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Spectral multiplier theorems of Euclidean type on new classes of
2-step stratified groups

Alessio Martini and Detlef Müller

Abstract

From a theorem of Christ and Mauceri and Meda it follows that, for a homogeneous sublaplacian
L on a 2-step stratified group G with Lie algebra g, an operator of the form F (L) is of
weak type (1, 1) and bounded on Lp(G) for 1 < p <∞ if the spectral multiplier F satisfies
a scale-invariant smoothness condition of order s > Q/2, where Q = dim g + dim[g, g] is the
homogeneous dimension of G. Here we show that the condition can be pushed down to s > d/2,
where d = dim g is the topological dimension of G, provided that d ≤ 7 or dim[g, g] ≤ 2.

1. Introduction

Let G be a 2-step stratified group. In other words, G is a connected, simply connected
nilpotent Lie group, whose Lie algebra g is endowed with a decomposition g = g1 ⊕ g2 for some
nontrivial subspaces g1, g2 of g, called layers, such that [g1, g1] = g2 and [g, g2] = {0}. Let L be
a homogeneous sublaplacian on G, that is, a second-order, left-invariant differential operator
of the form L = −

∑
j X

2
j , where {Xj}j is a basis of the first layer g1. Since L is (essentially)

self-adjoint on L2(G), a functional calculus for L is defined via the spectral theorem and, for
all bounded Borel functions F : R→ C, the operator F (L) is L2-bounded.

For the Lp-boundedness for p 6= 2 of an operator of the form F (L), sufficient conditions
can be given in terms of smoothness assumptions on the spectral multiplier F . Namely, let
Q = dim g1 + 2 dim g2 be the homogeneous dimension of G, denote by W s

2 the L2 Sobolev space
of (fractional) order s, and let χ ∈ C∞c (]0,∞[) be nontrivial. Then the following well-known
result holds.

Theorem 1 (Christ [5], Mauceri and Meda [33]). If

sup
t>0
‖F (t·)χ‖W s

2
<∞

for some s > Q/2, then the operator F (L) is of weak type (1, 1) and bounded on Lp(G) for all
p ∈ ]1,∞[.

This theorem holds in fact for a stratified group of arbitrary step, but here we are interested
only in the 2-step case. Our aim is to improve Theorem 1, by pushing down the smoothness
condition to s > d/2, where d = dim g1 + dim g2 is the topological dimension of G. Such an
improvement of Theorem 1 (corresponding in the Euclidean setting to the classical Mihlin-
Hörmander theorem for the Laplacian L = −∆ on Rd) is known to hold for specific classes
of groups [34, 20, 31, 29], including the groups of Heisenberg type and more generally the
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Métivier groups, but it is still an open problem whether it may be achieved for an arbitrary
2-step group. The main result of the present paper reads as follows.

Theorem 2. Suppose that dim g2 ≤ 2 or d ≤ 7. If

sup
t>0
‖F (t·)χ‖W s

2
<∞ (1.1)

for some s > d/2, then the operator F (L) is of weak type (1, 1) and bounded on Lp(G) for all
p ∈ ]1,∞[.

Necessary and sufficient conditions for the Lp-boundedness of operators belonging to the
functional calculus of a (sub)elliptic operator L have been extensively studied in many contexts.
In some cases (e.g., for Laplace-Beltrami operators on Riemannian symmetric spaces of the non-
compact type, and for some sublaplacians on Lie groups of exponential growth) it is known that
the Lp-boundedness of F (L) for some p 6= 2 implies the existence of a holomorphic extension
of F to a complex neighborhood of a nonisolated point of the L2-spectrum of L [2, 3, 6, 8,
22, 25, 26, 38]. In contrast, in other cases (e.g., for sublaplacians on Lie groups of polynomial
growth, and more generally for operators with Gaussian-type heat kernel bounds on spaces of
homogeneous type), a condition of the form (1.1), requiring only a finite order of differentiability
s on F , is sufficient to guarantee the Lp-boundedness of F (L) for p ∈ ]1,∞[, provided s is
sufficiently large [1, 13, 21]. In this context, several works have been devoted to obtaining,
for some particular spaces and operators, the same smoothness condition as in the Euclidean
case, i.e., s > d/2, where d is the topological dimension of the space (see, e.g., [9, 10, 30, 32]
for works outside the realm of stratified groups).

Let us return to the initial setting of a homogeneous sublaplacian L on a 2-step stratified
group G. The proof of Theorem 2 is reduced, by a standard argument (see, e.g., [28,
Theorem 4.6]) based on the Calderón-Zygmund theory of singular integral operators, to the
following L1-estimate for the convolution kernel KF (L) of the operator F (L) corresponding to
a compactly supported multiplier F .

Proposition 3. Suppose that dim g2 ≤ 2 or d ≤ 7. For all compact sets K ⊆ R, for all
Borel functions F : R→ C with suppF ⊆ K, and for all s > d/2,

‖KF (L) ‖1 ≤ CK,s‖F‖W s
2
.

Estimates of this kind on an arbitrary stratified group have been known for a long time [17,
Lemma 6.35] under a stronger assumption on s. In particular, in [33, Lemma 1.2] this L1-
estimate is proved† for s > Q/2, as a consequence of a weighted L2-estimate: if | · |G : G→ R
is a homogeneous norm on G, then, for all β > α ≥ 0 and all multipliers F : R→ C supported
in a compact set K ⊆ R,

‖(1 + | · |G)αKF (L) ‖2 ≤ CK,α,β‖F‖Wβ
2
. (1.2)

The known improvements of Theorem 1 are all based on an improved version of (1.2) entailing
an “extra weight” w : G→ [1,∞[, i.e.,

‖(1 + | · |G)α w KF (L) ‖2 ≤ CK,α,β‖F‖Wβ
2
. (1.3)

†In [33, Lemma 1.2] the L1-estimate and the weighted L2-estimate (1.2) are stated under the hypothesis that
the compact set K does not contain 0. Nevertheless an inspection of the proof (based on [12]) shows that for a
nonabelian stratified group G this restriction on K can be removed. See also the discussion in [34], where even
the abelian case is covered.
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Different types of weights w are used in the various works [34, 20, 31, 29]; in particular, [20]
uses an extra weight depending (in exponential coordinates) only on the variables on the first
layer, whereas [31, 29] exploit a weight depending only on the variables on the second layer. In
any case, the presence of the extra weight is sufficient to compensate the difference d2 = dim g2

between the homogeneous dimension and the topological dimension.
In the present work, however, no “global” L2-estimate of the form (1.3) is obtained. More

precisely, if U1, . . . , Ud2
is a basis of g2, then the sublaplacian L and the “central derivatives”

−iU1, . . . ,−iUd2
admit a joint functional calculus. If U denotes the “vector of operators”

(−iU1, . . . ,−iUd2), then, by the use of a suitable partition of unity {ζι}ι here we decompose
the operator F (L) along the spectrum of U, thus

KF (L) =
∑
ι

KF (L) ζι(U) . (1.4)

For each piece KF (L) ζι(U) we prove a weighted L2-estimate of the type (1.3), where the extra
weight w may depend on the piece, hence these estimates cannot be directly summed; however
they can be summed at the level of L1, after the application of Hölder’s inequality, thus yielding
the improved L1-estimate of Proposition 3.

The decomposition (1.4) is related to the possible “singularities” of the algebraic structure
of G. Namely, let 〈·, ·〉 be the inner product on g1 determined by the sublaplacian, and define
for all η ∈ g∗2 the skewsymmetric endomorphism Jη of g1 by

〈Jηx, x′〉 = η([x, x′]) for all x, x′ ∈ g1.

Then −J2
η can be decomposed according to the spectral theorem, i.e.,

−J2
η =

M∑
j=1

(bηj )2P ηj

for some distinct bη1 , . . . , b
η
M ∈ ]0,∞[ and some projections P η1 , . . . , P

η
M on mutually orthogonal

subspaces of g1 of even ranks. By the use of the representation theory of the nilpotent group
G, a formula for the (Euclidean) Fourier transform K̂H(L,U) of the convolution kernel of an
operator H(L,U) in the joint functional calculus can be written, involving the quantities
bη1 , . . . , b

η
M , P η1 , . . . , P

η
M . Weighted L2-estimates of KH(L,U) correspond, roughly speaking, to

L2-estimates of derivatives of K̂H(L,U); therefore we are interested in controlling the derivatives
of the (algebraic) functions η 7→ bηj and η 7→ P ηj .

The singularities of these functions lie on a homogeneous Zariski-closed subset of g∗2. For the
groups considered in [34, 31, 29], the only relevant singularity is at the origin of g∗2, and the
derivatives of the bηj and P ηj can be simply controlled by homogeneity. This is not the case for
more general 2-step groups. Nevertheless, if dim g2 = 2, then the singular set is a finite union
of rays emanating from the origin; by the use of a finite decomposition (1.4) we can consider
each of these rays separately, and classical results for the resolution of singularities of algebraic
curves allow us to obtain the desired estimate.

For the case d ≤ 7, it remains then to consider some examples where dim g2 = 3. It turns out
that in most examples the singular set is a finite union of lines and planes, and an adaptation
of the technique used when dim g2 = 2 works here too. However there is an (essentially unique)
example where the singular set has a nonflat component, namely a conic surface. In this case,
in the neighborhood of the cone we exploit an infinite decomposition (1.4) analogous to the
“second dyadic decomposition” used in [36] to prove sharp Lp estimates for Fourier integral
operators. Due to the “too large amount” of pieces, this technique alone would give only a
partial improvement of Theorem 1; however a further extra weight can be gained in this case
by a variation of the technique of [20, 23] (as extended in [28, §3] to the joint functional
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calculus of commuting operators), and the combination of the two techniques yields eventually
the wanted result.

The rest of this paper is devoted to the proof of Proposition 3. Namely, in §5 below the case
dim g2 ≤ 2 is considered, while in §6 and §7 we deal with the groups of dimension at most 7.
First, however, in §2 we obtain the formula for K̂H(L,U), and in §4 we develop a technique to
deal with derivatives of this formula; these preliminary results are valid on all 2-step groups.

2. Joint functional calculus and kernel formula

Let G be a connected, simply connected 2-step nilpotent Lie group. Let g be its Lie algebra,
and let g = g1 ⊕ g2 be a stratification of g; in other words, [g1, g1] = g2 6= {0} and [g, g2] = {0},
and in particular g2 = [g, g] is contained in the center of g. The group G can be identified with
its Lie algebra g via the exponential map, and the Haar measure on G corresponds to the
Lebesgue measure on g. In particular, an element of G can be written as (x, u), where x and
u denote the components in g1 and g2 respectively. A homogeneous norm | · |G on G is then
defined by

|(x, u)|G = |x|+ |u|1/2 (2.1)

for any choice of norms on g1 and g2 (see [19, §1.2] for a more general definition of homogeneous
norm).

A homogeneous sublaplacian L on G is an operator of the form −
∑
j X

2
j for some basis

{Xj}j of the first layer g1. A homogeneous sublaplacian L on G determines uniquely an inner
product 〈·, ·〉 on g1 so that L = −

∑
j X̃

2
j for any orthonormal basis {X̃j}j of g1; vice versa, an

inner product 〈·, ·〉 on g1 determines a homogeneous sublaplacian L.
Let d2 = dim g2, and let {Uk}k be a basis of g2. Then the operators

L,−iU1, . . . ,−iUd2
(2.2)

are essentially self-adjoint and commute strongly on L2(G), hence they admit a joint
functional calculus (see, e.g., [27, Corollary 3.3]). Denote by U the “vector of operators”
(−iU1, . . . ,−iUd2). If g∗2 is identified with Rd2 via the chosen basis {Uk}k of g2, then the
operator H(L,U) is well-defined and bounded on L2(G) for all bounded Borel functions
H : R× g∗2 → C. Since L,−iU1, . . . ,−iUd2

are left-invariant, the same holds for H(L,U), and
we denote by KH(L,U) its convolution kernel.

For all η ∈ g∗2, define Jη as the unique endomorphism of g1 such that

〈Jηx, x′〉 = η([x, x′])

for all x, x′ ∈ g1. Note that Jη is skewadjoint for all η ∈ g∗2, hence −J2
η = J∗ηJη is selfadjoint

and nonnegative. Let pη be the characteristic polynomial of −J2
η , i.e.,

pη(λ) = det(λ+ J2
η ). (2.3)

We show now that the polynomials pη admit a “simultaneous factorization” when η ranges in a
Zariski-open subset of g∗2. This is in fact a classical result based on the theory of discriminants
and resultants (for which we refer the reader, e.g., to [11, §3.5], [16, §A.1], and references
therein), nevertheless we sketch a proof here for completeness.

Lemma 4. There exist a nonempty, homogeneous Zariski-open subset g∗2,r of g∗2 and
numbers M ∈ N \ {0}, r0 ∈ N, r1, . . . , rM ∈ N \ {0} such that

pη(λ) = λr0(λ− (bη1)2)2r1 · · · (λ− (bηM )2)2rM
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for all η ∈ g∗2, where the η 7→ bηj are continuous functions on g∗2 and real analytic functions on
g∗2,r, homogeneous of degree 1, such that

bηj > 0 and bηj 6= bηj′ if j 6= j′

for all η ∈ g∗2,r and j, j′ ∈ {1, . . . ,M}.

Proof. For all η ∈ g∗2, the roots of pη are the eigenvalues of −J2
η , which are all real

and nonnegative, and moreover the nonzero eigenvalues have even multiplicity, since they
correspond to pairs of conjugate eigenvalues of Jη. What remains to show is essentially that
the number and the multiplicities of the roots of pη do not change when η ranges in a nonempty
homogeneous Zariski-open subset of g∗2, and that the roots are real analytic functions of η there.

Since Jη is a linear function of η, the coefficients of pη are polynomial functions of η; hence
η 7→ pη can be identified with an element p∗ of R[g∗2][λ], that is, with a polynomial in the
indeterminate λ whose coefficients are polynomials on g∗2.
R[g∗2][λ] is a unique factorization domain, hence we can write

p∗ = λs0ps11,∗ · · · psnn,∗ (2.4)

where s0 ∈ N, n, s1, . . . , sn ∈ N \ {0}, and the pl,∗ are monic and irreducible elements of
R[g∗2][λ], pairwise coprime and coprime with λ.

