || < 5/2and supp¢ C {£ : 1/4 <
|€] < 4}, and set

~ — )ZC v
Xew(€) = (€T E/IEl =), Xew = ="
Zy'e[e Xe,v!
By (3.2) Xe,v is well-defined and smooth on R™ \ {0}, and clearly it is homogeneous of degree
0 and satisfies (ii); further

|8§X6,v(€)‘ < Ca|§|7|a‘€7|a‘

for all v € N” and all choices of orthonormal coordinates (&1,...,&,) on R™ (cf. [37, §1X.4.4]).
The last inequality proves (iii) in the case c; = 0; for ; > 0, one then proceeds by induction
on aq, by exploiting the identity

Erok =d'af— Y s (€))L
|B|=k, 1<k

(where o = |€|, 9, is the radial derivative, and ¢z € N), the fact that
gka’g f=cr~f for all f homogeneous of degree ~y
(where ¢ v =v(y—1)...(y —k+1)) and that
€] IS I S el for all € € supp xe. (3.3)
From (iii) and (3.3) we deduce in particular that
1(€")*0¢, Xew (€] < Ca,
and (iv) follows because Dff =375, caﬁ({”)ﬁagv for some cq3 € N. O
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4. Derivatives of the kernel formula

By using the notation of §3, we can now show that iterated n-derivatives of V' in (2.10) have
a precise form.

Let ey, ..., en denote the standard basis of RM | and let D = (Dy, ..., Dy) be a commuting
system of smooth vector fields on g3 ,. We introduce some operators on functions f : RM x
R x g5, — C as follows:

5Jf(n7.u“an) :f(n+ej7.uan)7f(na,u‘7n)

0
8njf(n7/”'a 77) = an(”?/”” 77)’
J

0
5’/Lf(n,u, 77) = %f(na Hﬂ?)y

Dkf(naﬂan) = Dk(f(“a:u’ ))(77)

for all j € {1,. Mﬁ} ke {l,...,N}. As usual, for all « € NV and 8 € NM we set D* =
Dot Day s = 50 9f = aor ... opu.

nm

PrROPOSITION 15. Let D = (Dy,...,Dn) be a commuting system of smooth vector fields
on g3 ,. For all H : R x g5 — C smooth and compactly supported in R x g3, if V' is defined
as in (2.10), then, for all o« € NV, n € 95,5 § € 91,

VEn) =Y Y DTk my(n, |PJE*n) W, o(D; |PYEP)

t€ly neNM
a (71+B
H[ PR b)) @, (D3 /) W (D PPEP)| (41

where I, is a finite set and, for all v € I,

-4 eNNE €N, gt e NM 4 < q,

~ W, € HDPR!(k,),

~forj=1,...,M, ®,; € HDPR'(5),

~forj=1,...,M, ¥, ; =V Wl where U} € HDPi!(¢}) and U0, € HDP} (5! — ¢.), for
some q* € NM such that q” < B,
min{1, af} < [B'|+ k. + 7| and [B'| + k. + 7| + |g'] < |o.

Proof. Notice first that the above statement can be equivalently rephrased by additionally
requiring that each of the polynomials W9 . ,,j s made of a unique monic monomial (it is sufficient
to rearrange the sum). Hence we may suppose that W9 (D; |P”§ |2) is just a product of factors
of the form |P/¢|* or Dy|P¢|? for k € {1,...,N}.

The proof goes by induction on |al. The case o =0 is given by Proposition 6. For the
inductive step, one employs Leibniz’ rule, and the following observations:

— when a Dj-derivative hits D”LaﬁLéﬁLmH(n, |PJ€I%,n), either it increases i, or it increases

k,; in the second case, the degree of ¥, ( is increased too;

— when a Dj-derivative hits L',(T’ H_ﬂ;)(|PJT’§|2/b;’), then (2.11) and summation by parts in

nj increase the order 85 of dlscrete differentiation in ¢;, and moreover the additional factor

Dy (|P}€[?/b]) = (1/0]) Di(|P]E*) + | P€|* Di(1/0])

given by the chain rule increases the degrees of both ®, ; and po
— when a Dj-derivative hits W, o(D; |Ff¢[?), @, ;(D;1/b]) or \If{ ;(D; [PJ€]?), “nothing
happens” because of Lemma 9(i);
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— when a Dy-derivative hits a factor of \Il?}j (D; |P;’f|2), the derivative of this factor can be
included in the new \I/},j(D; \PJ’.7§|2), hence the degree g of \I/}’j increases, while the degree
of \11?7 ; decreases, and the sum 65. of the degrees is unvaried.

The conclusion follows. O

The previous formula expresses DV in terms of derivatives D7’ 6,’3" 6% my of the
reparametrized multiplier my whose total order |8*| + k, + |v*| does not exceed |a|. We will
now convert this formula into an L?-estimate, by exploiting the orthogonality properties of
the Laguerre functions. More precisely, we will use an enhanced version of the orthogonality
relations (2.12), allowing for a mismatch between the type of Laguerre functions and the
exponent in the weight defining the measure. As we will see, this mismatch may produce
additional discrete differentiations of my; nevertheless, the total order of differentiation will
not exceed |al, thanks to the fact that in Proposition 15 the degrees q; of the \I/}’j are also
kept under control.

Note that, for all f:RM xR x g, C, ae NM eR and ne 95, the functions
0 f(,pym) and 92 f(-,u,m) depend only on f(-,u,n); in other words, 6% and 9% can be
thought of as operators on functions R™ — C. Set moreover (s) = 1 + |s| and (s); = max{s,0}
for all s € R. For a multiindex o = (av,...,ap) € RM set ()1 = ((1)4,...,(an)+). The
aforementioned “enhanced orthogonality relations” can be then stated as follows.

LEMMA 16. For all h,k € NM and all compactly supported f : RM — C,

M ) M
[ IS s [Tt | o de < a3 (6% D gl [y,
10,00 neNM Jj=1 neNM Jj=1
Proof.  See [29, Lemma 7]. O

Another simple remark will be of use: via the fundamental theorem of integral calculus, finite
differences can be estimated by continuous derivatives.

LEMMA 17. Let f: RM — C be smooth, and let f € NM. Then

5 f(n) = j 08 f(n + 5) dvp(s)

Rg

for all n € RM | where Rg = vail [0,8;] and vg is a Borel probability measure on Rg. In
particular

6% F(n)|? < j 107 F(n + 5) 2 dvs ()

Rg

for allm € RM.

We now have all the ingredients to obtain from Proposition 15, under suitable assumptions
on 7-derivatives of bY,...,b7,, P, ..., P}, an estimate for a partial L?-norm of D*V(£,n) in
terms of derivatives of the reparametrized multiplier my of order at most |a|. A comparison
of this estimate with Corollary 8 shows the “self-reproducing” character of the formulas under
consideration.
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PROPOSITION 18. Let D = (Dy,...,Dy) be a commuting system of smooth vector fields
on g5 .. Let Q C g5 . be open, and suppose that
16705t - N8 lIsca o 1P mng e 1Pl oy < (4.2)

for some A € N and k € [0,00[. For all H : R x g5 — C smooth and compactly supported in
R x €, and for all « € NV with |a| < A, if V is defined as in (2.10), then

l

2 L L
D“V(ﬁ,n)] dé < Cra Y J[O OO[JR > DY 050 mu(n+ s, )

LT ¢ neNM
M
x IT [@0H=2 ()% | dvi(s) dor (),
j=1

for all n € g3, where I, is a finite set and, for all . € I,
— Ba*eNM Ek €N,y e NV,
-y <aandat >r;j—1forj=1,...,M,
- min{l, of} < |y*| + k. + 5] < o],
- R, = szl [0, ﬁ;] and v, is a Borel probability measure on R,,
— 0, Is a regular Borel measure on [0, 00|,
— ifrg =0, then k, = 0 and o, is the Dirac delta at 0,

— ifrog > 0, then do,(u) = p"/?>t*“ =1 dy for some u, € N.