Suppose first that n = 1. Let g be the degree (in λ) of p1,∗ and, for all η ∈ g∗2, let Rη1 ≤ · · · ≤
Rηg be the increasing enumeration of the roots of p1,η, repeated according to their multiplicities.
By Rouché’s theorem, the η 7→ Rηj are continuous on g∗2. Since p1,∗ is monic, irreducible and not
divisible by λ, its “constant term” C∗ = p1,∗(0) and its discriminant D∗ are nonzero elements
of R[g∗2]. For all η ∈ g∗2, if Dη 6= 0, then the roots of p1,η are simple. Therefore, if we set
g∗2,r = {η : Dη · Cη 6= 0}, then, for all η ∈ g∗2,r, the Rηl are nonzero and distinct, and do not
annihilate ∂λp1,η, and in particular they are analytic functions of η ∈ g∗2,r by the implicit
function theorem. Moreover, by (2.4), Rηj is a root of pη of multiplicity s1 for all η ∈ g∗2,r.

Suppose instead that n > 1. Then, proceeding as before, for each irreducible factor pl,∗ of p∗
we find a system of nonnegative continuous functions η 7→ Rηl,j (j = 1, . . . , gl) such that

pl,η(λ) =
∏
j

(λ−Rηl,j), Rηl,1 ≤ · · · ≤ R
η
l,gl
, (2.5)

for all η ∈ g∗2, and moreover we find a Zariski-open set Al such that, for all η ∈ Al, the quantities
Rηj,1, . . . , R

η
j,gj

are nonzero and distinct, and analytic functions of η ∈ Al. In particular, by (2.4),

pη(λ) = λs0
∏
l

∏
j

(λ−Rηl,j)
sl .

It is however possible that roots Rηl,j and Rηl′,j′ coming from two distinct factors pl,∗ and pl′,∗
coincide for some η ∈ A1 ∩ · · · ∩An. To circumvent this, we consider the resultant Sl,l′,∗ of pl,∗
and pl′,∗, which is a nonzero element of R[g∗2], because pl,∗ and pl′,∗ are coprime. By setting
g∗2,r =

⋂
lAl ∩

⋂
l 6=l′{η : Sl,l′,η 6= 0}, we obtain that the Rηl,j are all distinct and nonzero for all

η ∈ g∗2,r, hence Rηl,j is a root of pη of multiplicity sl for all η ∈ g∗2,r.
It remains to discuss the homogeneity of g∗2,r and the η 7→ Rηl,j . Note that the function

(η, t) 7→ pη(t2) is homogeneous; in other words, if we define an algebra gradation γ on R[g∗2][λ]
by assigning the standard polynomial degree to the elements of R[g∗2] and degree 2 to λ, then
p∗ is γ-homogeneous. By (2.4) we then infer that the factors pl,∗ are also γ-homogeneous.
The homogeneity properties of discriminants and resultants (cf. [16, §A.1.3]) allow us then to
conclude that g∗2,r is homogeneous; moreover, since the roots Rηl,j are uniquely determined by
(2.5), the γ-homogeneity of the pl,∗ implies that the η 7→ Rηl,j are homogeneous of degree 2.
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Lemma 5. With the notation of Lemma 4, we can write

−J2
η =

M∑
j=1

(bηj )2P ηj (2.6)

for all η ∈ g∗2,r, where the P ηj are orthogonal projections on g1 of rank 2rj for all η ∈ g∗2,r,
with pairwise orthogonal ranges. In fact the P ηj are (componentwise) real analytic functions of
η ∈ g∗2,r, homogeneous of degree 0, and are rational functions of η, bη1 , . . . , b

η
M . Moreover M∑

j=1

2rj(b
η
j )2

1/2

= (tr(J∗ηJη))1/2 (2.7)

and the last expression, as a function of η, is a norm induced by an inner product on g∗2.

Proof. For all η ∈ g∗2,r, (2.6) is the spectral decomposition of the selfadjoint endomorphism
−J2

η given by the spectral theorem; the uniqueness of this decomposition, together with the
homogeneity of the maps η 7→ Jη and η 7→ bηj , implies the homogeneity of the maps η 7→ P ηj .

From the spectral decomposition (2.6) one deduces that P ηj = Fj,η(−J2
η ) for all (Borel)

functions Fj,η : R→ C such that Fj,η(0) = 0, Fj,η((bηj )2) = 1, and Fj,η((bηj′)
2) = 0 for j′ 6= j. If

we choose as Fj,η the interpolating polynomial

Fj,η(λ) =
λ
∏
j′ 6=j(λ− (bηj′)

2)

(bηj )2
∏
j′ 6=j((b

η
j )2 − (bηj′)

2)
,

then it is clear that the P ηj are rational functions of η, bη1 , . . . , b
η
M and that they are analytic

on g∗2,r.
The identity (2.7) is an immediate consequence of (2.6). The right-hand side of (2.7) is the

pullback of the Hilbert-Schmidt norm via the map η 7→ Jη, and since this map is injective
(because g2 = [g1, g1]) the conclusion follows.

From now on, let g∗2,r, M , r0, r1, . . . , rM , bη1 , . . . , b
η
M , P η1 , . . . , P

η
M be defined as in Lemmata 4

and 5, and set P η0 = 1− (P η1 + · · ·+ P ηM ). Moreover, for all n, k ∈ N, let

L(k)
n (t) =

t−ket

n!

(
d

dt

)n
(tk+ne−t)

be the n-th Laguerre polynomial of type k, and define

L(k)
n (t) = (−1)ne−tL(k)

n (2t);

for convenience, set L(k)
n = 0 for all n < 0. In terms of these quantities, we can now write

a formula for the convolution kernel of an operator in the joint functional calculus of L,U.
Namely, for all H : R× g∗2 → C, let mH : RM × R× g∗2,r → C be defined by

mH(n, µ, η) = H

 M∑
j=1

(2nj + rj)b
η
j + µ, η

 . (2.8)

Proposition 6. Suppose that H : R× g∗2 → C is in the Schwartz class. Then, for all
(x, u) ∈ G,

KH(L,U)(x, u) =
2|r|

(2π)dimG

∫
g∗2,r

∫
g1

V (ξ, η) ei〈ξ,x〉 ei〈η,u〉 dξ dη, (2.9)
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where |r| = r1 + · · ·+ rM and

V (ξ, η) =
∑
n∈NM

mH(n, |P η0 ξ|2, η)

M∏
j=1

L(rj−1)
nj (|P ηj ξ|

2/bηj ). (2.10)

Proof. Analogous to the proof of [29, Proposition 4].

The following identities are easily obtained from the properties of Laguerre polynomials (see,
e.g., [14, §10.12]).

Lemma 7. For all k, n, n′ ∈ N and t ∈ R,

d

dt
L(k)
n (t) = L(k+1)

n−1 (t)− L(k+1)
n (t), (2.11)∫∞

0

L(k)
n (t)L(k)

n′ (t) tk dt =

{
(n+k)!
2k+1n!

if n = n′,

0 otherwise.
(2.12)

Proposition 6, together with the Plancherel formula for the Euclidean Fourier transform
and the orthogonality properties (2.12) of the Laguerre functions, allows us to compute the
Plancherel measure associated to the system (2.2) of commuting operators in the sense of [27,
28].

Corollary 8. For all H : R× g∗2 → C in the Schwartz class,∫
G

| KH(L,U)(x, u)|2 dx du

= (2π)|r|−dimG

∫
g∗2,r

∫
[0,∞[

∑
n∈NM

|mH(n, µ, η)|2
M∏
j=1

[
(bηj )rj

(
nj+rj−1

nj

)]
dσr0(µ) dη,

where |r| = r1 + · · ·+ rM , σr0 is the Dirac delta at 0 if r0 = 0, and

dσr0(µ) =
πr0/2

Γ(r0/2)
µr0/2

dµ

µ

if r0 > 0.

3. Self-controlled functions and differential polynomials

By (2.9) and integration by parts, the multiplication of KH(L,U)(x, u) by polynomial
functions of u corresponds to taking η-derivatives of V (ξ, η) in (2.10); we are then interested
in estimating η-derivatives of V (ξ, η) in terms of derivatives of the multiplier H, or rather of
its reparametrization mH . The expressions for these derivatives obtained from (2.10) can be
quite complicated; nevertheless we will show that they have a specific form, which is “self-
reproducing”, so that they can can be estimated (under suitable assumptions on η-derivatives
of bη1 , . . . , b

η
M , P

η
1 , . . . , P

η
M ) by (finite sums of) expressions analogous to (2.10), where mH is

replaced by some derivative of mH . In order to give a precise meaning to these ideas, in this
section we introduce some definitions and notation, which will be then exploited in the following
§4 to deal with derivatives of V (ξ, η).
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Let Ω be a smooth manifold. Let D = (D1, . . . , Dn) be a system of smooth commuting
vector fields on Ω. Set Dα = Dα1

1 · · ·Dαn
n and |α| = α1 + · · ·+ αn for all multiindices α ∈ Nn.

Inequalities between multiindices shall be interpreted componentwise.
For all k ∈ N and all functions g : Ω→ C, let BDk

Ω,D(g) be the set of the smooth functions
f : Ω→ C such that there exists a constant C ≥ 0 such that for all α ∈ Nn with |α| ≤ k,

|Dαf | ≤ C|g|

(BD stands for “bounded derivatives”); the minimum of these constants C will be denoted
as ‖f‖BDkΩ,D(g). We denote moreover by BD∞Ω,D(g) the intersection

⋂
k∈N BDk

Ω,D(g). When f

is a smooth Rm-valued function on Ω, we will write f ∈ BDk
Ω,D(g) to express that all the

components of f belong to BDk
Ω,D(g).

In the following we will have to deal with expressions given by linear combinations of products
of iterated derivativesDαf of a given function f . Since we need to keep track of the form of these
expressions, independently of the choice of f or D, it is convenient to introduce the following
definition. Fix a system (Xα)α∈Nn of indeterminates (one should think of each indeterminate
Xα as representing an iterated derivative Dαf). For all k ∈ N ∪ {∞} and r ∈ N, let HDPkn(r) be
the set of homogeneous polynomials of degree r with complex coefficients and indeterminates
from (Xα)α∈Nn,|α|≤k (HDP stands for “homogeneous differential polynomial”). If p ∈ HDP∞n (r)
and γ ∈ Nn, we denote by ∂γp the polynomial given by

∂γp :=
∑
α

Xα+γ
∂p

∂Xα

(note that only a finite number of summands is nonzero). Further, if p ∈ HDP∞n (r) and f ∈
C∞(Ω), we denote by p(D; f) the function obtained from p by replacing the indeterminate
Xα with Dαf for all α ∈ Nn. The basic properties of the classes HDP are summarized in the
following lemma.

Lemma 9. Let f, h : Ω→ C be smooth, κ ∈ [0,∞[, k, r ∈ N.

(i) If p ∈ HDPkn(r), then ∂γp ∈ HDPk+|γ|
n (r) and (∂γp)(D; f) = Dγ(p(D; f)).

(ii) If p ∈ HDPkn(r) and ‖f‖BDkΩ,D(h) ≤ κ, then |p(D; f)| ≤ Cp,κ|h|r.

Proof. Part (i) follows from Leibniz’ rule, while part (ii) is immediate from the definitions.

For all k ∈ N ∪ {∞}, let SCkΩ,D be the set of the smooth functions f : Ω→ C such that

f ∈ BDk
Ω,D(f) (SC stands for “self-controlled”). When k <∞, we set ‖f‖SCkΩ,D

= ‖f‖BDkΩ,D(f).

Note that

‖λf‖SCkΩ,D
= ‖f‖SCkΩ,D

(3.1)

for all λ ∈ C \ {0}. We now show some closure properties of the classes SC.

Lemma 10. Let k ∈ N ∪ {∞}.
(i) The constant functions belong to SCkΩ,D.

(ii) If f, g ∈ SCkΩ,D and f, g ≥ 0, then f + g ∈ SCkΩ,D.

(iii) If f, g ∈ SCkΩ,D, then fg ∈ SCkΩ,D.

(iv) If f ∈ SCkΩ,D, |f | > 0, and r ∈ Z, then fr ∈ SCkΩ,D.

(v) If f ∈ SCkΩ,D, f > 0, and r ∈ C, then fr ∈ SCkΩ,D.
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If moreover k <∞ and ‖f‖SCkΩ,D
, ‖g‖SCkΩ,D

≤ κ for some κ ∈ [0,∞[, then ‖f + g‖SCkΩ,D
≤ κ,

‖fg‖SCkΩ,D
≤ Cn,k,κ, ‖fr‖SCkΩ,D

≤ Cn,k,r,κ in the cases (ii), (iii), (iv) and (v) respectively.

Proof. Part (i) is trivial. Part (ii) follows from the linearity of Dα and the fact that |f + g| =
|f |+ |g| when f, g ≥ 0. Part (iii) follows from Leibniz’ rule. As for part (iv) and part (v), from
the identity Dj(f

r) = rfr−1Djf one deduces inductively via Leibniz’ rule and Lemma 9(i) that
Dα(fr) = fr−|α|Φr,α(D; f), where Φr,α ∈ HDP|α|n (|α|), and consequently |Dα(fr)| ≤ Cr,α,κ|fr|
whenever |α| ≤ k by Lemma 9(ii).

The following lemma deals with the behavior of the class SC under composition; it will be
particularly useful in proving uniform estimates for cutoff functions.

Lemma 11. Let k ∈ N and κ ∈ [0,∞[. Let I ⊆ R be open, f : Ω→ I and g : I → C be
smooth. Suppose that ‖f‖SCkΩ,D

, ‖g‖Ck(f(Ω)) ≤ κ, f(Ω) ∩ supp g ⊆ [−κ, κ]. Then:

(i) g ◦ f ∈ BDk
Ω,D(1) and ‖g ◦ f‖BDkΩ,D(1) ≤ Cn,k,κ;

(ii) if moreover |g(x)| ≥ κ−1|x| for all x ∈ f(Ω), then g ◦ f ∈ SCkΩ,D and ‖g ◦ f‖SCkΩ,D
≤ Cn,k,κ.

Proof. Let α ∈ NN be such that |α| ≤ k. If α = 0, then it is obvious that |Dα(g ◦ f)| is
bounded by κ and also by |g ◦ f |. Suppose instead that α 6= 0. Iterated application of Leibniz’
rule and Lemma 9(i) gives that

Dα(g ◦ f) =

|α|∑
h=1

(g(h) ◦ f) ·Ψα,h(D; f),

where Ψα,h ∈ HDP|α|n (h). Since the |g(h)| are bounded by κ on U , from Lemma 9(ii) we obtain

|Dα(g ◦ f)| ≤ Cα,κ
|α|∑
h=1

(g̃ ◦ f) |f |h,

where g̃ is the characteristic function of supp g. Since supp g ⊆ [−κ, κ], from this inequality
we deduce immediately that |Dα(g ◦ f)| ≤ Cα,κ, hence part (i) follows. Since h ≥ 1 in the sum
above, the same inequality yields also |Dα(g ◦ f)| ≤ Cα,κ|f |; in the case |g(x)| ≥ κ−1|x| for all
x ∈ f(Ω), we have |f | ≤ κ|g ◦ f |, and part (ii) follows.