Proof. Because of the support condition on H, both sides of the above inequality vanish if
7 ¢ €, hence we may assume 7 € Q.

Under our assumption (4.2), we can estimate the “differential polynomials” in the right-
hand side of (4.1) whenever |a| < A. In fact, by Lemma 10(iv), [|1/b] < Ck.a, and

consequently, by Lemma 9(ii),

|®,;(D; 1/b7)| < Ciea(1/07)7%5.

s,

Analogously, since || P/||lppiel ;) < & and
Q,D

(1)
ID|P]E)?| = [(DP})E, €)| < | D°P]|l €],
for all § € NV, we deduce that
U, 0(D; |PFE)] < Cral€™, [0 (D5 PP < Cralé]®.

For the terms \Ila ;(D; |PJ77§ |2), containing only derivatives of order zero or one, a better estimate
holds, since

|Di| PYE?| = 12((DwP])E, PIE)| < 2| Du PPN [P]ELIEL, |P]€)” < |Pel el

and consequently
0 . 7 ¢|2
|\I]L,j(Da‘Pj §| )| Scﬁ;a

PE|%s =9 g|Pima
From Proposition 15 and the triangular inequality we then obtain that

‘DQV(&TI)’Q < Cha Z‘ Z D“fLaﬁ’*éﬁLmH(n, |PUE2 )

1t€ly neNM

M
(rj—1+55) ¢ ‘gt e I
x fef? TT [0 20 el ) ()P fe) i e s

J=1
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Since [¢]? = Zj]\/io |P;7§|2, the sum can be rearranged so to give

2 L L
[Devie | <Coa S|S0 D0k mu(n, |PIEP 1)
Lell, neNM
~ M (,__1+BL) 2
x [PRE TT [ (PPl /b)) (1joy s Py i ies |

j=1

where k, € N, ¢ € NM and |¢!| 4 2k, = |84 + |g*| + 2k,. Set p* = * — ¢" + ¢, and let o, be
the measure on [0, co[ given by p"/2=1+2k qy if 74 > 0, or by the Dirac measure in 0 if 7o = 0;
then, by a change of variables,

J DV (¢, n)‘ A€ < Cha ZJ J ‘ > DTk mp(n, p,n)
g1

eI, [J10,00[M " "CNM

(148 Mo Pyt
TJ + J
X H £ J jl;[l W dt dO'L( )
which yields, by Lemma 16,
j DV dE<Cn | 30 107 0% mutn )P
g1 eI, [Ovoo[neNZM
M
< LT s o)

where 8* = 8 + (8" — p*)+ € NM and aj =r; — 1+ pj +2(B85 — p%)+ € N. On the other hand,
since (8" — p')4+ = (¢* — ¢")+ < ¢*, we have

min{L, jal} < ||+ ko + |8 < |+ ke + 1B < ]+ R+ 18]+ lg'] < e,

and the conclusion follows by renaming Bb as 8 and then applying Lemma 17. |

COROLLARY 19. Under the hypotheses of Proposition 18, suppose further that

H(X,n) = FA) x(n);

then
oy Croa "Xl
J DoV de < Z J{O,w[jm Z D7 x(n)
M Y
X F(kL) 2(2(71] +Sj) +’f'j)b;7+,uf H {(bn)l+a < > ] dVL( )dUL(LL),
i=1 g=1

for all n € g5 ,, where I;] is a finite set and, for all v € I},
—a*eNM [k €N,y e NV,
— v <« and min{1, |a|} < |V + k, < o,
- R, = H;‘il [O,Bﬂ and v, is a Borel probability measure on R,,
— 0, is a regular Borel measure on [0, co|.
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Proof. This is an immediate consequence of Proposition 18 and the fact that, if H(\,n) =
F(A)x(n), then

M
DYk O m (n, 1, ) = > FUPHRD AN "0 (ns) ;5 +
"+ <y J=1
[ |+ |+18|>min{1, ||}
M
XDV H[ ‘I’B'yv A, (Ds bn)}
j=1
where (€); =20+ 7 and Wp y 3y 5 € HDP‘](JY‘(ﬁj +7j), so
D700 m (n, )P < Cry s > D" x(m)”

B ‘44" <y
[¥' 1417 |+1B8]>min{1,|y[}
2

M M
H[ (b7)285+275 n->2ﬂ FUSHRHRD (5™ 500y 4 o
et =

for all n € RM, 11 € [0,00[, n € g5 ., whenever |y| < A. O

We are finally able to prove the fundamental estimate, which will allow us to carry on the
strategy described in the introduction, based on the decomposition (1.4) of an operator F'(L)
along the spectrum of U. The following result shows in fact that a weighted L?-norm of the
kernel of F(L)x(U) for some cutoff x can be controlled by a Sobolev norm of F' times the
square root of a weighted measure of supp x.

PROPOSITION 20. Suppose that D = (i10y,,...,74,05,,) for some linear coordinates
(M- -,7d,) on g5. Let Q C g5 be open, and suppose that (4.2) holds for some A € N and
€ [0,00[. Let x € C°(Q) be of the form

x(m) = x:(f(1) xs(n),

where x; € C2°(]0,00[), f: 95\ {0} — ]0,00] is smooth and homogeneous of degree 1, xs €
C>(g5 \ {0}) is homogeneous of degree 0, and

|suppx:| > k7", suppx: C [, K], (4.3)
Ixellca, ||f\|sc;; D’ ||XS||BDSYD(1) < K. (4.4)
Let (@1,...,1q4,) be the coordinates on go dual to (71,...,74,). Then, for all compact sets

K C R, for all Borel functions F : R — C supported in K, and for all o € N% with |a| < A,

~a 2 ~—2x
[ 181 Koy 0 o < Ol FIge | 72

supp x

Note that, in the above formula, the volume elements du and dn are fixed as in Corollary 8,
and do not depend on the choice of coordinates (71, ...,7q4,) and (4, ..., Uq,). On the other
hand, by (4.2) and (4.4), the quantity x will depend in general on such choice.

Proof. Via a standard approximation argument, we may assume that F' is smooth.
The Lebesgue measure on g5 can be decomposed in “polar coordinates” according to f, i.e.,

J () dn = Eo L d(pn) dX(n) pdzdf, (4.5)
92
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for all (nonnegative or integrable) Borel ¢ : g5 — C, where S = {n : f(n) =1} and ¥ is some
regular Borel measure on S. Let x, : R — R be the characteristic function of supp x,, and
Xs : S — R be the characteristic function of supp xs N S. Leibniz’ rule, (4.4) and Lemma 11(i)

then yield

D x(n)] < Cq e X (f(m)) Xs(n/ f(m))

for all n € g3 \ {0} and v € NV with |y| < A. Note moreover that, if (¢); = 2/ + r;, then

M
bl (ng) <bl(n; +s;); SZ (nj+sj); +pu <max K

for all n € g3, neNM, s €[0,00[M, p € [0,00[ such that Zj L b](nj +s5); 4+ € supp F.

From Corollary 19 we then deduce

J DV(En| de < Cora 3 w0 G/ T0)

LeIll neNM
M
XJ J Fk) an—i—s] b7 +p andm
[0700[ R, j=1

for all n € g3 ,, where I]] is a finite set and, for all + € I7],
-k, eN k, <o,

- R, = H;Vil [0,35] and v, is a Borel probability measure on R,,

— 0, is a regular Borel measure on [0, col.