Let us now specialize to the case where Ω is an open subset of Rn, with coordinates
(η1, . . . , ηn), and D = (η1∂η1

, . . . , ηn∂ηn). In this case, homogeneity properties (together with
the compactness of the unit sphere Sn−1 of Rn) can be used to show that a function belongs
to some classes BD or SC. In fact, one can obtain estimates independent of the choice of
(orthonormal) coordinates.

Lemma 12. Let Ω ⊆ Rn \ {0} be open and homogeneous. Let f : Ω \ {0} → C be homo-
geneous of degree r ∈ C and admitting a smooth extension to some open neighborhood of
Ω \ {0} in Rn \ {0}. Then, for all k ∈ N, there exists Cf,k ∈ [0,∞[ such that, for all choices of
orthonormal coordinates (η̃1, . . . , η̃n) on Rn, if D = (η̃1∂η̃1 , . . . , η̃n∂η̃n), then

(i) ‖f‖BDkΩ,D(η 7→|η|<r) ≤ Cf,k and,

(ii) if moreover f does not vanish in Ω \ {0}, then ‖f‖SCkΩ,D
≤ Cf,k.
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Proof. Denote by ∇kf the symmetric k-tensor of kth-order derivatives of f . If (ẽ1, . . . , ẽn)
is the orthonormal basis of Rn associated to the coordinates (η̃1, . . . , η̃n), then ∂αη̃ f =

〈∇|α|f, ẽ⊗α1
1 ⊗ · · · ⊗ ẽ⊗αnn 〉, and consequently

|Dαf(η)| =

∣∣∣∣∣∣
∑
β≤α

Cα,β η̃
β∂βη̃ f(η)

∣∣∣∣∣∣ ≤ Cα max
k≤|α|

|η|k|∇kf(η)|.

From this inequality, the continuity of ∇kf and the compactness of Sn−1 ∩ Ω, we deduce
that |Dαf | can be majorized on Sn−1 ∩ Ω by a constant Cf,α not depending on the choice of
coordinates; since Dαf is homogeneous of degree r, we then deduce that

|Dαf(η)| ≤ Cf,α|η|<r

for all η ∈ Ω \ {0}, and part (i) is proved. On the other hand, if f does not vanish on Ω \ {0},
then by compactness and homogeneity we deduce that

|η|<r ≤ Cf |f(η)|

for all η ∈ Ω \ {0}, and part (ii) follows by combining the two inequalities.

A multivariate analogue of the previous argument, exploiting the compactness of the product
of unit spheres, yields immediately the following result.

Lemma 13. Let Ω = (Rn1 \ {0})× · · · × (Rns \ {0}). Suppose that f : Ω→ C is smooth
and multihomogeneous of degree r ∈ Cs, i.e.,

f(λ1η1, . . . , λsηs) = λr11 . . . λrss f(η1, . . . , ηs),

for all λ1, . . . , λs ∈ ]0,∞[ and η = (η1, . . . , ηs) ∈ Ω. Then, for all k ∈ N, there exists Cf,k ∈
[0,∞[ such that, for all choices of orthonormal coordinates (η̃l,1, . . . , η̃l,nl) on Rnl for l =
1, . . . , s, if

D = (η̃1,1∂η̃1,1
, . . . , η̃1,n1

∂η̃1,n1
, . . . , η̃s,1∂η̃s,1 , . . . , η̃s,ns∂η̃s,ns ),

then

(i) ‖f‖BDkΩ,D(η 7→|η1|<r1 ···|ηs|<rs ) ≤ Cf,k and,

(ii) if moreover f does not vanish in Ω, then ‖f‖SCkΩ,D
≤ Cf,k.

We conclude this section by briefly recalling the construction of smooth homogeneous
partitions of unity on Rn \ {0} (i.e., partitions of unity made of smooth functions homogeneous
of degree 0) depending on a thinness parameter ε (i.e., corresponding to the choice of an ε-
separated set Iε of unit vectors), which have been extensively used in the literature (see, e.g.,
[15, 7, 36]), and will be useful in §7 below. The language introduced above can be used
to express the uniformity in ε of the estimates on the derivatives of the components of the
partitions of unity.

Lemma 14. For all ε ∈ ]0, 1], there exist a finite subset Iε of Sn−1 and a smooth
homogeneous partition of unity (χε,v)v∈Iε on Rn \ {0} such that

(i) the cardinality of Iε is at most Cε1−n

and, for all v ∈ Iε,
(ii) suppχε,v ⊆ {ξ : ε/4 ≤ |ξ/|ξ| − v| ≤ 4ε};
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(iii) if (ξv1 , . . . , ξ
v
n) are orthonormal coordinates on Rn such that v corresponds to (1, 0, . . . , 0),

then, for all α ∈ Nn and ξ ∈ Rn \ {0},

|∂αξvχε,v(ξ)| ≤ Cα|ξ|−|α|εα1−|α|;

(iv) if moreover Dv = (ξv1∂ξv1 , . . . , ξ
v
n∂ξvn), then, for all k ∈ N,

‖χε,v‖BDkRn\{0},Dv
(1) ≤ Ck.

Note that the above constants C,Cα, Ck do not depend on ε or v, but may depend on the
dimension n. Note further that, differently from the standard construction, here we require
χε,v not only to be supported in a conic neighborhood of the direction v, but also to vanish on
a smaller conic neighborhood of v; this property will be convenient to estimate from above and
from below the size of the “transversal component” (ξv2 , . . . , ξ

v
n) of a point ξ in the support of

χε,v.

Proof. We follow, with slight variations, the construction given in [37, §IX.4]. Let Iε be a
subset of Sn−1 such that

|v − v′| ≥ ε for all v, v′ ∈ Iε with v 6= v′

and maximal among the subsets of Sn−1 with this property. A moment’s reflection shows that
(i) is satisfied, that

for all v ∈ Iε there exists v′ ∈ Iε such that ε ≤ |v − v′| ≤ 2ε,

and that

for all ξ ∈ Sn−1 there is v ∈ Iε such that (1/2) ε ≤ |v − ξ| < (5/2) ε. (3.2)

Choose a smooth φ : Rn → R such that φ(ξ) = 1 for 1/2 ≤ |ξ| ≤ 5/2 and suppφ ⊆ {ξ : 1/4 ≤
|ξ| ≤ 4}, and set

χ̃ε,v(ξ) = φ(ε−1(ξ/|ξ| − v)), χε,v =
χ̃ε,v∑

v′∈Iε χ̃ε,v′
.

By (3.2) χε,v is well-defined and smooth on Rn \ {0}, and clearly it is homogeneous of degree
0 and satisfies (ii); further

|∂α
ξ̃
χε,v(ξ)| ≤ Cα|ξ|−|α|ε−|α|

for all α ∈ Nn and all choices of orthonormal coordinates (ξ̃1, . . . , ξ̃n) on Rn (cf. [37, §IX.4.4]).
The last inequality proves (iii) in the case α1 = 0; for α1 > 0, one then proceeds by induction

on α1, by exploiting the identity

(ξv1 )k∂kξv1 = %k∂k% −
∑

|β|=k, β1<k

cβ (ξv)β∂βξv

(where % = |ξ|, ∂% is the radial derivative, and cβ ∈ N), the fact that

%k∂k%f = ck,γf for all f homogeneous of degree γ

(where ck,γ = γ(γ − 1) . . . (γ − k + 1)) and that

ξv1 ∼ |ξ|, |ξv2 |, . . . , |ξvn| . ε|ξ| for all ξ ∈ suppχε,v. (3.3)

From (iii) and (3.3) we deduce in particular that

|(ξv)α∂αξvχε,v(ξ)| ≤ Cα,

and (iv) follows because Dα
v =

∑
β≤α cα,β(ξv)β∂βξv for some cα,β ∈ N.
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4. Derivatives of the kernel formula

By using the notation of §3, we can now show that iterated η-derivatives of V in (2.10) have
a precise form.

Let e1, . . . , eM denote the standard basis of RM , and let D = (D1, . . . , DN ) be a commuting
system of smooth vector fields on g∗2,r. We introduce some operators on functions f : RM ×
R× g∗2,r → C as follows:

δjf(n, µ, η) = f(n+ ej , µ, η)− f(n, µ, η)

∂njf(n, µ, η) =
∂

∂nj
f(n, µ, η),

∂µf(n, µ, η) =
∂

∂µ
f(n, µ, η),

Dkf(n, µ, η) = Dk(f(n, µ, ·))(η)

for all j ∈ {1, . . . ,M}, k ∈ {1, . . . , N}. As usual, for all α ∈ NN and β ∈ NM , we set Dα =
Dα1

1 . . . DαN
N , δβ = δβ1

1 . . . δβMM , ∂βn = ∂β1
n1
. . . ∂βMnM .

Proposition 15. Let D = (D1, . . . , DN ) be a commuting system of smooth vector fields
on g∗2,r. For all H : R× g∗2 → C smooth and compactly supported in R× g∗2,r, if V is defined
as in (2.10), then, for all α ∈ NN , η ∈ g∗2,r, ξ ∈ g1,

DαV (ξ, η) =
∑
ι∈Iα

∑
n∈NM

Dγι∂kιµ δ
βιmH(n, |P η0 ξ|2, η) Ψι,0(D; |P η0 ξ|2)

×
M∏
j=1

[
L(rj−1+βιj)
nj (|P ηj ξ|

2/bηj ) Φι,j(D; 1/bηj ) Ψι,j(D; |P ηj ξ|
2)
]

(4.1)

where Iα is a finite set and, for all ι ∈ Iα,
– γι ∈ NN , kι ∈ N, βι ∈ NM , γι ≤ α,
– Ψι,0 ∈ HDP

|α|
N (kι),

– for j = 1, . . . ,M , Φι,j ∈ HDP
|α|
N (βιj),

– for j = 1, . . . ,M , Ψι,j = Ψ0
ι,jΨ

1
ι,j , where Ψ1

ι,j ∈ HDP
|α|
N (qιj) and Ψ0

ι,j ∈ HDP1
N (βιj − qιj), for

some qι ∈ NM such that qι ≤ βι,
– min{1, |α|} ≤ |βι|+ kι + |γι| and |βι|+ kι + |γι|+ |qι| ≤ |α|.

Proof. Notice first that the above statement can be equivalently rephrased by additionally
requiring that each of the polynomials Ψ0

ι,j is made of a unique monic monomial (it is sufficient
to rearrange the sum). Hence we may suppose that Ψ0

ι,j(D; |P ηj ξ|2) is just a product of factors
of the form |P ηj ξ|2 or Dk|P ηj ξ|2 for k ∈ {1, . . . , N}.

The proof goes by induction on |α|. The case α = 0 is given by Proposition 6. For the
inductive step, one employs Leibniz’ rule, and the following observations:

– when a Dk-derivative hits Dγι∂kιµ δ
βιmH(n, |P η0 ξ|2, η), either it increases γιk, or it increases

kι; in the second case, the degree of Ψι,0 is increased too;

– when a Dk-derivative hits L(rj−1+βιj)
nj (|P ηj ξ|2/b

η
j ), then (2.11) and summation by parts in

nj increase the order βιj of discrete differentiation in δj , and moreover the additional factor

Dk(|P ηj ξ|
2/bηj ) = (1/bηj )Dk(|P ηj ξ|

2) + |P ηj ξ|
2Dk(1/bηj )

given by the chain rule increases the degrees of both Φι,j and Ψ0
ι,j ;

– when a Dk-derivative hits Ψι,0(D; |P η0 ξ|2), Φι,j(D; 1/bηj ) or Ψ1
ι,j(D; |P ηj ξ|2), “nothing

happens” because of Lemma 9(i);
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– when a Dk-derivative hits a factor of Ψ0
ι,j(D; |P ηj ξ|2), the derivative of this factor can be

included in the new Ψ1
ι,j(D; |P ηj ξ|2), hence the degree qιj of Ψ1

ι,j increases, while the degree
of Ψ0

ι,j decreases, and the sum βιj of the degrees is unvaried.

The conclusion follows.

The previous formula expresses DαV in terms of derivatives Dγι∂kιµ δ
βιmH of the

reparametrized multiplier mH whose total order |βι|+ kι + |γι| does not exceed |α|. We will
now convert this formula into an L2-estimate, by exploiting the orthogonality properties of
the Laguerre functions. More precisely, we will use an enhanced version of the orthogonality
relations (2.12), allowing for a mismatch between the type of Laguerre functions and the
exponent in the weight defining the measure. As we will see, this mismatch may produce
additional discrete differentiations of mH ; nevertheless, the total order of differentiation will
not exceed |α|, thanks to the fact that in Proposition 15 the degrees qιj of the Ψ1

ι,j are also
kept under control.

Note that, for all f : RM × R× g∗2,r → C, α ∈ NM , µ ∈ R and η ∈ g∗2,r, the functions
δαf(·, µ, η) and ∂αnf(·, µ, η) depend only on f(·, µ, η); in other words, δα and ∂αn can be
thought of as operators on functions RM → C. Set moreover 〈s〉 = 1 + |s| and (s)+ = max{s, 0}
for all s ∈ R. For a multiindex α = (α1, . . . , αM ) ∈ RM , set (α)+ = ((α1)+, . . . , (αM )+). The
aforementioned “enhanced orthogonality relations” can be then stated as follows.

Lemma 16. For all h, k ∈ NM and all compactly supported f : RM → C,∫
]0,∞[M

∣∣∣ ∑
n∈NM

f(n)

M∏
j=1

L(kj)
nj (tj)

∣∣∣2 th dt ≤ Ch,k ∑
n∈NM

|δ(k−h)+f(n)|2
M∏
j=1

〈nj〉hj+2(kj−hj)+ .

Proof. See [29, Lemma 7].

Another simple remark will be of use: via the fundamental theorem of integral calculus, finite
differences can be estimated by continuous derivatives.

Lemma 17. Let f : RM → C be smooth, and let β ∈ NM . Then

δβf(n) =

∫
Rβ

∂βnf(n+ s) dνβ(s)

for all n ∈ RM , where Rβ =
∏M
j=1 [0, βj ] and νβ is a Borel probability measure on Rβ . In

particular

|δβf(n)|2 ≤
∫
Rβ

|∂βf(n+ s)|2 dνβ(s)

for all n ∈ RM .

We now have all the ingredients to obtain from Proposition 15, under suitable assumptions
on η-derivatives of bη1 , . . . , b

η
M , P

η
1 , . . . , P

η
M , an estimate for a partial L2-norm of DαV (ξ, η) in

terms of derivatives of the reparametrized multiplier mH of order at most |α|. A comparison
of this estimate with Corollary 8 shows the “self-reproducing” character of the formulas under
consideration.
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Proposition 18. Let D = (D1, . . . , DN ) be a commuting system of smooth vector fields
on g∗2,r. Let Ω ⊆ g∗2,r be open, and suppose that

‖bη1‖SCAΩ,D
, . . . , ‖bηM‖SCAΩ,D

, ‖P η1 ‖BDAΩ,D(1), . . . , ‖P
η
M‖BDAΩ,D(1) ≤ κ (4.2)

for some A ∈ N and κ ∈ [0,∞[. For all H : R× g∗2 → C smooth and compactly supported in
R× Ω, and for all α ∈ NN with |α| ≤ A, if V is defined as in (2.10), then∫

g1

∣∣∣DαV (ξ, η)
∣∣∣2 dξ ≤ Cκ,α ∑

ι∈I′α

∫
[0,∞[

∫
Rι

∑
n∈NM

|Dγι∂kιµ ∂
βι

n mH(n+ s, µ, η)|2

×
M∏
j=1

[
(bηj )1+aιj−2βιj 〈nj〉a

ι
j

]
dνι(s) dσι(µ),

for all η ∈ g∗2,r, where I ′α is a finite set and, for all ι ∈ I ′α,

– βι, aι ∈ NM , kι ∈ N, γι ∈ NN ,
– γι ≤ α and aιj ≥ rj − 1 for j = 1, . . . ,M ,
– min{1, |α|} ≤ |γι|+ kι + |βι| ≤ |α|,
– Rι =

∏M
j=1

[
0, βιj

]
and νι is a Borel probability measure on Rι,

– σι is a regular Borel measure on [0,∞[,
– if r0 = 0, then kι = 0 and σι is the Dirac delta at 0,
– if r0 > 0, then dσι(µ) = µr0/2+uι−1 dµ for some uι ∈ N.

Proof. Because of the support condition on H, both sides of the above inequality vanish if
η /∈ Ω, hence we may assume η ∈ Ω.

Under our assumption (4.2), we can estimate the “differential polynomials” in the right-
hand side of (4.1) whenever |α| ≤ A. In fact, by Lemma 10(iv), ‖1/bηj ‖SC

|α|
Ω,D

≤ Cκ,α, and

consequently, by Lemma 9(ii),

|Φι,j(D; 1/bηj )| ≤ Cκ,α(1/bηj )β
ι
j .

Analogously, since ‖P ηj ‖BD
|α|
Ω,D(1)

≤ κ and

|Dθ|P ηj ξ|
2| = |〈(DθP ηj )ξ, ξ〉| ≤ ‖DθP ηj ‖ |ξ|

2,

for all θ ∈ NN , we deduce that

|Ψι,0(D; |P η0 ξ|2)| ≤ Cκ,α|ξ|2kι , |Ψ1
ι,j(D; |P ηj ξ|

2)| ≤ Cκ,α|ξ|2q
ι
j .

For the terms Ψ0
ι,j(D; |P ηj ξ|2), containing only derivatives of order zero or one, a better estimate

holds, since

|Dk|P ηj ξ|
2| = |2〈(DkP

η
j )ξ, P ηj ξ〉| ≤ 2‖DkP

η
j ‖ |P

η
j ξ| |ξ|, |P ηj ξ|

2 ≤ |P ηj ξ| |ξ|,

and consequently

|Ψ0
ι,j(D; |P ηj ξ|

2)| ≤ Cκ,α|P ηj ξ|
βιj−q

ι
j |ξ|β

ι
j−q

ι
j .

From Proposition 15 and the triangular inequality we then obtain that∣∣∣DαV (ξ, η)
∣∣∣2 ≤ Cκ,α ∑

ι∈Iα

∣∣∣ ∑
n∈NM

Dγι∂kιµ δ
βιmH(n, |P η0 ξ|2, η)

× |ξ|2kι
M∏
j=1

[
L(rj−1+βιj)
nj (|P ηj ξ|

2/bηj ) (1/bηj )β
ι
j |ξ|β

ι
j+q

ι
j |P ηj ξ|

βιj−q
ι
j

]∣∣∣2.
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Since |ξ|2 =
∑M
j=0 |P

η
j ξ|2, the sum can be rearranged so to give∣∣∣DαV (ξ, η)

∣∣∣2 ≤ Cκ,α ∑
ι∈I′α

∣∣∣ ∑
n∈NM

Dγι∂kιµ δ
βιmH(n, |P η0 ξ|2, η)

× |P η0 ξ|2k̃ι
M∏
j=1

[
L(rj−1+βιj)
nj (|P ηj ξ|

2/bηj ) (1/bηj )β
ι
j |P ηj ξ|

βιj−q
ι
j+c

ι
j

]∣∣∣2,
where k̃ι ∈ N, cι ∈ NM and |cι|+ 2k̃ι = |βι|+ |qι|+ 2kι. Set pι = βι − qι + cι, and let σι be

the measure on [0,∞[ given by µr0/2−1+2k̃ι dµ if r0 > 0, or by the Dirac measure in 0 if r0 = 0;
then, by a change of variables,∫

g1

∣∣∣DαV (ξ, η)
∣∣∣2 dξ ≤ Cκ,α ∑

ι∈I′α

∫
[0,∞[

∫
]0,∞[M

∣∣∣ ∑
n∈NM

Dγι∂kιµ δ
βιmH(n, µ, η)

×
M∏
j=1

L(rj−1+βιj)
nj (tj)

∣∣∣2 M∏
j=1

t
pιj+rj−1

j

(bηj )2βιj−pιj−rj
dt dσι(µ),

which yields, by Lemma 16,∫
g1

∣∣∣DαV (ξ, η)
∣∣∣2 dξ ≤ Cκ,α ∑

ι∈I′α

∫
[0,∞[

∑
n∈NM

|Dγι∂kιµ δ
β̃ιmH(n, µ, η)|2

×
M∏
j=1

(bηj )1+aιj−2β̃ιj 〈nj〉a
ι
j dσι(µ),

where β̃ι = βι + (βι − pι)+ ∈ NM and aιj = rj − 1 + pιj + 2(βιj − pιj)+ ∈ N. On the other hand,
since (βι − pι)+ = (qι − cι)+ ≤ qι, we have

min{1, |α|} ≤ |γι|+ kι + |βι| ≤ |γι|+ kι + |β̃ι| ≤ |γι|+ kι + |βι|+ |qι| ≤ |α|,

and the conclusion follows by renaming β̃ι as βι and then applying Lemma 17.

Corollary 19. Under the hypotheses of Proposition 18, suppose further that

H(λ, η) = F (λ)χ(η);

then∫
g1

∣∣∣DαV (ξ, η)
∣∣∣2 dξ ≤ Cκ,α ∑

ι∈I′′α

∫
[0,∞[

∫
Rι

∑
n∈NM

|Dγιχ(η)|2

×

∣∣∣∣∣∣F (kι)

 M∑
j=1

(2(nj + sj) + rj)b
η
j + µ

∣∣∣∣∣∣
2
M∏
j=1

[
(bηj )1+aιj 〈nj〉a

ι
j

]
dνι(s) dσι(µ),

for all η ∈ g∗2,r, where I ′′α is a finite set and, for all ι ∈ I ′′α,

– aι ∈ NM , kι ∈ N, γι ∈ NN ,
– γι ≤ α and min{1, |α|} ≤ |γι|+ kι ≤ |α|,
– Rι =

∏M
j=1

[
0, βιj

]
and νι is a Borel probability measure on Rι,

– σι is a regular Borel measure on [0,∞[.
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Proof. This is an immediate consequence of Proposition 18 and the fact that, if H(λ, η) =
F (λ)χ(η), then

Dγ∂kµ∂
β
nmH(n, µ, η) =

∑
γ′+γ′′≤γ

|γ′|+|γ′′|+|β|≥min{1,|γ|}

F (|β|+k+|γ′|)

 M∑
j=1

bηj 〈nj〉j + µ



×Dγ′′χ(η)

M∏
j=1

[
〈nj〉

γ′j
j Ψβ,γ,γ′,γ′′,j(D; bηj )

]
where 〈`〉j = 2`+ rj and Ψβ,γ,γ′,γ′′,j ∈ HDP

|γ|
N (βj + γ′j), so

|Dγ∂kµ∂
β
nmH(n, µ, η)|2 ≤ Cκ,γ,k,β

∑
γ′+γ′′≤γ

|γ′|+|γ′′|+|β|≥min{1,|γ|}

|Dγ′′χ(η)|2

×
M∏
j=1

[
(bηj )2βj+2γ′j 〈nj〉2γ

′
j

] ∣∣∣∣∣∣F (|β|+k+|γ′|)

 M∑
j=1

bηj 〈nj〉j + µ

∣∣∣∣∣∣
2

for all n ∈ RM , µ ∈ [0,∞[, η ∈ g∗2,r, whenever |γ| ≤ A.

We are finally able to prove the fundamental estimate, which will allow us to carry on the
strategy described in the introduction, based on the decomposition (1.4) of an operator F (L)
along the spectrum of U. The following result shows in fact that a weighted L2-norm of the
kernel of F (L)χ(U) for some cutoff χ can be controlled by a Sobolev norm of F times the
square root of a weighted measure of suppχ.

Proposition 20. Suppose that D = (η̃1∂η̃1
, . . . , η̃d2

∂η̃d2
) for some linear coordinates

(η̃1, . . . , η̃d2
) on g∗2. Let Ω ⊆ g∗2,r be open, and suppose that (4.2) holds for some A ∈ N and

κ ∈ [0,∞[. Let χ ∈ C∞c (Ω) be of the form

χ(η) = χr(f(η))χs(η),

where χr ∈ C∞c (]0,∞[), f : g∗2 \ {0} → ]0,∞[ is smooth and homogeneous of degree 1, χs ∈
C∞(g∗2 \ {0}) is homogeneous of degree 0, and

| suppχr| ≥ κ−1, suppχr ⊆
[
κ−1, κ

]
, (4.3)

‖χr‖CA , ‖f‖SCAΩ,D
, ‖χs‖BDAΩ,D(1) ≤ κ. (4.4)

Let (ũ1, . . . , ũd2
) be the coordinates on g2 dual to (η̃1, . . . , η̃d2

). Then, for all compact sets
K ⊆ R, for all Borel functions F : R→ C supported in K, and for all α ∈ Nd2 with |α| ≤ A,∫

G

∣∣|ũα| KF (L)χ(U)(x, u)
∣∣2 dx du ≤ Cκ,K,α‖F‖2W |α|2

∫
suppχ

|η̃−2α| dη.

Note that, in the above formula, the volume elements du and dη are fixed as in Corollary 8,
and do not depend on the choice of coordinates (η̃1, . . . , η̃d2

) and (ũ1, . . . , ũd2
). On the other

hand, by (4.2) and (4.4), the quantity κ will depend in general on such choice.

Proof. Via a standard approximation argument, we may assume that F is smooth.
The Lebesgue measure on g∗2 can be decomposed in “polar coordinates” according to f , i.e.,∫

g∗2

φ(η) dη =

∫∞
0

∫
S

φ(ρη) dΣ(η) ρd2
dρ

ρ
, (4.5)
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for all (nonnegative or integrable) Borel φ : g∗2 → C, where S = {η : f(η) = 1} and Σ is some
regular Borel measure on S. Let χ̃r : R→ R be the characteristic function of suppχr, and
χ̃s : S → R be the characteristic function of suppχs ∩ S. Leibniz’ rule, (4.4) and Lemma 11(i)
then yield

|Dγχ(η)| ≤ Cγ,κ χ̃r(f(η)) χ̃s(η/f(η))

for all η ∈ g∗2 \ {0} and γ ∈ NN with |γ| ≤ A. Note moreover that, if 〈`〉j = 2`+ rj , then

bηj 〈nj〉 ≤ b
η
j 〈nj + sj〉j ≤

M∑
j=1

bηj 〈nj + sj〉j + µ ≤ maxK

for all η ∈ g∗2,r, n ∈ NM , s ∈ [0,∞[
M

, µ ∈ [0,∞[ such that
∑M
j=1 b

η
j 〈nj + sj〉j + µ ∈ suppF .

From Corollary 19 we then deduce∫
g1

∣∣∣DαV (ξ, η)
∣∣∣2 dξ ≤ Cκ,K,α ∑

ι∈I′′α

∑
n∈NM

χ̃r(f(η)) χ̃s(η/f(η))

×
∫
[0,∞[

∫
Rι

∣∣∣∣∣∣F (kι)

 M∑
j=1

〈nj + sj〉jbηj + µ

∣∣∣∣∣∣
2
M∏
j=1

bηj dνι(s) dσι(µ),

for all η ∈ g∗2,r, where I ′′α is a finite set and, for all ι ∈ I ′′α,

– kι ∈ N, kι ≤ |α|,
– Rι =

∏M
j=1

[
0, βιj

]
and νι is a Borel probability measure on Rι,

– σι is a regular Borel measure on [0,∞[.

On the other hand it is easily proved that, for all α ∈ NN ,

∂αη̃ = η̃−α
∑
α̃≤α

cα,α̃D
α̃

for some cα,α̃ ∈ Z, hence

∫
g1

∣∣∣∂αη̃ V (ξ, η)
∣∣∣2 dξ ≤ Cκ,K,α |η̃−2α| χ̃r(f(η)) χ̃s(η/f(η))

×
∑
ι∈I′′′α

∑
n∈NM

∫
[0,∞[

∫
Rι

∣∣∣∣∣∣F (kι)

 M∑
j=1

〈nj + sj〉jbηj + µ

∣∣∣∣∣∣
2
M∏
j=1

bηj dνι(s) dσι(µ),

where I ′′′α is the disjoint union of the I ′′α̃ with α̃ ≤ α. The properties of the Fourier transform
give us finally∫

G

∣∣|ũα| KF (L)χ(U)(x, u)
∣∣2 dx du ≤ Cκ,K,α ∑

ι∈I′′′α

∑
n∈NM

∫
g∗2,r

χ̃r(f(η)) χ̃s(η/f(η))

×
∫
[0,∞[

∫
Rι

∣∣∣∣∣∣F (kι)

 M∑
j=1

〈nj + sj〉jbηj + µ

∣∣∣∣∣∣
2

|η̃−2α|
M∏
j=1

bηj dνι(s) dσι(µ) dη.
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Passing to polar coordinates as in (4.5) and rescaling, we obtain that∫
G

∣∣|ũα| KF (L)χ(U)(x, u)
∣∣2 dx du

≤ Cκ,K,α
∑
ι∈I′′′α

∫∞
0

∫
suppχs∩S

|η̃−2α|
∫
Rι

∑
n∈NM

χ̃r

(
ρ∑M

j=1〈nj + sj〉jbηj

)

×
∫
[0,∞[

|F (kι) (ρ+ µ) |2
M∏
j=1

bηj dσι(µ) dνι(s) dΣ(η)
dρ

ρ
.