On the other hand it is easily proved that, for all o € NV,

Z Ca, aD%

a<a

dxg

for some cq,4 € Z, hence

Ja
g1

V(Em] de < O 172 %7 0) S0/ S )

2

M
XZ ZJ J Fk) Zn]+s] b+ H
[0,00[ JR, =1 j=1

LEI! nENM

where I/ is the disjoint union of the IZ with & < «. The properties of the Fourier transform

give us finally

JGHﬂﬂ K:F(L)X(U)($7'Uf)’ drdu < Cy ko Z Z J' Xs 77/f( )

LET! neNM Y92

2
M

x J J FEIN ng 450,07 + || 1772 H b} dv,(s
[0,00[ JR,

j=1

)do,(u),

s)do, (1),

)do,(w) dn.
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Passing to polar coordinates as in (4.5) and rescaling, we obtain that

o 2
JGHU |ICF(L)X(U)(z,u)| dx du

e o ~ P
< Cn, Kot J J n e J Xr
K Z 0 Jsupp xsNS ‘ | R Z ZZM <7’Lj + SJ>]b;]

eIy ¢ neNM j=1
o d
<[ ook P TT donu) d ) =) 2.
[0,00[ =1 4
In the sum over N™ above, the n-th summand vanishes unless ijvil(nj +54);07] < kp, hence

there are at most (kp)™ H{?/il(b;’)_l nonvanishing summands, and our estimate becomes
_ 2
J ||ua| ICF(L)X(U)(x,’LL)‘ dz du
G

<Curca|  fiasm) Y |

J [FED) (p 4 ) PpM dpdo ().
supp xsNS vEr [0,00[ JO

On the other hand

o0
LO [L [FED) (p 4 ) PpM " dp do (1)

< Cxo,(0,maxK])  sup J F®) (o4 1) [2dp < Creall Flly 1o
nel0,max K] JO 2

for all € I, and moreover

~—2« > : I ~—2« 2—2|a d ~—2«
| = || v vl et asm Lo | jieast)
supp x 0 Js P supp xsNS

by (4.5) and (4.3), and the conclusion follows. O

5. Groups with 2-dimensional second layer

By using the estimates obtained in §4, here we prove Proposition 3 in the case do = dim go <
2. In fact, if dy = 1, then G is a Heisenberg group, and Proposition 3 follows from the results
of [34]. Therefore in the rest of the section we suppose that ds = 2.

We now show that the singular set g5 \ 95, is the union of a finite number of rays emanating
from the origin, and that in the neighborhood of each of these rays a system of coordinates on
g5 can be chosen so to satisfy the hypothesis (4.2).

Fix any Euclidean norm and orientation on g5, and denote by S the unit sphere in g5. For
all v € S, let (n},7ny) denote the coordinates on g5 determined by completing v to a positive
orthonormal basis of g3, and set D, = (7] 02,150,y ). For all X C g3\ {0}, let T'X' denote the
“cone over X7 i.e., the set {\v : A €]0,00[, v € X}.

LEMMA 21. There exists a finite subset N of S such that
g5\ g2, = {0} UTNV.
Moreover, if U is an open subset of S\ N and U N N C {v} for some v € S, then

b7177"'7b7M€SC%OU,DU aﬂd P0777P1T,7...7PJ,?4GBD%(DU7DU(1).
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Proof. By Lemma 4, g3 \ g5, is the zero set of a nonzero homogeneous polynomial 7" on g3,
hence it corresponds to the zero set of T" in the projective space P(g3). Since g is 2-dimensional,
P(g3) is 1-dimensional, hence the zero set of T" in P(g3) is finite, and g3 \ g5, = {0} UT'N for
some finite subset NV of S.

Let now U be an open subset of S such that U NN C {v} for some v € S. If v ¢ N, then
UNN = (. In particular the functions lf7 and P" are smooth in a neighborhood of I'U, and
the b;’ do not vanish there; their homogenelty propertleb are then sufficient to conclude, by
Lemma 12, that b] € SCPy; p and P/ € BDRy; p, (1).

Suppose instead that v € N. Let us use the coordinates (n7,n%) on g5: then v corresponds to
the point (1,0), and T' becomes a nonzero homogeneous polynomial in two indeterminates with
T'(1,0) = 0. Denote by p,, the characteristic polynomial of JQ7 as in (2.3), and let p;(\) =
P, (A, T(t) = T(1,t), b;(t) = b;l’t)7 P;(t) = P(1 Y Then the b;(t) are the square roots of the
roots of py, i.e.,

Be(N) = N0 = (ba(8))%)*" -+ (A = (ba (8))%)*"™,

and are analytic functions on {t : T(t) # 0}. Moreover, since the coefficients of p, are
polynomials in ¢, by Puiseux’s theorem on the resolution of singularities of plane algebraic
curves (see, e.g., [16, §7] or the discussion in [35, §3]) there exists € > 0 such that the functions
b]7 restricted to ]0, €[, admit a convergent Puiseux expansion; by Lemma 5, the same is true
for the matrix coefficients of the P], because they are rational functions of bl, .. b a and the
identity. This means that, if f denotes any of the b or any of the matrix coeﬁiments of the P]7
then f on the interval |0, e[ can be written as

t)=t"">" ap, /"
m>0

for some n € N\ {0}, h € Z, and coefficients a,, € R with ag # 0 (in fact it must be h € N,
because both the roots b;(t ) and the coefficients of the projections Pj(t) are bounded in a
neighborhood of ¢ = 0); term by term differentiation then gives that

(tat)kf(t) — ¢h/n Z (h+ m)kn_kamtm/”
m>0

for all k € N (note that the derived series have the same radius of convergence). Therefore,
for all k € N, the function ¢ + t="/™(t0;)* f(t) has a continuous extension to [0, ¢[; moreover,
since ag # 0, modulo taking a smaller €, we may assume that the continuous extension of
t = t="/" f(t) does not vanish in [0, ¢[. Consequently, by compactness,

[ (1) F(8)] < Cralt™"" (1)
for all t € [0,€/2], and therefore

|(t0)* f(1)] < Cral F(D)] (5.1)

for all t €]0,¢/2]. The same argument, applied to the function ¢t +— f(—t), shows that (5.1)
holds for all t € [—€/2,¢/2] \ {0} and all k € N, if € > 0 is sufficiently small.

Note now that, if F' is one of the 1+ b7 or one of the matrix coefficients of the 7 Pj"7
then F(nY,ny) = (ni)* f(ny/ny) for some p € {0,1}, where f(¢) = F(1,t). Inductively one then
shows that

DYF(ny, n3) ansm ((t0)* £) (5 /)

for all @ € N? and some coefficients ¢, s € R, and in particular, by (5.1),

|D10)‘F(77f77’5)| § Ca,F|F(ni)7n§)| (52)



Page 20 of 35 ALESSIO MARTINI AND DETLEF MULLER

for all @ € N2 and all (n?,n3) with 0 < [n3/n¢| < €/2.

On the other hand, if V={neU : |ny/n?| >¢/2}, then VNN =0 and we already
know that b € SCR, p and P € BDY p (1). By combining this fact with (5.2) and the
boundedness of the coefficients Of P, we obtain that b7 € SCfy, p, and P} € BDpy, p (1). O

Let N be the finite subset of S given by Lemma 21; in the case this set is empty, we take
instead N = {(1,0)}. We may then choose an open cover {U, },en of S such that U, " N = {v}
for all v € N.