In the sum over NM above, the n-th summand vanishes unless
∑M
j=1〈nj + sj〉jbηj ≤ κρ, hence

there are at most (κρ)M
∏M
j=1(bηj )−1 nonvanishing summands, and our estimate becomes∫

G

∣∣|ũα| KF (L)χ(U)(x, u)
∣∣2 dx du

≤ Cκ,K,α
∫
suppχs∩S

|η̃−2α| dΣ(η)
∑
ι∈I′′′α

∫
[0,∞[

∫∞
0

|F (kι) (ρ+ µ) |2ρM−1 dρ dσι(µ).

On the other hand∫
[0,∞[

∫∞
0

|F (kι) (ρ+ µ) |2ρM−1 dρ dσι(µ)

≤ CK σι([0,maxK]) sup
µ∈[0,maxK]

∫∞
0

|F (kι) (ρ+ µ) |2 dρ ≤ CK,α‖F‖W |α|2

for all ι ∈ I ′′′α , and moreover∫
suppχ

|η̃−2α| dη =

∫∞
0

∫
S

χ̃r(ρ) χ̃s(η) |η̃−2α| ρd2−2|α| dΣ(η)
dρ

ρ
≥ Cκ

∫
suppχs∩S

|η̃−2α| dΣ(η)

by (4.5) and (4.3), and the conclusion follows.

5. Groups with 2-dimensional second layer

By using the estimates obtained in §4, here we prove Proposition 3 in the case d2 = dim g2 ≤
2. In fact, if d2 = 1, then G is a Heisenberg group, and Proposition 3 follows from the results
of [34]. Therefore in the rest of the section we suppose that d2 = 2.

We now show that the singular set g∗2 \ g∗2,r is the union of a finite number of rays emanating
from the origin, and that in the neighborhood of each of these rays a system of coordinates on
g∗2 can be chosen so to satisfy the hypothesis (4.2).

Fix any Euclidean norm and orientation on g∗2, and denote by S the unit sphere in g∗2. For
all v ∈ S, let (ηv1 , η

v
2) denote the coordinates on g∗2 determined by completing v to a positive

orthonormal basis of g∗2, and set Dv = (ηv1∂ηv1 , η
v
2∂ηv2 ). For all X ⊆ g∗2 \ {0}, let ΓX denote the

“cone over X”, i.e., the set {λv : λ ∈ ]0,∞[ , v ∈ X}.

Lemma 21. There exists a finite subset N of S such that

g∗2 \ g∗2,r = {0} ∪ ΓN.

Moreover, if U is an open subset of S \N and U ∩N ⊆ {v} for some v ∈ S, then

bη1 , . . . , b
η
M ∈ SC∞ΓU,Dv and P η0 , P

η
1 , . . . , P

η
M ∈ BD∞ΓU,Dv (1).
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Proof. By Lemma 4, g∗2 \ g∗2,r is the zero set of a nonzero homogeneous polynomial T on g∗2,
hence it corresponds to the zero set of T in the projective space P (g∗2). Since g∗2 is 2-dimensional,
P (g∗2) is 1-dimensional, hence the zero set of T in P (g∗2) is finite, and g∗2 \ g∗2,r = {0} ∪ ΓN for
some finite subset N of S.

Let now U be an open subset of S such that U ∩N ⊆ {v} for some v ∈ S. If v /∈ N , then
U ∩N = ∅. In particular the functions bηj and P ηj are smooth in a neighborhood of ΓU , and
the bηj do not vanish there; their homogeneity properties are then sufficient to conclude, by
Lemma 12, that bηj ∈ SC∞ΓU,Dv and P ηj ∈ BD∞ΓU,Dv (1).

Suppose instead that v ∈ N . Let us use the coordinates (ηv1 , η
v
2) on g∗2: then v corresponds to

the point (1, 0), and T becomes a nonzero homogeneous polynomial in two indeterminates with
T (1, 0) = 0. Denote by pη the characteristic polynomial of −J2

η , as in (2.3), and let p̃t(λ) =

p(1,t)(λ), T̃ (t) = T (1, t), b̃j(t) = b
(1,t)
j , P̃j(t) = P

(1,t)
j . Then the b̃j(t) are the square roots of the

roots of p̃t, i.e.,

p̃t(λ) = λr0(λ− (b̃1(t))2)2r1 · · · (λ− (b̃M (t))2)2rM ,

and are analytic functions on {t : T̃ (t) 6= 0}. Moreover, since the coefficients of p̃t are
polynomials in t, by Puiseux’s theorem on the resolution of singularities of plane algebraic
curves (see, e.g., [16, §7] or the discussion in [35, §3]) there exists ε > 0 such that the functions
b̃j , restricted to ]0, ε[, admit a convergent Puiseux expansion; by Lemma 5, the same is true
for the matrix coefficients of the P̃j , because they are rational functions of b̃1, . . . , b̃M and the
identity. This means that, if f denotes any of the b̃j or any of the matrix coefficients of the P̃j ,
then f on the interval ]0, ε[ can be written as

f(t) = th/n
∑
m≥0

amt
m/n

for some n ∈ N \ {0}, h ∈ Z, and coefficients am ∈ R with a0 6= 0 (in fact it must be h ∈ N,
because both the roots b̃j(t) and the coefficients of the projections P̃j(t) are bounded in a
neighborhood of t = 0); term by term differentiation then gives that

(t∂t)
kf(t) = th/n

∑
m≥0

(h+m)kn−kamt
m/n

for all k ∈ N (note that the derived series have the same radius of convergence). Therefore,
for all k ∈ N, the function t 7→ t−h/n(t∂t)

kf(t) has a continuous extension to [0, ε[; moreover,
since a0 6= 0, modulo taking a smaller ε, we may assume that the continuous extension of
t 7→ t−h/nf(t) does not vanish in [0, ε[. Consequently, by compactness,

|t−h/n(t∂t)
kf(t)| ≤ Cf,k|t−h/nf(t)|

for all t ∈ [0, ε/2], and therefore

|(t∂t)kf(t)| ≤ Cf,k|f(t)| (5.1)

for all t ∈ ]0, ε/2]. The same argument, applied to the function t 7→ f(−t), shows that (5.1)
holds for all t ∈ [−ε/2, ε/2] \ {0} and all k ∈ N, if ε > 0 is sufficiently small.

Note now that, if F is one of the η 7→ bηj or one of the matrix coefficients of the η 7→ P ηj ,
then F (ηv1 , η

v
2) = (ηv1)µf(ηv2/η

v
1) for some µ ∈ {0, 1}, where f(t) = F (1, t). Inductively one then

shows that

Dα
v F (ηv1 , η

v
2) =

|α|∑
s=0

cα,s (ηv1)µ((t∂t)
sf)(ηv2/η

v
1)

for all α ∈ N2 and some coefficients cα,s ∈ R, and in particular, by (5.1),

|Dα
v F (ηv1 , η

v
2)| ≤ Cα,F |F (ηv1 , η

v
2)| (5.2)
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for all α ∈ N2 and all (ηv1 , η
v
2) with 0 < |ηv2/ηv1 | ≤ ε/2.

On the other hand, if V = {η ∈ U : |ηv2/ηv1 | > ε/2}, then V ∩N = ∅ and we already
know that bηj ∈ SC∞ΓV,Dv and P ηj ∈ BD∞ΓV,Dv (1). By combining this fact with (5.2) and the
boundedness of the coefficients of P ηj , we obtain that bηj ∈ SC∞ΓU,Dv and P ηj ∈ BD∞ΓU,Dv (1).

Let N be the finite subset of S given by Lemma 21; in the case this set is empty, we take
instead N = {(1, 0)}. We may then choose an open cover {Uv}v∈N of S such that Uv ∩N = {v}
for all v ∈ N .

Let {ζv}v∈N be a smooth partition of unity on S subordinate to the open cover {Uv}v∈N ; each
ζv extends uniquely to a smooth function on g∗2 \ {0}, homogeneous of degree 0, which we still
denote by ζv. Let moreover χ ∈ C∞c (]0,∞[) be such that suppχ ⊆ [1/2, 2] and

∑
n∈Z χ(2nt) = 1

for all t ∈ ]0,∞[. For all v ∈ N , denote by (uv1, u
v
2) the coordinates on g2 dual to the coordinates

(ηv1 , η
v
2) on g∗2.

Proposition 22. Let K ⊆ R be compact. For all Borel functions F : R→ C such that
suppF ⊆ K, for all v ∈ N , and for all α ∈ [0, 1/2[

2
,∫

G

|(1 + |uv1|)α1(1 + |uv2|)α2 KF (L) ζv(U)(x, u)|2 dx du ≤ CK,α‖F‖2Wα1+α2
2

.

Proof. For all ρ ∈ ]0,∞[ and δ = (δ1, δ2) ∈ ]0, 1]
2
, let χv,ρ,δ : g∗2 → C be defined by

ζv,ρ,δ(λ, η) = χ(|η|/ρ) ζv(η/|η|)
2∏
k=1

χ(|ηvk |/(|η|δk)).

Then

ζv(η) =
∑

m∈Z, n∈N2

ζv,2m,(2−n1 ,2−n2 )(η)

for all η ∈ g∗2 with ηv1η
v
2 6= 0 (in fact some of the summands are identically zero, but we may

disregard this). On the other hand the set {η : ηv1η
v
2 = 0} is negligible with respect to the joint

spectral resolution of U. Moreover, by Lemma 5, η 7→ (
∑
j 2rj(b

η
j )2)1/2 is a norm on g∗2, hence

there is a constant κ ∈ ]0,∞[ such that

|η| ≤ κ
∑
j

bηj ≤ κ

∑
j

bηj (2nj + rj) + µ


for all η ∈ g∗2, µ ∈ [0,∞[ and n ∈ NM ; hence, by (2.9), F (L) ζv,ρ,δ(U) = 0 unless ρ ≤ 2κmaxK.
Consequently

F (L) ζv(U) =
∑

m∈Z, n∈N2

2m≤2κmaxK

F (L) ζv,2m,(2−n1 ,2−n2 )(U) (5.3)

in the strong L2 operator topology.
Set Ωv = ΓUv ∩ {η : ηv1η

v
2 6= 0}. If f is any of the functions η 7→ |η|/ρ, η 7→ |ηk|/(|η|δk), then

by (3.1) and Lemma 13 it is immediately seen that, for all A ∈ N, ‖f‖SCAΩv,Dv
is finite and

independent of ρ, δ. Therefore, if

ζv,δ(η) = ζv(η/|η|)
2∏
k=1

χ(|ηvk |/(|η|δk)),

then supδ∈]0,1]2 ‖ζv,δ‖BDAΩv,Dv (1) is finite by Lemma 11(i), and

ζv,ρ,δ(λ, η) = χ(|η|/ρ) ζv,δ(η).
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On the other hand, |ηvk | ∼ ρδk for η ∈ supp ζv,ρ,δ, hence the measure of supp ζv,ρ,δ is at most
ρ2δ1δ2. Consequently, by Proposition 20 and Lemma 21, for all α ∈ N2,∫

G

∣∣|uv1|α1 |uv2|α2 KF (L) ζv,ρ,δ(U)(x, u)
∣∣2 dx du ≤ CK,κ,α‖F‖2W |α|2

2∏
k=1

(ρδk)1−2αk .

By interpolation, the same estimate holds for all α ∈ [0,∞[
2
. In the case α1, α2 < 1/2, the

dyadic decomposition (5.3) then yields∫
G

||uv1|α1 |uv2|α2 KF (L) ζv(U)(x, u)|2 dx du ≤ CK,α‖F‖2Wα1+α2
2

.

In order to conclude, it is sufficient to combine this estimate with the ones where (α1, α2) is
replaced by (0, 0), (α1, 0), (0, α2).

Via Hölder’s inequality, the previous estimates can be combined at the level of L1;
interpolation with the standard estimate valid on all 2-step groups then allows us to conclude
the proof of Proposition 3 for the groups with d2 = 2.

Proposition 23. Let K ⊆ R be compact. For all Borel functions F : R→ C such that
suppF ⊆ K, and for all α, β ∈ R such that β ≥ (dim g2)/2 and β > α+ d/2,

‖(1 + | · |G)α KF (L) ‖1 ≤ CK,α,β‖F‖Wβ
2
. (5.4)

Proof. We prove (5.4) for α, β belonging to two different ranges:

β ≥ 0, β > α+Q/2; (5.5)

β ≥ 0, 2β > α+Q/2, α < −(dim g1)/2. (5.6)

The conclusion is then obtained by interpolation: in fact, for all small δ > 0, the point Pδ
with coordinates α = −dim g1/2− δ, β = dim g2/2 belongs to (5.6) and also to the line β =
α+ d/2 + δ, hence the convex hull of Pδ and the region (5.5) contains the range β ≥ (dim g2)/2,
β > α+ d/2 + δ.

For the range (5.5), we choose s ∈ ]α+Q/2, β[ and then apply Hölder’s inequality and the
standard estimate (1.2):

‖(1 + | · |G)α KF (L) ‖1 ≤ ‖(1 + | · |G)α−s‖2 ‖(1 + | · |G)s KF (L) ‖2 ≤ CK,α,β‖F‖Wβ
2
.

For the range (5.6), instead, we first split the left-hand side of (5.4) as follows:

‖(1 + | · |G)α KF (L) ‖1 ≤
∑
v∈N
‖(1 + | · |G)α KF (L) ζv(U) ‖1.

Each summand in the right-hand side can be then estimated by Hölder’s inequality: for all
θ ∈ R,

‖(1 + | · |G)α KF (L) ζv(U) ‖1

≤
(∫

G

(1 + |(x, u)|G)2α(1 + |uv1|)−2θ(1 + |uv2|)−2θ dx du

)1/2

×
(∫

G

|(1 + |uv1|)θ(1 + |uv2|)θ KF (L) ζv(U)(x, u)|2 dx du
)1/2

.