Let {¢y }ven be asmooth partition of unity on S subordinate to the open cover {U, },en; each
(v extends uniquely to a smooth function on g3 \ {0}, homogeneous of degree 0, which we still
denote by (,. Let moreover x € Cg°(]0, oo[) be such that supp x C [1/2,2] and ., x(2"t) =1
for all t € |0, 0o[. For all v € N, denote by (u},u}) the coordinates on g dual to the coordinates

(n,m3) on g5.

ProprosiTiON 22. Let K CR be compact. For all Borel functions F : R — C such that
supp F C K, for allv € N, and for all a € [0,1/2[%,

L (L4 [ )™ (L [u3)°? Krn) o0 @ ) do du < Cocall FI -

Proof. For all p € 0,00 and &§ = (61, 02) € 10,1, let Xy .6 : g5 — C be defined by

Cops A1) = x(nl/p) o (n/Inl) TT x (il /(1nlér)).

Then
Cu(n) = Z Cu,zm,(r"l,z*nz)(n)

meZ,neN2
for all n € g5 with n{n% # 0 (in fact some of the summands are identically zero, but we may
disregard this). On the other hand the set {n : nYn3 = 0} is negligible with respect to the joint
spectral resolution of U. Moreover, by Lemma 5, n — (3_; 2rj(b;’)2)1/2 is a norm on g3, hence
there is a constant x € ]0, co[ such that

| §f<;Zb;-’ <k Zb?(?nj—&-rj)—ku
r -

for all n € g3, 1o € [0, 00[ and n € NM; hence, by (2.9), F(L) (y,.6(U) = 0 unless p < 2k max K.
Consequently

F(L)G(U) = Y F(L)Cyam z-m 2-n2)(U) (5.3)

meZ, neN?
2™ <2k max K

in the strong L? operator topology.

Set Q, =TU, N {n : n¥ny # 0}. If f is any of the functions n — |n|/p, n — |nk|/(|n|dk), then
by (3.1) and Lemma 13 it is immediately seen that, for all A € N, Hf”scA . is finite and
independent of p,§. Therefore, if o

2

Cos(m) = G/ In]) H (In1/(Inlow)),

then supsejo, 12 [o.sllBpa (1) is finite by Lemma 11(i), and

Cop.s(Nm) = x(Inl/p) Co.s(n)-
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On the other hand, |n}| ~ pdy, for n € supp (y,p,5, hence the measure of supp ¢y 5 is at most
p26155. Consequently, by Proposition 20 and Lemma 21, for all o € N2,

2
) 2 _
JG [l 1 512 Kp(z) ¢, . 000) (@ w)] dodu < Cre ol F 30 [ (000)! 7205
k=1

By interpolation, the same estimate holds for all a € [0,00[2. In the case a1, < 1/2, the
dyadic decomposition (5.3) then yields

[} |* us]*2 K per) e, o) (@ u) P dodu < Cr o l|F12 0 4o -
G W,

In order to conclude, it is sufficient to combine this estimate with the ones where (a1, asg) is
replaced by (0,0), (a1,0), (0, az). O

Via Holder’s inequality, the previous estimates can be combined at the level of L!;
interpolation with the standard estimate valid on all 2-step groups then allows us to conclude
the proof of Proposition 3 for the groups with ds = 2.

ProrosiTION 23. Let K CR be compact. For all Borel functions F : R — C such that
supp F' C K, and for all o, 8 € R such that § > (dimgs)/2 and 8 > a+ d/2,

[A+1-1e)* Krw) lh < Cr.apll Fllyg- (5.4)

Proof. We prove (5.4) for «, 8 belonging to two different ranges:

>0,  B>a+Q/% (5.5)

B>0, 28>a+Q/2, o< —(dimg)/2. (5.6)

The conclusion is then obtained by interpolation: in fact, for all small § > 0, the point Pjs

with coordinates @ = —dimg;/2 — §, 5 = dim go/2 belongs to (5.6) and also to the line g =

a + d/2 + §, hence the convex hull of Ps and the region (5.5) contains the range § > (dim g2)/2,

B>a+d/2490.

For the range (5.5), we choose s € Ja+ Q/2, 8] and then apply Holder’s inequality and the

standard estimate (1.2):

1A +1-16)* Krw) h < 10+ 1-1a)* 2 [+ [+ e)” Krw) ll2 < Ckapl Fllyg-
For the range (5.6), instead, we first split the left-hand side of (5.4) as follows:

I+ 1) Ky I < D I1A+1+16)* Krey e, -
vEN

Each summand in the right-hand side can be then estimated by Holder’s inequality: for all
0 € R,

(141 1a)* Krwyeou) lla

1/2
< (] s wlor= e e+ g dedu)

1/2
(] 10 e ) Kr o el s )

Note that o+ (dimg;)/2 <0, and therefore o+ Q/2 < dimgs = 2. Choose 6 so that 460 €
[0,268] N+ Q/2,2[, then choose ay € |(dim g1)/2, —a + 40 — 2[, and set ag = —a — «;. Hence
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—a=qa; + ag, a1 > (dimgy)/2 > 0 and as > 2 — 46 > 0. Therefore
J, (1 1wl (1 )21+ g2 o
= L(l )2 (L fug ) 720702 (1 fug )02 dadu < oo,
since 2a; > dim gy and 20 + a5/2 > 1. On the other hand, by Proposition 22,
JG |1+ D)+ [u3])* Ky ¢, o) (@ 0)|* dodu < Cka gl Flljyzo < Crcasll Pl

since 6 € [0,1/2[ and 20 < 5. O

6. Groups of dimension at most 7

In view of the results of §5, in order to complete the proof of Proposition 3, it remains to
consider the case d < 7 and dim go > 2. Some remarks on the possible structures of G will help
us to identify the cases which are not already covered by the existing literature.

PRrROPOSITION 24. Suppose that d < 7. Then
(i) dimgs < 3;
(i) ifd < 7 and dimgo = 3, then G is isomorphic to the free 2-step nilpotent group N3 o on 2
generators;
(iii) if d =7, dimgy = 3, and g is decomposable, then G is isomorphic to the direct product
N3 o x R, and the sublaplacian L decomposes as L' + L", where L' and L" correspond to
sublaplacians on the factors N3 o and R.

Proof. Since G is a quotient of the free 2-step nilpotent group on dim g; generators, it must
be dim gy < (dir;gl), and the assumption d < 7 implies that dimgs < 3.

For the same reason, if dim go = 3, then d > 6; in the case d < 7 we conclude that d = 6 and
that G is isomorphic to N3 5.

Suppose now that d =7, dimg, = 3, and g is decomposable, that is, g = g’ & g” for some
nontrivial (commuting) ideals g’,g” of g. In particular go = [¢/,¢'] ® [¢”,¢"], and modulo
replacing g’ with g’ we may assume dim[g’, g'] > 2. But then dimg’ > 5, hence dimg” < 2,
therefore g” is abelian, thus necessarily [g’, g’] = go, which is 3-dimensional, and consequently
dim g’ > 6; since g’, g”" are nontrivial, it must be dim g’ = 6, dim g’ = 1. Therefore, if 3 is the
center of g, then dim 3 = 4, while dim go = 3, and since 3 = (3 N g1) ® go, then dim(z Ng;) = 1.
Let g} be the orthogonal complement of 3 N g; in g;. Then [g], g]] = g2. Consequently we obtain
the decomposition g = g’ ® g/, where g’ = g} ® g2 and §” = g1 N3 are commuting ideals, the
Lie algebra g’ is isomorphic to the Lie algebra of N3 o, and §” is 1-dimensional. By choosing
an orthonormal basis of g; adapted to the decomposition g1 = g} & (g1 N3), we can write
L=L"+L", where L' and L” correspond to sublaplacians on § and §” respectively. O

By part (i) of the previous proposition, our assumptions d < 7 and dim gy > 2 imply dim gy =
3. Moreover, by part (ii), the case dimgs = 3 and d < 7 is covered by [31], whereas, by part
(iil), the case d = 7, dim g2 = 3 and g decomposable is covered by [29, §6].