Note that α+ (dim g1)/2 < 0, and therefore α+Q/2 < dim g2 = 2. Choose θ so that 4θ ∈
[0, 2β] ∩ ]α+Q/2, 2[, then choose α1 ∈ ](dim g1)/2,−α+ 4θ − 2[, and set α2 = −α− α1. Hence
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−α = α1 + α2, α1 > (dim g1)/2 > 0 and α2 > 2− 4θ > 0. Therefore∫
G

(1 + |(x, u)|G)2α(1 + |uv1|)−2θ(1 + |uv2|)−2θ dx du

≤
∫
G

(1 + |x|)−2α1(1 + |uv1|)−2θ−α2/2(1 + |uv2|)−2θ−α2/2 dx du <∞,

since 2α1 > dim g1 and 2θ + α2/2 > 1. On the other hand, by Proposition 22,∫
G

|(1 + |uv1|)θ(1 + |uv2|)θ KF (L) ζv(U)(x, u)|2 dx du ≤ CK,α,β‖F‖2W 2θ
2
≤ CK,α,β‖F‖2Wβ

2

since θ ∈ [0, 1/2[ and 2θ ≤ β.

6. Groups of dimension at most 7

In view of the results of §5, in order to complete the proof of Proposition 3, it remains to
consider the case d ≤ 7 and dim g2 > 2. Some remarks on the possible structures of G will help
us to identify the cases which are not already covered by the existing literature.

Proposition 24. Suppose that d ≤ 7. Then

(i) dim g2 ≤ 3;
(ii) if d < 7 and dim g2 = 3, then G is isomorphic to the free 2-step nilpotent group N3,2 on 2

generators;
(iii) if d = 7, dim g2 = 3, and g is decomposable, then G is isomorphic to the direct product

N3,2 × R, and the sublaplacian L decomposes as L′ + L′′, where L′ and L′′ correspond to
sublaplacians on the factors N3,2 and R.

Proof. Since G is a quotient of the free 2-step nilpotent group on dim g1 generators, it must
be dim g2 ≤

(
dim g1

2

)
, and the assumption d ≤ 7 implies that dim g2 ≤ 3.

For the same reason, if dim g2 = 3, then d ≥ 6; in the case d < 7 we conclude that d = 6 and
that G is isomorphic to N3,2.

Suppose now that d = 7, dim g2 = 3, and g is decomposable, that is, g = g′ ⊕ g′′ for some
nontrivial (commuting) ideals g′, g′′ of g. In particular g2 = [g′, g′]⊕ [g′′, g′′], and modulo
replacing g′ with g′′ we may assume dim[g′, g′] ≥ 2. But then dim g′ ≥ 5, hence dim g′′ ≤ 2,
therefore g′′ is abelian, thus necessarily [g′, g′] = g2, which is 3-dimensional, and consequently
dim g′ ≥ 6; since g′, g′′ are nontrivial, it must be dim g′ = 6, dim g′′ = 1. Therefore, if z is the
center of g, then dim z = 4, while dim g2 = 3, and since z = (z ∩ g1)⊕ g2, then dim(z ∩ g1) = 1.
Let g′1 be the orthogonal complement of z ∩ g1 in g1. Then [g′1, g

′
1] = g2. Consequently we obtain

the decomposition g = g̃′ ⊕ g̃′′, where g̃′ = g′1 ⊕ g2 and g̃′′ = g1 ∩ z are commuting ideals, the
Lie algebra g̃′ is isomorphic to the Lie algebra of N3,2, and g̃′′ is 1-dimensional. By choosing
an orthonormal basis of g1 adapted to the decomposition g1 = g′1 ⊕ (g1 ∩ z), we can write
L = L′ + L′′, where L′ and L′′ correspond to sublaplacians on g̃′ and g̃′′ respectively.

By part (i) of the previous proposition, our assumptions d ≤ 7 and dim g2 > 2 imply dim g2 =
3. Moreover, by part (ii), the case dim g2 = 3 and d < 7 is covered by [31], whereas, by part
(iii), the case d = 7, dim g2 = 3 and g decomposable is covered by [29, §6].

It remains to consider the case g indecomposable, d = 7, dim g1 = 4, dim g2 = 3. Fix an
identification of g1 with R4, so that the inner product on g1 determined by the sublaplacian
becomes the standard inner product on R4. The map η 7→ Jη then determines an embedding
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of g∗2 in so4, the space of 4× 4 skewsymmetric real matrices. It is then convenient to analyze
the spectral decomposition of the elements of so4.

The identification of R4 with C2 allows us to identify su2 with a subspace of so4. If K is the
R-linear involutive automorphism of C2 given by (z1, z2) 7→ (z1, z2) and s̃u2 = Ksu2K, then

so4 = su2 ⊕ s̃u2 (6.1)

is the decomposition of the semisimple Lie algebra so4 into simple ideals. Let µ = µ− + µ+

denote the decomposition of an element µ ∈ so4 according to (6.1). Fix moreover the inner
product on so4 defined by

〈µ, µ′〉 = − tr(µµ′)/4

for all µ, µ′ ∈ so4, and let | · | denote the corresponding norm.

Proposition 25. Let µ ∈ so4.

(i) If µ+ = 0 or µ− = 0, then −µ2 = |µ|2.
(ii) If both µ+, µ− are nonzero, then

Pµ1 =
1

2
− 1

2

µ+

|µ+|
µ−

|µ−|
, Pµ2 =

1

2
+

1

2

µ+

|µ+|
µ−

|µ−|

are complementary orthogonal projections on R4, and if

bµ1 = |µ+|+ |µ−|, bµ2 = ||µ+| − |µ−||,

then

−µ2 = (bµ1 )2Pµ1 + (bµ2 )2Pµ2 .

Proof. Note that, for all µ ∈ so4 and Ω ∈ SO4, (ΩµΩ−1)± = Ωµ±Ω−1 and |ΩµΩ−1| = |µ|.
Via these identities, we may reduce to the case where the skewsymmetric matrix µ is in normal
form, i.e., µ = λ1I1 + λ2I2, where λ1, λ2 ∈ R, λ1 ≥ |λ2|, and

I1 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , I2 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 .

Set I± = I1 ± I2. It is then easily seen that I− ∈ su2, I+ ∈ s̃u2, I2
± = −1 and |I±| = 1; therefore

µ± = (λ1 ± λ2)I±/2 and |µ±| = (λ1 ± λ2)/2. From this, part (i) follows immediately. As for
part (ii), a simple computation shows that

µ+

|µ+|
µ−

|µ−|
= I+I− =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,

and therefore

1

2
− 1

2

µ+

|µ+|
µ−

|µ−|
=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,
1

2
+

1

2

µ+

|µ+|
µ−

|µ−|
=


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,

which are complementary orthogonal projections; since moreover |µ+|+ |µ−| = λ1 and |µ+| −
|µ−| = λ2, the conclusion follows.
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The previous proposition further reduces the cases to be considered. In fact, by (i), if the
image V of g∗2 via η 7→ Jη coincides with one of the 3-dimensional subspaces su2, s̃u2 of so4,
then −J2

η is a multiple of the identity for all η ∈ g∗2, that is, G is an H-type group, and this case
is covered by [20]. On the other hand, if V is contained in the “cone” C = {µ : |µ+| = |µ−|},
then by (ii) −J2

η has exactly one nonzero eigenvalue for all η ∈ g∗2 \ {0}, hence this case is
covered by [29].

We can then suppose that V− = V ∩ su2 and V+ = V ∩ s̃u2 are proper subspaces of V , and
that V ∩ C is a proper Zariski-closed subset of V . Hence, if we set

g∗2,r = {η ∈ g∗2 : 0 6= |J−η | 6= |J+
η | 6= 0},

then g∗2 \ g∗2,r is a proper Zariski-closed subset of g∗2 and, for all η ∈ g∗2,r, the spectral
decomposition of −J2

η as in Lemma 5 can be obtained by Proposition 25(ii); in other words,
M = 2, r0 = 0, r1, r2 = 1, and

−J2
η = (bη1)2P η1 + (bη2)2P η2 ,

where P ηj = P
Jη
j , bηj = b

Jη
j . In particular (bη1)2(bη2)2 = det Jη = |Pf Jη|2, where Pf µ denotes

the Pfaffian of µ ∈ so4 (see, e.g., [4, §5.2]); moreover the preimage via η 7→ Jη of the cone C
coincides with the zero set of the quadratic polynomial η 7→ Pf Jη.

Note that the polynomial η 7→ Pf Jη, modulo change of sign and linear changes of variable,
is an invariant of the isomorphism class of the Lie algebra g: in fact, if ωη is the alternating
2-form on g/g2 defined by

ωη(v + g2, v
′ + g2) = η([v, v′])

for all η ∈ g∗2 and v, v′ ∈ g, then η 7→ ωη is intrinsically defined (i.e., it does not depend on the
choice of g1 or L, or on any choice of coordinates) and

ωη ∧ ωη = 2(Pf Jη) Vol,

where Vol is the volume form on g/g2 induced by the chosen identification of g1 with R4. By
the classification of quadratic forms, a suitable choice of linear coordinates (η1, η2, η3) on g2

and of the orientation of g1 then allows one to assume that Pf Jη has one of the following
forms:

0, η2
1 , η1η2, η2

1 + η2
2 , η2

1 + η2
2 − η2

3 , η2
1 + η2

2 + η2
3 .

An inspection of the classification of the indecomposable 7-dimensional 2-step nilpotent real
Lie algebras with 3-dimensional center given by [18, 24] shows that each of the above normal
forms for Pf Jη corresponds to exactly one isomorphism class, as summarized by the following
table:

name in [18] name in [24] Pfaffian

(37A) m7 2 2 0
(37B) m7 2 4 η1η2

(37B1) m7 2 4r η2
1 + η2

2

(37C) m7 2 3 η2
1

(37D) m7 2 5 η2
1 + η2

2 − η2
3

(37D1) m7 2 5r η2
1 + η2

2 + η2
3

In the following we will refer to these isomorphism classes with the names given in [18].
Note that the case (37A) coincides with the case V ⊆ C, which we have already discussed. In
the case (37D1), on the other hand, Jη is invertible for all η ∈ g∗2 \ {0}, hence G is a Métivier
group, which is covered by [20].

About the remaining cases, we will show that (37B), (37B1) and (37C) can be treated
analogously as the groups with 2-dimensional second layer. The case (37D) is the most difficult
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and requires a special technique, which will be described in the next section. In the rest of the
present section, we suppose that we are in one of the cases (37B), (37B1), (37C).

Let Ωc = {η ∈ g∗2 : bη2 < bη1/2} and Ωp = {η ∈ g∗2 : bη2 > bη1/4}. Note that Ωc,Ωp are an open
cover of g∗2 \ {0}; the restriction to one of these open sets allow us to consider separately the
components {η : |J+

η | |J−η | = 0} and {η : |J+
η | = |J−η |} of the singular set g∗2 \ g∗2,r. We now

show that, in each of Ωc,Ωp, we can find suitable coordinates so that the hypothesis (4.2) is
satisfied.

Lemma 26. There exist linear coordinates (ηp
1 , η

p
2 , η

p
3 ) on g∗2 such that, if Dp =

(ηp
1∂ηp

1
, ηp

2∂ηp
2
, ηp

3∂ηp
3
) and Ω̃p = Ωp ∩ {η : ηp

1η
p
2η

p
3 6= 0}, then

bη1 , b
η
2 ∈ SC∞

Ω̃p,Dp
, P η1 , P

η
2 ∈ BD∞

Ω̃p,Dp
(1).

Proof. By identifying g∗2 with its embedding V in so4, the problem is reduced to choosing
suitable coordinates on V . We know that V− and V+ are proper subspaces of V , and clearly
V− ∩ V+ = 0. Let W be a linear complement of V− + V+ in V , and set Ṽ± = V± +W . Let
π± : V → Ṽ± be the projection on the first component with respect to the decomposition
V = Ṽ± ⊕ V∓. Then, for all µ ∈ V , |µ±| = |π±µ|± for some Euclidean norm | · |± on Ṽ±.
Consequently, by Lemma 13, for any choice of coordinates (ηp

1 , η
p
2 , η

p
3 ) on V compatible with

the decomposition V = V+ ⊕ V− ⊕W , the functions µ 7→ |µ±| restricted to V are in SC∞
Ω̃p,Dp

,

and similarly the functions µ 7→ µ±/|µ±| are in BD∞
Ω̃p,Dp

(1). From the formulas given by

Proposition 25 and Leibniz’ rule it is then clear that µ 7→ Pµ1 and µ 7→ Pµ2 restricted to V
are also in BD∞

Ω̃p,Dp
(1) and moreover, by Lemma 10(ii), µ→ bµ1 is in SC∞

Ω̃p,Dp
. Finally, bµ1 b

µ
2 =

||µ+|2 − |µ−|2|/2 restricted to Ωp \ {0} does not vanish, hence it is smooth, and Lemma 12
shows that bµ1 b

µ
2 ∈ SC∞Ωp,Dp

, but then bη2 = (bη1)−1(bη1b
η
2) ∈ SCΩ̃p,Dp

by Lemma 10(iii,iv).

An inspection of the proof shows that the previous lemma would hold also in the case (37D).
On the other hand, the assumption on the form of Pf Jη is essential for the validity of the
following lemma.

Lemma 27. There exist linear coordinates (ηc
1, η

c
2, η

c
3) on g∗2 such that, if Dc =

(ηc
1∂ηc

1
, ηc

2∂ηc
2
, ηc

3∂ηc
3
) and Ω̃c = Ωc ∩ {η : ηc

1η
c
2η

c
3 6= 0}, then

bη1 , b
η
2 ∈ SC∞

Ω̃c,Dc
, P η1 , P

η
2 ∈ BD∞

Ω̃c,Dc
(1).

Proof. Let (ηc
1, η

c
2, η

c
3) be the coordinates on g∗2 that bring the Pfaffian Pf Jη in normal form

as described above. It is then clear from the form of the Pfaffian and from Lemma 13 that η 7→
bη1b

η
2 is in SC∞

Ω̃c,Dc
. On the other hand, the functions µ 7→ µ± do not vanish on Ωc \ {0}, hence

the functions η 7→ P ηj and η 7→ bη1 are smooth there, and Lemma 12 show that bη1 ∈ SC∞Ωc,Dc

and P η1 , P
η
2 ∈ BD∞Ωc,Dc

(1). Consequently bη2 = (bη1)−1(bη1b
η
2) ∈ SC∞

Ω̃c,Dc
by Lemma 10(iii,iv).