It remains to consider the case g indecomposable, d =7, dimg; =4, dimg, = 3. Fix an
identification of g; with R?, so that the inner product on g; determined by the sublaplacian
becomes the standard inner product on R*. The map 7 Jp then determines an embedding
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of g5 in so4, the space of 4 x 4 skewsymmetric real matrices. It is then convenient to analyze
the spectral decomposition of the elements of so4.

The identification of R* with C? allows us to identify su, with a subspace of so4. If K is the
R-linear involutive automorphism of C? given by (z1, 22) = (21,%2) and sty = Ksus K, then

504 = Slo D Sty (6.1)

is the decomposition of the semisimple Lie algebra so4 into simple ideals. Let p = pu~ + u™
denote the decomposition of an element p € so4 according to (6.1). Fix moreover the inner
product on soy4 defined by

(b, p') = —tr(up') /4

for all pu, p’ € s04, and let | - | denote the corresponding norm.

PROPOSITION 25. Let u € so04.
(i) If u©™ =0 or u= =0, then —pu? = |u|>.
(i) If both u™, u~ are nonzero, then

PR NS AT S 0T
2 2|t [p] 2 2|t [p]
are complementary orthogonal projections on R*, and if
el T R I e T |
then
—u? = (V)2 P} + (by)* Py

Proof. Note that, for all y € s04 and Q € SOy, (QuQ~1)* = QuF Q=1 and |QuQ ™| = |u|.
Via these identities, we may reduce to the case where the skewsymmetric matrix g is in normal
form, i.e., p = A1I1 + Aolo, where A\, Ao € R, Ay > |)\2‘7 and

0 -1 0 0 00 0 0
1 0 0 0 00 0 0
h=1g o o ofl 2=|lo oo -1
0 0 00 001 0

Set I = I + I>. It is then easily seen that I_ € sus, I € sup, I3 = —1 and |I4.| = 1; therefore
pt = (A £ X2)[1/2 and |pF| = (A £ X2)/2. From this, part (i) follows immediately. As for
part (ii), a simple computation shows that

-1 0 0 0
+ —_
pwtop 10 -1 00
el T o 01 o
0 0 0 1
and therefore
10 00 0 0 0O
1 1p" p= [0 1 00 1,1pt pm 0000
2 20 e (0 0 0 o) 3T T o 0 1 o)
00 00 0 0 0 1
which are complementary orthogonal projections; since moreover |u*| + |u~| = A1 and || —

|£~| = A2, the conclusion follows. O



Page 24 of 35 ALESSIO MARTINI AND DETLEF MULLER

The previous proposition further reduces the cases to be considered. In fact, by (i), if the
image V of g5 via n+— J, coincides with one of the 3-dimensional subspaces sus, sty of §04,
then fJg is a multiple of the identity for all € g5, that is, G is an H-type group, and this case
is covered by [20]. On the other hand, if V' is contained in the “cone” C'={u : |ut| = |p"|},
then by (ii) —Jﬁ has exactly one nonzero eigenvalue for all € g5 \ {0}, hence this case is
covered by [29].

We can then suppose that V_ =V Nsuy and V. = V Nsuy are proper subspaces of V', and
that V' N C' is a proper Zariski-closed subset of V. Hence, if we set

g, ={negs : 0F£[J | #|JT|#0},

then g5\ g3, is a proper Zariski-closed subset of g and, for all n € g5, the spectral
decomposition of fJg as in Lemma 5 can be obtained by Proposition 25(ii); in other words,
M =2 r9=0,r1,r5 =1, and

—Jy = (0])*P{' + (b3)* Py,

where P} = ij]”, b] = bj”. In particular (b7)%(b3)? = det J,, = | Pf J,|?, where Pfp denotes
the Pfaffian of p1 € s04 (see, e.g., [4, §5.2]); moreover the preimage via n — J, of the cone C
coincides with the zero set of the quadratic polynomial n — Pf J,,.

Note that the polynomial  — Pf J,, modulo change of sign and linear changes of variable,
is an invariant of the isomorphism class of the Lie algebra g: in fact, if w,, is the alternating
2-form on g/go defined by

wn(v + 92,1}/ + 92) = ﬁ([UaU/D

for all n € g5 and v, € g, then 1 — w, is intrinsically defined (i.e., it does not depend on the
choice of g1 or L, or on any choice of coordinates) and

wy A wy = 2(Pf J,) Vol,

where Vol is the volume form on g/gs induced by the chosen identification of g; with R*. By
the classification of quadratic forms, a suitable choice of linear coordinates (n1,72,73) on ga
and of the orientation of g; then allows one to assume that Pf.J, has one of the following
forms:

0, mi, mn2, mi+m, MM -3, 0+ +ns

An inspection of the classification of the indecomposable 7-dimensional 2-step nilpotent real
Lie algebras with 3-dimensional center given by [18, 24] shows that each of the above normal
forms for Pf J,, corresponds to exactly one isomorphism class, as summarized by the following
table:

name in [18] name in [24] Pfaffian
(37A) m7.2.2 0
(37B) m7.2.4 172
(37B1) m7._2 4r n +n3
(37C) m7.2.3 n3
(37D) m7.2.5 ni s — 03
(37D,) m7.2_5r n? 4+ n3 + n?

In the following we will refer to these isomorphism classes with the names given in [18].
Note that the case (37A) coincides with the case V' C C, which we have already discussed. In
the case (37D1), on the other hand, J, is invertible for all n € g5 \ {0}, hence G is a Métivier
group, which is covered by [20].

About the remaining cases, we will show that (37B), (37B;) and (37C) can be treated
analogously as the groups with 2-dimensional second layer. The case (37D) is the most difficult
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and requires a special technique, which will be described in the next section. In the rest of the
present section, we suppose that we are in one of the cases (37B), (37B4), (37C).

Let Q. ={n € gb : b <b]/2} and Q, = {n € g5 : b] > b]/4}. Note that Q, 2, are an open
cover of g5\ {0}; the restriction to one of these open sets allow us to consider separately the
components {n : |J,7||J; | =0} and {n : [J,7| = |J |} of the singular set g5\ g5,. We now
show that, in each of ., ,, we can find suitable coordinates so that the hypothesis (4.2) is
satisfied.

LEMMA 26. There exist linear coordinates (n7,n5,m5) on g5 such that, if D, =
(17 Op s 05 Oy, 13 Ope ) and Sy = Qp, N {n = mym5ns # 0}, then

bl €SCE . Pl.P) €BDE , (1).

Proof. By identifying g5 with its embedding V' in so4, the problem is reduced to choosing
suitable coordinates on V. We know that V_ and V are proper subspaces of V', and clearly
VNV, =0. Let W be a linear complement of V_ + V, in V, and set Ve =V, +W. Let
7y 1V = Vi be the projection on the first component with respect to the decomposition
V = Vi@ Ve, Then, for all p€V, |u*| = |rip|+ for some Euclidean norm |-|+ on Vi.
Consequently, by Lemma 13, for any choice of coordinates (n},n%,n%) on V compatible with
the decomposition V =V, @ V_ @ W, the functions u + |u®| restricted to V are in SCS%OP,Dp7
and similarly the functions p+— u*/|p*| are in BD& D (1). From the formulas given by
Proposition 25 and Leibniz’ rule it is then clear that Lb—p> P! and p+— PJ restricted to V
are also in BDS%OP,Dp(l) and moreover, by Lemma 10(ii), p — by is in SC%‘;DP. Finally, b0y =
[|F]? — |~ |?|/2 restricted to Qp, \ {0} does not vanish, hence it is smooth, and Lemma 12
shows that bty € SCg p , but then by = (b)~'(b{b3) € SCq 5 by Lemma 10(iii,iv). [

An inspection of the proof shows that the previous lemma would hold also in the case (37D).
On the other hand, the assumption on the form of PfJ, is essential for the validity of the
following lemma.

LEMMA 27. There exist linear coordinates (nf,n3,n5) on g5 such that, if D.=
(505, N30ns, 150n5) and Qe = Qe N {1 = 1ingns # O}, then

by, bl € SCS. p.» Pl P} e BDg ;. (1)

Proof.  Let (1§, n5,7n5) be the coordinates on g5 that bring the Pfaffian Pf J,, in normal form
as described above. It is then clear from the form of the Pfaffian and from Lemma 13 that n —
b1bd is in SCG. p,- On the other hand, the functions y p* do not vanish on Q. \ {0}, hence
the functions 7 — P} and n ~ b] are smooth there, and Lemma 12 show that b} € SCg, p,

and P/, Py € BDg p (1). Consequently b = (b7)~*(b7b3) € SC&, p, by Lemma 10(iii,iv). O

Let (u}, u5, u}) the coordinates on go dual to the coordinates (17, 75,75 ) given by Lemma 26;
analogously, let (u§,u$, u$) be the coordinates on g dual to the coordinates (n§,n5,n5) given
by Lemma 27. Let (., : g5 \ {0} — R be a partition of unity subordinate to the open cover
Qc, 2, and made of smooth functions homogeneous of degree 0. A repetition of the proof of
Proposition 22 then yields the following estimates.
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PRrOPOSITION 28. For all compact sets K C R, for all Borel functions F' : R — C supported
in K, and for all o € [0,1/2[%,

I
I

As in Proposition 23 these estimates can be combined at the level of L', so to obtain the
following result, which completes the proof of Proposition 3, except for the case (37D).

dz du < O || F||?

3
Krw) ¢ H 1+ fup )™ wiel

dr du < CK,a||F“§V2[a\'

3
’CF(L Cc U) T, u H 1+|Uk|

ProprOSITION 29. Let K CR be compact. For all Borel functions F : R — C such that
supp F' C K, and for all o, 8 € R such that § > 3/2 and 8 > a + 7/2,

1A +1-16)" Krw) I < Cr.apll Fllys-

7. A particular group with 3-dimensional second layer

In this section we assume that we are in the case (37D) according to the classification
described in §6. Therefore we can choose orthogonal coordinates (x1,z2,x3,24) on g; and
coordinates (n1,72,13) on g5 such that

PE Ty = 11i +n3 — 13- (7.1)

Let us fix an inner product on g5 such that (11,72,73) are orthogonal coordinates. We may
suppose that the homogeneous norm | - |¢ on G is defined by (2.1) where the norms on g; and
g2 are induced by the chosen inner products.

In contrast with the result of §6, in this case we are not able to find coordinates on g4 for
which the hypothesis (4.2) is satisfied in a neighborhood of the cone {n : Pf.J, = 0}; a more
refined decomposition will then be used, involving an infinite number of systems of coordinates.
An additional ingredient that will be exploited is a special extra weight on the first layer, given
by an adaptation of the technique of [20, 23] and [28, §3], and by the following estimates.

LEMMA 30. There exists a continuous function w : g1 — [0, 0o[ such that:
(i) for allm € g5 and x € gy,

|[Jnz| = [nfw(z);
(i) if o,y € [0,00[ and min{v, 1} + o > dim gy, then

J 1+ |2) ™ (1 + w(z)) ™ dz < oo.
g1

Proof. Suppose first that, in the chosen coordinates,

0 0 —m—1n3 -1
0 0 =12 m —13
J, = ) 7.2
K m+ns 72 0 0 (7:2)

72 —n1 + 03 0 0
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One may check that the previous formula indeed defines a 2-step stratified structure on R* x R?
and that (7.1) holds. Proposition 25 then gives that

m 2 0 0
pr—pl— Sgn 13 n —m 0 0

TVETE(0 0 m
0 0

2 —Mm

bl =\/ni +m5 + sl b3 = 'Vn%n% — [nsl| .

Define the function w : g; — [0, oo[ by

and

\/|z|2 x — 23+ 2% — 23)? + (22122 + 22324)2.
For all n € g5 and = € g,
| Ty l? = (= Jjw,x) = (b])*(P{'z, x) + (b3)*(P3w, )

= OO o+ P,y + P8 (b Py,

2
Since (b7)% + (b3)% = 2|n|?, (b])? — (b3)? = 4|n3|\/n? + n3, P + P} = 1, we deduce that
|y x> = n*lz|* — 2ns(vim + vane).
where
v = m% — :v% + :E% — xi, Vg = 201To + 22324.

The Cauchy-Schwarz inequality gives us that

205 (1 + vama)| < 2|773|\/77f T i302 + 03 < Inf?\ o2 + 03

and since w(z)? = |z|? — \/v1 +v32, part (i) follows.
As for part (11) choose 7" € [0, 1] such that v <~ and v 4+ a > dimg;. Then

| @b u@) e < | a0 u@) Y d
g1 o
and moreover, by the properties of w,

L+ w(z) =1+ |z[w(z/|z]) = 1+ [z]) w(z/|z]),
therefore

J (1+ )™ (14 w(@) ™" de < J (L+ |2]) " wia/|a) ™" de.

g1 g1

If the integral in the right-hand side is performed in polar coordinates, then the convergence of
the radial part follows from the assumption v’ + « > dim g1, and we are left with the angular
part

J w(w) ™ dw,
S3
Note now that, for all w € 53,
w(w)? ~ 1 — (Wi —wi + w2 —w?)? — Qwiws + 2wsws)? = wiwy — 2waws)?,

and it is easily checked that w + wiws — wows vanishes of first-order on S* (its gradient as a
function on R* is never normal to S on the zero set of the function), hence the integral on S*
converges because v < 1.
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We have thus completed the proof in the particular case where (7.2) holds. Note now that
(i) can be equivalently rewritten as

x,
sup  PEEZI > ).
z'€g1\{0} |:C |
If we replace the norms on g; and g5 with equivalent norms, then the previous inequality
still holds, modulo multiplying w by a suitable nonzero constant; these modifications clearly
preserve also the validity of (ii). Since by the aforementioned classification result of [18, 24]
there is only one indecomposable 2-step stratified group (up to isomorphism) such that d =7
and dz = 3 and (7.1) holds in suitable coordinates, the conclusion follows in the general case.

O

Let Q. = {n € g} : b]b] < aln|*} and Q, = {n € g5 : b]b2 > a|n|?/2}, where a €]0,1/2][ is
sufficiently small so that

Q. C {n: bI < b7/2}. (7.3)

Let ¢, ¢p : 95 \ {0} — R be a smooth homogeneous partition of unity subordinate to the open
cover €2, . Since €2 does not intersect the plane {n : n3 = 0}, (. decomposes uniquely as
¢+ + ¢, where (4 : g5\ {0} = R is smooth and supported in Q. N {n : £n3 > 0}.

We consider first the region €2, that is the region far from the cone {n : Pf.J, = 0}. This is
the “easy part” to be considered, since a single system of coordinates is sufficient. In fact, by
repeating the proof of Lemma 26, we obtain immediately the following result.

LEmMMA 31. There exist coordinates (n7,75,n5) on g5 such that maxy || < |n| and, if
D, = (nf@nf,ngﬁng 7733 ) and Q, = Q, N {n : n{nSny # 0}, then

bi, bl € SCS b, Pl P} € BDg' 5 (1).