Let (up
1 , u

p
2 , u

p
3) the coordinates on g2 dual to the coordinates (ηp

1 , η
p
2 , η

p
3 ) given by Lemma 26;

analogously, let (uc
1, u

c
2, u

c
3) be the coordinates on g2 dual to the coordinates (ηc

1, η
c
2, η

c
3) given

by Lemma 27. Let ζc, ζp : g∗2 \ {0} → R be a partition of unity subordinate to the open cover
Ωc,Ωp and made of smooth functions homogeneous of degree 0. A repetition of the proof of
Proposition 22 then yields the following estimates.
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Proposition 28. For all compact sets K ⊆ R, for all Borel functions F : R→ C supported
in K, and for all α ∈ [0, 1/2[

3
,∫

G

∣∣∣∣∣KF (L) ζp(U)(x, u)

3∏
k=1

(1 + |up
k|)

αk

∣∣∣∣∣
2

dx du ≤ CK,α‖F‖2W |α|2

,

∫
G

∣∣∣∣∣KF (L) ζc(U)(x, u)

3∏
k=1

(1 + |uc
k|)αk

∣∣∣∣∣
2

dx du ≤ CK,α‖F‖2W |α|2

.

As in Proposition 23 these estimates can be combined at the level of L1, so to obtain the
following result, which completes the proof of Proposition 3, except for the case (37D).

Proposition 29. Let K ⊆ R be compact. For all Borel functions F : R→ C such that
suppF ⊆ K, and for all α, β ∈ R such that β ≥ 3/2 and β > α+ 7/2,

‖(1 + | · |G)α KF (L) ‖1 ≤ CK,α,β‖F‖Wβ
2
.

7. A particular group with 3-dimensional second layer

In this section we assume that we are in the case (37D) according to the classification
described in §6. Therefore we can choose orthogonal coordinates (x1, x2, x3, x4) on g1 and
coordinates (η1, η2, η3) on g∗2 such that

Pf Jη = η2
1 + η2

2 − η2
3 . (7.1)

Let us fix an inner product on g∗2 such that (η1, η2, η3) are orthogonal coordinates. We may
suppose that the homogeneous norm | · |G on G is defined by (2.1) where the norms on g1 and
g2 are induced by the chosen inner products.

In contrast with the result of §6, in this case we are not able to find coordinates on g∗2 for
which the hypothesis (4.2) is satisfied in a neighborhood of the cone {η : Pf Jη = 0}; a more
refined decomposition will then be used, involving an infinite number of systems of coordinates.
An additional ingredient that will be exploited is a special extra weight on the first layer, given
by an adaptation of the technique of [20, 23] and [28, §3], and by the following estimates.

Lemma 30. There exists a continuous function w : g1 → [0,∞[ such that:

(i) for all η ∈ g∗2 and x ∈ g1,

|Jηx| ≥ |η|w(x);

(ii) if α, γ ∈ [0,∞[ and min{γ, 1}+ α > dim g1, then∫
g1

(1 + |x|)−α (1 + w(x))−γ dx <∞.

Proof. Suppose first that, in the chosen coordinates,

Jη =


0 0 −η1 − η3 −η2

0 0 −η2 η1 − η3

η1 + η3 η2 0 0
η2 −η1 + η3 0 0

 . (7.2)
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One may check that the previous formula indeed defines a 2-step stratified structure on R4 × R3

and that (7.1) holds. Proposition 25 then gives that

P η1 − P
η
2 =

sgn η3√
η2

1 + η2
2


η1 η2 0 0
η2 −η1 0 0
0 0 η1 η2

0 0 η2 −η1


and

bη1 =
√
η2

1 + η2
2 + |η3|, bη2 =

∣∣∣∣√η2
1 + η2

2 − |η3|
∣∣∣∣ .

Define the function w : g1 → [0,∞[ by

w(x) =

√
|x|2 −

√
(x2

1 − x2
2 + x2

3 − x2
4)2 + (2x1x2 + 2x3x4)2.

For all η ∈ g∗2 and x ∈ g1,

|Jηx|2 = 〈−J2
ηx, x〉 = (bη1)2〈P η1 x, x〉+ (bη2)2〈P η2 x, x〉

=
(bη1)2 + (bη2)2

2
〈(P η1 + P η2 )x, x〉+

(bη1)2 − (bη2)2

2
〈(P η1 − P

η
2 )x, x〉.

Since (bη1)2 + (bη2)2 = 2|η|2, (bη1)2 − (bη2)2 = 4|η3|
√
η2

1 + η2
2 , P η1 + P η2 = 1, we deduce that

|Jηx|2 = |η|2|x|2 − 2η3(v1η1 + v2η2).

where

v1 = x2
1 − x2

2 + x2
3 − x2

4, v2 = 2x1x2 + 2x3x4.

The Cauchy-Schwarz inequality gives us that

|2η3(v1η1 + v2η2)| ≤ 2|η3|
√
η2

1 + η2
2

√
v2

1 + v2
2 ≤ |η|2

√
v2

1 + v2
2

and since w(x)2 = |x|2 −
√
v2

1 + v2
2 , part (i) follows.

As for part (ii), choose γ′ ∈ [0, 1[ such that γ′ ≤ γ and γ′ + α > dim g1. Then∫
g1

(1 + |x|)−α (1 + w(x))−γ dx ≤
∫
g1

(1 + |x|)−α (1 + w(x))−γ
′
dx,

and moreover, by the properties of w,

1 + w(x) = 1 + |x|w(x/|x|) ≥ (1 + |x|)w(x/|x|),

therefore ∫
g1

(1 + |x|)−α (1 + w(x))−γ
′
dx ≤

∫
g1

(1 + |x|)−α−γ
′
w(x/|x|)−γ

′
dx.

If the integral in the right-hand side is performed in polar coordinates, then the convergence of
the radial part follows from the assumption γ′ + α > dim g1, and we are left with the angular
part ∫

S3

w(ω)−γ
′
dω,

Note now that, for all ω ∈ S3,

w(ω)2 ∼ 1− (ω2
1 − ω2

2 + ω2
3 − ω2

4)2 − (2ω1ω2 + 2ω3ω4)2 = (2ω1ω4 − 2ω2ω3)2,

and it is easily checked that ω 7→ ω1ω4 − ω2ω3 vanishes of first-order on S3 (its gradient as a
function on R4 is never normal to S3 on the zero set of the function), hence the integral on S3

converges because γ′ < 1.
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We have thus completed the proof in the particular case where (7.2) holds. Note now that
(i) can be equivalently rewritten as

sup
x′∈g1\{0}

|η([x, x′])|
|x′|

≥ |η|w(x).

If we replace the norms on g1 and g∗2 with equivalent norms, then the previous inequality
still holds, modulo multiplying w by a suitable nonzero constant; these modifications clearly
preserve also the validity of (ii). Since by the aforementioned classification result of [18, 24]
there is only one indecomposable 2-step stratified group (up to isomorphism) such that d = 7
and d2 = 3 and (7.1) holds in suitable coordinates, the conclusion follows in the general case.

Let Ωc = {η ∈ g∗2 : bη1b
η
2 < a|η|2} and Ωp = {η ∈ g∗2 : bη1b

η
2 > a|η|2/2}, where a ∈ ]0, 1/2[ is

sufficiently small so that

Ωc ⊆ {η : bη2 < bη1/2}. (7.3)

Let ζc, ζp : g∗2 \ {0} → R be a smooth homogeneous partition of unity subordinate to the open
cover Ωc,Ωp. Since Ωc does not intersect the plane {η : η3 = 0}, ζc decomposes uniquely as
ζ+ + ζ−, where ζ± : g∗2 \ {0} → R is smooth and supported in Ωc ∩ {η : ±η3 > 0}.

We consider first the region Ωp, that is the region far from the cone {η : Pf Jη = 0}. This is
the “easy part” to be considered, since a single system of coordinates is sufficient. In fact, by
repeating the proof of Lemma 26, we obtain immediately the following result.

Lemma 31. There exist coordinates (ηp
1 , η

p
2 , η

p
3 ) on g∗2 such that maxk |ηp

k | ≤ |η| and, if
Dp = (ηp

1∂ηp
1
, ηp

2∂ηp
2
, ηp

3∂ηp
3
) and Ω̃p = Ωp ∩ {η : ηp

1η
p
2η

p
3 6= 0}, then

bη1 , b
η
2 ∈ SC∞

Ω̃p,Dp
, P η1 , P

η
2 ∈ BD∞

Ω̃p,Dp
(1).

Let (ηp
1 , η

p
2 , η

p
3 ) be the coordinates on g∗2 given by Lemma 31, and let (up

1 , u
p
2 , u

p
3) be the dual

coordinates on g2. Let w : g1 → [0,∞[ be the function given by Lemma 30. Let χ ∈ C∞c (]0,∞[)
be such that suppχ ⊆ [1/2, 2] and

∑
n∈Z χ(2nt) = 1 for all t ∈ ]0,∞[.

Proposition 32. Let K ⊆ R be compact. For all smooth F : R→ C such that suppF ⊆
K, for all ρ ∈ ]0,∞[, δ ∈ ]0,∞[

3
, if ζp,ρ,δ : g∗2 → C is defined by

ζp,ρ,δ(η) = ζp(η)χ(|η|/ρ)

3∏
k=1

χ(|ηp
k |/(δk|η|)),

then, for all α ∈ [0,∞[
3

and θ ∈ [0,∞[,∫
G

∣∣∣KF (L) ζp,ρ,δ(U)(x, u) (1 + w(x))θ
3∏
k=1

(1 + |up
k|)

αk
∣∣∣2 dx du

≤ CK,α,θ ‖F‖W |α|2
ρ3−2|α|−2θ

3∏
k=1

δ1−2αk
k . (7.4)

Proof. As in the proof of Proposition 22, we may assume that δ1, δ2, δ3 ≤ 2 and that ρ ≤ CK ,
otherwise F (L) ζp,ρ,δ(U) = 0.
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From Lemma 31 and Proposition 20, we get immediately that, for all α ∈ N3,∫
G

∣∣∣|up
1 |α1 |up

2 |α2 |up
3 |α3 KF (L) ζp,ρ,δ(U)(x, u)

∣∣∣2 dx du ≤ CK,α‖F‖2W |α|2

3∏
k=1

(ρδk)1−2αk .

The previous inequality extends to all α ∈ [0,∞[
3

by interpolation.
On the other hand, by Lemma 30, |Jηx| ≥ |η|w(x). Hence, by [28, Proposition 3.5] and

Corollary 8, for all θ ∈ [0,∞[,∫
G

∣∣∣w(x)θ KF (L) ζp,ρ,δ(U)(x, u)
∣∣∣2 dx du

≤ CK,θ
∫
g∗2,r

∑
n∈N2

|F (bη1(2n1 + 1) + bη2(2n2 + 1))|2 |ζp,ρ,δ(η)|2 |η|−2θ bη1 b
η
2 dη.

Analogously as in the proof of Proposition 20, by passing to polar coordinates and rescaling,
we easily obtain that∫

G

∣∣∣w(x)θ KF (L) ζp,ρ,δ(U)(x, u)
∣∣∣2 dx du ≤ CK,θ‖F‖2W 0

2
ρ3−2θδ1δ2δ3. (7.5)

By interpolating (7) and (7.5), we obtain that, for all α ∈ [0,∞[
3

and θ ∈ [0,∞[,∫
G

∣∣∣w(x)θ |up
1 |α1 |up

2 |α2 |up
3 |α3 KF (L) ζp,ρ,δ(U)(x, u)

∣∣∣2 dx du
≤ CK,α,θ‖F‖2W |α|2

ρ−2θ
3∏
k=1

(ρδk)1−2αk .

The conclusion follows by combining this inequality with the corresponding ones where θ and/or
some of the components of α are replaced by 0.

If α1, α2, α3, θ are sufficiently small, then the exponents of ρ, δ1, δ2, δ3 in (7.4) are positive;
hence, as in the proof of Proposition 22, the estimates given by the previous proposition can
be summed via a dyadic decomposition, in order to obtain the following result.

Corollary 33. Let K ⊆ R be compact. For all smooth F : R→ C such that suppF ⊆ K,
for all α ∈ [0, 1/2[

3
and θ ∈ [0, 3/2− |α|[,∫

G

∣∣∣KF (L) ζp(U)(x, u) (1 + w(x))θ
3∏
k=1

(1 + |up
k|)

αk
∣∣∣2 dx du ≤ CK,α,θ‖F‖2W |α|2

.

Hölder’s inequality then yields the following L1-estimate.

Corollary 34. Let K ⊆ R be compact. For all smooth F : R→ C such that suppF ⊆ K,
for all α, β ∈ R such that β ≥ 0, 2β > α+ 9/2, α < −5/2,

‖(1 + | · |G)α KF (L) ζp(U) ‖1 ≤ CK,α,β‖F‖Wβ
2
.

Proof. Under our hypothesis, we can choose α1 ∈ ]3/2,−α− 1− 2(1− β)+[. Hence, if α2 =
(−α− α1)/2, then −α = α1 + 2α2 and α2 > 1/2 + (1− β)+, and therefore we can choose s ∈
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]3/2− α2, β] ∩ [0, 1[. Consequently, by Hölder’s inequality and Corollary 33,

‖(1 + | · |G)α KF (L) ζp(U) ‖21

≤ CK,α,β‖F‖2W s
2

∫
G

(1 + |x|)−2α1 (1 + w(x))−1
3∏
k=1

(1 + |uk|)−2(α2+s)/3 dx du.

Since 2α1 + 1 > 4, and 2(α2 + s) > 3, the last integral is finite by Lemma 30, and the conclusion
follows because s ≤ β.

Let us consider now the “hard part”, that is the region Ωc near the cone {η : Pf Jη = 0}.
This region will be decomposed into an infinite number of pieces, for each of which a specific
system of coordinates will be used. The decomposition can be described in two steps:

– first decomposition: we decompose Ωc in “truncated conic shells” where the distance from
the origin and the distance from the cone are approximately constant, i.e., |η| ∼ ρ and
bη1b

η
2/|η|2 ∼ δ for some (small, dyadic) parameters ρ, δ ∈ ]0,∞[; each of these shells is

invariant by rotations around the axis {η : η1 = η2 = 0} of the cone;
– second decomposition: each shell given by the first decomposition is further decomposed

into “sectors”, according to an angular parameter (i.e., the argument of (η1, η2)), with
angular width ∼ δ1/2; as it turns out, in each of these sectors an orthonormal system
of coordinates (with axes approximately given by the radial direction, the normal to the
cone, and the tangent to the cone parallel to the plane {η : η3 = 0}) can be chosen so to
satisfy the hypothesis (4.2).