Let (n},n5,n5) be the coordinates on g given by Lemma 31, and let (u}, u}, u) be the dual
coordinates on go. Let w : g1 — [0, 0o[ be the function given by Lemma 30. Let x € CZ°(]0, oo[)
be such that supp x € [1/2,2] and ) ., x(2"t) = 1 for all ¢ € ]0, o0].

ProrosiTION 32. Let K C R be compact. For all smooth F : R — C such that supp F' C
K, for all p € 10,00}, 6 € ]0, 00[3, if Cp,p,6 : 95 — C is defined by

3
Cops () = Go(m) x(Inl/p) TT x(ink1/ Gklnl)),
k=1

then, for all o € [0, 00[> and 0 € [0, oc],

3
J, Jr (@ (0w TT 0+ e
k=1

3
< CK,oc,O ||F||W2\a\ p3—2‘a|—20 H 6]1720”6' (74)
k=1

Proof. Asin the proof of Proposition 22, we may assume that d1, d2, 03 < 2 and that p < Ck,
otherwise F(L) (p,,6(U) = 0.
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From Lemma 31 and Proposition 20, we get immediately that, for all o € N3,
9 3
L‘Iuﬁ’\alluglaz|u§|a3 Kr (1) ¢y 050 (@) | davdu < Crcal FIT o [T (0012
k=1

The previous inequality extends to all « € [0, 00[3 by interpolation.
On the other hand, by Lemma 30, |J,z| > |n|w(x). Hence, by [28, Proposition 3.5] and
Corollary 8, for all 8 € [0, o],

2
Jc‘w(x)e Kr) prpvé(U)(a:,u)‘ dx du
< Crco | 3 P01+ 1)+ 03202 + 1) G ) 267 3
93 neN?

Analogously as in the proof of Proposition 20, by passing to polar coordinates and rescaling,
we easily obtain that

J ’w CKr(w) o, s 0) (@) U)‘ dx du < Crcgl|F |30 p*2°618205. (7.5)
By interpolating (7) and (7.5), we obtain that, for all a € [0, 00[* and 6 € [0, o0,

2
[, o) Wb a1 K s o]

3

< Cicans|FI2 o 072 T] (080) 2
k=1

The conclusion follows by combining this inequality with the corresponding ones where 6 and/or
some of the components of « are replaced by 0. |

If a1, 9, as,0 are sufficiently small, then the exponents of p,d1,d2,d3 in (7.4) are positive;
hence, as in the proof of Proposition 22, the estimates given by the previous proposition can
be summed via a dyadic decomposition, in order to obtain the following result.

COROLLARY 33. Let K C R be compact. For all smooth F' : R — C such that supp F' C K,
for all a € [0,1/2[° and 0 € [0,3/2 — |o]],

3
J ’]CF(L)C (@ u) L+ w(@)” T+ uph el
k=1

Holder’s inequality then yields the following L'-estimate.

COROLLARY 34. Let K C R be compact. For all smooth F' : R — C such that supp F C K,
for all o, 8 € R such that 8> 0,28 > a+9/2, a < —5/2,

1A +1-16)* Krw) ) It < Crapll Fllys-

Proof. Under our hypothesis, we can choose a1 € 13/2, —a — 1 — 2(1 — ). Hence, if ag =
(—a—a1)/2, then —a = a3 + 2a5 and ag > 1/2 4+ (1 — )4, and therefore we can choose s €
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13/2 — ag, 8] N [0, 1]. Consequently, by Holder’s inequality and Corollary 33,
I+ 1+ 16)* K oo I

3
< Cra sl F i L(l + Jz|) 72 (1 + w(x H (1 + Jug|) 22 F9)/3 4y du.

Since 2a7 + 1 > 4, and 2(a2 + $) > 3, the last integral is finite by Lemma 30, and the conclusion
follows because s < . ]

Let us consider now the “hard part”, that is the region €. near the cone {n : Pf.J, = 0}.
This region will be decomposed into an infinite number of pieces, for each of which a specific
system of coordinates will be used. The decomposition can be described in two steps:

— first decomposition: we decompose (2. in “truncated conic shells” where the distance from
the origin and the distance from the cone are approximately constant, i.e., |n| ~ p and
b{b3/|n|? ~ & for some (small, dyadic) parameters p,d € ]0,00[; each of these shells is
invariant by rotations around the axis {n : 11 = 72 = 0} of the cone;

— second decomposition: each shell given by the first decomposition is further decomposed
into “sectors”, according to an angular parameter (i.e., the argument of (n1,72)), with
angular width ~ §'/2; as it turns out, in each of these sectors an orthonormal system
of coordinates (with axes approximately given by the radial direction, the normal to the
cone, and the tangent to the cone parallel to the plane {n : 73 = 0}) can be chosen so to
satisfy the hypothesis (4.2).

Due to the fact that this decomposition must be achieved via a smooth partition of unity, and
that the estimates to be obtained (which depend on the derivatives of the components of the
partition of unity) must be uniform from piece to piece, the details of the decomposition are
slightly technical. Some help is given by the rotational invariance of the cone; note however
that b7 and b3 need not be invariant by rotations around the axis of the cone.

Recall that g3 is identified with R® = R? x R via the coordinates (1, n2,n3). For all § € ]0, 1],
let I and (Xe,v)ver. denote the subset of S* and the homogeneous partition of unity of R? \ {0}
given by Lemma 14 corresponding to the thinness parameter ¢ = 06'/2, where o € 10, 1/4]
is a small constant to be fixed later; set moreover Y5 = I, x {—1,4+1}, and define, for all
q=(v,%1) € Y5,

X6,4(1) = Xew(M1,m2)-

For allv € S, let v+ € S be such that v, v is a positive orthonormal basis of R%. For all ¢ =
(v,£1) € S* x {—1,+1}, let (n?,nd,n?) be the orthonormal coordinates on g} corresponding
to the basis (v, £1)/v/2, (v*,0), (v, F1)/+/2. It is then easily seen that

Pf J, = 2n{n + (nd)*. (7.6)

Set Dy = (1]y3,m50,3,m30,9) and Vy, = {n : 2(n3)* < |PfJ,[}.
Further, for all p € ]0,00[, § €]0,1], ¢ = (v, £1) € Y5, set

Ce6.q(n) = Cx(m) x (0703 /(In*8)) Xs,4(n);
Cc,p,(s,q(n) = Cc,ts,q (77) X(|7I\/P)~

Each cutoff (. , 5,4 corresponds to one of the sectors given by the second decomposition, and
(n{,n3,nd) are the coordinates meant to be used there. The following lemma collects the
estimates on the derivatives of these cutoffs and on the sizes of their supports, together with
the estimates on the derivatives of b}, b1, P!, P}, which are needed to apply the machinery of
84.
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LEMMA 35. For all A€ N there exists x € [1,00[ such that, for all p €]0,00][, 6 €]0,1],
q € Ys, the following holds:

(i) [I6763llsca , <&,

(it Hb?”scgcp 7||P17’||BD£CYDQ(1)7 “P271||BDSC7DQ(1) < K,

(i Hbg”scgcwqpq <K,
(iv
(v HCC,&QHBD(]‘COVWD 1) <K

)
)
) supp Cc,é,q - Qc N V;I?
)
)

(vi) [nf/p, [nd1/(p8Y2), [nd]/(p8) € [k, ] for all n € SUpp Ce psg-

Proof. By (7.6), the only nonzero iterated D,-derivatives of PfJ, are constant multiples
of nind or of (n¥)?. Since

(nd)? S|PEJy| and  |nfnd| ~ |PfJ,|  forneV, (7.7)

it is clear that PfJ, and b{by = |Pf J,| are in SCéq’D ; the SC-norm does not depend on ¢
because Pf J,, has the same form (7.6) in all coordinates (n{,n3,n4), and part (i) is proved.
Note that, by Proposition 25, b],b5, P/', P)' are smooth on {n : b < b} and b} does not
vanish there. Part (ii) then follows by (7.3) and Lemma 12. Since b = (b])~(b703), part (iii)
follows from parts (i) and (ii) and from Lemma 10.
Let ¢ = (v, %1). Evidently supp (c,5,4 C supp (+ C .. Moreover, by Lemma 14(ii),

18] ~ 06" 2|(n1,m2)]  for n € supp Xs (7.8)
and also
[ m2)? = (Inl* + PET,) /2 ~ [n|* for 5 € Q. (7.9)
Therefore
131 ~ o?dlnf* ~ o®bb  for 1) € supp Cesq; (7.10)

by choosing o sufficiently small, we obtain that supp (¢ 54 C V4, and part (iv) is proved.