Due to the fact that this decomposition must be achieved via a smooth partition of unity, and
that the estimates to be obtained (which depend on the derivatives of the components of the
partition of unity) must be uniform from piece to piece, the details of the decomposition are
slightly technical. Some help is given by the rotational invariance of the cone; note however
that bη1 and bη2 need not be invariant by rotations around the axis of the cone.

Recall that g∗2 is identified with R3 = R2 × R via the coordinates (η1, η2, η3). For all δ ∈ ]0, 1],
let Iε and (χε,v)v∈Iε denote the subset of S1 and the homogeneous partition of unity of R2 \ {0}
given by Lemma 14 corresponding to the thinness parameter ε = σδ1/2, where σ ∈ ]0, 1/4[
is a small constant to be fixed later; set moreover Yδ = Iε × {−1,+1}, and define, for all
q = (v,±1) ∈ Yδ,

χ̃δ,q(η) = χε,v(η1, η2).

For all v ∈ S1, let v⊥ ∈ S1 be such that v, v⊥ is a positive orthonormal basis of R2. For all q =
(v,±1) ∈ S1 × {−1,+1}, let (ηq1, η

q
2, η

q
3) be the orthonormal coordinates on g∗2 corresponding

to the basis (v,±1)/
√

2, (v⊥, 0), (v,∓1)/
√

2. It is then easily seen that

Pf Jη = 2ηq1η
q
3 + (ηq2)2. (7.6)

Set Dq = (ηq1∂ηq1 , η
q
2∂ηq2 , η

q
3∂ηq3 ) and Vq = {η : 2(ηq2)2 < |Pf Jη|}.

Further, for all ρ ∈ ]0,∞[, δ ∈ ]0, 1], q = (v,±1) ∈ Yδ, set

ζc,δ,q(η) = ζ±(η)χ(bη1b
η
2/(|η|2δ)) χ̃δ,q(η),

ζc,ρ,δ,q(η) = ζc,δ,q(η)χ(|η|/ρ).

Each cutoff ζc,ρ,δ,q corresponds to one of the sectors given by the second decomposition, and
(ηq1, η

q
2, η

q
3) are the coordinates meant to be used there. The following lemma collects the

estimates on the derivatives of these cutoffs and on the sizes of their supports, together with
the estimates on the derivatives of bη1 , b

η
2 , P

η
1 , P

η
2 , which are needed to apply the machinery of

§4.
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Lemma 35. For all A ∈ N there exists κ ∈ [1,∞[ such that, for all ρ ∈ ]0,∞[, δ ∈ ]0, 1],
q ∈ Yδ, the following holds:

(i) ‖bη1b
η
2‖SCAVq,Dq

≤ κ,

(ii) ‖bη1‖SCAΩc,Dq
, ‖P η1 ‖BDAΩc,Dq

(1), ‖P
η
2 ‖BDAΩc,Dq

(1) ≤ κ,

(iii) ‖bη2‖SCAΩc∩Vq,Dq
≤ κ,

(iv) supp ζc,δ,q ⊆ Ωc ∩ Vq,
(v) ‖ζc,δ,q‖BDAΩc∩Vq,Dq (1) ≤ κ,

(vi) |ηq1|/ρ, |η
q
2|/(ρδ1/2), |ηq3|/(ρδ) ∈

[
κ−1, κ

]
for all η ∈ supp ζc,ρ,δ,q.

Proof. By (7.6), the only nonzero iterated Dp-derivatives of Pf Jη are constant multiples
of ηq1η

q
3 or of (ηq2)2. Since

(ηq2)2 . |Pf Jη| and |ηq1η
q
3| ∼ |Pf Jη| for η ∈ Vq, (7.7)

it is clear that Pf Jη and bη1b
η
2 = |Pf Jη| are in SCAVq,Dq ; the SC-norm does not depend on q

because Pf Jη has the same form (7.6) in all coordinates (ηq1, η
q
2, η

q
3), and part (i) is proved.

Note that, by Proposition 25, bη1 , b
η
2 , P

η
1 , P

η
2 are smooth on {η : bη2 < bη1} and bη1 does not

vanish there. Part (ii) then follows by (7.3) and Lemma 12. Since bη2 = (bη1)−1(bη1b
η
2), part (iii)

follows from parts (i) and (ii) and from Lemma 10.
Let q = (v,±1). Evidently supp ζc,δ,q ⊆ supp ζ± ⊆ Ωc. Moreover, by Lemma 14(ii),

|ηq2| ∼ σδ1/2|(η1, η2)| for η ∈ supp χ̃δ,q (7.8)

and also

|(η1, η2)|2 = (|η|2 + Pf Jη)/2 ∼ |η|2 for η ∈ Ωc. (7.9)

Therefore

|ηq2|2 ∼ σ2δ|η|2 ∼ σ2bη1b
η
2 for η ∈ supp ζc,δ,q; (7.10)

by choosing σ sufficiently small, we obtain that supp ζc,δ,q ⊆ Vq, and part (iv) is proved.
From part (i) and Lemmata 13 and 10 we deduce that bη1b

η
2/|η|2 ∈ SCAVq,Dq , therefore by (3.1)

and Lemma 11(i) also η 7→ χ(bη1b
η
2/(|η|2δ)) is in BDA

Vq,Dq (1), with norm uniformly bounded in

q, δ. Moreover, by Lemma 14(iii) and (7.8) and (7.9), for all α ∈ N3 and η ∈ Ωc,

|∂αηq χ̃q,δ(η)| ≤ Cα|η|−α1−α3 |ηq2|−α2 ;

hence, as in the proof of Lemma 14(iv), one sees that χ̃δ,q is in BDA
Ωc,Dq (1) with norm

uniformly bounded in q, δ. Further χ± ∈ BDA
g∗2\{0},Dq (1) with norm uniformly bounded in q by

homogeneity and Lemma 12. Part (v) then follows by Leibniz’ rule.
Finally, by Lemma 14(ii) and the fact that supp ζ± ⊆ {η : ±η3 > 0},

ηq1 = (〈(η1, η2), v〉 ± η3)/
√

2 ∼ |(η1, η2)|+ |η3| ∼ ρ for η ∈ supp ζc,ρ,δ,q,

and moreover, by (7.10), it is clear that |ηq2| ∼ δ1/2ρ for η ∈ supp ζc,ρ,δ,q. On the other hand, by
(7.7) and part (iv), |ηq1η

q
3| ∼ b

η
1b
η
2 ∼ δρ2 for η ∈ supp ζc,ρ,δ,q; consequently |ηq3| = |η

q
1η
q
3|/|η

q
1| ∼

δρ for η ∈ supp ζc,ρ,δ,q, and part (vi) is proved.

Denote by (uq1, u
q
2, u

q
3) the system of coordinates on g2 dual to (ηq1, η

q
2, η

q
3) on g∗2. A repetition

of the proof of Proposition 32, exploiting Lemma 35 in place of Lemma 31, yields the following
estimate.
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Proposition 36. Let K ⊆ R be compact. For all smooth F : R→ C such that suppF ⊆
K, for all ρ ∈ ]0,∞[, δ ∈ ]0, 1[, q ∈ Yδ, α ∈ [0,∞[

3
and θ ∈ [0,∞[,∫

G

∣∣∣KF (L) ζc,ρ,δ,q(U)(x, u) (1 + w(x))θ
3∏
k=1

(1 + |uqk|)
αk
∣∣∣2 dx du

≤ CK,α,θ ρ3−2|α|−2θδ3/2−α2−2α3‖F‖2
W
|α|
2

.

Unfortunately we cannot sum directly the estimates given by the previous proposition, since
the weight changes from piece to piece. In order to avoid this problem, we must first apply
Hölder’s inequality in order to obtain L1-estimates with a weight independent of the piece.
The next result estimates the contribution given by each of the shells corresponding to the first
decomposition.

Corollary 37. Let K ⊆ R be compact. For all smooth F : R→ C such that suppF ⊆ K,
for all ρ ∈ ]0,∞[ and δ ∈ ]0, 1], if ζc,ρ,δ : g∗2 → C is defined by

ζc,ρ,δ(η) = ζc(η)χ(|η|/ρ)χ(bη1b
η
2/(δ|η|2)),

then, for all α ∈ [0,∞[
3

and θ, γ ∈ [0,∞[ such that 2γ > dim g1 −min{1, 2θ}+ 2
∑3
k=1(1−

2αk)+,

‖(1 + | · |G)−γ KF (L) ζc,ρ,δ(U) ‖1 ≤ CK,α,θ,γ ρ3/2−|α|−θδ1/4−α2/2−α3‖F‖
W
|α|
2
.

Proof. Note that ζc,ρ,δ =
∑
q∈Yδ ζc,ρ,δ,q. Since |Yδ| . δ−1/2 by Lemma 14(i), the conclusion

will follow from Minkowski’s inequality if for each summand we can prove the following
estimate:

‖(1 + | · |G)−γ KF (L) ζc,ρ,δ,q(U) ‖1 ≤ CK,α,θ,γ ρ3/2−|α|−θδ3/4−α2/2−α3‖F‖
W
|α|
2
.

By Proposition 36 and Hölder’s inequality, this estimate in turn will follow if we show that∫
G

(1 + |(x, u)|G)−2γ (1 + w(x))−2θ
3∏
k=1

(1 + |uqk|)
−2αk dx du <∞

(note that the value of the previous integral does not depend on q, because the uq are
orthonormal coordinates). On the other hand, under our hypothesis on α, γ, θ, we may
decompose γ = γ1 + 2(γ2,1 + γ2,2 + γ2,3) so that 2γ1 > dim g1 −min{1, 2θ} and 2γ2,k > (1−
2αk)+ for k = 1, 2, 3. Thus

(1 + |(x, u)|G)−2γ (1 + w(x))−2θ
3∏
k=1

(1 + |uqk|)
−2αk

≤ Cα,θ,γ (1 + |x|)−2γ1 (1 + w(x))−2θ
3∏
k=1

(1 + |uqk|)
−2γ2,k−2αk ,

and since (by Lemma 30) the right-hand side is integrable over G we are done.

By choosing ρ, δ to be dyadic parameters, we can now sum the estimates corresponding to
the first decomposition. In order to do so, the exponents of ρ and δ in the estimate must be
positive, and this gives further constraints on the choice of α1, α2, α3, θ. Anyhow, a suitable
choice of these parameters allows us to obtain for the region Ωc the same L1-estimate obtained
in Corollary 34 for the region Ωp.
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Corollary 38. Let K ⊆ R be compact. For all smooth F : R→ C such that suppF ⊆ K,
for all α, β ∈ R with β ≥ 0, 2β > α+ 9/2, α < −5/2,

‖(1 + | · |G)α KF (L) ζc(U) ‖1 ≤ CK,α,β‖F‖Wβ
2
.

Proof. Under our hypothesis, we may choose θ such that 2θ ∈ ](9 + 2α)/4, 1[ ∩ [0, β]. In par-
ticular −2α > 9− 8θ = 4− 1 + 2((1− 2θ) + (1− 2θ) + 1) and 2θ < 1, hence, by Corollary 37,

‖(1 + | · |G)α KF (L) ζc,ρ,δ(U) ‖1 ≤ CK,α,β ρ1−2θδ1/4−θ/2‖F‖W 2θ
2

(7.11)

for all ρ, δ ∈ ]0,∞[. On the other hand, for some κ ∈ [0,∞[,

F (L) ζc(U) =
∑

k∈Z, n∈N
2k≤2κmaxK

F (L) ζc,2k,2−n(U),

hence an estimate for ‖(1 + | · |G)α KF (L) ζc(U) ‖1 can be obtained via the triangular inequality
by summing the corresponding estimates given by (7.11). The sum converges because both
1− 2θ and 1/4− θ/2 are positive, and since 2θ ≤ β the conclusion follows.

Interpolation with the standard estimate finally allows us to conclude the proof of
Proposition 3.

Proposition 39. Let K ⊆ R be compact. For all functions F : R→ C such that suppF ⊆
K, and for all α, β ∈ R such that β ≥ 2/2 and β > α+ 7/2,

‖(1 + | · |G)α KF (L) ‖1 ≤ CK,α,β‖F‖Wβ
2
. (7.12)

Proof. Analogously as in the proof of Proposition 23, it is sufficient to prove (7.12) for all
α, β belonging to either of the following ranges:

β ≥ 0, β > α+ 10/2; (7.13)

β ≥ 0, 2β > α+ 9/2, α < −5/2; (7.14)

the conclusion (i.e., the range β ≥ 2/2, β > α+ 7/2) is then obtained by interpolation. On
the other hand, the validity of (7.12) in the range (7.13) follows from the standard estimate
(1.2) and Hölder’s inequality. As for the range (7.14), we decompose F (λ) = F (λ) ζp(η) +
F (λ) ζc(η) and then we sum the corresponding estimates for KF (L) ζp(U) and KF (L) ζc(U) given
by Corollaries 34 and 38.
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Livre II: Algèbre. Chapitre 9: Formes sesquilinéaires et formes quadratiques (Hermann, Paris, 1959).

5. M. Christ, ‘Lp bounds for spectral multipliers on nilpotent groups’, Trans. Amer. Math. Soc. 328 (1991)
73–81.

6. M. Christ and D. Müller, ‘On Lp spectral multipliers for a solvable Lie group’, Geom. Funct. Anal. 6
(1996) 860–876.

7. M. Christ and C. D. Sogge, ‘The weak type L1 convergence of eigenfunction expansions for
pseudodifferential operators’, Invent. Math. 94 (1988) 421–453.



Page 34 of 35 SPECTRAL MULTIPLIERS ON 2-STEP GROUPS

8. J. L. Clerc and E. M. Stein, ‘Lp-multipliers for noncompact symmetric spaces’, Proc. Nat. Acad. Sci.
U.S.A. 71 (1974) 3911–3912.

9. M. Cowling and A. Sikora, ‘A spectral multiplier theorem for a sublaplacian on SU(2)’, Math. Z. 238
(2001) 1–36.

10. M. Cowling, O. Klima and A. Sikora, ‘Spectral multipliers for the Kohn sublaplacian on the sphere in
Cn’, Trans. Amer. Math. Soc. 363 (2011) 611–631.

11. D. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms (Springer-Verlag, New York, 1997).

12. L. De Michele and G. Mauceri, ‘Hp multipliers on stratified groups’, Ann. Mat. Pura Appl. (4) 148
(1987) 353–366.

13. X. T. Duong, E. M. Ouhabaz and A. Sikora, ‘Plancherel-type estimates and sharp spectral multipliers’,
J. Funct. Anal. 196 (2002) 443–485.
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