From part (i) and Lemmata 13 and 10 we deduce that b7b3 /|n|? € SCI\Z,an therefore by (3.1)
and Lemma 11(i) also n — x(b7bg/(|n|?)) is in BD“‘}Q)Dq(l), with norm uniformly bounded in
q, 6. Moreover, by Lemma 14(iii) and (7.8) and (7.9), for all « € N3 and 7 € .,

059X q,s(M)] < Caln| =~ 03|~

hence, as in the proof of Lemma 14(iv), one sees that Xs5, is in BDéme(l) with norm
uniformly bounded in g, §. Further x4 € BD?;\{O},DQ (1) with norm uniformly bounded in ¢ by
homogeneity and Lemma 12. Part (v) then follows by Leibniz’ rule.

Finally, by Lemma 14(ii) and the fact that supp s+ C {n : £n3 > 0},

ni = (1, m2),v) £03)/V2 ~ |(n1,m2)| + [n3] ~p for n € supp e p.s,qs

and moreover, by (7.10), it is clear that |nd| ~ 6'/2p for n € supp Ce,p,5,g- On the other hand, by
(7.7) and part (iv), [n{n3| ~ bb3 ~ dp* for n € sUPp Ce p.5,4; consequently |15 = |nfns|/n{| ~
dp for n € supp (¢ p,5,q, and part (vi) is proved. O

Denote by (uf,ud,ul) the system of coordinates on go dual to (n{,nd,n) on g5. A repetition

of the proof of Proposition 32, exploiting Lemma 35 in place of Lemma 31, yields the following
estimate.
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ProprosITION 36. Let K C R be compact. For all smooth F : R — C such that supp F' C
K, for all p €]0,00[, § €]0,1], g € Y5, a € [0,00[> and 6 € [0, 00[,

3
J’ ‘ICF L)Ccp&q(U)(x U ].+U) H 1+|uk|
k=1

SCK,Q, p3 2|a|— 2953/2 ag— za%”FHw\a )

Unfortunately we cannot sum directly the estimates given by the previous proposition, since
the weight changes from piece to piece. In order to avoid this problem, we must first apply
Holder’s inequality in order to obtain L'-estimates with a weight independent of the piece.
The next result estimates the contribution given by each of the shells corresponding to the first
decomposition.

COROLLARY 37. Let K C R be compact. For all smooth F : R — C such that supp F C K,
for all p € ]0,00[ and 6 € 10,1}, if (¢ p 5 : g5 — C is defined by
Cep.s(m) = Ce(m) x(|nl/ ) x (0163 / (3]n]*)),
then, for all o € [0,00[> and 6,~ € [0,00[ such that 2y > dim g, — min{1, 26} +2Zi:1(1
2ak)+7
I +1-16) " Kr) ceps(w) 1 < Cranny o727 101081402 2m0a By

Proof. Note that (. 5 = quYa Ce,p,6,q- Since |Ys] < 6~1/2 by Lemma 14(i), the conclusion
will follow from Minkowski’s inequality if for each summand we can prove the following
estimate:

||(1 + ‘ . |G)_,Y ICF(L) Ccﬁpwéﬁq(U) ||1 S CK’Q’O”Y p3/2_‘a|_963/4_a2/2_a3||F||W2|0‘\'

By Proposition 36 and Hoélder’s inequality, this estimate in turn will follow if we show that
3
J (1+[(z,0)]e) "> (1 +w(x)) 2 H(l + [uf|) 72 dx du < oo
G j—

(note that the value of the previous integral does not depend on ¢, because the u? are
orthonormal coordinates). On the other hand, under our hypothesis on «,v,0, we may
decompose v =1 + 2(y2,1 + V2,2 + 72,3) so that 2y, > dimg; — min{1, 260} and 2y2 5 > (1 —
2a) 4+ for k =1,2,3. Thus

3
(1 + (2, u)]a) ™27 (1 + w(z) H 1+ [ufl])—2e

< Ca,g,'y (1 + |x|)7271 (1 + '(,U —26 H 1 + |U 2'72,k*20¢k’
and since (by Lemma 30) the right-hand side is integrable over G we are done. O

By choosing p, d to be dyadic parameters, we can now sum the estimates corresponding to
the first decomposition. In order to do so, the exponents of p and ¢ in the estimate must be
positive, and this gives further constraints on the choice of a1, as, as, 8. Anyhow, a suitable
choice of these parameters allows us to obtain for the region Q. the same L'-estimate obtained
in Corollary 34 for the region €.
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COROLLARY 38. Let K C R be compact. For all smooth F' : R — C such that supp F C K,
for all o, 8 € R with 8> 0,28 >a+9/2, a < —5/2,

1A +1-16)" Krw)cuy [t < Crall Fllys-

Proof. Under our hypothesis, we may choose 6 such that 20 € [(9 4+ 2«)/4, 1[N [0, ]. In par-
ticular —2a¢ > 9 —80 =4 —1+2((1 —20) + (1 —20) + 1) and 26 < 1, hence, by Corollary 37,

11+ 1-16)* Krwyc,s0) It £ Ckap P172951/479/2||FHW229 (7.11)
for all p,d €]0,00[. On the other hand, for some x € [0, 00|,

F(L)GU) = Y F(L) (o (U),
keZ,neN
2k§2n max K
hence an estimate for [[(1+ |- |¢)® Kp(r)¢.(u) |1 can be obtained via the triangular inequality
by summing the corresponding estimates given by (7.11). The sum converges because both
1 —260 and 1/4 — 0/2 are positive, and since 20 < 3 the conclusion follows. U

Interpolation with the standard estimate finally allows us to conclude the proof of
Proposition 3.

ProrosiTION 39. Let K C R be compact. For all functions F' : R — C such that supp F' C
K, and for all a, 8 € R such that 8> 2/2 and 8 > a+7/2,

1A +1-16)* Krw) I < CraslFllyp- (7.12)

Proof. Analogously as in the proof of Proposition 23, it is sufficient to prove (7.12) for all
«, B belonging to either of the following ranges:

8>0, B>a+10/2 (7.13)
B>0, 28>a+9/2, a<-5/2 (7.14)

the conclusion (i.e., the range 8 > 2/2, 8 > a + 7/2) is then obtained by interpolation. On
the other hand, the validity of (7.12) in the range (7.13) follows from the standard estimate
(1.2) and Holder’s inequality. As for the range (7.14), we decompose F'(\) = F(X) (y(n) +
F(X) Ce(n) and then we sum the corresponding estimates for Kr () ¢, (u) and Kg(z) ¢ (u) given
by Corollaries 34 and 38.
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